
ADM-XRC-KU1 DMA
Demonstration FPGA Design

Release: 1.0.0
Document Revision: 1.0

22 Jun 2016

ADM-XRC-KU1 DMA Demonstration FPGA Design Release: 1.0.0
V1.0 - 22 Jun 2016

© 2016 Copyright Alpha Data Parallel Systems Ltd.
All rights reserved.

This publication is protected by Copyright Law, with all rights reserved. No part of this
publication may be reproduced, in any shape or form, without prior written consent from Alpha

Data Parallel Systems Ltd.

Head Office

Address: 4 West Silvermills Lane,
Edinburgh, EH3 5BD, UK

Telephone: +44 131 558 2600
Fax: +44 131 558 2700
email: sales@alpha-data.com
website: http://www.alpha-data.com

US Office

3507 Ringsby Court Suite 105,
Denver, CO 80216
(303) 954 8768
(866) 820 9956 toll free
sales@alpha-data.com
http://www.alpha-data.com

All trademarks are the property of their respective owners.

ADM-XRC-KU1 DMA Demonstration FPGA Design Release: 1.0.0
V1.0 - 22 Jun 2016

Table Of Contents

1 Introduction .. 1
 1.1 Structure of this package ... 2
2 Design description .. 4
 2.1 Testbench .. 5
3 Building the FPGA design ... 7
4 Demonstration program .. 8
5 Building the demonstration program .. 9
 5.1 Building in Linux ... 9
 5.2 Building in Windows ... 9
 5.3 Building for VxWorks ... 10
6 Using the FPGA design ... 11
 6.1 Using the FPGA design with a Linux host .. 11
 6.2 Using the FPGA design with a Windows host .. 12
 6.3 Using the FPGA design in VxWorks .. 13

Appendix A Running the demonstration program in Linux & Windows ... 15

Appendix B Demonstration program entry points in VxWorks ... 18

Appendix C Makefile variables in VxWorks ... 21

List of Tables

Table 1 Direct Slave AXI4 address map ... 5
Table 2 DMA channel N AXI4 address map ... 5
Table 3 Project creation scripts by configuration .. 7
Table 4 Location of dma_demo.exe ... 10
Table 5 Interaction of pBitPath and pBitFile ... 20

List of Figures

Figure 1 The ADM-XRC-KU1 within a system ... 1
Figure 2 Structure of this package ... 2
Figure 3 Block diagram of DMA Demonstration FPGA Design .. 4
Figure 4 Block diagram of Testbench ... 5

ADM-XRC-KU1 DMA Demonstration FPGA Design Release: 1.0.0
V1.0 - 22 Jun 2016

1 Introduction
Supported Vivado versions
This version of the ADM-XRC-KU1 DMA Demonstration FPGA Design can be built with Vivado 2015.4 or
later.

As of writing, Vivado 2016.2 is the latest release and is recommended. Alpha Data cannot guarantee that this
FPGA design will be fully compatible with future releases of Vivado.

Please review Xilinx Quality Alert XCN15040 .

This FPGA design demonstrates the use of the ADM-XRC-KU1-HSAXI (Host Slave AXI4) IP, supplied by Alpha
Data, to allow a program running on the host to transfer in bulk to and from the target FPGA in an
ADM-XRC-KU1 reconfigurable computing card.

Figure 1 illustrates the ADM-XRC-KU1 within a system when the ADM-XRC-KU1-HSAXI IP is used as the target
FPGA's host interface:

Host CPU

PCIe Switching

Infrastructure

Other

PCIe

Device

PCIe to

MPTL

Bridge

Target

FPGA
ADM-XRC-KU1

PCIe 5 GT/s x4 MPTL 5 GT/s x4

Other

PCIe

Device

ADM-XRC-KU1-HSAXI IP

Root

Complex

Figure 1 : The ADM-XRC-KU1 within a system

Within the ADM-XRC-KU1, the PCIe to MPTL Bridge performs a fixed function, namely to permit the target FPGA
to be reconfigured without generating PCI Express errors that are fatal to the system; it is not
user-programmable. The target FPGA, on the other hand, is user-programmable and may be reconfigured at will.

The ADM-XRC-KU1-HSAXI (Host Slave AXI4) IP is instantiated in the target FPGA and has several interfaces:

• The MPTL (Multiplexed Packet Transport Link) interface; this is an off-chip interface to the Bridge FPGA,
implemented using MGTs (Multi-Gigabit Transceivers).

• The Direct Slave interface; this is an AXI4 memory-mapped (AXI4-MM) master interface through which

Page 1Introduction
ad-ug-0067_v1_0.pdf



http://www.xilinx.com/support/documentation/customer_notices/xcn15040.pdf

ADM-XRC-KU1 DMA Demonstration FPGA Design Release: 1.0.0
V1.0 - 22 Jun 2016

reads and writes originating on the host CPU can be performed. It is named "Direct Slave" because, from
the point of view of the host CPU, the target FPGA is a slave.
This interface is appropriate for random access, by the host CPU, to registers implemented in the target
FPGA.

• Two DMA channels, which are AXI4 memory-mapped (AXI4-MM) slave interfaces through which reads
and writes originating within the PCIe to MPTL Bridge are performed.
These interfaces are appropriate for bulk data transfer between host memory and the target FPGA.

This FPGA design demonstrates instantiating ADM-XRC-KU1-HSAXI so that data can be transferred by the DMA
engines (located in the Bridge FPGA) between host memory and BlockRAMs in the target FPGA. In addition, the
BlockRAMs can be accessed via the Direct Slave channel so that DMA transfers can be verified for correctness
of data.

Tcl scripts are provided for generating Vivado projects for the FPGA design, and for building the FPGA design.
Refer to Section 3 for details. Using the Simple FPGA design in hardware is described in Section 6.

To exercise the FPGA design, a program that runs on the host is provided. It measures the data transfer
performance of a single DMA engine, or multiple DMA engines in aggregate, depending on command-line
options. For details of building this program, refer to Section 5.

Using the FPGA design in hardware with the demonstration program is described in Section 6.

1.1 Structure of this package
The files and folders making up the DMA Demonstration FPGA Design are organized as in Figure 2 below:

(root) The root of this package

example

dma_demo-admxrcku1-v1_0_0 DMA Demonstration FPGA Design

doc Documentation for the DMA Demonstration FPGA Design

fpga

bit Pre-built bitstreams

proj Vivado project directory, with TCL scripts

src DMA Demonstration FPGA Design HDL code

host DMA Demonstration Host Program

bin Pre-built binaries (Windows only)

proj

linux Makefiles etc. for Linux

vxworks Makefiles etc. for VxWorks

win32vs2012 Microsoft Visual Studio 2012 projects (Windows)

win32vs2013 Microsoft Visual Studio 2013 projects (Windows)

src Source code

fpga

repo

vivado-2014.4 Repository for common Vivado IP

vivado-2015.4 Repository for common Vivado IP

host

api-v1_4_17

include Header files for ADMXRC3 API

Page 2Introduction
ad-ug-0067_v1_0.pdf

ADM-XRC-KU1 DMA Demonstration FPGA Design Release: 1.0.0
V1.0 - 22 Jun 2016

lib Libraries for ADMXRC3 API

app_framework-v1_1_0 Example application framework

Figure 2 : Structure of this package

The root of this package, i.e. the directory which forms the root of the tree of directories and files making up this
package, is referred to in the remainder of this document as (root).

The base directory of the FPGA design, i.e. (root)/example/dma_demo-admxrcku1-v1_0_0 is referred to in the
remainder of this document as (design).

Page 3Introduction
ad-ug-0067_v1_0.pdf

ADM-XRC-KU1 DMA Demonstration FPGA Design Release: 1.0.0
V1.0 - 22 Jun 2016

2 Design description

D
M

A
 E

n
g
in

e
 1

(m
a
s
te

r)

mptl_clk_p

mptl_clk_n

mptl_t2b_p

mptl_t2b_n

mptl_b2t_p

mptl_b2t_n

4

4

4

4

A
D

M
-X

R
C

-K
U

1

H
o
s
t S

la
v
e

 A
X

I (H
S

A
X

I)

AXI4

Crossbar

1-to-2

(used as

address

decoder)

Direct Slave AXI4 channel

DMA AXI4 channel

D
ire

ct S
la

v
e

(m
a
s
te

r)

512 kiB

BlockRAM

(0)

AXI4 to

BlockRAM

(1)

AXI4 to

BlockRAM

(0)

D
M

A
 E

n
g
in

e
 0

(m
a
s
te

r)

AXI4 to

BlockRAM

(3)

AXI4 to

BlockRAM

(2)

512 kiB

BlockRAM

(1)

Direct Slave BlockRAM channel

DMA BlockRAM channel

PCIe-to-MPTL

Bridge

mptl_bridge_gtp_online_l

mptl_target_configured_l

mptl_target_gtp_online_l

M
P

T
L
 In

te
rfa

c
e

ds_axi_*

dma0_axi_*

dma1_axi_*

x0_axi_*

x1_axi_*

dma1_ram_*

dma0_ram_*

x0_ram_*

x1_ram_*

Figure 3 : Block diagram of DMA Demonstration FPGA Design

The FPGA design consists of the following elements:

• An instance of ADM-XRC-KU1-HSAXI, which is an IP block supplied by Alpha Data, providing (amongst
other things) an MPTL data channel, two DMA channels and a memory mapped Direct Slave interface.

• Two 512 kiB BlockRAMs, one per DMA channel. The BlockRAMs are dual-ported so that they may be
simultaneously accessed by both the host and the corresponding DMA channel, although it is the host's
responsibility to either cope with or avoid read/write and write/write collisions.

• For each BlockRAM, there are two AXI4 to BlockRAM interfaces. The first allows a particular DMA channel
to read and write it, and the second permits the Direct Slave channel to read and write it. Altogether, there
are four AXI4 to BlockRAM interfaces in the design.

• An AXI4 crossbar instance for decoding Direct Slave addresses and routing AXI4 commands to the
appropriate BlockRAM interface. This splits the Direct Slave AXI4 channel into two channels, according to
address. The address decoding scheme is detailed in Table 1.

The Host Slave address map consists of two 512 kiB regions, one per BlockRAM:

Page 4Design description
ad-ug-0067_v1_0.pdf

ADM-XRC-KU1 DMA Demonstration FPGA Design Release: 1.0.0
V1.0 - 22 Jun 2016

Address range Size Purpose

0x00000 - 0x0FFFF 512 kiB Permits the host to read and write BlockRAM 0.

0x80000 - 0xFFFFF 512 kiB Permits the host to read and write BlockRAM 1.

Others . Reserved; must not be accessed.

Table 1 : Direct Slave AXI4 address map
The DMA channels each see a trivial address map consisting of a single region of 512 kiB. If N is the index of a
DMA channel, its address map as follows:

Address range Size Purpose

0x0 - 0x7FFFF 512 kiB Permits DMA channel N to read and write BlockRAM N.

Others . Reserved; must not be accessed.

Table 2 : DMA channel N AXI4 address map

2.1 Testbench
The testbench is implemented by tb_dma_demo.vhd. Figure 4 shows its structure:

d
m

a
_

g
(1

).d
m

a
_

p

mptl_clk_p

mptl_clk_n

mptl_t2b_p

mptl_t2b_n

mptl_b2t_p

mptl_b2t_n

4

4

4

4

tb
_
d
m

a
_
d
e

m
o

_
s
tim

AXI4

Crossbar

1-to-2

(used as

address

decoder)

Direct Slave AXI4 channel

DMA AXI4 channel

d
ire

c
t_

s
la

v
e
_
p

512 kiB

BlockRAM

(0)

AXI4 to

BlockRAM

(1)

AXI4 to

BlockRAM

(0)

d
m

a
_

g
(0

).d
m

a
_

p

AXI4 to

BlockRAM

(3)

AXI4 to

BlockRAM

(2)

512 kiB

BlockRAM

(1)

Direct Slave BlockRAM channel

DMA BlockRAM channel

mptl_bridge_gtp_online_l

mptl_target_configured_l

mptl_target_gtp_online_l

Unit Under Test (UUT)

ds_axi_*

x0_axi_*

x1_axi_*

x0_ram_*

dma0_ram_*

x1_ram_*

dma1_ram_*

dma0_axi_*

dma1_axi_*

Figure 4 : Block diagram of Testbench

The approach taken for simulation is to replace the instance of ADM-XRC-KU1-HSAXI, which serves as the host
interface, with a behavioral model (tb_dma_demo_stim) that stimulates the ds_axi_*, dma0_axi_* and

Page 5Design description
ad-ug-0067_v1_0.pdf

ADM-XRC-KU1 DMA Demonstration FPGA Design Release: 1.0.0
V1.0 - 22 Jun 2016

dma1_axi_* channels. It generates AXI4-MM transactions that emulate those produced by the host CPU, in the
case of the ds_axi_* channel, and those produced by the DMA engines in the Bridge FPGA, in the case of the
dma0_axi_* and dma1_axi_* channels. The MPTL interface is largely ignored by the behavioral model.

The project generation scripts create a simulation source set sim_axi in Vivado which can be used to simulate
the design behaviorally, using XSIM or the third-party simulators supported by Vivado. A successful simulation
run produces output on the simulator's console of the form (timestamp lines abbreviated for clarity):

Note: MPTL now online
Time: 50 ns Iteration: 2 Process: ...
Note: Wrote DS DATA 16 bytes 0x00000003000000020000000100000000 with enable 0b1111
111111111111 to byte address 0x0000000000000000
Time: 107500 ps Iteration: 0 Process: ...
Note: Wrote DS DATA 16 bytes 0x00000007000000060000000500000004 with enable 0b1111
111111111111 to byte address 0x0000000000000010
Time: 162500 ps Iteration: 0 Process: ...
... other similar messages ...
Note: Test DS (AXI) completed: PASSED.
Time: 8377500 ps Iteration: 0 Process: ...
Note: Read DMA0 DATA 512 bytes from byte address 0x0000000000000000
Time: 8597500 ps Iteration: 0 Process: ...
Note: Read DMA1 DATA 512 bytes from byte address 0x0000000000000000
Time: 8597500 ps Iteration: 0 Process: ...
... other similar messages ...
Note: Test DMA0 (AXI) completed: PASSED.
Time: 9022500 ps Iteration: 0 Process: ...
Note: Test DMA1 (AXI) completed: PASSED.
Time: 9022500 ps Iteration: 0 Process: ...
Failure: Test of design DMA_DEMO (AXI) completed: PASSED.
Time: 9022500 ps Iteration: 2 Process: ...

Page 6Design description
ad-ug-0067_v1_0.pdf

ADM-XRC-KU1 DMA Demonstration FPGA Design Release: 1.0.0
V1.0 - 22 Jun 2016

3 Building the FPGA design
Tcl scripts to create the Vivado projects for the various configurations of the FPGA design are found in the
(design)/fpga/proj/ directory. These can be sourced within the Vivado GUI, or sourced by Vivado in batch
mode. The available Tcl scripts are listed in Table 3:

Configuration Project creation script in (design)/fpga/proj/

ADM-XRC-KU1 with KU060-2E mkxpr-dma_demo-ku060_2e.tcl

ADM-XRC-KU1 with KU115-2E mkxpr-dma_demo-ku115_2e.tcl

Table 3 : Project creation scripts by configuration
To generate a project, start a shell or command prompt, and issue a command of the following form:

cd (design)/fpga/proj
vivado -mode batch -source mkxpr-dma_demo-ku060_2e.tcl

(Windows users should use backslashes in the cd command, rather than forward slashes.)

After the project has been created using the script, it can be opened in the Vivado GUI.

A TCL script is also provided in the same directory to fully rebuild the Vivado project via the shell or Command
Prompt. This is named similarly to the mkxpr script, except that the prefix is rebuild. For example, to rebuild the
Vivado project, invoke Vivado as follows:

cd (design)/fpga/proj
vivado -mode batch -source rebuild-dma_demo-ku060_2e.tcl

(Windows users should use backslashes in the cd command, rather than forward slashes.)

Assuming that building is successful, the newly-built .bit file is:

(design)/fpga/proj/<project directory>/dma_demo.runs/impl_1/dma_demo.bit

Note
Pre-built bitstreams, which are found under the directory (design)/fpga/bit/, are not overwritten when the
FPGA design is built.

Page 7Building the FPGA design
ad-ug-0067_v1_0.pdf

ADM-XRC-KU1 DMA Demonstration FPGA Design Release: 1.0.0
V1.0 - 22 Jun 2016

4 Demonstration program
The demonstration program, dma_demo is located in (design)/host/src/ and consists of three source files:

• cmdline.cpp
This file contains the main entry point and code for parsing command-line arguments, and nothing in this
file is directly related to the FPGA design. It makes use of the CExAppCmdLineArgs class, which is
provided by the example application framework code in (root)/host/app_framework-trunk/.
Note that when building the demonstration program for VxWorks, this source file is omitted because a
VxWorks downloadable kernel module (DKM) does not have a traditional main()-style entry point.

• dma_demo.cpp
This file contains code that actually drives the FPGA design and performs the DMA performance test. It
makes use of some classes for operating system abstraction (e.g. CExAppThread), also provided by the
example application framework code.

• dma_demo.h
This file defines the interface to the code in dma_demo.cpp, and is used by cmdline.cpp.
Note that in VxWorks, the functions whose prototypes are defined in this file can be called from the
VxWorks kernel shell.

The demonstration program works as follows:

1. It opens an ADMXRC3 device either by index or serial number, depending on arguments passed on the
command line.

2. It configures the target FPGA with the appropriate pre-built .bit file from the (design)/fpga/bit/ directory.

3. It launches one thread for each DMA engine that has been selected to participate in the test (as per
command-line arguments). For each thread, a context structure, initialized by the main thread, supplies
information about DMA transfer size & direction etc., also as per command-line arguments.

4. The main thread then commands all DMA threads to perform DMA transfers continuously for a period
specified by command-line arguments, with each thread accumulating a count of bytes transferred, and
waits for all DMA threads to finish.

5. The main thread verifies the data transferred by the last DMA transfer of each DMA thread, reporting any
verification errors found.

6. The main thread reports DMA transfer throughput statistics, for each DMA engine and in aggregate.

7. Finally, the main thread frees allocated memory, destroys synchronization & thread objects etc. and closes
handle to the ADMXRC3 device.

Page 8Demonstration program
ad-ug-0067_v1_0.pdf

ADM-XRC-KU1 DMA Demonstration FPGA Design Release: 1.0.0
V1.0 - 22 Jun 2016

5 Building the demonstration program
5.1 Building in Linux

A Makefile for GNUMake is provided for building the demonstration program, dma_demo. The GNU C++
toolchain and associated C and C++ development packages must be installed in the system that is used to build
dma_demo.

To build dma_demo, follow this procedure:

1. Start a shell and change directory to (design)/host/proj/linux.

2. Issue the following command:
make

Assuming that building is successful, the executable is (design)/host/proj/linux/dma_demo.

The above procedure builds dma_demo natively, i.e. for the architecture that the GNU toolchain on the build
system targets by default. There are two variables that may be passed on the make command-line or set in the
environment in order to change the way building is performed:

• BIARCH
For most 64-bit Linux distributions, it is possible to build both a native (64-bit) executable and a 32-bit
executable. To do this, set BIARCH variable to yes on the make command-line. For example:
make BIARCH=yes

Assuming that building is successful, the executables produced are dma_demo (native 64-bit) and
dma_demo32 (32-bit).

• CROSS_COMPILE
To build using a cross-compiler, set the CROSS_COMPILE environment variable to the prefix of the
toolchain binaries, ensuring that the toolchain is in the PATH. For example
export PATH=/path/to/toolchain:$PATH
export CROSS_COMPILE=arm-none-linux-gnueabi-
make

• SYSROOT
Generally used only when cross-compiling, the value of SYSROOT points to the target system's root
filesystem. This may be required if the toolchain used for cross-compiling does not have the required
defaults for paths to system header files and libraries directories. For example:
export PATH=/path/to/toolchain:$PATH
export CROSS_COMPILE=arm-none-linux-gnueabi-
make SYSROOT=/path/to/arm-rootfs

5.2 Building in Windows
Solutions for Microsoft Visual Studio 2012 & 2013 are provided for building the demonstration program,
dma_demo.exe.

To build dma_demo.exe for a particular configuration-platform combination, follow this procedure:

1. If using Microsoft Visual Studio 2012, open the solution (design)/host/proj/win32vs2012/dma_demo.sln.
If using Microsoft Visual Studio 2013, open the solution (design)/host/proj/win32vs2013/dma_demo.sln.

2. From the Standard toolbar, which is visible by default in Microsoft Visual Studio, select the configuration
and platform of interest; for example Release, x64.

3. From the main menu, select BUILD -> Rebuild Solution.

Page 9Building the demonstration program
ad-ug-0067_v1_0.pdf

ADM-XRC-KU1 DMA Demonstration FPGA Design Release: 1.0.0
V1.0 - 22 Jun 2016

Alternatively, follow this procedure to build all available configuration-platform combinations of dma_demo.exe:

1. If using Microsoft Visual Studio 2012, open the solution (design)/host/proj/win32vs2012/dma_demo.sln.
If using Microsoft Visual Studio 2013, open the solution (design)/host/proj/win32vs2013/dma_demo.sln.

2. From the main menu, select BUILD -> Batch Build...
3. In the Batch Build dialog, click Select All and then Rebuild.

Once built, the executable files for dma_demo.exe are located as follows, according to Visual Studio version,
configuration and platform:

Visual
Studio

Configur­
ation Platform Executable location

2012 Debug Win32 (design)/host/proj/win32vs2012/dma_demo/Debug/

2012 Debug x64 (design)/host/proj/win32vs2012/dma_demo/Debug64/

2012 Release Win32 (design)/host/proj/win32vs2012/dma_demo/Release/

2012 Release x64 (design)/host/proj/win32vs2012/dma_demo/Release64/

2013 Debug Win32 (design)/host/proj/win32vs2013/dma_demo/Debug/

2013 Debug x64 (design)/host/proj/win32vs2013/dma_demo/Debug64/

2013 Release Win32 (design)/host/proj/win32vs2013/dma_demo/Release/

2013 Release x64 (design)/host/proj/win32vs2013/dma_demo/Release64/

Table 4 : Location of dma_demo.exe

5.3 Building for VxWorks
A Makefile is provided for building a downloadable kernel module, admxrc3DmaDemo.out, which has entry
points that may be called from the VxWorks shell.

To invoke the Makefile, follow these steps:

1. Start a VxWorks Development Shell. This can be started from within Workbench or from the Start Menu if
running in Windows.

2. In the shell, change directory to (design)/host/proj/vxworks.

3. Issue the make command, specifying the CPU architecture, toolchain and other build options. For
example:
make CPU=NEHALEM TOOL=icc VXBUILD="LP64 SMP" clean default

The above command builds admxrc3DmaDemo.out for 64-bit SMP Nehalem architecture using the Intel
toolchain.

Assuming that the make command is successful, the build product is admxrc3DmaDemo.out, which can be
downloaded to the target system.

For a more detailed discussion of how to invoke the Makefile, refer to Appendix C.

Page 10Building the demonstration program
ad-ug-0067_v1_0.pdf

ADM-XRC-KU1 DMA Demonstration FPGA Design Release: 1.0.0
V1.0 - 22 Jun 2016

6 Using the FPGA design
6.1 Using the FPGA design with a Linux host

The demonstration program, dma_demo, runs on the host system's CPU and verifies that the FPGA design
works as expected. Before running it, please ensure that your environment meets the following requirements:

• An ADM-XRC-KU1 is plugged into an XMC slot in the test machine and SW1-3 (Bridge Bypass mode) is
OFF.

• ADB3 Driver 1.4.17 or later is installed in the test machine.

• You have built the demonstration program as detailed in Section 5.

• You are logged in as a user that is capable of executing programs as root using sudo.

Start the ADB3 Driver

If the ADB3 Driver is not already started, start it using the command:

sudo modprobe adb3 PciAddress64Bit=1 PciUseMsi=1

The PciAddress64Bit and PciUseMsi options are performance-enhancing options that respectively enable use
of 64-bit PCI Addressing and Message-signalled Interrupts by the driver.

Run the demonstration program

To run the dma_demo program with default arguments, issue the following commands in a shell:

cd (design)/host/proj/linux
sudo ./dma_demo

This should yield output as follows:

INFO: Using 1 DMA engine(s): 0
INFO: DMA transfer size is 0x80000(524288) byte(s)
INFO: Testing BlockRAM 0 using Direct Slave channel...
INFO: No errors were detected in initial test of data transfer to and from BlockR
AMs using Direct Slave channel.
INFO: Doing DMA performance test...
INFO: 0 data error(s) detected for DMA engine 0
INFO: DMA engine 0 wrote 8728 MiB to the FPGA in 2.00011 s at 4363.77 MiB/s
INFO: 1 DMA engine(s) transferred 8728 MiB to/from the FPGA at 4363.77 MiB/s

The default arguments are to use DMA channel 0 (only), to transfer data from the host to FPGA and to use a
DMA transfer size of 0x80000 bytes. These three arguments can be overwritten by specifying them on the
command line. For a complete description of the command-line options for the dma_demo program, refer to
Appendix A. Some examples of running dma_demo follow:

• Both DMA engines transferring data from FPGA to host:
sudo ./dma_demo 0x3 0x3

• DMA engine 0 transferring data from FPGA to host, and DMA engine 1 transferring data from host to
FPGA:
sudo ./dma_demo 0x3 0x1

• DMA engine 0 transferring data from host to FPGA using a DMA transfer size of 0x12345 bytes:
sudo ./dma_demo 0x1 0 0x12345

Page 11Using the FPGA design
ad-ug-0067_v1_0.pdf

ADM-XRC-KU1 DMA Demonstration FPGA Design Release: 1.0.0
V1.0 - 22 Jun 2016

6.2 Using the FPGA design with a Windows host
The demonstration program, dma_demo, runs on the host system's CPU and verifies that the FPGA design
works as expected. Before doing so, please ensure that your environment meets the following requirements:

• An ADM-XRC-KU1 is plugged into an XMC slot in the test machine and SW1-3 (Bridge Bypass mode) is
OFF.

• ADB3 Driver 1.4.17 or later is installed in the test machine.

• You are either:
• Logged in as a user with Administrator privileges in a system without User Account Control (UAC) or

where UAC is disabled, and have started a Windows Command Prompt (which will be elevated).

• Logged in as a user with Administrator privileges in a system with User Account Control, and have
started a Windows Command Prompt using "Run as administrator".

(Optional) Apply DMA performance-enhancing tweaks to ADB3 Driver

The ADB3 Driver has some parameters that affect its behaviour, which are located in the Registry under the key

HKLM\System\CurrentControlSet\Services\adb3\Parameters

The DWORD value PciAddress64Bit (default 0, as of ADB3 Driver 1.4.16) can be set to 1 in order to make the
ADM-XRC-KU1's DMA engines use 64-bit PCI addressing, which can improve DMA performance by reducing or
eliminating the need for bounce-buffering in systems with more than 3 GiB of memory.

If the above value is changed, the ADB3 Driver must be restarted in order for the change to take effect. This is
most easily accomplished in Windows Device Manager by first disabling and then enabling the ADM-XRC-KU1
device.

NOTE: Installing the ADB3 Driver will overwrite the parameters in the Registry, including PciAddress64Bit, with
their default values.

Run the demonstration program

To run the dma_demo.exe program with default arguments, issue the following commands in the Windows
Command Prompt:

cd (design)\host\bin\win32\x86
dma_demo

This should yield output as follows:

INFO: Using 1 DMA engine(s): 0
INFO: DMA transfer size is 0x80000(524288) byte(s)
INFO: Testing BlockRAM 0 using Direct Slave channel...
INFO: No errors were detected in initial test of data transfer to and from BlockR
AMs using Direct Slave channel.
INFO: Doing DMA performance test...
INFO: 0 data error(s) detected for DMA engine 0
INFO: DMA engine 0 wrote 8728 MiB to the FPGA in 2.00011 s at 4363.77 MiB/s
INFO: 1 DMA engine(s) transferred 8728 MiB to/from the FPGA at 4363.77 MiB/s

The default arguments are to use DMA channel 0 (only), to transfer data from the host to FPGA and to use a
DMA transfer size of 0x80000 bytes. These three arguments can be overwritten by specifying them on the
command line. For a complete description of the command-line options for the dma_demo program, refer to
Appendix A. Some examples of running dma_demo follow:

• Both DMA engines transferring data from FPGA to host:
dma_demo 0x3 0x3

Page 12Using the FPGA design
ad-ug-0067_v1_0.pdf

ADM-XRC-KU1 DMA Demonstration FPGA Design Release: 1.0.0
V1.0 - 22 Jun 2016

• DMA engine 0 transferring data from FPGA to host, and DMA engine 1 transferring data from host to
FPGA:
dma_demo 0x3 0x1

• DMA engine 0 transferring data from host to FPGA using a DMA transfer size of 0x12345 bytes:
dma_demo 0x1 0 0x12345

6.3 Using the FPGA design in VxWorks
The demonstration program, admxrc3DmaDemo.out, runs on the VxWorks target machine and writes values
entered by the user into the nibble-reversal register of the target FPGA. The nibble-reversed values are read
back and displayed. Before running it, please ensure that your environment meets the following requirements:

• An ADM-XRC-KU1 is plugged into an XMC slot in the VxWorks target machine and SW1-3 (Bridge Bypass
mode) is OFF.

• ADB3 Driver 1.4.17 or later has been built and is running on the VxWorks target machine. This can be
done by one of two methods:

(a) By downloading ADB3 Driver 1.4.17, as a set of downloadable kernel modules, to the VxWorks
target machine, after booting. For this method, please refer to the release notes for ADB3 Driver
1.4.17 for VxWorks.

(b) By building ADB3 Driver Component 1.4.17 into the VxWorks kernel so that it is automatically
started when the kernel boots. For this method, please refer to the release notes for ADB3 Driver
Component 1.4.17 for VxWorks.

• You have built the demonstration program as detailed in Section 5.3.

• You have access to the kernel shell on the VxWorks target machine, either using a serial connection or
using telnet.

Download the demonstration program to the VxWorks target machine

Assuming that you have built it as described in Section 5.3, the DKM for the demonstration program must first be
downloaded to the VxWorks target machine. This can be done by a shell command such as:

-> ld <host:Y:/example/dma_demo-admxrcku1-trunk/host/proj/vxworks/admxrc3DmaDemo.out
value = -140737478303728 = 0xffff800000996010

Undefined symbols when loading the DKM
If the ld command fails due to undefined symbols, the most likely cause is that the ADB3 Driver has not been
correctly downloaded to the VxWorks target system.

Run the demonstration program

Once the DKM for the demonstration program is resident in the VxWorks target system, it is possible to run it.
The basic form of shell command that runs the program uses the admxrc3DMADemoIndex entry point in the
DKM, and requires the path to the (design)/fpga/bit/ directory to be the first argument:

-> admxrc3DMADemoIndex "host:Y:/example/dma_demo-admxrcku1-v1_0_0/fpga/bit",(int*)
0,0,1,0,0x80000,2000,10,1

Page 13Using the FPGA design
ad-ug-0067_v1_0.pdf

ADM-XRC-KU1 DMA Demonstration FPGA Design Release: 1.0.0
V1.0 - 22 Jun 2016

.bit file not found error
If you encounter an error when invoking admxrc3DMADemoIndex of the form
ERROR: Failed to configure target FPGA 0 with 'host:y:/example/dma_demo-admxrcku
1-v1_0_0/fpga/bit/dma_demo-ku115_2i/dma_demo.bit': ADMXRC3_FILE_NOT_FOUND

then the likely cause is that there is no a pre-built .bit file for the speed grade or temperature grade of the
FPGA in the card in use. However, there is no functional difference (for a given FPGA die) between speed
grades or temperature grades, so the .bit file can be specified directly as the second argument:

-> admxrc3DMADemoIndex "","host:Y:/example/dma_demo-admxrcku1-v1_0_0/fpga/bit/dm
a_demo-ku115_2e/dma_demo.bit",0,1,0,0x80000,2000,10,1

For details of the available entry points in the admxrc3DmaDemo.out DKM and their arguments, refer to
Appendix B.

Successfully running the program as described above should yield output of the form:

INFO: Using 1 DMA engine(s): 0
INFO: DMA transfer size is 0x80000(524288) byte(s)
INFO: Testing BlockRAM 0 using Direct Slave channel...
INFO: No errors were detected in initial test of data transfer to and from
 BlockRAMs using Direct Slave channel.
INFO: Doing DMA performance test...
INFO: 0 data error(s) detected for DMA engine 0
INFO: DMA engine 0 wrote 1835.5 MiB to the FPGA in 2 s at 917.75 MiB/s
INFO: 1 DMA engine(s) transferred 1835.5 MiB to/from the FPGA at 917.75 MiB/s

Page 14Using the FPGA design
ad-ug-0067_v1_0.pdf

ADM-XRC-KU1 DMA Demonstration FPGA Design Release: 1.0.0
V1.0 - 22 Jun 2016

Appendix A: Running the demonstration program in
Linux & Windows

The demonstration program, dma_demo[.exe] may be invoked with a number of options and positional
arguments:

dma_demo [option ...] [DMA channels] [DMA directions] [DMA transfer size]

where the the positional arguments are as follows (in this order, unless omitted):

• [DMA channels]
This positional argument is a bitmask that specifies which DMA engines participate in the test. Bit 0
corresponds to DMA engine 0, and bit N corresponds to DMA engine N. If a particular bit is 1, the
corresponding DMA engine is included.
If omitted, the default value is 1, which corresponds to DMA engine 0 (only).
Examples:

• 1
DMA engine 0 (only) participates.

• 3
DMA engines 0 & 1 participate.

• [DMA directions]
This positional argument is a bitmask that specifies the direction of data transfer for each participating
DMA engine. Bit 0 corresponds to DMA engine 0, and in general bit N corresponds to DMA engine N. If a
particular bit is 1, the corresponding DMA engine transfers data from the FPGA to the host; otherwise from
the host to the FPGA. Note that if the corresponding bit of [DMA channels] is 0, a given bit of [DMA
directions] is ignored.
If omitted, the default value is 0, which corresponds to all participating DMA engines transferring data from
the host to the FPGA.
Examples:

• 1
DMA engine 0 transfers data from FPGA to host; the other(s) from host to FPGA.

• 3
DMA engines 0 & 1 transfer data from FPGA to host.

• [DMA transfer size]
This positional argument is the DMA transfer size used for all participating DMA engines. It must be in the
inclusive range 1 to (size of per-DMA-engine BlockRAM), i.e. in the range [1, 0x80000].
If omitted, the default value is (size of per-DMA-engine BlockRAM), i.e. 0x80000 (512 kiB).
Examples:

• 1
DMA transfers are a single byte each.

• 12345
DMA transfers are 12345 bytes each.

• 0x4000
DMA transfers are 16384 bytes / 16 kiB each.

Options begin with '-' and may be placed before, between or after positional arguments. If an option requires a
value, it may be specified in one or two forms: -option=<value> or -option <value>. The available options are:

Page 15Running the demonstration program in Linux & Windows
ad-ug-0067_v1_0.pdf

ADM-XRC-KU1 DMA Demonstration FPGA Design Release: 1.0.0
V1.0 - 22 Jun 2016

• -duration <duration of performance test, in milliseconds>
This option specifies the duration of the performance test, in milliseconds.
If omitted, the value is 2000, which is chosen as reasonable compromise between time taken and
minimising variance from one run to another.
Examples:

• -duration 1500
The performance test lasts for 1500 milliseconds.

• -duration 0xEA60
The performance test lasts for 0xEA60 milliseconds, i.e. one minute.

• -h, -help, -?
This option displays a brief help message.

• -index <index>
This option specifies which reconfigurable computing device is to be used for the test. Zero corresponds to
the first reconfigurable computing device in the system, as enumerated by the operating system. 1
corresponds to the second device, and so on.
If omitted, the value is 0. This option cannot be specified along with the -sn option (see below).
Examples:

• -index 0
Use the first reconfigurable computing device in the system.

• -index 10
Use the 11th reconfigurable computing device in the system.

• -index 0x2
Use the third reconfigurable computing device in the system.

• -maxerr <maximum number of errors to display>
This option specifies the maximum number of data verification errors to be displayed in detail, in phases of
the test where data that has been transferred is verified for correctness. If more than the specified number
of errors occur, a message is displayed to indicate that further errors have occurred, but their details are
suppressed.
If omitted, the value is 10.
Examples:

• -maxerr 5
Display up to 5 verification errors in detail.

• -maxerr 0x20
Display up to 0x20 (32) verification errors in detail.

• -sn <serial number>
This option specifies the serial number of the reconfigurable computing device that is to be used for the
test.
If omitted, the device used is chosen according to the -index option (see above). This option cannot be
specified along with the -index option (see above).
Examples:

• -sn 159
Use the reconfigurable computing device with serial number 159.

• -sn 0x5555
Use the reconfigurable computing device with serial number 0x5555 (21845).

Page 16Running the demonstration program in Linux & Windows
ad-ug-0067_v1_0.pdf

ADM-XRC-KU1 DMA Demonstration FPGA Design Release: 1.0.0
V1.0 - 22 Jun 2016

• -verify <bool>
This option enables or disables data verification, and should normally be left at the default value of true.
If omitted, the value is true.
Examples:

• -verify false, -verify 0
Disable data verification.

• -verify true, -verify 1
Enable data verification.

Page 17Running the demonstration program in Linux & Windows
ad-ug-0067_v1_0.pdf

ADM-XRC-KU1 DMA Demonstration FPGA Design Release: 1.0.0
V1.0 - 22 Jun 2016

Appendix B: Demonstration program entry points in
VxWorks

The demonstration program can be invoked via two entry points in the admxrc3DmaDemo.out DKM. These
entry points are defined by the header file, (design)/host/src/dma_demo.h, as follows:

int
admxrc3DMADemoIndex(
 const TCHAR* pBitPath,
 const TCHAR* pBitFile,
 unsigned int index,
 uint32_t dmaEngineMask,
 uint32_t dmaDirectionMask,
 uint32_t dmaTransferSize,
 unsigned int durationMs,
 unsigned int maxErrorDisplayed,
 int bVerifyData);

int
admxrc3DMADemoSN(
 const TCHAR* pBitPath,
 const TCHAR* pBitFile,
 uint32_t serialNumber,
 uint32_t dmaEngineMask,
 uint32_t dmaDirectionMask,
 uint32_t dmaTransferSize,
 unsigned int durationMs,
 unsigned int maxErrorDisplayed,
 int bVerifyData);

Use of TCHAR
The demonstration program is portable between Linux, Windows and VxWorks. For this reason, TCHAR is
used as the character data type, and when building for VxWorks, TCHAR is aliased to char.

• admxrc3DMADemoIndex
This entry point is for running the demonstration program on an ADM-XRC-KU1 with a particular
zero-based index. If there is only one card in the system, its index is always 0.

• admxrc3DMADemoSN
This entry point is for running the demonstration program on an ADM-XRC-KU1 with a particular serial
number.

The parameters are as follows:

• pBitPath
If non-NULL, the pBitPath argument specifies the directory on the host filesystem where the pre-built .bit
files are located. It is used as the prefix for constructing a full path to the .bit file to be used to configure
the target FPGA, which is performed as follows (where + represents string concatenation):
pBitPath + "/dma_demo-<device>_<speed><tempgrade>[_<step>]/dma_demo.bit"
where "device", "speed", "tempgrade" and "step" are all obtained via the ADMXRC3_GetFPGAInfo
function of the ADMXRC3 API. The "step" value is generally empty for a board fitted with a production
silicon FPGA, and in that case is omitted from the .bit file path.
For example, for an ADM-XRC-KU1 fitted with a KU115-2E device, the full path of the .bit file is
constructed as:
pBitPath + "/dma_demo-ku115_2e/dma_demo.bit"

Page 18Demonstration program entry points in VxWorks
ad-ug-0067_v1_0.pdf

ADM-XRC-KU1 DMA Demonstration FPGA Design Release: 1.0.0
V1.0 - 22 Jun 2016

• pBitFile
If non-NULL, the pBitFile argument directly specifies the .bit file to use to configure the FPGA. Its value
overrides whatever .bit file path was constructed from pBitPath.
If pBitPath is NULL, pBitFile must be given a non-NULL value so that the program knows what .bit file to
use.

• index
In the admxrc3DMADemoIndex entry point, this parameter specifies the zero-based index of the
reconfigurable computing card to use. If there is only one reconfigurable computing card in the system, its
index is always zero. When there are more than one, indices are assigned by the system, generally
according to the order in which they are discovered.

• serialNumber
In the admxrc3DMADemoSN entry point, this parameter specifies the serial number of the reconfigurable
computing card to use.

• dmaEngineMask
This is a bitmask that specifies which DMA engines participate in the test. Bit 0 corresponds to DMA
engine 0, and bit N corresponds to DMA engine N. If a particular bit is 1, the corresponding DMA engine is
included.
Examples:

• 1
DMA engine 0 (only) participates.

• 3
DMA engines 0 & 1 participate.

• dmaDirectionMask
This is a bitmask that specifies the direction of data transfer for each participating DMA engine. Bit 0
corresponds to DMA engine 0, and in general bit N corresponds to DMA engine N. If a particular bit is 1,
the corresponding DMA engine transfers data from the FPGA to the host; otherwise from the host to the
FPGA. Note that if the corresponding bit of dmaEngineMask is 0, a given bit of dmaDirectionMask is
ignored.
Examples:

• 1
DMA engine 0 transfers data from FPGA to host; the other(s) from host to FPGA.

• 3
DMA engines 0 & 1 transfer data from FPGA to host.

• dmaTransferSize
This argument is the DMA transfer size used for all participating DMA engines. It must be in the inclusive
range 1 to (size of per-DMA-engine BlockRAM), i.e. in the range [1, 0x80000].

• durationMs
This parameter specifies the duration of the performance test, in milliseconds.
A suggested value is 2000.

• maxErrorDisplayed
This parameter specifies the maximum number of data verification errors to be displayed in detail, in
phases of the test where data that has been transferred is verified for correctness. If more than the
specified number of errors occur, a message is displayed to indicate that further errors have occurred, but
their details are suppressed.
A suggested value is 10.

• bVerifyData

Page 19Demonstration program entry points in VxWorks
ad-ug-0067_v1_0.pdf

ADM-XRC-KU1 DMA Demonstration FPGA Design Release: 1.0.0
V1.0 - 22 Jun 2016

This parameter enables (if nonzero) or disables (if zero) data verification, and should normally be given a
nonzero value.

If pBitFile is not NULL, it overrides any value passed for pBitPath. Table 5 summarizes the interaction of
pBitPath and pBitFile:

pBitPath pBitFile Behavior

NULL NULL Illegal; the program does not know what .bit file to use.

non-NULL NULL The program constructs the full path of the .bit file from pBitPath and
information obtained via ADMXRC3_GetFPGAInfo.

N/A non-NULL The program uses pBitFile as the full path of the .bit file

Table 5 : Interaction of pBitPath and pBitFile

Page 20Demonstration program entry points in VxWorks
ad-ug-0067_v1_0.pdf

ADM-XRC-KU1 DMA Demonstration FPGA Design Release: 1.0.0
V1.0 - 22 Jun 2016

Appendix C: Makefile variables in VxWorks
The Makefile for building the downloadable kernel module admxrc3DmaDemo.out in VxWorks can be invoked
with a number of variables for controlling how the build is performed. The general form is:

make [CPU=<arch>] [TOOL=<tool>] [VXBUILD="[option] ..."] [target ...]

The available build targets for make are:

• clean
This deletes all build products and intermediate files. When rebuilding with different values for CPU, TOOL
etc. with respect to the previous build, first perform a clean.

• default
This builds the product admxrc3DmaDemo.out according to the values for CPU, TOOL etc.

To perform a full rebuild, use both clean and default together in the same command, in that order.

The variables that may be passed on the make command-line are:

• CPU=<arch>
Here, <arch> is the CPU architecture of the target system; for example PPC604, NEHALEM,
ARMARCH4 etc.
If this variable is omitted, it defaults to PPC604.

• TOOL=<tool>
Here, <tool> is the toolchain that is to be used to build the DKM and, as of VxWorks 6.9, can be diab, gnu
or icc.
If this variable is omitted, it defaults to gnu.

• VXBUILD="[option] ..."
Here the properties of the kernel of the target system must be specified. Including LP64 means that the
kernel of the target system is a 64-bit kernel. Including SMP means that the kernel of the target system is
symmetric multiprocessing (SMP). Any options that are included should be separated by spaces, with all
options together enclosed in quotes. For example, for a 64-bit SMP kernel, use
VXBUILD="LP64 SMP"

If this variable is omitted, it defaults to "", the result of which depends upon the defaults for the architecture
selected by CPU. For example, if CPU is PPC604 or NEHALEM, omitting VXBUILD results in building for
a 32-bit uniprocessor kernel.

Hence, to fully rebuild for a 32-bit uniprocessor PowerPC 604 kernel using the GNU toolchain, issue the
command

make clean default

To build for a 64-bit SMP Nehalem kernel using the Intel toolchain, issue the command

make CPU=NEHALEM TOOL=icc VXBUILD="LP64 SMP" default

Page 21Makefile variables in VxWorks
ad-ug-0067_v1_0.pdf

ADM-XRC-KU1 DMA Demonstration FPGA Design Release: 1.0.0
V1.0 - 22 Jun 2016

Revision History
Date Revision Nature of change

22 Jun 2016 1.0 Initial version.

Address: 4 West Silvermills Lane,
Edinburgh, EH3 5BD, UK

Telephone: +44 131 558 2600
Fax: +44 131 558 2700
email: sales@alpha-data.com
website: http://www.alpha-data.com

Address: 3507 Ringsby Court Suite 105,
Denver, CO 80216

Telephone: (303) 954 8768
Fax: (866) 820 9956 toll free
email: sales@alpha-data.com
website: http://www.alpha-data.com

4.5

	1 Introduction
	1.1 Structure of this package

	2 Design description
	2.1 Testbench

	3 Building the FPGA design
	4 Demonstration program
	5 Building the demonstration program
	5.1 Building in Linux
	5.2 Building in Windows
	5.3 Building for VxWorks

	6 Using the FPGA design
	6.1 Using the FPGA design with a Linux host
	6.2 Using the FPGA design with a Windows host
	6.3 Using the FPGA design in VxWorks

	Appendix A: Running the demonstration program in Linux & Windows
	Appendix B: Demonstration program entry points in VxWorks
	Appendix C: Makefile variables in VxWorks
	Tables
	Table 1: Direct Slave AXI4 address map
	Table 2: DMA channel N AXI4 address map
	Table 3: Project creation scripts by configuration
	Table 4: Location of dma_demo.exe
	Table 5: Interaction of pBitPath and pBitFile

	Figures
	Figure 1: The ADM-XRC-KU1 within a system
	Figure 2: Structure of this package
	Figure 3: Block diagram of DMA Demonstration FPGA Design
	Figure 4: Block diagram of Testbench

