
Breaking Memory Bandwidth Barriers using HBM FPGA
V1.0 - 15th May 2018

Breaking Memory Bandwidth
Barriers using HBM FPGA

Breaking Memory Bandwidth Barriers using
High Bandwidth Memory FPGA

A. C. McCormick, Ph.D., Technical Director, Alpha Data Parallel Systems Ltd.

Introduction
The release of Virtex Ultrascale+ High Bandwidth Memory(HBM) FPGA devices, opens up whole new areas of
memory bound applications to the benefit of power efficient FPGA acceleration. A recent increasing trend has
been to target a variety of memory bound applications to GPU systems, simply because of their significant
memory bandwidth advantage over the CPU, and this is despite the application not having any need for the
GPUs primary functionality: the very high performance parallel floating point arithmetic. With the advent of
FPGAs with similar external memory bandwidth, but much more flexible and higher internal memory bandwidth
configurability, more customized and energy efficient accelerated solutions for these problems are now possible.

The VU37P is the largest device in the Xilinx Virtex Ultrascale+ HBM range. This device uses Xilinx 3D Stacked
Silicon Interconnect to stack multiple FPGA dies, including one with a very high bandwidth memory controller
along with two 4GB HBM Gen2 DRAM dies into the same package, allowing massive bandwidth between
in-package wafers. This coupling of massive parallel processing capability and massive memory bandwidth
within a single device could result in orders or magnitude acceleration in traditionally memory bound applications.

The Alpha Data ADM-PCIE-9H7 is the first Virtex Ultrascale+ VU37P board in the market place. This board
provides the VU37P FPGA, with 2.8 Million configurable logic cells, 60MB of very flexible on-chip (cache)
memory, 9024 DSP tiles (potentially over 500 GFLOPs double precision performance), 8GB of on-package HBM
memory with 460 GB/s memory bandwidth, Gen3x16 PCIe connectivity with host memory (or dual OpenCAPI
25Gx8), and another 48x 25Gb/s links that are available to connect to other FPGA boards, or a 100G Ethernet
network.

In this white paper, 3 case studies are investigated to assess the potential performance of this board with real
world applications: multi-dimensional FFTs, Merge Sort and Matrix Multiplication.

Multi-Dimensional FFT Implementations
The FPGA is the device of choice for FFT implementations in many aerospace and defence systems,
implementing real time radars, sonars and communication systems. This is due to the high efficiency of
implementations which can exploit the extremely high bandwidth of dual ported on-chip memories, to buffer data
between FFT butterfly operation engines, which themselves can be easily customized to an appropriate bit width
for the application. Single dimensional FFT performance in larger devices can be limited by the IO bandwidth.
Multi-dimensional FFTs can use the data out at each stage, and the HBM architecture may be very well suited for
this task as results can be stored and corner turned efficiently, staying within the chip package.

FPGAs allow very efficient architectures for FFT computations to be built. The specialized multiplication logic
(DSP tiles) provide very efficient multiply accumulate hardware for implementing a Radix-2 or Radix-4 Butterfly
cores for each stage of the FFT. Between stages, the dual port block RAMs provide buffers that can be
simultaneously read from and written to. This allows a pipelined implementation, that can continually run and

Page 1ad-an-0066_v1_0.pdf

Breaking Memory Bandwidth Barriers using HBM FPGA
V1.0 - 15th May 2018

push data through all the stages, fully utilizing the multiplication hardware. Figure 1 shows the general structure
of a pipelined FFT as implemented in an FPGA.

Dual
Port

Buffer

4 point
FFT

Butterfly

Dual
Port

Buffer

4 point
FFT

Butterfly

Dual
Port

Buffer

4 point
FFT

Butterfly

Figure 1 : Pipelined FPGA FFT Implementation

Efficient implementations are available off the shelf for FPGA designs using the IP catalogs available in most
FPGA design tools. Therefore is no need to implement this from scratch unless there are very specific
requirements to be met. The Xilinx IP Catalog in Vivado, provides fixed and single precision floating point
implementations, that can run at clock rates in excess of 400MHz. These can be configured to a range of sizes
and structures. This paper will focus on an 8192 point implementation, as as 8192x8192x8192 complex single
precision 3D FFT will occupy 4GB of HBM RAM, allowing for efficient double buffering in the 8GB VU37P part.
The Xilinx FFT IP core can provide a pipelined implementation of a single precision 8k FFT, with 1 sample per
clock cycle performance, using around 100 DSP tiles, with effective performance of 26 single precision GFLOPS.
As this occupies only a small fraction of the FPGA, for the 3D FFT accelerator design, a large number of these
will be implemented in parallel, and this will also help efficiently implement the transfer of data from the HBM
memory to and from these cores.

AXI

AXI

AXI

AXI

AXI

AXI

AXI

Switch
Infrastructure

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

User
FPGA
Accelerator

Figure 2 : High Bandwidth Memory Access Structure

Page 2 ad-an-0066_v1_0.pdf

Breaking Memory Bandwidth Barriers using HBM FPGA
V1.0 - 15th May 2018

A parallel implementation within the chip is essential to fully exploit both the procesing performance and memory
bandwidth available. The HBM memory is still DDR4 based and therefore is best accessed via long contiguous
bursts, and performs poorly when accessed randomly and with data accesses less than the port width. The
memory also consists of 32 independent parallel 256 bit wide AXI ports, each which can access the entire HBM
address space through switch logic in the chip. The HBM memory is also a parallel stack of DRAM devices, and
so accesses of at least 256 bits wide will be required for reasonable efficiency. Figure 2 shows the general HBM
switching structure.

The ratio of memory access to computational performance is critical here. A single FFT core, will require a
sustained 3.2 GB/s read performance to match the 26 GFLOPs performance. The same bandwidth is also
required to write back the processed data. A single AXI port will provide at best four times this read bandwidth,
and assuming read and write back each requiring a port, the device could potentially support up to 64 cores in
parallel, based on memory bandwidth considerations.

With multi-dimensional FFTs, the data access pattern may not necessary fit how the data is stored in memory. A
3D FFT involves performing FFTs in each dimension in turn. Reading the FFT input in the first pass, the X
direction will be efficient, but reading data for the Y and Z direction FFTs directly from DRAM requires inefficient
64 bit wide, burst length 1, transfers, which will waste at least 75% of the bandwidth. The solution is to perform
corner turning on the data, in the internal RAM within the FPGA. This can be performed, while reading from
memory, during the FFT write back, or between FFT transfers, using a separate accelerator core. The first
option is considered in this paper.

0 16 32
0

16

32

Key:
Parallel Reader #1
Parallel Reader #2
Parallel Reader #3

Figure 3 : Corner Turning FFT Reads from Memory

Page 3ad-an-0066_v1_0.pdf

Breaking Memory Bandwidth Barriers using HBM FPGA
V1.0 - 15th May 2018

In this case study, each parallel FFT core is paired up with a memory reader and memory writer engine. The
memory readers first push their data through a corner turn block which aggregates data from all the parallel
readers and outputs it after a corner turn transform. For the first FFT pass in the X direction, this corner turn can
be bypassed. Figure 3 shows the memory access pattern for 16 parallel cores using the corner turn. The first
unit reads a slice, 16 channels wide, from the first line (shown in orange). The next read by this DMA reading
engine is then from the 17th line, and the 33rd line etc. The second DMA engine reads from lines 2,18,34, the
third from 3,19,35 etc. The corner turn block receives all 16 parallel input streams and outputs them as 16
parallel corner turned streams, where each FFT core gets 1 sample from each of the 16 readers for each 16
lines in the Y direction (in the Z direction, the same logic works with a different address jump between lines.)

The choice of FFT size of 8192 has been motivated in this case by the match between the HBM memory and the
footprint of an 8192x8192x8192 data set. The corner turning approach is suitable for a range of larger FFT
sizes, with the memory bandwidth effectively limiting the number of parallel cores to 64, smaller FFT sizes than
4k will be less efficient. With significantly smaller FFT sizes, such as 128x128x128, the corner turning may be
more effectively performed between FFT stages, with on-chip SRAM memory within the FPGA, and therefore the
use of HBM may be less important in these applications.

When implementing this solution, the limiting resource turns out to be the availability of BlockRAM blocks used
as the double buffers within the FFT cores. The VU37P has a very large on-chip SRAM memory, but 80% of this
is larger UltraRAM blocks, which are not currently used by the FFT IP Core. This limits the number of FFT cores
to 48, however this still results in a 3D FFT core capable of sustained operation in excess of 0.75TFLOPs (single
precision) using a conservative 250Mhz system clock.

Parallel Merge Sort
Sorting and searching algorithms are fundamental building blocks of many applications. Without any floating
point arithmetic requirement, they are often ignored as acceleration candidates. Research into optimizing these
algorithms often only focuses on minimising the number of comparison operations, through some heuristic
means. With FPGA implementation, it is however clear that the comparison operation, is actually not a
significant part of the processing cost, and processing time. Much more performance and energy is used in
moving the data from memory to the comparison unit and back. Therefore an HBM enabled FPGA with massive
bandwidth between comparison logic and the memory should be able to provide a better solution. The Ultra
RAM and Block RAM within the FPGA which allow very application specific control of data caching and data flow
will also aid in providing higher performance and lower energy solutions.

Merge Sort is not an algorithm typically considered for FPGA implementation. However for large data sets, it is a
deterministic, efficient sorting algorithm, that can be easily parallelized. The arithmetic requirements are minimal.
It can still benefit from the flexible configuration of the on-chip memory to provide a very efficient low power
solution. Since computation is minimal, the movement of data dominates the performance and power
requirements of this algorithm, and therefore there may be substantial benefits to using HBM with this algorithm.

Merge Sort is a divide and conquer approach to sorting data. It has a deterministic complexity O(N log2 N),
which may be slower than some heuristic algorithms with best case data (e.g. Quick Sort), but it does not suffer
from data dependent issues. It is also parallelizable, making it better suited for FPGA implementation.

The O(N log2 N) complexity is similar to that of the FFT algorithm, and a similar data flow structure as described
in the previous case study can be employed to create a log2 N parallelism, through a pipeline, which will make
the sort time O(N), effectively matching the rate at which data can be read from memory, and written back.

Page 4 ad-an-0066_v1_0.pdf

Breaking Memory Bandwidth Barriers using HBM FPGA
V1.0 - 15th May 2018

Compare
Select

Dual Port
FIFO

Dual Port
FIFO

Split
Every
2^x

Compare
Select

Dual Port
FIFO

Dual Port
FIFO

Split
Every

2^(x+1)

Figure 4 : Merge Sort Pipeline Stages

Figure 4 shows 2 stages of the merge sort pipeline. At each stage the input stream is split into 2 FIFOs, and the
comparison operation is used to select the larger output first to push to the next stage. The input data stream is
fed alternativeley to one of 2 FIFOs. At the first stage, data is unsorted and so alternative elements are sent to
each FIFO. In later stages, input data will be sorted into 2x long sections, and so the split occurs after this
number of elements. At each stage once 2x elements have been read from one FIFO, the remaining data will be
read from the other FIFO until 2(x+1) sorted elements have been output.

The FPGA resource requirement for the comparison and select operation is relatively minimal and requires just a
handful of logic cells (considering 2.8 Million are available). For maximum performance the comparison
operation is hard coded, in the example case to a 64 bit big endian comparison (text character order), however
more complex comparisons (e.g. 64 bit little endian for integer, or even case insensitive ascii byte by byte
comparison) can also be easily implemented. Run time, software selectable comparison units could also be
added at only a small extra logic cost (effectively implementing all possible comparisons that could be required).
Data width is less flexible, and the data elements need to be divided into values that are used for comparison
and other data elements, to be carried along in the sort. In the example case study, an 8 byte value was paired
with an 8 byte key, not used in the comparison, but which could be a 64-bit pointer into the reference database.

The components which take up the resources in this accelerator are the FIFOs. At each stage, the FIFO needs
to be 2x elements deep. This effectively puts a limit on how many stages can fit in the FPGA. Beyond this, the
HBM device allows additional stages to merge sort from one port on the HBM device to another.

Using the VU37P device and choosing 16-byte wide data records (8 bytes of comparable value, 8 bytes of key/
pointer) it is possible, building the FIFOs out of Distributed, Block and Ultra RAMs to construct 20 parallel stages,
alllowing a parallel sort of over 1 million elements (16MB) in O(N) time, at the memory port read rate. Using the
other HBM ports to add additional stages allows an extra 8 sorts to be placed in the pipeline, providing the
potential to sort 4GB of data in O(N) time.

Double Precision Matrix Multiply
Linear algebra libraries are at the heart of many HPC applications, and matrix multiplication is one of the most
commonly used operations. Matrix Multiplication is O(N3) in its naive implementation, whereas the memory
bandwidth requirement is O(N2). FPGAs can efficiently implement fixed sized N units where the data for a row
and column for each multiplier unit can be cached local to that unit. The local memory and processing resources
will limit the size of N: larger values will help overcome any memory bandwidth limitation, however smaller values
may be more flexible and support a wider number of matrix sizes more efficiently. HBM devices can allow better
exploitation of FPGA Matrix Multiplication cores, as typically the fixed multiplication size needs combined with
simpler memory bound operations such as addition, transposition and scaling within an iterative loop, and the
HBM bandwidth and multiport structure will allow these additional operations to operate on the same data, and
keep the dataset locally on the device.

Page 5ad-an-0066_v1_0.pdf

Breaking Memory Bandwidth Barriers using HBM FPGA
V1.0 - 15th May 2018

While there are some matrix multiplication algorithms that can perform better than O(N3) these either have
stability issues for certain data sets, or have other computation complexities that make them unsuitable in most
practical use cases. Therefore most algorithms tend to still use the naive O(N3) implementation. This is not
necessarily memory bound as for the O(N3) computations only O(N2) memory accesses are required. Therefore
the ratio of computation to memory access is O(N) and therefore to avoid memory bound issues it would appear
that increasing N will improve the situation. However to achieve this, the appropriate row and column data must
be cached close to each multiplication unit. In CPU systems, this can result in very fast performance with small
matrix sizes, dropping to poor performance with larger matrix sizes, dominated by cache misses.

With FPGA implementations, the dual port memories, allow a double buffered cache implementation, where the
next Matrix operation data can be loaded, while the current matrix computation progresses. Since there is a O
(N) factor of data re-use within the algorithm, the writes from memory to the caches will take far less time than
the computation, avoiding any cache dependency. An FPGA matrix multiply core can consist of N floating point
multiply units, each with two local cache memories contaning a column from the first matrix and a row from the
second. Iterating across the multiplication of these two vectors will produce a partial product for each of the NxN
results, which can be summed with all the products from the other multiply units using an adder tree pipeline with
N-1 douple precision floating point adders. Figure 5 shows this systolic array structure for matrix multiplication.
The latency from cache line read to matrix product element output is quite long, consisting of the double
precision multiply latency plus log2(N) times the addition latency. However relative the the N2 multiplications, this
time will be small, and the next matrix multiplication can be started immediately after the last finishes reading
data, and so the latency may not be critical to performance.

A column 1

Sum
(N-1
Adds)

B row 1
MULT

A column 2

B row 2
MULT

A column 3

B row 3
MULT

A column N

B row N
MULT

Figure 5 : Matrix Multiply Systolic Array

The local caches will be implemented in the FPGA using Block RAM or Ultra RAM. This places a size restriction
on these blocks, making them a power of 2 size. For non-power of 2 parallelizations of N, this does introduce a
memory use inefficiency. To double buffer the data, and allow the data load from external memory to run in
parallel with the matrix operation on the previous data frame, the caches also need to be at least 2N in size.
Block RAM components naturally map to 512 element deep memories, and therefore supporting a parallelization
of up to 256 units. Moving from 256 to 512, not only increases the RAM requirement in proportion to the
parallelization N, but also requires a doubling of each local buffer size, as does moving beyond a parallelization

Page 6 ad-an-0066_v1_0.pdf

Breaking Memory Bandwidth Barriers using HBM FPGA
V1.0 - 15th May 2018

of 512. With this restriction in mind, the matrix multiply core used was scaled up to fill as much of the VU37P as
possible. Using N of 512 required less than 50% of the computational resources but more than 50% of the RAM.
Scaling up to a parallelization of 1024 does not appear possible, but a parallel 704x704 double precision matrix
multiplier does fit. If clocked at 250MHz, this would have a performance of around 350 GFLOPs.

The matrix multiplication implementation as described so far would work equally well on a non-HBM FPGA as the
memory bandwidth is not the limitation. The advantage of using HBM starts to show when combining the matrix
multiplication operation, with other matrix operations. Since the Matrix Multiply core reads from 2 matrices and
writes back to one, it can use at most 3 of the HBM AXI ports to access the memory. This leaves many other
ports free to perform complimentary computations in parallel. One useful operation, is matrix element by
element addition. This can be used as part of a divide and conquer algorithm for multiplying larger matrices, and
could allow the core to handle much larger matrices that its fixed size. The core can also handle smaller
matrices, by setting unused rows and columns to zero. However this is relatively inefficient as the computation
time will take the same length of time as for the full matrix size.

Future work will look into the advantages and disadvantages of using multiple smaller cores in place of the single
large matrix multiply core, which can be easily implemented in HBM parts due to the multi-port access to the
HBM. This could be combined with not only the extra matrix addition operation, but several other matrix
operations including Matrix-Scalar multiplication, Matrix-Vector multiplication, Matrix Transposition and element
by element recipricol or square root, which are often used in HPC application loops along with a large
Matrix-Matrix product operation. Some of these operations can be pipelined together reducing the memory
requirement, for example computing the square root of the matric product before its written back to memory.

Conclusions
This white paper has discussed the implementation of 3 application case studies on the Xilinx Virtex Ultrascale+
HBM VU37P device, running on the Alpha Data ADM-PCIE-9H7 accelerator card.

While conventional FPGAs provide a very efficient mechanism for FFT implementation, for large
multi-dimensional workloads, the high bandwidth parallel HBM interface provides the perfect buffer for handling
these larger data sets, especially when combined with the FPGAs on board memory flexibility to allow efficient
corner turning of data.

Parallel Merge Sort can also be targetted at the HBM FPGA device. The large FPGA size of the VU37P, and
especially the large provision of Ultra RAM allows a very efficient implementation of sort pipeline with up to 20
parallel stages, sorting over a million elements as fast as they can be read from memory. The HBM allows
additional parallel sort stages to operate in the pipeline, extending the sort size by several orders of magnitude.

Large parallel Matrix Multiplication cores can be implemented on most large FPGAs, and these implementations
are not specifically memory bandwidth sensitive. However HBM allows easy combination of one or more Matrix
Multiplication cores with, more basic lower performance, memory bound operators such as addition or scaling,
that allow the data set to be kept on the accelerator while perfoming a more complex processing loop. This
multi-port parallel access to the same working data set, which can be up to 8GB in size will enable many
combinations of accelerators to be implemented in the same FPGA design - for example, combinations of
Matrix-Multiplication and FFT processing have many applications.

Page 7ad-an-0066_v1_0.pdf

Breaking Memory Bandwidth Barriers using HBM FPGA
V1.0 - 15th May 2018

HBM Working Memory

MMULT FFT

Gen3x16 PCIE
Endpoint

Add

Host CPU
(high perfomance complexity offload,
User IO, storage IO, checkpointing)

FPGA to FPGA
RDMA

Soft CPU
(low performance
complexity offload)

12x100GE
To other FPGA

Figure 6 : Heterogeneous Compute Acceleration Node

This architectural idea of a compute acceleration node with multiple heterogeneous acceleration cores can be
expanded to an almost generic memory and dataflow centric paradigm, where the working data for the
application is kept in the HBM memory and the processing operates around this. Figure 6 illustrates one such
structure. The FPGA contains a number of different accelerators and work modules. Simple and complex
computation accelerators operate directly on the HBM memory. Control and mode complex tasks can be
handled by either an on-chip soft CPU, or by a host CPU over PCIe. Internode communication can operate in
parallel, shifting data through the 1.2TB/s of IO bandwidth between the different FPGAs in the cluster.

Case Study Vivado Projects
The case study Vivado projects are available for customers of the ADM-PCIE-9H7 HBM FPGA accelerator card.
Please contact Alpha Data for information on how to access these.

Address: 4 West Silvermills Lane,
Edinburgh, EH3 5BD, UK

Telephone: +44 131 558 2600
Fax:
email:

+44 131 558 2700
sales@alpha-data.com

website: http://www.alpha-data.com

Address: 611 Corporate Circle Suite H
Golden, CO 80401

Telephone: (303) 954 8768
Fax:
email:

(866) 820 9956 - toll free
sales@alpha-data.com

website: http://www.alpha-data.com
4.9

	Breaking Memory Bandwidth Barriers using High Bandwidth Memory FPGA
	Introduction
	Multi-Dimensional FFT Implementations
	Parallel Merge Sort
	Double Precision Matrix Multiply
	Conclusions
	Case Study Vivado Projects

	Figures
	Figure 1: Pipelined FPGA FFT Implementation
	Figure 2: High Bandwidth Memory Access Structure
	Figure 3: Corner Turning FFT Reads from Memory
	Figure 4: Merge Sort Pipeline Stages
	Figure 5: Matrix Multiply Systolic Array
	Figure 6: Heterogeneous Compute Acceleration Node

