
ADM-XRC-KU1 Interrupt Test
FPGA Design
Release: 1.0.0

Document Revision: 1.0
7 Feb 2018

ADM-XRC-KU1 Interrupt Test FPGA Design Release: 1.0.0
V1.0 - 7 Feb 2018

© 2018 Copyright Alpha Data Parallel Systems Ltd.
All rights reserved.

This publication is protected by Copyright Law, with all rights reserved. No part of this
publication may be reproduced, in any shape or form, without prior written consent from Alpha

Data Parallel Systems Ltd.

Head Office

Address: 4 West Silvermills Lane,
Edinburgh, EH3 5BD, UK

Telephone: +44 131 558 2600
Fax: +44 131 558 2700
email: sales@alpha-data.com
website: http://www.alpha-data.com

US Office

611 Corporate Circle Suite H
Golden, CO 80401
(303) 954 8768
(866) 820 9956 - toll free
sales@alpha-data.com
http://www.alpha-data.com

All trademarks are the property of their respective owners.

ADM-XRC-KU1 Interrupt Test FPGA Design Release: 1.0.0
V1.0 - 7 Feb 2018

Table Of Contents

1 Introduction .. 1
 1.1 Structure of this package ... 2
2 Design description .. 4
3 Building the FPGA design ... 6
4 Demonstration program .. 7
5 Building the demonstration program .. 8
 5.1 Building in Linux ... 8
 5.2 Building in Windows ... 8
 5.3 Building for VxWorks ... 9
6 Using the FPGA design ... 10
 6.1 Using the FPGA design with a Linux host .. 10
 6.2 Using the FPGA design with a Windows host .. 11
 6.3 Using the FPGA design in VxWorks .. 11

Appendix A Running the demonstration program in Linux & Windows ... 14

Appendix B Demonstration program entry points in VxWorks ... 15

Appendix C Makefile variables in VxWorks ... 17

List of Tables

Table 1 Direct Slave AXI4 address map ... 4
Table 2 Project creation scripts by configuration .. 6
Table 3 Location of itest.exe ... 9
Table 4 Interaction of pBitPath and pBitFile ... 16

List of Figures

Figure 1 The ADM-XRC-KU1 within a system ... 1
Figure 2 Structure of this package ... 2
Figure 3 Block diagram of Interrupt Test FPGA Design ... 4

ADM-XRC-KU1 Interrupt Test FPGA Design Release: 1.0.0
V1.0 - 7 Feb 2018

1 Introduction
Supported Vivado versions
This version of the ADM-XRC-KU1 Interrupt Test FPGA Design can be built with Vivado 2015.4 or later.

As of writing, Vivado 2017.4 is the latest release and is recommended. Alpha Data cannot guarantee that this
FPGA design will be fully compatible with future releases of Vivado.

Please review Xilinx Quality Alert XCN15040 .

This example FPGA design demonstrates how a program running on the host can consume notifications that the
FPGA requires attention, which can be considered an abstraction of a PCI Express message-signaled interrupt,
and how to implement a simple interrupt controller within the FPGA so that multiple sources of interrupt can be
supported. There are several use cases for this capability, including:

• Notifying a host program that the FPGA has finished processing a block of data.

• Notifying a host program that the FPGA has finished receiving or transmitting a packet of data on a
physical I/O interface.

• Notifying a host program that an exceptional (error) condition has arisen.

Although the FPGA has a single pin for generating an interrupt to the host, in any practical application, the host
program must take some action after being notified that the FPGA requires attention. This means that the FPGA
design must include a host interface so that the host program can read and write registers. In this FPGA design,
the host interface is implemented using the Alpha Data ADM-XRC-KU1-HSAXI (Host Serial AXI4) IP.

Host CPU

PCIe Switching

Infrastructure

Other

PCIe

Device

PCIe to

MPTL

Bridge

Target

FPGA
ADM-XRC-KU1

PCIe 5 GT/s x4 MPTL 5 GT/s x4

Other

PCIe

Device

ADM-XRC-KU1-HSAXI IP

Root

Complex

firq_l

Figure 1 : The ADM-XRC-KU1 within a system

Within the ADM-XRC-KU1, the PCIe to MPTL Bridge performs a fixed function, namely to permit the target FPGA

Page 1Introduction
ad-ug-0104_v1_0.pdf



http://www.xilinx.com/support/documentation/customer_notices/xcn15040.pdf

ADM-XRC-KU1 Interrupt Test FPGA Design Release: 1.0.0
V1.0 - 7 Feb 2018

to be reconfigured without generating PCI Express errors that are fatal to the system; it is not
user-programmable. The target FPGA, on the other hand, is user-programmable and may be reconfigured at will.

The firq_l signal (green) is the FPGA to Host interrupt signal. The Bridge FPGA converts a falling edge on this
signal into a hardware interrupt (a PCI Express message-signaled interrupt), which is handled by Alpha Data's
ADB3 Driver. The ADB3 Driver is a device driver for the ADM-XRC-KU1, provided by Alpha Data, with a
user-mode application-programming interface (API) named the ADMXRC3 API. The ADB3 Driver converts
hardware interrupts into "notifications" which can be consumed via the ADMXRC3 API.

The ADM-XRC-KU1-HSAXI (Host Serial AXI4) IP is instantiated in the target FPGA and has several interfaces:
• The MPTL (Multiplexed Packet Transport Link) interface; this is an off-chip interface to the Bridge FPGA,

implemented using MGTs (Multi-Gigabit Transceivers).

• The Direct Slave interface; this is an AXI4 memory-mapped (AXI4-MM) master interface through which
reads and writes originating on the host CPU can be performed. It is named "Direct Slave" because, from
the point of view of the host CPU, the target FPGA is a slave.
This interface is appropriate for random access, by the host CPU, to registers implemented in the target
FPGA.

• Two DMA channels, which are AXI4 memory-mapped (AXI4-MM) slave interfaces through which reads
and writes originating within the PCIe to MPTL Bridge are performed.
These interfaces are appropriate for bulk data transfer between host memory and the target FPGA, but are
not used in this example FPGA design.

This example FPGA design, then, demonstrates the following techniques:
• Instantiating ADM-XRC-KU1-HSAXI so that a host program can read and write registers within the FPGA.

• Creating a simple interrupt controller whose registers can be read and written by a host program.

• Handling multiple sources of interrupts that originate within the FPGA; in this example, there are two
interrupt sources, consisting of (a) a periodic timer interrupt and (b) a TEST register which generates an
interrupt when written to.

Tcl scripts are provided for generating Vivado projects for the FPGA design, and for building the FPGA design.
Refer to Section 3 for details. Using the Simple FPGA design in hardware is described in Section 6.

To exercise the FPGA design, a demonstration program that runs on the host is provided, with source code. For
details of building this program, refer to Section 5.

Using the FPGA design in hardware with the demonstration program is described in Section 6.

1.1 Structure of this package
The files and folders making up the Interrupt Test FPGA Design are organized as in Figure 2 below:

(ROOT) The root of this package

example

itest-admxrcku1-v1_0_0 Interrupt Test FPGA Design

doc Documentation for the Interrupt Test FPGA Design

fpga

bit Pre-built bitstreams

proj Vivado project directory, with TCL scripts

src Interrupt Test FPGA Design HDL code

host Interrupt Test Host Program

bin Pre-built binaries (Windows only)

proj

Page 2Introduction
ad-ug-0104_v1_0.pdf

ADM-XRC-KU1 Interrupt Test FPGA Design Release: 1.0.0
V1.0 - 7 Feb 2018

linux Makefiles etc. for Linux

vxworks Makefiles etc. for VxWorks

win32vs2012 Microsoft Visual Studio 2012 projects (Windows)

win32vs2013 Microsoft Visual Studio 2013 projects (Windows)

src Source code

fpga

repo

vivado-2015.4 Repository for common Vivado IP

host

api-v1_4_18b4

include Header files for ADMXRC3 API

lib Libraries for ADMXRC3 API

app_framework-v1_2_0 Example application framework

Figure 2 : Structure of this package

The root of this package, i.e. the directory which forms the root of the tree of directories and files making up this
package, is referred to in the remainder of this document as (ROOT).

The base directory of the FPGA design, i.e. (ROOT)/example/itest-admxrcku1-v1_0_0 is referred to in the
remainder of this document as (DESIGN).

Page 3Introduction
ad-ug-0104_v1_0.pdf

ADM-XRC-KU1 Interrupt Test FPGA Design Release: 1.0.0
V1.0 - 7 Feb 2018

2 Design description

mptl_clk_p

mptl_clk_n

mptl_t2b_p

mptl_t2b_n

mptl_b2t_p

mptl_b2t_n

4

4

4

4

A
D

M
-X

R
C

-K
U

1

H
o
s
t S

la
v
e
 A

X
I (H

S
A

X
I)

AXI4

width

converter

128 to 32

D
ire

c
t S

la
ve

(m
a

ste
r)

PCIe-to-MPTL

Bridge

mptl_bridge_gtp_online_l

mptl_target_configured_l

mptl_target_gtp_online_l

M
P

T
L

 In
te

rfa
c
e

ds_axi_*

AXI4 MM

to

AXI4 Lite

AXI4 Lite

to

BRAM

ds_axi32_* ds_axil_* reg_clk_a,

reg_rst_a,

reg_we_a,

etc.

IENABLE

ISTATUS

TEST

PERIOD

Milli-
second
pulse

generator

refclk300_p

refclk300_n

internal_interrupts

[0]

1 ms

reg_period

reg_period[30:0]

ms
when TEST[0]

written with 1

R
e
g
is

te
r B

lo
ck

 (V
H

D
L

 p
ro

ce
ss

e
s

)

32

32

Periodic
timer

32

32

NOR

reduce

rearm_firq

reg_ienable

reg_istatus

firq_l

Q D

ms_pulse_xfered

reg_test[0]

(enabled by

reg_period[31])

 [1] [31:2]

when

ISTATUS

written

ti
m

e
r_

in
te

rr
u

p
t

Figure 3 : Block diagram of Interrupt Test FPGA Design

The FPGA design consists of the following elements:
• An instance of ADM-XRC-KU1-HSAXI IP, supplied by Alpha Data, providing (amongst other things) an

MPTL data channel and a memory mapped Direct Slave interface.

• Xilinx AXI infrastructure IP, for converting from 128-bit AXI4 memory-mapped interface of the
ADM-XRC-KU1-HSAXI IP to 32-bit AXI4 Lite, for easier interfacing to registers.

• An AXI4 Lite to BlockRAM controller, used for interfacing the register block to AXI4 Lite.

• A register block, which can be read and written from the host via the ADM-XRC-KU1-HSAXI IP,
implementing a simple interrupt controller and some other registers for generating interrupts.

The Direct Slave address map consists of a number of 32-bit wide registers:

Address Semantics Name Purpose

0x00 R/W IENABLE
If a particular bit is 1, the corresponding interrupt source
is enabled. Reading returns the set of enabled interrupt
sources.

0x04 R/W1S IENABLE_SET
Writing a 1 to a particular sets the corresponding bit of
IENABLE to 1. When read, returns the value of
IENABLE.

0x08 R/W1C IENABLE_CLR
Writing a 1 to a particular clears the corresponding bit of
IENABLE to 0. When read, returns the value of
IENABLE.

Table 1 : Direct Slave AXI4 address map (continued on next page)

Page 4Design description
ad-ug-0104_v1_0.pdf

ADM-XRC-KU1 Interrupt Test FPGA Design Release: 1.0.0
V1.0 - 7 Feb 2018

Address Semantics Name Purpose

0x0C R/W1C ISTATUS
Writing a 1 to a particular bit causes the corresponding
interrupt source to become non-pending. Reading
returns the set of pending interrupt sources.

0x10 WO TEST Writing a 1 to bit [0] sets interrupt source 0 to pending.
Writing to bits [31:1] has no effect. Reading returns 0.

0x20 R/W PERIOD
If bit [31] is 1, a periodic timer is enabled. When
enabled, interrupt source 1 is periodically set to pending
after an interval in milliseconds equal to bits [30:0].

Other . . Reserved; must not be written, and reading returns
undefined data.

Table 1 : Direct Slave AXI4 address map

Page 5Design description
ad-ug-0104_v1_0.pdf

ADM-XRC-KU1 Interrupt Test FPGA Design Release: 1.0.0
V1.0 - 7 Feb 2018

3 Building the FPGA design
Tcl scripts to create the Vivado projects for the various configurations of the FPGA design are found in the
(DESIGN)/fpga/proj/ directory. These can be sourced within the Vivado GUI, or sourced by Vivado in batch
mode. The available Tcl scripts are listed in Table 2:

Configuration Project creation script in (DESIGN)/fpga/proj/

ADM-XRC-KU1 with KU060-2I mkxpr-itest-ku060_2i.tcl

ADM-XRC-KU1 with KU115-2I mkxpr-itest-ku115_2i.tcl

Table 2 : Project creation scripts by configuration
To generate a project, start a shell or command prompt, and issue a command of the following form:

cd (DESIGN)/fpga/proj
vivado -mode batch -source mkxpr-itest-ku060_2i.tcl

(Windows users should use backslashes in the cd command, rather than forward slashes.)

After the project has been created using the script, it can be opened in the Vivado GUI.

A TCL script is also provided in the same directory to fully rebuild the Vivado project via the shell or Command
Prompt. This is named similarly to the mkxpr script, except that the prefix is rebuild. For example, to rebuild the
Vivado project, invoke Vivado as follows:

cd (DESIGN)/fpga/proj
vivado -mode batch -source rebuild-itest-ku060_2i.tcl

(Windows users should use backslashes in the cd command, rather than forward slashes.)

Assuming that building is successful, the newly-built .bit file is:

(DESIGN)/fpga/proj/<project directory>/itest.runs/impl_1/itest.bit

Note
Pre-built bitstreams, which are found under the directory (DESIGN)/fpga/bit/, are not overwritten when the
FPGA design is built.

Page 6Building the FPGA design
ad-ug-0104_v1_0.pdf

ADM-XRC-KU1 Interrupt Test FPGA Design Release: 1.0.0
V1.0 - 7 Feb 2018

4 Demonstration program
The demonstration program, itest is located in (DESIGN)/host/src/ and consists of three source files:

• cmdline.cpp
This file contains the main entry point and code for parsing command-line arguments, and nothing in this
file is directly related to the FPGA design. It makes use of the CExAppCmdLineArgs class, which is
provided by the example application framework code in (ROOT)/host/app_framework-v1_2_0/.
Note that when building the demonstration program for VxWorks, this source file is omitted because a
VxWorks downloadable kernel module (DKM) does not have a traditional main()-style entry point.

• itest.cpp
This file contains code that actually drives the FPGA design and performs the interrupt test. It makes use
of some classes for operating system abstraction (e.g. CExAppThread), also provided by the example
application framework code.

• itest.h
This file defines the interface to the code in itest.cpp, and is used by cmdline.cpp.
Note that in VxWorks, the functions whose prototypes are defined in this file can be called from the
VxWorks kernel shell.

The demonstration program works as follows:

1. It opens an ADMXRC3 device either by index or serial number, depending on arguments passed on the
command line.

2. It maps the portion of Direct Slave space that covers the registers detailed in Table 1 into the process'
address space, so that it can efficiently manipulate the registers in the FPGA.

3. It configures the target FPGA with the appropriate pre-built .bit file from the (DESIGN)/fpga/bit/ directory.

4. It launches an interrupt-handling thread which is responsible for consuming notifications from the FPGA
and taking action in response to them. In this example, the action taken is to merely display a message
each time it consumes a notification. Each source of interrupt in the FPGA has a different message,
however, demonstrating that the program can distinguish between multiple sources of interrupt in the
FPGA.

5. The main thread configures the periodic timer to assert interrupt source 1 every 5 seconds, and enables
interrupt sources 0 and 1 in the FPGA.

6. The main thread then enters a loop, waiting for the user to enter one of two commands via the stdin
stream:

• The "i" command causes the main thread to write a 1 to bit 0 of the TEST register, which causes
interrupt source 0 to be set pending.

• The "q" command causes the main thread to exit the loop.

7. The main thread causes the interrupt-handling thread to terminate.

8. Finally, the main thread cleans up and closes the ADMXRC3 device.

Page 7Demonstration program
ad-ug-0104_v1_0.pdf

ADM-XRC-KU1 Interrupt Test FPGA Design Release: 1.0.0
V1.0 - 7 Feb 2018

5 Building the demonstration program
5.1 Building in Linux

A Makefile for GNUMake is provided for building the demonstration program, itest. The GNU C++ toolchain and
associated C and C++ development packages must be installed in the system that is used to build itest.

To build itest, follow this procedure:
1. Start a shell and change directory to (DESIGN)/host/proj/linux.

2. Issue the following command:
make

Assuming that building is successful, the executable is (DESIGN)/host/proj/linux/itest.

The above procedure builds itest natively, i.e. for the architecture that the GNU toolchain on the build system
targets by default. There are two variables that may be passed on the make command-line or set in the
environment in order to change the way building is performed:

• BIARCH
For most 64-bit Linux distributions, it is possible to build both a native (64-bit) executable and a 32-bit
executable. To do this, set BIARCH variable to yes on the make command-line. For example:
make BIARCH=yes

Assuming that building is successful, the executables produced are itest (native 64-bit) and itest32
(32-bit).

• CROSS_COMPILE
To build using a cross-compiler, set the CROSS_COMPILE environment variable to the prefix of the
toolchain binaries, ensuring that the toolchain is in the PATH. For example
export PATH=/path/to/toolchain:$PATH
export CROSS_COMPILE=arm-none-linux-gnueabi-
make

• SYSROOT
Generally used only when cross-compiling, the value of SYSROOT points to the target system's root
filesystem. This may be required if the toolchain used for cross-compiling does not have the required
defaults for paths to system header files and libraries directories. For example:
export PATH=/path/to/toolchain:$PATH
export CROSS_COMPILE=arm-none-linux-gnueabi-
make SYSROOT=/path/to/arm-rootfs

5.2 Building in Windows
Solutions for Microsoft Visual Studio 2012 & 2013 are provided for building the demonstration program,
itest.exe.

To build itest.exe for a particular configuration-platform combination, follow this procedure:
1. If using Microsoft Visual Studio 2012, open the solution (DESIGN)/host/proj/win32vs2012/itest.sln.

If using Microsoft Visual Studio 2013, open the solution (DESIGN)/host/proj/win32vs2013/itest.sln.

2. From the Standard toolbar, which is visible by default in Microsoft Visual Studio, select the configuration
and platform of interest; for example Release, x64.

3. From the main menu, select BUILD -> Rebuild Solution.

Alternatively, follow this procedure to build all available configuration-platform combinations of itest.exe:

Page 8Building the demonstration program
ad-ug-0104_v1_0.pdf

ADM-XRC-KU1 Interrupt Test FPGA Design Release: 1.0.0
V1.0 - 7 Feb 2018

1. If using Microsoft Visual Studio 2012, open the solution (DESIGN)/host/proj/win32vs2012/itest.sln.
If using Microsoft Visual Studio 2013, open the solution (DESIGN)/host/proj/win32vs2013/itest.sln.

2. From the main menu, select BUILD -> Batch Build...
3. In the Batch Build dialog, click Select All and then Rebuild.

Once built, the executable files for itest.exe are located as follows, according to Visual Studio version,
configuration and platform:

Visual
Studio

Configur­
ation Platform Executable location

2012 Debug Win32 (DESIGN)/host/proj/win32vs2012/itest/Debug/

2012 Debug x64 (DESIGN)/host/proj/win32vs2012/itest/Debug64/

2012 Release Win32 (DESIGN)/host/proj/win32vs2012/itest/Release/

2012 Release x64 (DESIGN)/host/proj/win32vs2012/itest/Release64/

2013 Debug Win32 (DESIGN)/host/proj/win32vs2013/itest/Debug/

2013 Debug x64 (DESIGN)/host/proj/win32vs2013/itest/Debug64/

2013 Release Win32 (DESIGN)/host/proj/win32vs2013/itest/Release/

2013 Release x64 (DESIGN)/host/proj/win32vs2013/itest/Release64/

Table 3 : Location of itest.exe

5.3 Building for VxWorks
A Makefile is provided for building a downloadable kernel module, admxrc3ITest.out, which has entry points
that may be called from the VxWorks shell.

To invoke the Makefile, follow these steps:
1. Start a VxWorks Development Shell. This can be started from within Workbench or from the Start Menu if

running in Windows.

2. In the shell, change directory to (DESIGN)/host/proj/vxworks.

3. Issue the make command, specifying the CPU architecture, toolchain and other build options. For
example:
make CPU=NEHALEM TOOL=icc VXBUILD="LP64 SMP" clean default

The above command builds admxrc3ITest.out for 64-bit SMP Nehalem architecture using the Intel
toolchain.

Assuming that the make command is successful, the build product is admxrc3ITest.out, which can be
downloaded to the target system.

For a more detailed discussion of how to invoke the Makefile, refer to Appendix C.

Page 9Building the demonstration program
ad-ug-0104_v1_0.pdf

ADM-XRC-KU1 Interrupt Test FPGA Design Release: 1.0.0
V1.0 - 7 Feb 2018

6 Using the FPGA design
6.1 Using the FPGA design with a Linux host

The demonstration program, itest, runs on the host system's CPU and verifies that the FPGA design works as
expected. Before running it, please ensure that your environment meets the following requirements:

• An ADM-XRC-KU1 is plugged into an XMC slot in the test machine and SW1-3 (Bridge Bypass mode) is
OFF.

• ADB3 Driver 1.4.17 or later is installed in the test machine.

• You have built the demonstration program as detailed in Section 5.

• You are logged in as a user that is capable of executing programs as root using sudo.

Start the ADB3 Driver

If the ADB3 Driver is not already started, start it using the command:

sudo modprobe adb3

Run the demonstration program

To run the itest program with default arguments, issue the following commands in a shell:

cd (DESIGN)/host/proj/linux
sudo ./itest

This should (initially) yield output as follows:

INFO: Configuring target FPGA with '../../../../fpga/bit/itest-ku060_2i/itest.bit'
...
INFO: Creating interrupt handler thread ...
INFO: Setting periodic timer to interrupt every 5 s ...
INFO: [Interrupt Thread] Starting (Linux implementation).
INFO: Enabling internal FPGA interrupts 0 & 1 ...
INFO: Enter 'i' to generate FPGA internal interrupt 0, or enter 'q' to quit:

At this point, the user may either wait a few seconds for a periodic timer interrupt to occur, or enter the "i"
command in order to generate an interrupt immediately. Continuing the above session, typical output (including
commands entered by the user) looks like this:

i
INFO: Writing 0x1 to TEST register ...
INFO: [Interrupt Thread] Saw FPGA internal interrupt 0 (caused by TEST register
 write).
INFO: [Interrupt Thread] Saw FPGA internal interrupt 1 (caused by periodic timer).
i
INFO: Writing 0x1 to TEST register ...
INFO: [Interrupt Thread] Saw FPGA internal interrupt 0 (caused by TEST register
 write).
i
INFO: Writing 0x1 to TEST register ...
INFO: [Interrupt Thread] Saw FPGA internal interrupt 0 (caused by TEST register
 write).
INFO: [Interrupt Thread] Saw FPGA internal interrupt 1 (caused by periodic timer).
q
INFO: Terminating interrupt handler thread ...
INFO: [Interrupt Thread] Terminating.

Page 10Using the FPGA design
ad-ug-0104_v1_0.pdf

ADM-XRC-KU1 Interrupt Test FPGA Design Release: 1.0.0
V1.0 - 7 Feb 2018

6.2 Using the FPGA design with a Windows host
The demonstration program, itest, runs on the host system's CPU and verifies that the FPGA design works as
expected. Before doing so, please ensure that your environment meets the following requirements:

• An ADM-XRC-KU1 is plugged into an XMC slot in the test machine and SW1-3 (Bridge Bypass mode) is
OFF.

• ADB3 Driver 1.4.17 or later is installed in the test machine.

• You are either:
• Logged in as a user with Administrator privileges in a system without User Account Control (UAC) or

where UAC is disabled, and have started a Windows Command Prompt (which will be elevated).

• Logged in as a user with Administrator privileges in a system with User Account Control, and have
started a Windows Command Prompt using "Run as administrator".

Run the demonstration program

To run the itest.exe program with default arguments, issue the following commands in the Windows Command
Prompt:

cd (DESIGN)\host\bin\win32\x86
itest

This should yield output as follows:

INFO: Configuring target FPGA with '..\..\..\..\fpga\bit\itest-ku060_2i\itest.bit'
...
INFO: Creating interrupt handler thread ...
INFO: Setting periodic timer to interrupt every 5 s ...
INFO: [Interrupt Thread] Starting (Windows implementation).
INFO: Enabling internal FPGA interrupts 0 & 1 ...
INFO: Enter 'i' to generate FPGA internal interrupt 0, or enter 'q' to quit:

At this point, the user may either wait a few seconds for a periodic timer interrupt to occur, or enter the "i"
command in order to generate an interrupt immediately. Continuing the above session, typical output (including
commands entered by the user) looks like this:

i
INFO: Writing 0x1 to TEST register ...
INFO: [Interrupt Thread] Saw FPGA internal interrupt 0 (caused by TEST register
 write).
INFO: [Interrupt Thread] Saw FPGA internal interrupt 1 (caused by periodic timer).
i
INFO: Writing 0x1 to TEST register ...
INFO: [Interrupt Thread] Saw FPGA internal interrupt 0 (caused by TEST register
 write).
i
INFO: Writing 0x1 to TEST register ...
INFO: [Interrupt Thread] Saw FPGA internal interrupt 0 (caused by TEST register
 write).
INFO: [Interrupt Thread] Saw FPGA internal interrupt 1 (caused by periodic timer).
q
INFO: Terminating interrupt handler thread ...
INFO: [Interrupt Thread] Terminating.

6.3 Using the FPGA design in VxWorks
The demonstration program, admxrc3ITest.out, runs on the VxWorks target machine and verifies that the FPGA

Page 11Using the FPGA design
ad-ug-0104_v1_0.pdf

ADM-XRC-KU1 Interrupt Test FPGA Design Release: 1.0.0
V1.0 - 7 Feb 2018

design works as expected. Before running it, please ensure that your environment meets the following
requirements:

• An ADM-XRC-KU1 is plugged into an XMC slot in the VxWorks target machine and SW1-3 (Bridge Bypass
mode) is OFF.

• ADB3 Driver 1.4.17 or later has been built and is running on the VxWorks target machine. This can be
done by one of two methods:

(a) By downloading ADB3 Driver, as a set of downloadable kernel modules, to the VxWorks target
machine, after booting. For this method, please refer to the release notes for ADB3 Driver for
VxWorks.

(b) By building ADB3 Driver Component into the VxWorks kernel so that it is automatically started when
the kernel boots. For this method, please refer to the release notes for ADB3 Driver Component
for VxWorks.

• You have built the demonstration program as detailed in Section 5.3.

• You have access to the kernel shell on the VxWorks target machine, either using a serial connection or
using telnet.

Download the demonstration program to the VxWorks target machine

Assuming that you have built it as described in Section 5.3, the DKM for the demonstration program must first be
downloaded to the VxWorks target machine. This can be done by a shell command such as:

-> ld <HOST:(DESIGN)/host/proj/vxworks/admxrc3ITest.out
value = -140737478303728 = 0xffff800000996010

where HOST is the VxWorks host.

Undefined symbols when loading the DKM
If the ld command fails due to undefined symbols, the most likely cause is that the ADB3 Driver has not been
correctly downloaded to the VxWorks target system.

Run the demonstration program

Once the DKM for the demonstration program is resident in the VxWorks target system, it is possible to run it.
The basic form of shell command that runs the program uses the admxrc3ITestIndex entry point in the DKM,
and requires the path to the (DESIGN)/fpga/bit/ directory to be the first argument:

-> admxrc3ITestIndex "HOST:(DESIGN)/fpga/bit",(int*)0,0

where HOST is the VxWorks host.

Successfully running the program as described above should yield output of the form:

INFO: Configuring target FPGA with 'HOST:(DESIGN)/fpga/bit/itest-ku060_2i/itest.b
it' ...
INFO: Creating interrupt handler thread ...
INFO: Setting periodic timer to interrupt every 5 s ...
INFO: [Interrupt Thread] Starting (VxWorks implementation).
INFO: Enabling internal FPGA interrupts 0 & 1 ...
INFO: Enter 'i' to generate FPGA internal interrupt 0, or enter 'q' to quit:

At this point, the user may either wait a few seconds for a periodic timer interrupt to occur, or enter the "i"
command in order to generate an interrupt immediately. Continuing the above session, typical output (including
commands entered by the user) looks like this:

i

Page 12Using the FPGA design
ad-ug-0104_v1_0.pdf

ADM-XRC-KU1 Interrupt Test FPGA Design Release: 1.0.0
V1.0 - 7 Feb 2018

INFO: Writing 0x1 to TEST register ...
INFO: [Interrupt Thread] Saw FPGA internal interrupt 0 (caused by TEST register
 write).
INFO: [Interrupt Thread] Saw FPGA internal interrupt 1 (caused by periodic timer).
i
INFO: Writing 0x1 to TEST register ...
INFO: [Interrupt Thread] Saw FPGA internal interrupt 0 (caused by TEST register
 write).
i
INFO: Writing 0x1 to TEST register ...
INFO: [Interrupt Thread] Saw FPGA internal interrupt 0 (caused by TEST register
 write).
INFO: [Interrupt Thread] Saw FPGA internal interrupt 1 (caused by periodic timer).
q
INFO: Terminating interrupt handler thread ...
INFO: [Interrupt Thread] Terminating.

Page 13Using the FPGA design
ad-ug-0104_v1_0.pdf

ADM-XRC-KU1 Interrupt Test FPGA Design Release: 1.0.0
V1.0 - 7 Feb 2018

Appendix A: Running the demonstration program in
Linux & Windows

The demonstration program, itest[.exe], may be invoked with a number of options:

itest [option ...]

Options begin with '-'. If an option requires a value, it may be specified in one or two forms: -option=<value> or
-option <value>. The available options are:

• -h, -help, -?
This option displays a brief help message.

• -index <index>
This option specifies which reconfigurable computing device is to be used for the test. Zero corresponds to
the first reconfigurable computing device in the system, as enumerated by the operating system. 1
corresponds to the second device, and so on.
If omitted, the value is 0. This option cannot be specified along with the -sn option (see below).
Examples:

• -index 0
Use the first reconfigurable computing device in the system.

• -index 10
Use the 11th reconfigurable computing device in the system.

• -index 0x2
Use the third reconfigurable computing device in the system.

• -sn <serial number>
This option specifies the serial number of the reconfigurable computing device that is to be used for the
test.
If omitted, the device used is chosen according to the -index option (see above). This option cannot be
specified along with the -index option (see above).
Examples:

• -sn 159
Use the reconfigurable computing device with serial number 159.

• -sn 0x5555
Use the reconfigurable computing device with serial number 0x5555 (21845).

Page 14Running the demonstration program in Linux & Windows
ad-ug-0104_v1_0.pdf

ADM-XRC-KU1 Interrupt Test FPGA Design Release: 1.0.0
V1.0 - 7 Feb 2018

Appendix B: Demonstration program entry points in
VxWorks

The demonstration program can be invoked via two entry points in the admxrc3ITest.out DKM. These entry
points are defined by the header file, (DESIGN)/host/src/itest.h, as follows:

int
admxrc3ITestIndex(
 const TCHAR* pBitPath,
 const TCHAR* pBitFile,
 unsigned int index);

int
admxrc3ITestSN(
 const TCHAR* pBitPath,
 const TCHAR* pBitFile,
 uint32_t serialNumber);

Use of TCHAR
The demonstration program is portable between Linux, Windows and VxWorks. For this reason, TCHAR is
used as the character data type, and when building for VxWorks, TCHAR is aliased to char.

• admxrc3ITestIndex
This entry point is for running the demonstration program on an ADM-XRC-KU1 with a particular
zero-based index. If there is only one card in the system, its index is always 0.

• admxrc3ITestSN
This entry point is for running the demonstration program on an ADM-XRC-KU1 with a particular serial
number.

The parameters are as follows:
• pBitPath

If non-NULL, the pBitPath argument specifies the directory on the host filesystem where the pre-built .bit
files are located. It is used as the prefix for constructing a full path to the .bit file to be used to configure
the target FPGA, which is performed as follows (where + represents string concatenation):
pBitPath + "/itest-<device>_<speed><tempgrade>[_<step>]/itest.bit"
where "device", "speed", "tempgrade" and "step" are all obtained via the ADMXRC3_GetFPGAInfo
function of the ADMXRC3 API. The "step" value is generally empty for a board fitted with a production
silicon FPGA, and in that case is omitted from the .bit file path.
For example, for an ADM-XRC-KU1 fitted with a KU115-2I device, the full path of the .bit file is constructed
as:
pBitPath + "/itest-ku115_2i/itest.bit"

• pBitFile
If non-NULL, the pBitFile argument directly specifies the .bit file to use to configure the FPGA. Its value
overrides whatever .bit file path was constructed from pBitPath.
If pBitPath is NULL, pBitFile must be given a non-NULL value so that the program knows what .bit file to
use.

• index
In the admxrc3ITestIndex entry point, this parameter specifies the zero-based index of the reconfigurable
computing card to use. If there is only one reconfigurable computing card in the system, its index is always
zero. When there are more than one, indices are assigned by the system, generally according to the order
in which they are discovered.

Page 15Demonstration program entry points in VxWorks
ad-ug-0104_v1_0.pdf

ADM-XRC-KU1 Interrupt Test FPGA Design Release: 1.0.0
V1.0 - 7 Feb 2018

• serialNumber
In the admxrc3ITestSN entry point, this parameter specifies the serial number of the reconfigurable
computing card to use.

If pBitFile is not NULL, it overrides any value passed for pBitPath. Table 4 summarizes the interaction of
pBitPath and pBitFile:

pBitPath pBitFile Behavior

NULL NULL Illegal; the program does not know what .bit file to use.

non-NULL NULL The program constructs the full path of the .bit file from pBitPath and
information obtained via ADMXRC3_GetFPGAInfo.

N/A non-NULL The program uses pBitFile as the full path of the .bit file

Table 4 : Interaction of pBitPath and pBitFile

Page 16Demonstration program entry points in VxWorks
ad-ug-0104_v1_0.pdf

ADM-XRC-KU1 Interrupt Test FPGA Design Release: 1.0.0
V1.0 - 7 Feb 2018

Appendix C: Makefile variables in VxWorks
The Makefile for building the downloadable kernel module admxrc3ITest.out in VxWorks can be invoked with a
number of variables for controlling how the build is performed. The general form is:

make [CPU=<arch>] [TOOL=<tool>] [VXBUILD="[option] ..."] [target ...]

The available build targets for make are:
• clean

This deletes all build products and intermediate files. When rebuilding with different values for CPU, TOOL
etc. with respect to the previous build, first perform a clean.

• default
This builds the product admxrc3ITest.out according to the values for CPU, TOOL etc.

To perform a full rebuild, use both clean and default together in the same command, in that order.

The variables that may be passed on the make command-line are:
• CPU=<arch>

Here, <arch> is the CPU architecture of the target system; for example PPC604, NEHALEM,
ARMARCH4 etc.
If this variable is omitted, it defaults to PPC604.

• TOOL=<tool>
Here, <tool> is the toolchain that is to be used to build the DKM and, as of VxWorks 6.9, can be diab, gnu
or icc.
If this variable is omitted, it defaults to gnu.

• VXBUILD="[option] ..."
Here the properties of the kernel of the target system must be specified. Including LP64 means that the
kernel of the target system is a 64-bit kernel. Including SMP means that the kernel of the target system is
symmetric multiprocessing (SMP). Any options that are included should be separated by spaces, with all
options together enclosed in quotes. For example, for a 64-bit SMP kernel, use
VXBUILD="LP64 SMP"

If this variable is omitted, it defaults to "", the result of which depends upon the defaults for the architecture
selected by CPU. For example, if CPU is PPC604 or NEHALEM, omitting VXBUILD results in building for
a 32-bit uniprocessor kernel.

Hence, to fully rebuild for a 32-bit uniprocessor PowerPC 604 kernel using the GNU toolchain, issue the
command

make clean default

To build for a 64-bit SMP Nehalem kernel using the Intel toolchain, issue the command

make CPU=NEHALEM TOOL=icc VXBUILD="LP64 SMP" default

Page 17Makefile variables in VxWorks
ad-ug-0104_v1_0.pdf

ADM-XRC-KU1 Interrupt Test FPGA Design Release: 1.0.0
V1.0 - 7 Feb 2018

Revision History
Date Revision Nature of change

7 Feb 2018 1.0 Initial version.

Address: 4 West Silvermills Lane,
Edinburgh, EH3 5BD, UK

Telephone: +44 131 558 2600
Fax: +44 131 558 2700
email: sales@alpha-data.com
website: http://www.alpha-data.com

Address: 611 Corporate Circle Suite H
Golden, CO 80401

Telephone: (303) 954 8768
Fax: (866) 820 9956 - toll free
email: sales@alpha-data.com
website: http://www.alpha-data.com

4.8

	1 Introduction
	1.1 Structure of this package

	2 Design description
	3 Building the FPGA design
	4 Demonstration program
	5 Building the demonstration program
	5.1 Building in Linux
	5.2 Building in Windows
	5.3 Building for VxWorks

	6 Using the FPGA design
	6.1 Using the FPGA design with a Linux host
	6.2 Using the FPGA design with a Windows host
	6.3 Using the FPGA design in VxWorks

	Appendix A: Running the demonstration program in Linux & Windows
	Appendix B: Demonstration program entry points in VxWorks
	Appendix C: Makefile variables in VxWorks
	Tables
	Table 1: Direct Slave AXI4 address map
	Table 2: Project creation scripts by configuration
	Table 3: Location of itest.exe
	Table 4: Interaction of pBitPath and pBitFile

	Figures
	Figure 1: The ADM-XRC-KU1 within a system
	Figure 2: Structure of this package
	Figure 3: Block diagram of Interrupt Test FPGA Design

