
ADMXRC3 API 1.4.0
Specification

Revision: 1.5
Date: 24th August 2011

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

©2011 Copyright Alpha Data Parallel Systems Ltd.
All rights reserved.

This publication is protected by Copyright Law, with all rights reserved. No
part of this publication may be reproduced, in any shape or form, without

prior written consent from Alpha Data Parallel Systems Limited.

Head Office US Office

Address 4 West Silvermills Lane,
Edinburgh, EH3 5BD, UK

3507 Ringsby Court Suite 105
 Denver, CO 80216

Telephone +44 131 558 2600 (303) 954 8768
Fax +44 131 558 2700 (866) 820 9956 - toll free
email sales@alpha-data.com sales@alpha-data.com
website http://www.alpha-data.com http://www.alpha-data.com

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

Table Of Contents
1 Introduction ... 1
 1.1 New in ADMXRC3 API version 1.1.0.. 1
 1.1.1 New model .. 1
 1.1.2 Extended card information .. 1
 1.1.3 Hardware monitoring ... 1
 1.1.4 I/O personality modules... 1
 1.1.5 Direct-call mechanism for consuming notifications ... 1
 1.1.6 VxWorks-specific API functions for consuming notifications ... 1
 1.2 New in ADMXRC3 API version 1.2.0.. 1
 1.2.1 DMA functions for 64-bit local addresses.. 1
 1.3 New in ADMXRC3 API version 1.3.0.. 2
 1.3.1 Support for new models .. 2
 1.3.2 New value for ADMXRC3_STATUS .. 2
 1.4 New in ADMXRC3 API version 1.4.0.. 2
 1.4.1 Support for DMA to bus addresses ... 2
 1.4.2 New flag ADMXRC3_FPGA_NOTCONFIGURABLE .. 2
 1.4.3 New value ADMXRC3_UNIT_S for enumerated type ADMXRC3_UNIT_TYPE....................................... 2
2 Building C and C++ applications ... 3
 2.1 Building applications for Windows.. 3
 2.1.1 Compiling for Windows.. 3
 2.1.2 Linking for Windows .. 3
 2.2 Building applications for Linux.. 3
 2.2.1 Compiling for Linux.. 3
 2.2.2 Linking for Linux .. 3
 2.3 Building applications for VxWorks .. 3
 2.3.1 Compiling for VxWorks.. 4
 2.3.2 Linking for VxWorks .. 4
3 Concepts.. 5
 3.1 Hardware, devices and device handles.. 5
 3.2 Multithreading... 5
 3.2.1 Multithreading with blocking API functions .. 5
 3.2.2 Multithreading with non-blocking API functions... 6
 3.3 Non-blocking operations... 6
 3.3.1 Multithreading and non-blocking operations.. 7
 3.3.2 Tickets ... 7
 3.3.2.1 Tickets in Windows... 7
 3.3.2.2 Tickets in Linux and VxWorks .. 7
 3.4 Queueing.. 8
 3.5 Notifications.. 8
 3.5.1 Event / Semaphore registration... 8
 3.5.2 Direct-call notification .. 8
 3.6 Endian issues ... 9
 3.7 String encoding issues ... 9

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

 3.8 Hardware features.. 10
 3.8.1 Target FPGAs.. 10
 3.8.1.1 Full reconfiguration... 10
 3.8.1.2 Partial reconfiguration .. 10
 3.8.1.3 Unconfiguration .. 10
 3.8.1.4 Target FPGA ownership ... 11
 3.8.2 Memory windows... 12
 3.8.2.1 Mapping memory windows into user-space ... 13
 3.8.3 FPGA data transfer.. 13
 3.8.3.1 CPU-initiated transfers ... 14
 3.8.3.2 DMA transfers with host memory ... 16
 3.8.3.2.1 Unlocked DMA functions ... 17
 3.8.3.2.2 Locked DMA functions... 17
 3.8.3.3 DMA transfers with peer devices.. 17
 3.8.4 Clock generators ... 18
 3.8.5 Flash memory.. 19
 3.8.5.1 Flash memory caching ... 19
 3.8.6 Vital Product Data ... 19
 3.8.7 Hardware monitoring ... 20
 3.8.8 I/O personality modules... 20
4 ADMXRC3 API Reference ... 21
 4.1 ADMXRC3 API constants and macros ... 21
 4.1.1 ADMXRC3_BITSTREAM .. 21
 4.1.2 ADMXRC3_ConfigureFromFile ... 21
 4.1.3 ADMXRC3_FLASH_INFO... 21
 4.1.4 ADMXRC3_FPGA_INFO... 22
 4.1.5 ADMXRC3_GetFlashInfo .. 22
 4.1.6 ADMXRC3_GetFpgaInfo ... 22
 4.1.7 ADMXRC3_GetModuleInfo ... 23
 4.1.8 ADMXRC3_GetSensorInfo.. 23
 4.1.9 ADMXRC3_GetStatusString.. 23
 4.1.10 ADMXRC3_HANDLE_INVALID_VALUE... 24
 4.1.11 ADMXRC3_LoadBitstream.. 24
 4.1.12 ADMXRC3_MODULE_INFO... 24
 4.1.13 ADMXRC3_SENSOR_INFO ... 25
 4.1.14 ADMXRC3_UnloadBitstream .. 25
 4.2 ADMXRC3 API datatypes... 25
 4.2.1 ADMXRC3_BANK_INFO... 25
 4.2.2 ADMXRC3_BITSTREAMA.. 27
 4.2.3 ADMXRC3_BITSTREAMW... 28
 4.2.4 ADMXRC3_BUFFER_HANDLE.. 29
 4.2.5 ADMXRC3_CARD_INFO .. 29
 4.2.6 ADMXRC3_CARD_INFOEX ... 31
 4.2.7 ADMXRC3_DATA_TYPE .. 32
 4.2.8 ADMXRC3_FAMILY_TYPE ... 33

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

 4.2.9 ADMXRC3_FLASH_INFOA .. 33
 4.2.10 ADMXRC3_FLASH_INFOW ... 34
 4.2.11 ADMXRC3_FLASHBLOCK_INFO... 35
 4.2.12 ADMXRC3_FPGA_INFOA .. 35
 4.2.13 ADMXRC3_FPGA_INFOW ... 37
 4.2.14 ADMXRC3_FPGA_TYPE.. 39
 4.2.15 ADMXRC3_HANDLE .. 41
 4.2.16 ADMXRC3_MODEL_TYPE... 41
 4.2.17 ADMXRC3_MODULE_INFOA... 42
 4.2.18 ADMXRC3_MODULE_INFOW.. 44
 4.2.19 ADMXRC3_PACKAGE_TYPE .. 46
 4.2.20 ADMXRC3_SENSOR_INFOA... 47
 4.2.21 ADMXRC3_SENSOR_INFOW.. 48
 4.2.22 ADMXRC3_SENSOR_VALUE .. 49
 4.2.23 ADMXRC3_STATUS ... 50
 4.2.24 ADMXRC3_SUBFAMILY_TYPE.. 51
 4.2.25 ADMXRC3_TICKET .. 51
 4.2.26 ADMXRC3_UNIT_TYPE ... 52
 4.2.27 ADMXRC3_VERSION_INFO .. 52
 4.2.28 ADMXRC3_WINDOW_INFO... 53
 4.3 ADMXRC3 API functions.. 54
 4.3.1 ADMXRC3_Cancel.. 55
 4.3.2 ADMXRC3_Close.. 56
 4.3.3 ADMXRC3_ConfigureFromBuffer ... 57
 4.3.4 ADMXRC3_ConfigureFromFileA... 59
 4.3.5 ADMXRC3_ConfigureFromFileW.. 61
 4.3.6 ADMXRC3_EraseFlash... 63
 4.3.7 ADMXRC3_FinishDMA ... 65
 4.3.8 ADMXRC3_FinishNotificationWait .. 66
 4.3.9 ADMXRC3_GetBankInfo ... 67
 4.3.10 ADMXRC3_GetCardInfo ... 68
 4.3.11 ADMXRC3_GetCardInfoEx ... 69
 4.3.12 ADMXRC3_GetClockFrequency ... 69
 4.3.13 ADMXRC3_GetFlashBlockInfo.. 70
 4.3.14 ADMXRC3_GetFlashInfoA.. 71
 4.3.15 ADMXRC3_GetFlashInfoW... 72
 4.3.16 ADMXRC3_GetFpgaInfoA... 73
 4.3.17 ADMXRC3_GetFpgaInfoW.. 74
 4.3.18 ADMXRC3_GetModuleInfoA... 75
 4.3.19 ADMXRC3_GetModuleInfoW.. 76
 4.3.20 ADMXRC3_GetSensorInfoA ... 77
 4.3.21 ADMXRC3_GetSensorInfoW .. 78
 4.3.22 ADMXRC3_GetStatusStringA ... 79
 4.3.23 ADMXRC3_GetStatusStringW .. 80
 4.3.24 ADMXRC3_GetVersionInfo ... 80

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

 4.3.25 ADMXRC3_GetWindowInfo .. 81
 4.3.26 ADMXRC3_InitializeTicket .. 82
 4.3.27 ADMXRC3_LoadBitstreamA ... 82
 4.3.28 ADMXRC3_LoadBitstreamW .. 83
 4.3.29 ADMXRC3_Lock ... 84
 4.3.30 ADMXRC3_MapWindow ... 86
 4.3.31 ADMXRC3_Open .. 88
 4.3.32 ADMXRC3_OpenEx.. 89
 4.3.33 ADMXRC3_Read .. 91
 4.3.34 ADMXRC3_ReadDMA .. 92
 4.3.35 ADMXRC3_ReadDMABus .. 94
 4.3.36 ADMXRC3_ReadDMAEx .. 96
 4.3.37 ADMXRC3_ReadDMALocked... 98
 4.3.38 ADMXRC3_ReadDMALockedEx...100
 4.3.39 ADMXRC3_ReadFlash..102
 4.3.40 ADMXRC3_ReadSensor ...104
 4.3.41 ADMXRC3_ReadVPD...105
 4.3.42 ADMXRC3_RegisterWin32Event ..107
 4.3.43 ADMXRC3_RegisterVxwSem ...108
 4.3.44 ADMXRC3_SetClockFrequency..110
 4.3.45 ADMXRC3_StartNotificationWait ..112
 4.3.46 ADMXRC3_StartReadDMA...113
 4.3.47 ADMXRC3_StartReadDMABus...115
 4.3.48 ADMXRC3_StartReadDMAEx...117
 4.3.49 ADMXRC3_StartReadDMALocked ...119
 4.3.50 ADMXRC3_StartReadDMALockedEx...121
 4.3.51 ADMXRC3_StartWriteDMA...123
 4.3.52 ADMXRC3_StartWriteDMABus...125
 4.3.53 ADMXRC3_StartWriteDMAEx...127
 4.3.54 ADMXRC3_StartWriteDMALocked ...129
 4.3.55 ADMXRC3_StartWriteDMALockedEx ...131
 4.3.56 ADMXRC3_SyncFlash ..133
 4.3.57 ADMXRC3_Unconfigure..134
 4.3.58 ADMXRC3_UnloadBitstreamA..135
 4.3.59 ADMXRC3_UnloadBitstreamW...136
 4.3.60 ADMXRC3_Unlock..137
 4.3.61 ADMXRC3_UnmapWindow...138
 4.3.62 ADMXRC3_UnregisterWin32Event ...139
 4.3.63 ADMXRC3_UnregisterVxwSem ..140
 4.3.64 ADMXRC3_Write...141
 4.3.65 ADMXRC3_WriteDMA...143
 4.3.66 ADMXRC3_WriteDMABus ..144
 4.3.67 ADMXRC3_WriteDMAEx ..146
 4.3.68 ADMXRC3_WriteDMALocked...148
 4.3.69 ADMXRC3_WriteDMALockedEx...150

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

 4.3.70 ADMXRC3_WriteFlash..152
 4.3.71 ADMXRC3_WriteVPD ...154
A Duplicating device handles..157

Tables
Table 1: char string encoding in ADMXRC3 API by operating system .. 9
Table 2: Methods of FPGA data transfer ... 14

Figures
Figure 1: Target FPGA ownership state machine ... 12
Figure 2: BARs in a reconfigurable computing device .. 13
Figure 3: Methods of FPGA data transfer ... 14
Figure 4: CPU-initiated read of a target FPGA ... 15
Figure 5: CPU-initiated write of a target FPGA ... 15
Figure 6: DMA read of a target FPGA... 16
Figure 7: DMA write of a target FPGA .. 16
Figure 8: DMA transfer from a target FPGA to a peer device ... 18
Figure 9: DMA transfer from a peer device to a target FPGA... 18
Figure 10: ADMXRC3_PACKAGE_TYPE bit fields .. 46
Figure 11: SelectMap D0..D7 byte mapping ... 59
Figure A1: An open device handle ..157
Figure A2: After duplicating a device handle...157
Figure A3: After opening a device twice..158

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

Page Intentionally left blank.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

1 Introduction
This document describes the ADMXRC3 Application Programming Interface, which supports a new generation of
reconfigurable computing hardware from Alpha Data. The key features of this API are:

Platform-independent (with a few exceptions).•
Functionality includes querying hardware, configuring hardware, CPU-initiated data transfer and DMA data
transfers.

•

Thread-safe.•
Non-blocking versions of certain functions.•

1.1 New in ADMXRC3 API version 1.1.0
1.1.1 New model

The datatype ADMXRC3_MODEL_TYPE now defines the value ADMXRC3_MODEL_ADMXRC6T1.

1.1.2 Extended card information
ADMXRC3 API 1.1.0 introduces the function ADMXRC3_GetCardInfoEx in order to expose more features of Gen 3
Alpha Data reconfigurable computing hardware.

1.1.3 Hardware monitoring
ADMXRC3 API 1.1.0 introduces a set of functions and datatypes for monitoring the health of Gen 3 Alpha Data
reconfigurable computing hardware. See Section 3.8.7, "Hardware monitoring" for an overview.

1.1.4 I/O personality modules
ADMXRC3 API 1.1.0 introduces the function ADMXRC3_GetModuleInfo, which returns information about what I/O
personality modules (if any) are fitted to a Gen 3 Alpha Data reconfigurable computing device. Refer to Section 3.8.8,
"I/O personality modules" for further details.

1.1.5 Direct-call mechanism for consuming notifications
ADMXRC3 API 1.1.0 introduces the functions ADMXRC3_StartNotificationWait and
ADMXRC3_FinishNotificationWait. While these functions are intended to offer Linux applications a mechanism to
consume notifications (such as a target FPGA interrupt), they are also available in Windows and Linux. Refer to
Section 3.5, "Notifications" for an overview.

These functions are necessary because the GNU/Linux operating system lacks a general mechanism for registering
wait objects (such as POSIX semaphores) with a kernel-mode driver. Instead of registering a wait object with the API, a
Linux application uses ADMXRC3_StartNotificationWait and ADMXRC3_FinishNotificationWait.

1.1.6 VxWorks-specific API functions for consuming notifications
The functions ADMXRC3_RegisterVxwSem and ADMXRC3_UnregisterVxwSem are now available, offering
equivalent functionality to ADMXRC3_RegisterWin32Event and ADMXRC3_UnregisterWin32Event.

1.2 New in ADMXRC3 API version 1.2.0
1.2.1 DMA functions for 64-bit local addresses

Page 1Introduction
AD-UG-0003 Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

ADMXRC3 API 1.2.0 introduces a set of functions that accept 64-bit local addresses. These functions are named as the
existing DMA functions but with an added "Ex" postfix. For example, ADMXRC3_ReadDMAEx is the 64-bit local
address counterpart of ADMXRC3_ReadDMA.

Note that some models do not use all 64 bits of the local address. The ADMXRC3 API Hardware Addendum defines
how many DMA address bits are available for each supported model.

1.3 New in ADMXRC3 API version 1.3.0
1.3.1 Support for new models

ADMXRC3 API 1.3.0 introduces two more models: the ADM-XRC-6TGE and the ADM-XRC-6T-ADV8. The enumerated
type ADMXRC3_MODEL_TYPE now includes values corresponding to those types.

1.3.2 New value for ADMXRC3_STATUS
ADMXRC3 API 1.3.0 introduces a new value for the ADMXRC3_STATUS enumerated type:
ADMXRC3_NOT_SUPPORTED. This value is returned when the hardware does not support a particular function, or
does not support the particular set of parameters passed to that function. For example, the ADM-XRC-6T-ADV8 has a
user-programmable PCI Express to OCP bridge, where some or all of the DMA engines may be configured for
transferring data in one direction only (in order to conserve FPGA resources for user-created functions). Attempting a
DMA transfer in a direction that is not supported by a particular DMA engine results in a return value of
ADMXRC3_NOT_SUPPORTED.

1.4 New in ADMXRC3 API version 1.4.0
1.4.1 Support for DMA to bus addresses

ADMXRC3 API 1.4.0 introduces some new API functions which enable the DMA engines in a Gen 3 reconfigurable
computing device to transfer data to arbitrary bus addresses:

ADMXRC3_ReadDMABus•
ADMXRC3_StartReadDMABus•
ADMXRC3_StartWriteDMABus•
ADMXRC3_WriteDMABus•

These functions enable bulk data transfer between peers on a bus, bypassing system memory. For example, a Gen 3
reconfigurable computing device such as the ADM-XRC-6T1 can, as bus master, read or write another PCI Express
endpoint directly, provided that the PCI Express memory space address of the other endpoint is known.

1.4.2 New flag ADMXRC3_FPGA_NOTCONFIGURABLE
To better support models such as the ADM-XRC-6T-ADV8, that have a single user-programmable FPGA that is both
the PCI Express interface and the target FPGA, the flag ADMXRC3_FPGA_NOTCONFIGURABLE has been added.
When this flag is present in the Flags field of ADMXRC3_FPGA_INFO, it indicates that the FPGA in question is not
reconfigurable via functions such as ADMXRC3_ConfigureFromFile. Application software can use this flag in order to
determine whether or not it should attempt to configure the target FPGA.

1.4.3 New value ADMXRC3_UNIT_S for enumerated type ADMXRC3_UNIT_TYPE

A new value ADMXRC3_UNIT_S, meaing 'seconds', for the enumerated type ADMXRC3_UNIT_TYPE has been
added.

Page 2 Introduction
AD-UG-0003Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

2 Building C and C++ applications
2.1 Building applications for Windows
2.1.1 Compiling for Windows

C or C++ source/header files that require the ADMXRC3 API must include <admxrc3.h> as follows:

#include <admxrc3.h>

This header file can be found in $(ADMXRC3_SDK)/include/, where $(ADMXRC3_SDK) is where the ADMXRC3 SDK
is installed. In Microsoft Visual Studio, this path can be added to the list of #include search paths in a project's
properties, or to the global list of #include search paths (under Tools->Options).

2.1.2 Linking for Windows
Windows applications should be linked with one of the ADMXRC3 API import libraries from the ADMXRC3 SDK. There
are several different binaries, compatible with Microsoft Visual Studio 2003 onwards and corresponding to different
application platforms and configurations:

Configuration Platform Relative Path in ADMXRC3 SDK
Debug x86 $(ADMXRC3_SDK)/lib/win32/msvc/admxrcd.lib

Release x86 $(ADMXRC3_SDK)/lib/win32/msvc/admxrc.lib
Debug x64 $(ADMXRC3_SDK)/lib64/win32/msvc/admxrcd.lib

Release x64 $(ADMXRC3_SDK)/lib64/win32/msvc/admxrc.lib

where $(ADMXRC3_SDK) is where the ADMXRC3 SDK is installed.

2.2 Building applications for Linux
2.2.1 Compiling for Linux

C or C++ source/header files that require the ADMXRC3 API must include <admxrc3.h> as follows:

#include <admxrc3.h>

This header file can be found in $(ADMXRC3_SDK)/include/, where $(ADMXRC3_SDK) is where the ADMXRC3 SDK
is installed. This path can be specified using the -I option if using the gcc or g++ compiler.

2.2.2 Linking for Linux
Linux applications should link with the ADMXRC3 API shared library (libadmxrc3.so).

When building an application natively (as opposed cross-building), an application normally need only specify -ladmxrc3
on the linker command line. This requires that the ADMXRC3 driver has already been correctly installed so that the
ADMXRC3 API shared library is in /usr/lib (and additionally in /usr/lib64 in 64-bit Linux).

If cross-building, it is likely that in addition to -ladmxrc3, the cross-linker must be told how to find the ADMXRC3 API
shared library. Recent versions of the GNU toolchain provide the --sysroot option, which specifies where the target
machine's root filesystem is located on the development machine. In most cases, this provides sufficient information for
the cross-linker.

2.3 Building applications for VxWorks

Page 3Building C and C++ applications
AD-UG-0003 Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

2.3.1 Compiling for VxWorks
C or C++ source/header files that require the ADMXRC3 API must include <admxrc3.h> as follows:

#include <admxrc3.h>

This header file can be found in $(ADMXRC3_SDK)/include/, where $(ADMXRC3_SDK) is where the ADMXRC3 SDK
is installed. As there are numerous versions of VxWorks and the Tornado / Workbench IDEs, detailed instructions for
setting up a VxWorks project to locate the ADMXRC3 API header files are outside of the scope of this document.
Please refer to the ADMXRC3 SDK User Guide for further information.

2.3.2 Linking for VxWorks
The ADMXRC3 API functions are provided by the ADB3 Driver for VxWorks. Because the driver is either compiled
into the VxWorks kernel image or downloaded after boot as a module, there is no explicit linking step when building a
VxWorks application that uses the ADMXRC3 API.

Page 4 Building C and C++ applications
AD-UG-0003Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

3 Concepts
There are several concepts that must be understood in order to make full use of the ADMXRC3 API. These are:

Hardware, devices and device handles•
Multithreading•
Non-blocking operations•
Queueing•
CPU-Initiated data transfer•
DMA and user-space buffers•
Hardware resources, like target FPGAs•

3.1 Hardware, devices and device handles
A device is a unit of reconfigurable computing hardware. An example of a device is an Alpha Data ADM-XRC-6TL card.
Before a device can be used by an application, the application must first open the device. Opening a device returns a
device handle of type ADMXRC3_HANDLE that the application may subsequently use to perform operations on that
device. A device handle identifies a particular device, and is required because there may be multiple devices in a given
system.

The ADMXRC3_Open and ADMXRC3_OpenEx functions are the means by which an application obtains a device
handle. These functions accept an 'index' parameter, which tells the ADMXRC3 API which device the application wants
to open, and is zero in the case where the application wants to open the first or only device. Once the application
obtains a device handle, it may use it to call the other functions in the ADMXRC3 API.

When finished with a device handle, a well-behaved application should close it using the ADMXRC3_Close function.
This enables the API and operating system to clean up any resources that the application did not explicitly free.

Should a process terminate without closing a device handle, then the operating system will typically close the device
handle and free any associated resources. This is true of Windows and Linux, but not of VxWorks. The VxWorks kernel
does not in general perform automatic cleanup, so it is the application's responsibility to ensure that resources are not
leaked.

Some applications, such as those that use non-blocking API calls, must open a device multiple times to obtain multiple
file handles. This must be done by calling ADMXRC3_Open or ADMXRC3_OpenEx multiple times, rather than using
an OS-specific mechanism such as DuplicateHandle (Windows) or dup (Linux / VxWorks). For an explanation of this
issue, refer to Appendix A, "Duplicating device handles".

3.2 Multithreading
In general, the ADMXRC3 API allows any number of concurrent API calls to a given device at a given moment. Note
that this statement is not equivalent to allowing any number of ongoing API calls to a given device handle at a given
moment.

For the purposes of this discussion, the ADMXRC3 API can be divided into two groups of functions:

Blocking functions, such as ADMRC3_Read.•
Non-blocking functions, such as ADMXRC3_StartReadDMAEx. Refer to Section 3.3, "Non-blocking
operations" for a discussion of non-blocking operations.

•

The multithreading rules for the blocking functions are different to those of the non-blocking functions, and are
explained in the following subsections.

3.2.1 Multithreading with blocking API functions

Page 5Concepts
AD-UG-0003 Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

The ADMXRC3 allows any number of threads to simultaneously call blocking API functions for the same device handle.

3.2.2 Multithreading with non-blocking API functions
The non-blocking functions of the ADMXRC3 API have more restrictive threading rules than the blocking functions. The
rule is that each device handle may have at most one ongoing non-blocking operation at a given moment. A
'non-blocking operation' is defined to last from the instant it is initiated to the instant that it is finished. For example, the
following code performs a non-blocking DMA operation (error handling omitted for clarity):

/* A */
status = ADMXRC3_StartReadDMAEx(hDevice, ...);
...
status = ADMXRC3_FinishDMA(hDevice, ...);
/* B */

The code between points A and B is a non-blocking operation. Another thread cannot use 'hDevice' to perform another
non-blocking operation while the first thread is performing its non-blocking operation. Attempting to do results in
undefined behavior.

Therefore, when an application must perform simultaneous non-blocking operations, it should open a device as many
times as it needs, obtaining multiple device handles. It then typically uses each device handle for one thread,
guaranteeing that the above rule is obeyed.

3.3 Non-blocking operations
The ADMXRC3 API has non-blocking variants of some functions. The functions eligible for having non-blocking variants
are the ones that may block the calling thread for a significant length of time (or indefinitely). Non-blocking functions are
provided for applications in which multithreading is inconvenient or impossible.

Performing a non-blocking operation requires at least two ADMXRC3 API calls:

First, call one of the non-blocking API functions. These functions have names of the form ADMXRC3_StartXxx
where ADMXRC3_FinishXxx is its corresponding blocking counterpart. This function call will return as soon as
possible, without waiting for anything. If the return value is ADMXRC3_PENDING, the non-blocking operation
was successfully started. Otherwise, no non-blocking operation was started.

1.

If the non-blocking operation was successfully started, the application must eventually call one of the
ADMXRC3_FinishXxx functions in order to finish it. The ADMXRC3_FinishXxx function that is appropriate
depends on which ADMXRC3_StartXxx function was called. The return value of ADMXRC3_FinishXxx
generally indicates whether or not the operation was successful.

2.

A device handle can support at most one unfinished non-blocking operation at a given moment. It is the application's
responsibility to ensure that there is at most one unfinished non-blocking operation for a given device handle at any
time. This can be achieved by opening a device multiple times using ADMXRC3_Open in order to obtain multiple
device handles.

The following code fragment illustrates how to perform a non-blocking DMA transfer, with error-handling:

/* A */
status = ADMXRC3_StartReadDMAEx(hDevice, pTicket, ...);
if (ADMXRC3_PENDING != status) {
 /* Handle error - B1 */
 ...
} else {
 /* Started operation succcessfully */
 ... other code ...
 ... calls poll() / WaitForMultipleObjects() ...
 ... other code ...
 status = ADMXRC3_FinishDMA(hDevice, pTicket, FALSE);
 if (ADMXRC3_SUCCESS != status) {
 if (ADMXRC3_INVALID_HANDLE == status) {
 /* C1 - indicates that 'hDevice' may have been corrupted */

Page 6 Concepts
AD-UG-0003Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

 } else if (ADMXRC3_PENDING == status) {
 /* C2 - operation still in progress - should not happen as already waited */
 } else {
 /* B2 - handle error */
 ...
 }
 } else {
 /* B3 - success */
 }
}

Point A is the beginning of the non-blocking operation. Points B1, B2 and B3 are possible finish points at which the
non-blocking operation can be considered finished. The program should never reach points C1 or C2, but if it does, it
indicates that 'hDevice' may have been corrupted somehow and the status of the non-blocking operation is
indeterminate. A program may not be able to recover from such an error except by opening the device again, possibly
leaking resources.

The 'bWait' argument of ADMXRC3_FinishDMA is FALSE in this example because the application itself waits for
completion using operating system specific wait functions such as poll or WaitForMultipleObjects.

3.3.1 Multithreading and non-blocking operations
When a single-threaded application wishes to perform many concurrent non-blocking operations, a practical strategy is
as follows:

Initiate as many non-blocking operations as desired, using multiple device handles and multiple tickets.1.
Use an OS-specific function to wait for some or all of the non-blocking operations to complete. In Windows,
ADMXRC3_HANDLE is a typedef of HANDLE, so an array of ADMXRC3_HANDLE can be passed to
WaitForMultipleObjects. In Linux, an ADMXRC3_HANDLE is a file descriptor, so it may be used to initialize a
pollfd struct for use with the poll system call.

2.

Finish each completed non-blocking operation using one of the ADMXRC3_FinishXxx functions, passing
FALSE for the bWait parameter.

3.

3.3.2 Tickets
In order for the ADMXRC3 API to be able to keep track of each non-blocking operation, an application must pass an
initialized object of type ADMXRC3_TICKET to all ADMXRC3_StartXxx and ADMXRC3_FinishXxx functions. A given
ticket object must be valid from start to finish of a non-blocking operation, and must not be used in more than one
concurrent non-blocking operation. The behavior resulting from violating this rule is undefined.

The ADMXRC3 API cannot completely hide OS-specific implementation details of non-blocking operations, so the
initialization that must be performed for a ticket depends upon the operating system. It is necessary to initialize a ticket
only once, although a ticket may be reinitialized provided it is not being used in a non-blocking operation at that
moment. The following sections describe how to initialize a ticket on each supported operating system.

3.3.2.1 Tickets in Windows
An ADMXRC3_TICKET object should be first initialized with a call to ADMXRC3_InitializeTicket, and the
Overlapped.hEvent member must then be set to a valid non-auto-reset Win32 Event handle. As with a ticket, the
Win32 Event must be valid from start to finish of a non-blocking operation, and must not be used in more than one
concurrent non-blocking operation. The behavior resulting from violating this rule is undefined.

3.3.2.2 Tickets in Linux and VxWorks
An ADMXRC3_TICKET object should be initialized with a call to ADMXRC3_InitializeTicket.

Page 7Concepts
AD-UG-0003 Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

3.4 Queueing
Some ADMXRC3 API functions place calling threads into a queue. In abstract terms, if several threads attempt to
perform an operation on the same resource at the same time, the threads will be queued on a first-come, first-served
basis (a FIFO queue). Each thread's operation will be performed in its entirety before another thread is dequeued and
allowed access to the resource.

For example, if several threads each call ADMXRC3_WriteDMAEx at the same time, and each thread specifies the
same DMA channel, then the API automatically queues them. Once a thread's DMA transfer is started, it will be
performed in its entirety, until the entire byte count is satisfied or an error occurs, before another thread is dequeued
and its DMA transfer performed.

Resources are generally independent of each other, meaning that a queue exists for each resource. Thus, there is a
queue for DMA channel 0, another independent queue for DMA channel 1, and so on.

Queueing is performed transparently by the ADMXRC3 API where appropriate, but for some API functions, flags exist
that can modify queueing behavior.

3.5 Notifications
The ADMXRC3 API provides a set of functions to enable applications to consume notifications from a Gen 3
reconfigurable computing device. A notification is some event that occurs asynchronously within a device that
applications may wish to know about. Types of notification include target FPGA interrupts and overtemperature alerts.
There are two sets of functions provided for consuming notifications, as described in the following subsections.

3.5.1 Event / Semaphore registration
In Windows, it is possible to register a Win32 Event handle (type HANDLE) for a particular event, using
ADMXRC3_RegisterWin32Event. When the specified event occurs, the Win32 Event is signalled.

In VxWorks, it is possible to register a semaphore SEM_ID for a particular event, using ADMXRC3_RegisterVxwSem.
When the specified event occurs, the semaphore is signalled.

In Linux, there is no function equivalent to ADMXRC3_RegisterWin32Event or ADMXRC3_RegisterVxwSem, but the
next subsection describes how equivalent functionality is provided in the form of direct-call notification.

3.5.2 Direct-call notification
The functions ADMXRC3_StartNotificationWait and ADMXRC3_FinishNotificationWait provide a direct-call
mechanism for applications to consume notifications from a device. Unlike the methods described in the previous
subsection, these functions exist for all supported operating systems.

A thread uses these functions as follows:

A thread initializes a ticket suitable for non-blocking operations, using ADMXRC3_InitializeTicket.1.
A thread calls ADMXRC3_StartNotificationWait, specifying the type of notification that it wishes to wait for.2.
The thread then performs some other task, such as starting an operation on the hardware.3.
The thread then waits for the requested notification, which can be done in one of several ways:4.

The thread can call ADMXRC3_FinishNotificationWait specifying TRUE for the bWait argument. This
works on all supported operating systems.

(a)

In Windows, the thread can call WaitForSingleObject or WaitForMultipleObjects using the event
handle in the ticket. It can then call ADMXRC3_FinishNotificationWait specifying FALSE for the bWait
argument.

(b)

In Linux, the thread can call poll using the device handle used in ADMXRC3_StartNotificationWait. It
can then call ADMXRC3_FinishNotificationWait specifying FALSE for the bWait argument.

(c)

Page 8 Concepts
AD-UG-0003Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

In VxWorks, the thread can call select using the device handle used in
ADMXRC3_StartNotificationWait. It can then call ADMXRC3_FinishNotificationWait specifying FALSE
for the bWait argument.

(d)

After calling ADMXRC3_FinishNotificationWait, the thread takes appropriate action in order to handle the
notification. If the thread is running in a loop, it returns to step 2 in order to wait for another notification.

5.

3.6 Endian issues
The ADMXRC3 API does not perform any endian-conversion in functions that transfer blocks of data, such as
ADMXRC3_Write, ADMXRC3_ReadVPD, ADMXRC3_StartReadDMAEx etc. There are two possible approaches to
handling endian-conversion issues:

Make the FPGA design capable of accepting data of the same endianness as the CPU. For example, if the
CPU is a PowerPC operating in big-endian mode, then the FPGA design should expect big-endian data.

1.

Make the FPGA design little-endian, but use endian-conversion macros in software:2.
Linux has a set of macros __cpu_to_le32 etc. in the header file <asm/byteorder.h>.•
VxWorks has the LONGSWAP and WORDSWAP macros. The _BYTE_ORDER macro indicates
endianness of the CPU for which the code is being compiled, so a set of macros equivalent to
__cpu_to_le32 in Linux etc. can be defined.

•

In Windows, it is possible to verify that the CPU for which the code is being compiled is little-endian, using
predefined macros such as _M_IX86. A set of trivial macros equivalent to __cpu_to_le32 in Linux etc.
can then be defined, which return the argument unmodified.

•

3.7 String encoding issues
The ADMXRC3 API has support for applications that use char or wchar_t strings. API functions that return or expect
char strings have names that end in -A, whereas functions that return or expect wchar_t strings have names that end
in -W. The encoding of strings in the char case is slightly different between Windows and Linux, and the following table
summarizes these differences:

Operating system Encoding of char strings
Windows ANSI, using the default codepage
Linux UTF-8
VxWorks Depends on how the host interprets char strings.

Table 1: char string encoding in ADMXRC3 API by operating system

For convenience, the ADMXRC3 API defines a number of macros for portability, depending on whether or not the
_UNICODE preprocessor symbol is defined. An example is the macro ADMXRC3_FPGA_INFO:

When _UNICODE is not defined, ADMXRC3_FPGA_INFO is an alias for ADMXRC3_FPGA_INFOA. The
strings in the ADMXRC3_FPGA_INFOA structure are NUL-terminated char strings.

•

When _UNICODE is defined, ADMXRC3_FPGA_INFO is an alias for ADMXRC3_FPGA_INFOW. The strings
in the ADMXRC3_FPGA_INFOW structure are NUL-terminated wchar_t strings.

•

Note that the _UNICODE preprocessor symbol, which is conventionally defined in Win32 applications that use wchar_t
strings, really means "UTF-16 encoding". In VxWorks, there is no support for wide-character strings to speak of, so the
_UNICODE symbol should not be defined.

Page 9Concepts
AD-UG-0003 Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

3.8 Hardware features
3.8.1 Target FPGAs

A reconfigurable computing device has one or more user-programmable FPGAs, and the ADMXRC3 API provides
functions for configuring them. The term "target FPGA" shall be used in place of "user-programmable FPGA" for the
remainder of this document. Functions are provided for:

Obtaining information about target FPGAs on a device, e.g. ADMXRC3_GetFpgaInfo•
Loading .BIT files into memory and unloading them, e.g. ADMXRC3_LoadBitstream•
Configuring a target FPGA with a .BIT (bitstream) file, e.g. ADMXRC3_ConfigureFromFile•
Configuring a target FPGA with in-memory configuration frame data, e.g. ADMXRC3_ConfigureFromBuffer•
Unconfiguring a target FPGA, e.g. ADMXRC3_Unconfigure•

3.8.1.1 Full reconfiguration
By default, functions such as ADMXRC3_ConfigureFromFile perform a full reconfiguration of a target FPGA. This
means that the target FPGA is first cleared, destroying any existing configuration, and the FPGA is then completely
configured with a new bitstream. In this mode of operation, the ADMXRC3 API performs the following steps:

Assert PROG# on the target FPGA.1.
Wait until the target FPGA asserts INIT# and deasserts DONE.2.
Deassert PROG# on the target FPGA.3.
Wait until the target FPGA deasserts INIT#. At this point, the target FPGA is now ready to accept a bitstream.4.
The configuration frame data, either from a .BIT file or an in-memory buffer, is now written to the target FPGA's
SelectMap interface.

5.

Wait until one of the following events occurs:6.
DONE is asserted, which terminates the procedure successfully.(a)
DONE is deasserted and INIT# is asserted, which indicates that the target FPGA detected an error in the
configuration frame data, and terminates the procedure unsuccessfully.

(b)

In all of the above steps that wait, a timeout is possible. If a timeout occurs, the procedure is unsuccessful. If the
procedure is unsuccessful, the ADMXRC3 API unconfigures the target FPGA (whose state is now indeterminate) as a
safety measure in case an invalid bitstream had somehow been used.

3.8.1.2 Partial reconfiguration
The ADMXRC3 API also allows a target FPGA to be partially reconfigured. In this mode of operation, the ADMXRC3
API simply downloads configuration frame data, either from a .BIT file or an in-memory buffer, to the target FPGA's
SelectMap interface without asserting PROG# and without monitoring the DONE and INIT# pins of the target FPGA.

3.8.1.3 Unconfiguration
A target FPGA can be unconfigured by calling ADMXRC3_Unconfigure. This might be useful for reducing power
consumption when an application knows that there is nothing to do. The unconfiguration sequence is the same as the
first four steps of the full reconfiguration sequence, namely:

Assert PROG# on the target FPGA.1.
Wait until the target FPGA asserts INIT# and deasserts DONE.2.
Deassert PROG# on the target FPGA.3.
Wait until the target FPGA deasserts INIT#.4.

Page 10 Concepts
AD-UG-0003Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

It should be noted that at this point, the target FPGA is unconfigured, but also in a state where it can receive
configuration data.

3.8.1.4 Target FPGA ownership
In order to reduce the risk of one process inadvertantly reconfiguring the target FPGA that another process is using, the
ADMXRC3 API has an ownership mechanism for target FPGAs. An application may choose to opt-out of this
mechanism by passing the flag ADMXRC3_CONFIGURE_SHARE to functions such as
ADMXRC3_ConfigureFromBuffer.

Assuming that an application opts into the ownership mechanism, a device handle that is successfully used to
configure a target FPGA becomes the owner of that target FPGA. The owning device handle must voluntarily relinquish
a target FPGA before a different device handle can be used to reconfigure the same target FPGA. The rules governing
the ownership mechanism are as follows:

When a function such as ADMXRC3_ConfigureFromBuffer is called, the ADMXRC3 API verifies that the
target FPGA is either (i) free, or (ii) owned by the device handle that is calling
ADMXRC3_ConfigureFromBuffer. If this check fails, the function returns an error. If the check suceeds, then
configuration operation is allowed to proceed. Additionally, the target FPGA changes ownership to the device
handle used in the call to ADMXRC3_ConfigureFromBuffer provided that all of the following conditions are
met:

•

The target FPGA is free•
The flags parameter does not contain ADMXRC3_CONFIGURE_SHARE•
The configuration operation is successful•

As implied above, an application can pass ADMXRC3_CONFIGURE_SHARE in the flags parameter in order
to avoid its device handle becoming the new owner of a target FPGA.
When ADMXRC3_Unconfigure is called, the ADMXRC3 API verifies that the target FPGA is owned by the
device handle passed to ADMXRC3_Unconfigure. If this check fails, the function returns an error. If the check
suceeds, the target FPGA becomes free unless the ADMXRC3_CONFIGURE_SHARE flag is passed.

•

If ADMXRC3_Close is called for the device handle that owns a particular target FPGA, that target FPGA
automatically becomes free.

•

The following state machine illustrates the ownership mechanism, from the perspective of a target FPGA:

Page 11Concepts
AD-UG-0003 Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

Owned by

‘hOwner’

Free

ConfigureFromFile(hDevice, ..., flags, ...) OR

ConfigureFromBuffer(hDevice, ..., flags, ...)

where:

(i) ‘flags’ does not include CONFIGURE_SHARE

(ii) Configuration is successful on hardware

Side effect is that ‘hOwner’ is set to ‘hDevice’

Close(hDevice, ...) OR

Unconfigure(hDevice, …, flags, ...)

where:

(i) (hDevice == hOwner)

(ii) ‘flags’ does not include

CONFIGURE_SHARE

(all other conditions)

(all other conditions)

Figure 1: Target FPGA ownership state machine

3.8.2 Memory windows
The ADMXRC3 API exposes a set of memory windows for each reconfigurable computing device in the system. These
memory windows are an abstraction of the device's presence on the host computer's I/O bus. This abstraction permits
the ADMXRC3 API to be I/O-bus-agnostic, so that applications need not be aware of the what kind of I/O bus is used in
the system (PCI, PCI-X, PCI Express, HyperTransport etc.).

For example, in a PCI Express system, a PCI Express device has one or more Base Address Registers (BARs) which
reside in the device's configuration space. System-level firmware (e.g. BIOS on an x86 PC) configures the BARs at
boot time, which places the device at a definite address on the host system's I/O bus. There is a mapping between PCI
Express BARs and memory windows in the ADMXRC3 API. This mapping is model-specific, and not necessarily
one-to-one, for reasons related to the technicalities of the various I/O bus standards. The actual mapping for each
supported model is defined in the ADMXRC3 API Hardware Addendum. Figure 2 shows how a reconfigurable
computing device's BARs, each corresponding to a memory window (or possibly more than one memory window),
might be located in the CPU's physical address space:

Page 12 Concepts
AD-UG-0003Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

CPU

Device
1

Device
2

Reconfig.
Comput.
Device

Host
Bridge

BAR 2
BAR 1
BAR 0BAR 0

BAR 1
BAR 0

Main
Memory

C
P

U
 P

hysical A
ddress S

pace

I/O Bus (e.g. PCI Express)

Figure 2: BARs in a reconfigurable computing device

The ADMXRC3 API permits an application to access a reconfigurable computing device via its memory windows. Each
memory window on a device serves a different purpose - for example, one window may provide access to the target
FPGA in the device, and another window may allow an application to manipulate registers in the device, if necessary.
Note that manipulating registers in the device is normally done by the driver and not by an application, but occasionally
an application may need to read or write device registers for debugging or troubleshooting. The ADMXRC3 API
Hardware Addendum defines the memory windows and their purposes for each model supported by the API.

The API function ADMXRC3_GetWindowInfo allows an application to enumerate and obtain information about each
memory window in a device.

3.8.2.1 Mapping memory windows into user-space
In order to avoid the recurring overhead of calling the ADMXRC3 API and underlying driver when accessing a device,
the ADMXRC3_MapWindow function is provided for mapping some or all of a memory window into the address space
of a process. The ADMXRC3_MapWindow function returns a user-space pointer to where the window (or window
region) is mapped, and the window can then be accessed by dereferencing the pointer. ADMXRC3_UnmapWindow
performs the inverse, deleting the mapping and invalidating the pointer.

A device typically advertises several register windows to applications via the ADMXRC3_GetWindowInfo function, of
which one (or more) provides access to the target FPGA (or target FPGAs). Other windows correspond to
device-specific registers that should normally only be manipulated by the driver, but it is possible for an application to
access those registers for debug or diagnostic purposes.

3.8.3 FPGA data transfer
There are several ways to transfer data between the host CPU/memory and an FPGA in a reconfigurable computing
device. Figure 3 illustrates the 4 main modes available in the ADMXRC3 API:

Page 13Concepts
AD-UG-0003 Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

Other
PCI Express

Device

Reconfigurable Computing Card

PCI Express
to FPGA
Bridge

Target
FPGA

PCI Express
Switching & Bridging

Infrastructure

Flow of commands

Flow of data

PCI Express
Root

Complex
CPU

Main Memory
Other

PCI Express
Device

Reconfigurable Computing Card

PCI Express
to FPGA
Bridge

Target
FPGA

PCI Express
Switching & Bridging

Infrastructure

Flow of commands

Flow of data

PCI Express
Root

Complex
CPU

Main Memory

Reconfigurable Computing Card

PCI Express
to FPGA
Bridge

Flow of commands (Bridge to FPGA)

Flow of data

Flow of commands (Bridge to host)

CPU

Main Memory

PCI Express
Root

Complex

Target
FPGA

DMA
Engine

Other
PCI Express

Device

PCI Express
Switching & Bridging

Infrastructure

Reconfigurable Computing Card

PCI Express
to FPGA
Bridge

Target
FPGA

Flow of commands (Bridge to FPGA)

Flow of data

Flow of commands (Bridge to host)

CPU

Main Memory

DMA
Engine

PCI Express
Root

Complex

Other
PCI Express

Device

PCI Express
Switching & Bridging

Infrastructure

(c) DMA read of FPGA (d) DMA write to FPGA

(b) CPU-initiated write to FPGA(b) CPU-initiated read of FPGA

Figure 3: Methods of FPGA data transfer

In CPU-initiated data transfer, the CPU drives the transfer of data, whereas in DMA transfers, a DMA engine in the
reconfigurable computing device drives the data transfer.

CPU-initiated data transfer is generally appropriate for random access to FPGA registers, due to its relatively low
latency. However, CPU-initiated data transfer yields poor throughput for bulk data transfer on most platforms. DMA
transfers offer higher average throughput for blocks of data larger than a certain threshold, with the additional
advantage of lower CPU utilization. Table 2 summarizes the available methods of data transfer:

Method Throughput CPU utilization Software overhead
CPU-initiated read/write, via mapped
pointer poor 1 CPU core negligible

CPU-initiated read/write, via API poor 1 CPU core low
DMA read/write high << 1 CPU core moderate

Table 2: Methods of FPGA data transfer

The above table indicates the relative characteristics of the various methods of data transfer; it should be noted that for
DMA transfers, block size strongly influences throughput, CPU utilization and overhead. Using DMA transfers for small
blocks of data (e.g. 128 byte blocks) is highly inefficient.

3.8.3.1 CPU-initiated transfers
The functions ADMXRC3_Read and ADMXRC3_Write read and write a particular memory window using the CPU to
drive the data transfer, as illustrated by Figure 4 and Figure 5:

Page 14 Concepts
AD-UG-0003Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

Other
PCI Express

Device

Reconfigurable Computing Card

PCI Express
to FPGA
Bridge

Target
FPGA

PCI Express
Switching & Bridging

Infrastructure

Flow of commands

Flow of data

PCI Express
Root

Complex
CPU

Main Memory

Figure 4: CPU-initiated read of a target FPGA

Other
PCI Express

Device

Reconfigurable Computing Card

PCI Express
to FPGA
Bridge

Target
FPGA

PCI Express
Switching & Bridging

Infrastructure

Flow of commands

Flow of data

PCI Express
Root

Complex
CPU

Main Memory

Figure 5: CPU-initiated write of a target FPGA

Some points to bear in mind when using these functions for bulk data transfer are:

As mentioned previously, a CPU-initiated data transfer will in general consume an entire CPU core for the
duration of the transfer.

•

It's possible that the performance of other CPU cores on the same die (besides the one used for the transfer)
may be negatively affected if they may share the same bus interface unit.

•

Writes generally transfer data quicker than reads because writes are "fire and forget". In other words, when the
CPU executes a store instruction, it does not need to wait for any confirmation at the destination that the write
has been completed. Thus, subject to available write buffer space, the next write can be issued immediately. In
addition, on some platforms, the CPU and/or any write buffers in the datapath may also be intelligent enough to
coalesce sequential writes into a burst.

•

Read performance is generally extremely poor due to two factors:•
When the CPU executes a load instruction, it issues a read command via its bus interface. Then CPU has
to wait for tread read command to reach the destination, for the destination to fetch the data, and finally
for the data to propagate back through any buffers along the datapath. These latencies are additive and
can be in the order of a microsecond on modern PCI Express platforms.

1.

Page 15Concepts
AD-UG-0003 Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

Many CPUs will not issue the next load instruction until the data from the current load instruction has been
returned by the system.

For these reasons, it is strongly recommended that CPU-initiated data transfer be avoided for bulk data transfer, and
DMA transfer used instead.

3.8.3.2 DMA transfers with host memory
The ADMXRC3 API includes a set of functions for rapidly transferring data between host memory and the target FPGA
(s) on a device using DMA transfers. Figure 6 and Figure 7 illustrate DMA transfers:

Reconfigurable Computing Card

PCI Express
to FPGA
Bridge

Flow of commands (Bridge to FPGA)

Flow of data

Flow of commands (Bridge to host)

CPU

Main Memory

PCI Express
Root

Complex

Target
FPGA

DMA
Engine

Other
PCI Express

Device

PCI Express
Switching & Bridging

Infrastructure

Figure 6: DMA read of a target FPGA

Reconfigurable Computing Card

PCI Express
to FPGA
Bridge

Target
FPGA

Flow of commands (Bridge to FPGA)

Flow of data

Flow of commands (Bridge to host)

CPU

Main Memory

DMA
Engine

PCI Express
Root

Complex

Other
PCI Express

Device

PCI Express
Switching & Bridging

Infrastructure

Figure 7: DMA write of a target FPGA

Depending on the runtime platform, DMA transfers have a throughput that is typically one to two orders of magnitude
faster than CPU-initiated transfers. The disadvantage of DMA transfers is that each transfer must be 'set up', and later
'torn down'. Although set-up and tear-down are performed transparently by the API, the overhead and latency in
execution time may be noticeable for small DMA transfers. DMA transfers, therefore, are best used for bulk data
transfer. CPU-initiated transfers are best used for random reads and writes of registers in the target FPGA(s), or for
transferring small blocks of data.

Page 16 Concepts
AD-UG-0003Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

The ADMXRC3 API provides two groups of functions for performing DMA transfers:

'Unlocked' functions, such as ADMXRC3_WriteDMAEx and ADMXRC3_StartReadDMA.•
'Locked' functions, such as ADMXRC3_StartReadDMALockedEx and ADMXRC3_WriteDMALocked.•

The following subsections describe the above two groups of DMA functions and their pros and cons.

3.8.3.2.1 Unlocked DMA functions
The Unlocked DMA functions in the ADMXRC3 API accept a description of a user-space buffer that consists simply of
(i) a pointer to a buffer and (ii) a byte count. The set-up performed by these functions consists mainly of locking the
user-space buffer in memory (so that it cannot be paged out by the operating system), while tear-down consists mainly
of unlocking the user-space buffer so that the operating system is once again free to page it in and out of memory.

The advantage of these functions is ease-of-use; there is no need for an application to explicitly lock a user-space
buffer prior to calling them. The disadvantage is that, compared to the Locked DMA functions, there is a greater
overhead per DMA transfer.

3.8.3.2.2 Locked DMA functions
The Locked DMA functions accept a description of a user-space buffer that consists of (i) a handle to an already-locked
buffer, (ii) an offset into that buffer and (iii) a byte count. Locking a user-space buffer is done via the ADMXRC3_Lock
function, which (if successful) returns a handle to the locked buffer. The buffer handle can then be passed to functions
such as ADMXRC3_ReadDMALockedEx. Once a user-space buffer is locked, the operating system cannot page the
buffer out of main memory during a DMA transfer, which is necessary to ensure that corruption of main memory cannot
occur. Handles to locked buffers are global to the system, so that if another process can determine the handle of a
locked buffer, it can use that buffer, even with a different device.

The inverse of ADMXRC3_Lock is ADMXRC3_Unlock, which allows the operating system to once again page the
buffer in and out of main memory. Although buffer handles are global to the system, only the device handle that was
used to lock a buffer can be used to unlock it. If an application attempts to unlock a user-space buffer while a DMA
transfer is in progress, the call to ADMXRC3_Unlock is successful, but the buffer remains locked (via a reference
counting mechanism) until the DMA transfer finishes. This avoids the possibility of memory corruption.

The advantage of using the Locked DMA functions is that the overhead of set-up and tear-down is considerably
reduced on most platforms, in comparison to the Unlocked DMA functions. The Locked DMA functions should be used
in performance-critical or latency-critical applications. The disadvantage is ease-of-use; an application must first lock
any user-space buffers that it wishes to use prior to performing Locked DMA transfers.

3.8.3.3 DMA transfers with peer devices
As of revision 1.4.0, the ADMXRC3 API includes a set of functions for rapidly transferring data between a peer device
and the target FPGA(s) on a device using DMA transfers. In order to use these functions, the bus address of the peer
device must be known. Figure 8 and Figure 9 illustrate DMA transfers between a target FPGA on a reconfigurable
computing device and a peer PCI Express device:

Page 17Concepts
AD-UG-0003 Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

Reconfigurable Computing Card

PCI Express
to FPGA
Bridge

Flow of commands (Bridge to FPGA)

Flow of data

Flow of commands (Bridge to peer)

CPU

Main Memory

PCI Express
Root

Complex

Target
FPGA

DMA
Engine

Peer
PCI Express

Device

PCI Express
Switching & Bridging

Infrastructure

Figure 8: DMA transfer from a target FPGA to a peer device

Reconfigurable Computing Card

PCI Express
to FPGA
Bridge

Target
FPGA

Flow of commands (Bridge to FPGA)

Flow of data

Flow of commands (Bridge to peer)

CPU

Main Memory

DMA
Engine

PCI Express
Root

Complex

Peer
PCI Express

Device

PCI Express
Switching & Bridging

Infrastructure

Figure 9: DMA transfer from a peer device to a target FPGA

Depending on the runtime platform, peer DMA transfers have a throughput that is typically one to two orders of
magnitude faster than CPU-initiated transfers. The disadvantage of peer DMA transfers is that each transfer must be
'set up', and later 'torn down'. Compared to host memory DMA transfer, the overhead for peer DMA transfers is
relatively low, because no virtual memory management is performed. The available peer DMA transfer functions in the
ADMXRC3 API are:

ADMXRC3_ReadDMABus•
ADMXRC3_StartReadDMABus•
ADMXRC3_StartWriteDMABus•
ADMXRC3_WriteDMABus•

3.8.4 Clock generators

Page 18 Concepts
AD-UG-0003Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

Most models in Alpha Data's reconfigurable computing range contain one or more programmable clock generators.
These are software-programmable and able to generate a large number of discrete frequencies in order to approximate
a continuous frequency range. The output of a clock generator is usually routed to a target FPGA, but may also be
connected to other functions on a card. The number of clock generators on a card and the purpose of each is
model-specific. Consult the User Guide for the model in question to learn details of the available clock generators.

The ADMXRC3 API provides the following functions for manipulating clock generators:

ADMXRC3_GetClockFrequency•
ADMXRC3_SetClockFrequency•

3.8.5 Flash memory
A device may contain one or more banks of Flash (nonvolatile) memory that is used to store bitstreams for the target
FPGA. The address map of each bank of Flash memory is specific to each model, so the User Guide for a particular
model should be consulted when writing applications that access Flash memory.

The ADMXRC3 API provides several functions for programming Flash memory:

ADMXRC3_GetFlashInfo•
ADMXRC3_GetFlashBlockInfo•
ADMXRC3_EraseFlash•
ADMXRC3_ReadFlash•
ADMXRC3_SyncFlash•
ADMXRC3_WriteFlash•

3.8.5.1 Flash memory caching
Since most Flash devices are block-oriented, modifying a single byte results in a read-merge-erase-write cycle being
performed for the block containing the location being written. To hide the latency of block erase operations, and to
enable applications to treat a Flash memory bank as a uniform array of bytes, the ADMXRC3 API implements a cache
for each Flash memory bank. Consequently, in order to ensure that the hardware has been synchronized with the
cache, an application must call ADMXRC3_SyncFlash when appropriate.

Alternatively, an application may effectively disable the cache for a Flash memory bank by passing the flag
ADMXRC3_FLASH_SYNC to those API functions that accept it. The effect of this flag is to perform synchronization
before the function returns, as if ADMXRC3_SyncFlash were called.

A side of effect of having a cache means that calling ADMXRC3_ReadFlash may sometimes require block-erase and
block-write operations to be performed when a dirty block must be written back to the hardware. This means that if the
hardware is faulty, error codes that would normally not be expected for a read operation may be returned.

3.8.6 Vital Product Data
Alpha Data reconfigurable computing hardware stores its Vital Product Data (VPD) in a nonvolatile memory. This
memory may be Flash, EEPROM or something else. The ADMXRC3 API provides functions for reading and writing
VPD:

ADMXRC3_ReadVPD•
ADMXRC3_WriteVPD•

The data structures in the VPD memory are model-specific in general. Information about a particular model's VPD
structures is available as application note.

Page 19Concepts
AD-UG-0003 Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

The VPD memory can always be read, but in order to write to the VPD memory, the VPD write-protection mechanism
must first be disabled. The VPD write-protection mechanism is operating-system dependent; refer to the release notes
for the ADB3 driver specific to your operating system for details.

3.8.7 Hardware monitoring
Gen 3 Alpha Data reconfigurable computing hardware typically includes a number of on-board sensors that measure
supply voltages, currents, temperatures etc. Version 1.1.0 and later of the ADMXRC3 API provides functions for reading
these sensors:

ADMXRC3_GetSensorInfo•
ADMXRC3_ReadSensor•

The number of sensors in a device and the type of each is model-specific. The functions ADMXRC3_GetCardInfoEx
and ADMXRC3_GetSensorInfo can be used together to enumerate the sensors and obtain information about them.

3.8.8 I/O personality modules
Gen 3 Alpha Data reconfigurable computing hardware typically has at least one site for fitting an I/O personality
module. Version 1.1.0 and later of the ADMXRC3 API provides the function ADMXRC3_GetModuleInfo for obtaining
information about what module, if any, is fitted to a module site.

The number of I/O module sites is model-specific, and is 1 on most models that have a small to medium-sized form
factor such as a PCI Express plug-in card, PMC or XMC. However, a device that comes in larger form factor such as
VME or CompactPCI may feature multiple I/O module sites. The functions ADMXRC3_GetCardInfoEx and
ADMXRC3_GetModuleInfo can be used together to enumerate the module sites and obtain information about what is
fitted.

Page 20 Concepts
AD-UG-0003Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

4 ADMXRC3 API Reference
4.1 ADMXRC3 API constants and macros

4.1.1 ADMXRC3_BITSTREAM

Description

A macro that can be used in code that is intended to be portable between UTF-8 (Linux), ANSI (Windows) and Unicode
versions of an application. The value of this macro depends on whether or not the _UNICODE preprocessor symbol is
defined, as follows:

ADMXRC3_BITSTREAMW, if _UNICODE is defined•
ADMXRC3_BITSTREAMA, otherwise•

Remarks

Refer to Section 3.7, "String encoding issues" for an explanation of how the ADMXRC3 API handles string
encodings.

4.1.2 ADMXRC3_ConfigureFromFile

Description

A macro that can be used in code that is intended to be portable between UTF-8 (Linux), ANSI (Windows) and Unicode
versions of an application. The value of this macro depends on whether or not the _UNICODE preprocessor symbol is
defined, as follows:

ADMXRC3_ConfigureFromFileW, if _UNICODE is defined•
ADMXRC3_ConfigureFromFileA, otherwise•

Remarks

Refer to Section 3.7, "String encoding issues" for an explanation of how the ADMXRC3 API handles string
encodings.

4.1.3 ADMXRC3_FLASH_INFO

Description

A macro that can be used in code that is intended to be portable between UTF-8 (Linux), ANSI (Windows) and Unicode
versions of an application. The value of this macro depends on whether or not the _UNICODE preprocessor symbol is
defined, as follows:

ADMXRC3_FLASH_INFOW, if _UNICODE is defined•
ADMXRC3_FLASH_INFOA, otherwise•

Remarks

Page 21ADMXRC3 API Reference
AD-UG-0003 Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

Refer to Section 3.7, "String encoding issues" for an explanation of how the ADMXRC3 API handles string
encodings.

4.1.4 ADMXRC3_FPGA_INFO

Description

A macro that can be used in code that is intended to be portable between UTF-8 (Linux), ANSI (Windows) and Unicode
versions of an application. The value of this macro depends on whether or not the _UNICODE preprocessor symbol is
defined, as follows:

ADMXRC3_FPGA_INFOW, if _UNICODE is defined•
ADMXRC3_FPGA_INFOA, otherwise•

Remarks

Refer to Section 3.7, "String encoding issues" for an explanation of how the ADMXRC3 API handles string
encodings.

4.1.5 ADMXRC3_GetFlashInfo

Description

A macro that can be used in code that is intended to be portable between UTF-8 (Linux), ANSI (Windows) and Unicode
versions of an application. The value of this macro depends on whether or not the _UNICODE preprocessor symbol is
defined, as follows:

ADMXRC3_GetFlashInfoW, if _UNICODE is defined•
ADMXRC3_GetFlashInfoA, otherwise•

Remarks

Refer to Section 3.7, "String encoding issues" for an explanation of how the ADMXRC3 API handles string
encodings.

4.1.6 ADMXRC3_GetFpgaInfo

Description

A macro that can be used in code that is intended to be portable between UTF-8 (Linux), ANSI (Windows) and Unicode
versions of an application. The value of this macro depends on whether or not the _UNICODE preprocessor symbol is
defined, as follows:

ADMXRC3_GetFpgaInfoW, if _UNICODE is defined•
ADMXRC3_GetFpgaInfoA, otherwise•

Remarks

Refer to Section 3.7, "String encoding issues" for an explanation of how the ADMXRC3 API handles string
encodings.

Page 22 ADMXRC3 API Reference
AD-UG-0003Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

4.1.7 ADMXRC3_GetModuleInfo

Description

A macro that can be used in code that is intended to be portable between UTF-8 (Linux), ANSI (Windows) and Unicode
versions of an application. The value of this macro depends on whether or not the _UNICODE preprocessor symbol is
defined, as follows:

ADMXRC3_GetModuleInfoW, if _UNICODE is defined•
ADMXRC3_GetModuleInfoA, otherwise•

Remarks

This macro is available in ADMXRC3 API version 1.1.0 and later.

Refer to Section 3.7, "String encoding issues" for an explanation of how the ADMXRC3 API handles string
encodings.

4.1.8 ADMXRC3_GetSensorInfo

Description

A macro that can be used in code that is intended to be portable between UTF-8 (Linux), ANSI (Windows) and Unicode
versions of an application. The value of this macro depends on whether or not the _UNICODE preprocessor symbol is
defined, as follows:

ADMXRC3_GetSensorInfoW, if _UNICODE is defined•
ADMXRC3_GetSensorInfoA, otherwise•

Remarks

This macro is available in ADMXRC3 API version 1.1.0 and later.

Refer to Section 3.7, "String encoding issues" for an explanation of how the ADMXRC3 API handles string
encodings.

4.1.9 ADMXRC3_GetStatusString

Description

A macro that can be used in code that is intended to be portable between UTF-8 (Linux), ANSI (Windows) and Unicode
versions of an application. The value of this macro depends on whether or not the _UNICODE preprocessor symbol is
defined, as follows:

ADMXRC3_GetStatusStringW, if _UNICODE is defined•
ADMXRC3_GetStatusStringA, otherwise•

Remarks

Page 23ADMXRC3 API Reference
AD-UG-0003 Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

Refer to Section 3.7, "String encoding issues" for an explanation of how the ADMXRC3 API handles string
encodings.

4.1.10 ADMXRC3_HANDLE_INVALID_VALUE
Datatype

ADMXRC3_HANDLE

Description

Value that represents an invalid device handle, typically used to initialize a variable of type ADMXRC3_HANDLE.

4.1.11 ADMXRC3_LoadBitstream

Description

A macro that can be used in code that is intended to be portable between UTF-8 (Linux), ANSI (Windows) and Unicode
versions of an application. The value of this macro depends on whether or not the _UNICODE preprocessor symbol is
defined, as follows:

ADMXRC3_LoadBitstreamW, if _UNICODE is defined•
ADMXRC3_LoadBitstreamA, otherwise•

Remarks

Refer to Section 3.7, "String encoding issues" for an explanation of how the ADMXRC3 API handles string
encodings.

4.1.12 ADMXRC3_MODULE_INFO

Description

A macro that can be used in code that is intended to be portable between UTF-8 (Linux), ANSI (Windows) and Unicode
versions of an application. The value of this macro depends on whether or not the _UNICODE preprocessor symbol is
defined, as follows:

ADMXRC3_MODULE_INFOW, if _UNICODE is defined•
ADMXRC3_MODULE_INFOA, otherwise•

Remarks

This macro is available in ADMXRC3 API version 1.1.0 and later.

Refer to Section 3.7, "String encoding issues" for an explanation of how the ADMXRC3 API handles string
encodings.

Page 24 ADMXRC3 API Reference
AD-UG-0003Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

4.1.13 ADMXRC3_SENSOR_INFO

Description

A macro that can be used in code that is intended to be portable between UTF-8 (Linux), ANSI (Windows) and Unicode
versions of an application. The value of this macro depends on whether or not the _UNICODE preprocessor symbol is
defined, as follows:

ADMXRC3_SENSOR_INFOW, if _UNICODE is defined•
ADMXRC3_SENSOR_INFOA, otherwise•

Remarks

This macro is available in ADMXRC3 API version 1.1.0 and later.

Refer to Section 3.7, "String encoding issues" for an explanation of how the ADMXRC3 API handles string
encodings.

4.1.14 ADMXRC3_UnloadBitstream

Description

A macro that can be used in code that is intended to be portable between UTF-8 (Linux), ANSI (Windows) and Unicode
versions of an application. The value of this macro depends on whether or not the _UNICODE preprocessor symbol is
defined, as follows:

ADMXRC3_UnloadBitstreamW, if _UNICODE is defined•
ADMXRC3_UnloadBitstreamA, otherwise•

Remarks

Refer to Section 3.7, "String encoding issues" for an explanation of how the ADMXRC3 API handles string
encodings.

4.2 ADMXRC3 API datatypes

4.2.1 ADMXRC3_BANK_INFO
Declaration

typedef structure ... {
uint64_t MaximumFrequency;
uint64_t MinimumFrequency;
uint64_t PhysicalSize;
uint16_t PhysicalDataWidth;
uint16_t PhysicalECCWidth;
uint16_t PhysicalWidth;
uint16_t Reserved1;
uint32_t TypeMask;
uint32_t ConnectivityMask;
boolean_t Present;

} ADMXRC3_BANK_INFO;

The members of this structure are as follows:

Page 25ADMXRC3 API Reference
AD-UG-0003 Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

MaximumFrequency

Maximum operating frequency of the memory devices, in Hz.

If this value is 0, then both the maximum and minimum operating frequency of the device must be considered
unknown. In this case, software must either use an alternative method of determining operating frequency, or avoid
making assumptions about operating frequency.

MinimumFrequency

Minimum operating frequency of the memory devices, in Hz. This member must be considered invalid if
MaximumFrequency is 0.

PhysicalSize

Physical size of the memory bank, in physical words.

PhysicalDataWidth

Number of physical data bits in the data bus of the memory bank, excluding error correction bits.

PhysicalECCWidth

Number of physical error correction bits in the data bus of the memory bank. Error correction bits can take the form
of parity bits, ECC bits or other error correction schemes. For most types of memory, error correction bits can be
used either as additional data bits, or for the purpose of error detection and correction.

PhysicalWidth

Number of physical data and error correction bits in the data bus of the memory bank. This member is always the
sum of the PhysicalDataWidth and PhysicalECCWidth members.

Reserved1

Must be ignored by application software.

TypeMask

Bitwise-OR of flags that represent the operating modes that the memory bank can support, of which at least one bit
must be 1. Certain types of memory, notably ZBT SSRAM, can operate in more than one mode. Supported
operating modes are:

ADMXRC3_BANK_ZBT_FT is flowthrough ZBT SSRAM•
ADMXRC3_BANK_ZBT_P is pipelined ZBT SSRAM•
ADMXRC3_BANK_SDRAM_DDR is DDR SDRAM•
ADMXRC3_BANK_SSRAM_DDR2 is DDR-II SSRAM•
ADMXRC3_BANK_SDRAM_SDR is single data rate SDRAM•
ADMXRC3_BANK_SDRAM_DDR2 is pipelined ZBT SSRAM•
ADMXRC3_BANK_SSRAM_QDR is QDR SSRAM•
ADMXRC3_BANK_SDRAM_DDR3 is DDR-3 SDRAM•

Page 26 ADMXRC3 API Reference
AD-UG-0003Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

ConnectivityMask

This member is a bitmask indicating which target FPGA(s) the memory bank is connected to. In most cases, a
single bit is set. However, some models may connect a memory bank to more than one target FPGA, and in such
cases more than one bit is set. Examples:

Assume that the NumFpga member of ADMXRC3_CARD_INFOEX is 1, indicating that the device has one
target FPGA whose index is 0. The ConnectivityMask for all memory banks must therefore be 0x1, since bit
0 corresponds to target FPGA 0.

•

Assume that the NumFpga member of ADMXRC3_CARD_INFOEX is 2, indicating that the device has two
target FPGAs whose indices are 0 and 1. A ConnectivityMask of 0x1 indicates that the memory bank is
connected to target FPGA 0, while a connectivity mask of 0x2 indicates that the memory bank is connected
to target FPGA 1. A ConnectivityMask of 0x3 indicates that the memory bank is connected to both target
FPGAs.

•

Present

If this member is nonzero, it indicates that the bank is fully populated with memory devices. If zero, the bank is
unpopulated. Memory banks are normally fully populated, but may be unpopulated for two reasons:

The target FPGA may not have sufficient bonded I/O pins in order to be able to use all memory banks. This
can occur for the smaller devices in an FPGA family.

•

On request by a customer, Alpha Data can manufacture cards with a subset of memory banks populated, as
cost-saving measure for volume orders.

•

Description

A structure that describes a memory bank, obtained by call to ADMXRC3_GetBankInfo.

4.2.2 ADMXRC3_BITSTREAMA
Declaration

typedef structure ... {
char Identifier[32];
uint32_t Length;
uint8_t Data[4];

} ADMXRC3_BITSTREAMA;

The members of this structure are as follows:

Identifier

A NUL-terminated char string that identifies an FPGA device and package, in the same format as in the Identifier
member of ADMXRC3_FPGA_INFOA. This string is typically used to verify that a bitstream (.BIT) file matches the
target FPGA in a device, by comparing it with the Identifier member of ADMXRC3_FPGA_INFOA.

Length

The number of bytes in the variable-length array that begins with the Data member.

Data

Page 27ADMXRC3 API Reference
AD-UG-0003 Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

The bitstream data, as a variable-length array. Although this member is defined to be an array of length 4, the actual
number of bytes in the array is given by the Length member. This variable length array is suitable for passing to
ADMXRC3_ConfigureFromBuffer.

Description

This structure represents a bitstream suitable for configuring a target FPGA, and is typically allocated and initialized by
a call to ADMXRC3_LoadBitstreamA. Although applying the sizeof operator to this structure returns a value of a few
tens of bytes, the structure should be regarded as the beginning of an object that could be many megabytes in size (for
the latest FPGAs). The inverse function is ADMXRC3_UnloadBitstreamA, which deallocates the memory used by the
object.

Remarks

This is the ANSI / UTF-8 version of the ADMXRC3_BITSTREAM structure. ADMXRC3_BITSTREAM is actually a
macro defined to be either ADMXRC3_BITSTREAMW if the _UNICODE preprocessor symbol is defined, or else
ADMXRC3_BITSTREAMA.

4.2.3 ADMXRC3_BITSTREAMW
Declaration

typedef structure ... {
wchar_t Identifier[32];
uint32_t Length;
uint8_t Data[4];

} ADMXRC3_BITSTREAMW;

The members of this structure are as follows:

Identifier

A NUL-terminated wchar_t string that identifies an FPGA device and package, in the same format as in the Identifier
member of ADMXRC3_FPGA_INFOW. This string is typically used to verify that a bitstream (.BIT) file matches the
target FPGA in a device, by comparing it with the Identifier member of ADMXRC3_FPGA_INFOW.

Length

The number of bytes in the variable-length array that begins with the Data member.

Data

The bitstream data, as a variable-length array. Although this member is defined to be an array of length 4, the actual
number of bytes in the array is given by the Length member. This variable length array is suitable for passing to
ADMXRC3_ConfigureFromBuffer.

Description

This structure represents a bitstream suitable for configuring a target FPGA, and is typically allocated and initialized by
a call to ADMXRC3_LoadBitstreamW. Although applying the sizeof operator to this structure returns a value of a few
tens of bytes, the structure should be regarded as the beginning of an object that could be many megabytes in size (for
the latest FPGAs). The inverse function is ADMXRC3_UnloadBitstreamW, which deallocates the memory used by the
object.

Page 28 ADMXRC3 API Reference
AD-UG-0003Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

Remarks

This is the Unicode version of the ADMXRC3_BITSTREAM structure. ADMXRC3_BITSTREAM is actually a macro
defined to be either ADMXRC3_BITSTREAMW if the _UNICODE preprocessor symbol is defined, or else
ADMXRC3_BITSTREAMA.

4.2.4 ADMXRC3_BUFFER_HANDLE
Declaration

typedef ... ADMXRC3_BUFFER_HANDLE;

Description

This type is a handle representing a buffer that is locked into physical memory. A buffer handle is obtained by a call to
ADMXRC3_Lock, and invalidated by a call to the inverse function, ADMXRC3_Unlock.

The following functions accept a parameter of this type, which identifies the buffer that a DMA transfer is to target:

ADMXRC3_StartReadDMALocked•
ADMXRC3_StartWriteDMALocked•
ADMXRC3_ReadDMALocked•
ADMXRC3_WriteDMALocked•

A value of zero is always invalid for a variable of type ADMXRC3_BUFFER_HANDLE. Buffer handles returned by
ADMXRC3_Lock are always greater than zero.

Buffer handles are global to the system, so that if one process can lock a buffer and communicate the buffer handle to
a second process, the second process can use it to perform DMA transfers.

Remarks

It is good practice to initialize variables of this type to zero, and to set such variables to zero after calling
ADMXRC3_Unlock.

This type is a 32-bit unsigned integer. In Windows, it is a typedef of UINT32, while in Linux it is a typedef of uint32_t.

4.2.5 ADMXRC3_CARD_INFO
Declaration

typedef structure ... {
uint32_t SerialNumber;
uint32_t Reserved1;
ADMXRC3_MODEL_TYPE Model;
unsigned int NumClockGen;
unsigned int NumDmaChannel;
unsigned int NumFlashBank;
unsigned int NumMemoryBank;
unsigned int NumTargetFpga;
unsigned int NumWindow;
uint32_t MemoryBankPresent;

} ADMXRC3_CARD_INFO;

The members of this structure are as follows:

Page 29ADMXRC3 API Reference
AD-UG-0003 Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

SerialNumber

SerialNumber is the serial number of device. Alpha Data guarantees serial numbers to be unique only for a
particular model; it is possible for two devices that are different models to have the same serial number.

Reserved1

Must be ignored by application software.

Model

Model identifies the model or product, and is of type ADMXRC3_MODEL_TYPE.

NumClockGen

NumClockGen is the number of independently programmable clock generators in the device. The clockIndex
parameter of the clock generator programming functions ADMXRC3_GetClockFrequency and
ADMXRC3_SetClockFrequency must be less than this value.

NumDmaChannel

NumDmaChannel is the number of independently programmable DMA channels in the device. The dmaChannel
parameter of the DMA functions such as ADMXRC3_ReadDMA must be less than this value.

NumFlashBank

NumFlashBank is the number of independent Flash memory banks in the device. The flashIndex parameter of Flash
functions such as ADMXRC3_GetFlashInfo and ADMXRC3_GetFlashBlockInfo must be less than this value.

NumMemoryBank

NumMemoryBank is the number of independent memory banks in the device. The bankIndex parameter of
ADMXRC3_GetBankInfo must be less than this value.

NumTargetFpga

NumFpga is the number of target FPGAs in the device. The 'targetIndex' parameter of the target FPGA configuration
functions such as ADMXRC3_ConfigureFromBuffer must be less than this value.

NumWindow

NumWindow is the number of independent register/memory access windows in the device. The windowIndex
parameter of functions that allow access to target FPGA registers (such as ADMXRC3_GetWindowInfo must be
less than this value.

MemoryBankPresent

MemoryBankPresent is a bitmask where each bit that is 1 indicates that the corresponding memory bank is present.
For example, if MemoryBankPresent were 0x0000000F and NumMemoryBank were 6, it would indicate that banks
0, 1, 2 and 3 are present whilst banks 4 and 5 are not present.

Description

Page 30 ADMXRC3 API Reference
AD-UG-0003Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

A structure that describes a device, obtained from a call to ADMXRC3_GetCardInfo.

4.2.6 ADMXRC3_CARD_INFOEX
Declaration

typedef structure ... {
uint32_t SerialNumber;
uint32_t Reserved1;
ADMXRC3_MODEL_TYPE Model;
unsigned int NumClockGen;
unsigned int NumDmaChannel;
unsigned int NumFlashBank;
unsigned int NumMemoryBank;
unsigned int NumTargetFpga;
unsigned int NumWindow;
uint32_t MemoryBankPresent;
unsigned int NumSensor;
unsigned int NumModuleSite;

} ADMXRC3_CARD_INFOEX;

The members of this structure are as follows:

SerialNumber

SerialNumber is the serial number of device. Alpha Data guarantees serial numbers to be unique only for a
particular model; it is possible for two devices that are different models to have the same serial number.

Reserved1

Must be ignored by application software.

Model

Model identifies the model or product, and is of type ADMXRC3_MODEL_TYPE.

NumClockGen

NumClockGen is the number of independently programmable clock generators in the device. The clockIndex
parameter of the clock generator programming functions ADMXRC3_GetClockFrequency and
ADMXRC3_SetClockFrequency must be less than this value.

NumDmaChannel

NumDmaChannel is the number of independently programmable DMA channels in the device. The dmaChannel
parameter of the DMA functions such as ADMXRC3_ReadDMA must be less than this value.

NumFlashBank

NumFlashBank is the number of independent Flash memory banks in the device. The flashIndex parameter of
ADMXRC3_GetFlashInfo and ADMXRC3_GetFlashBlockInfo must be less than this value.

NumMemoryBank

NumMemoryBank is the number of independent (non-Flash) memory banks in the device. The bankIndex parameter
of ADMXRC3_GetBankInfo must be less than this value.

Page 31ADMXRC3 API Reference
AD-UG-0003 Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

NumTargetFpga

NumFpga is the number of target FPGAs in the device. The 'targetIndex' parameter of the target FPGA configuration
functions such as ADMXRC3_ConfigureFromBuffer must be less than this value.

NumWindow

NumWindow is the number of independent register/memory access windows in the device. The windowIndex
parameter of functions that allow access to target FPGA registers (such as ADMXRC3_GetWindowInfo must be
less than this value.

MemoryBankPresent

MemoryBankPresent is a bitmask where each bit that is 1 indicates that the corresponding memory bank is present.
For example, if MemoryBankPresent were 0x0000000F and NumMemoryBank were 6, it would indicate that banks
0, 1, 2 and 3 are present whilst banks 4 and 5 are not present.

NumSensor

NumSensor is the number of sensors (for voltage, current, temperature etc.) in the device. The sensorIndex
parameter of ADMXRC3_GetSensorInfo and ADMXRC3_ReadSensor must be less than this value.

NumModuleSite

NumModuleSite is the number of I/O personality module sites in the device. The moduleIndex parameter of
ADMXRC3_GetModuleInfo must be less than this value.

Description

A structure that describes a device, obtained from a call to ADMXRC3_GetCardInfoEx.

Remarks

The information in this structure is a superset of that of ADMXRC3_CARD_INFO, and can therefore be used instead of
ADMXRC3_CARD_INFO in most situations.

4.2.7 ADMXRC3_DATA_TYPE
Declaration

typedef enum ... {
ADMXRC3_DATA_BOOL = 0, Type of sensor values is BOOL (Windows) or int (Linux / VxWorks).
ADMXRC3_DATA_DOUBLE = 1, Type of sensor values is double.
ADMXRC3_DATA_INT32 = 2, Type of sensor values is a INT32 (Windows) or int32_t (Linux / VxWorks).
ADMXRC3_DATA_UINT32 = 3, Type of sensor values is UINT32 (Windows) or uint32_t (Linux / VxWorks).
ADMXRC3_DATA_LASTVALUE = 4, Reserved for future expansion
ADMXRC3_DATA_FORCE32BITS = 0x7FFFFFFF Force type to be at least 32 bits

} ADMXRC3_DATA_TYPE;

Description

An enumerated type used to represent the type of data returned by the ADMXRC3_ReadSensor function. Values
ADMXRC3_DATA_LASTVALUE and greater are reserved for adding new datatypes in future revisions of the API.

Remarks

Page 32 ADMXRC3 API Reference
AD-UG-0003Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

This datatype is available in ADMXRC3 API version 1.1.0 and later.

4.2.8 ADMXRC3_FAMILY_TYPE
Declaration

typedef enum ... {
ADMXRC3_FAMILY_4K = 0, Xilinx XC4xxx
ADMXRC3_FAMILY_VIRTEX = 1, Xilinx Virtex
ADMXRC3_FAMILY_VIRTEX2 = 2, Xilinx Virtex-II
ADMXRC3_FAMILY_VIRTEX2P = 3, Xilinx Virtex-II Pro
ADMXRC3_FAMILY_VIRTEX4 = 4, Xilinx Virtex-4
ADMXRC3_FAMILY_VIRTEX5 = 5, Xilinx Virtex-5
ADMXRC3_FAMILY_VIRTEX6 = 6, Xilinx Virtex-6
ADMXRC3_FAMILY_LASTVALUE = 7, Reserved for future products
ADMXRC3_FAMILY_FORCE32BITS = 0x7FFFFFFF Force type to be at least 32 bits

} ADMXRC3_FAMILY_TYPE;

Description

An enumerated type used to represent an FPGA device family. Values ADMXRC3_FPGA_LASTVALUE and greater are
reserved for adding support for future models.

ADMXRC3_FAMILY_VIRTEX

4.2.9 ADMXRC3_FLASH_INFOA
Declaration

typedef structure ... {
char Identifier[32];
uint64_t Size;
uint64_t UseableStart;
uint64_t UseableLength;

} ADMXRC3_FLASH_INFOA;

The members of this structure are as follows:

Identifier

A NUL-terminated char string containing the name of the Flash device, provided primarily for diagnostic purposes.

Size

The total size of the Flash memory bank, in bytes.

UseableStart

The starting address within the Flash memory bank of the region that is available for use by applications.

UseableLength

The length, in bytes, of the region that is available for use by applications.

Description

Page 33ADMXRC3 API Reference
AD-UG-0003 Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

This structure provides high-level information about a Flash memory bank. It is returned by a call to
ADMXRC3_GetFlashInfo.

On some models, only a part of a Flash memory bank is available for use by applications. The UseableStart and
UseableLength members indicate the bounds of this region. Attempting to erase, read or write data outside of this
region using ADMXRC3_EraseFlash etc. fails.

Remarks

This is the ANSI / UTF-8 version of the ADMXRC3_FLASH_INFO structure. ADMXRC3_FLASH_INFO is actually a
macro defined to be either ADMXRC3_FLASH_INFOW if the _UNICODE preprocessor symbol is defined, or else
ADMXRC3_FLASH_INFOA.

4.2.10 ADMXRC3_FLASH_INFOW
Declaration

typedef structure ... {
wchar_t Identifier[32];
uint64_t Size;
uint64_t UseableStart;
uint64_t UseableLength;

} ADMXRC3_FLASH_INFOW;

The members of this structure are as follows:

Identifier

A NUL-terminated wchar_t string containing the name of the Flash device, provided primarily for diagnostic
purposes.

Size

The total size, in bytes, of the Flash memory bank.

UseableStart

The starting byte address within the Flash memory bank of the region that is available for use by applications.

UseableLength

The length, in bytes, of the region that is available for use by applications.

Description

This structure provides high-level information about a Flash memory bank. It is returned by a call to
ADMXRC3_GetFlashInfo.

On some models, only a part of a Flash memory bank is available for use by applications. The UseableStart and
UseableLength members indicate the bounds of this region. Attempting to erase, read or write data outside of this
region using ADMXRC3_EraseFlash etc. fails.

Remarks

Page 34 ADMXRC3 API Reference
AD-UG-0003Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

This is the Unicode version of the ADMXRC3_FLASH_INFO structure. ADMXRC3_FLASH_INFO is actually a macro
defined to be either ADMXRC3_FLASH_INFOW if the _UNICODE preprocessor symbol is defined, or else
ADMXRC3_FLASH_INFOA.

4.2.11 ADMXRC3_FLASHBLOCK_INFO
Declaration

typedef structure ... {
uint64_t Address;
uint64_t Length;
uint32_t Flags;

} ADMXRC3_FLASHBLOCK_INFO;

The members of this structure are as follows:

Address

The starting address, in bytes, of the Flash block.

Length

The length, in bytes, of the Flash block.

Flags

Bitwise-OR of flags that represent attributes of the Flash block. Currently, the following flags are defined:

ADMXRC3_FLASHBLOCK_BOOT
Indicates that the block is a "boot block".

•

Description

This structure specifies the bounds of a Flash block within a Flash memory bank. An application determines which
Flash block contains a particular location by calling ADMXRC3_GetFlashBlockInfo, which returns this structure.

Remarks

Flash devices that do not have a block-oriented architecture simply define a single block that is the entire Flash device.

4.2.12 ADMXRC3_FPGA_INFOA
Declaration

typedef structure ... {
char Identifier[32];
ADMXRC3_FPGA_TYPE DeviceCode;
ADMXRC3_FAMILY_TYPE FamilyCode;
ADMXRC3_SUBFAMILY_TYPE SubfamilyCode;
ADMXRC3_PACKAGE_TYPE PackageCode;
char Device[16];
char Package[16];
uint32_t Flags;
char SpeedGrade[8];
char Stepping[8];
boolean_t Present;

} ADMXRC3_FPGA_INFOA;

Page 35ADMXRC3 API Reference
AD-UG-0003 Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

The members of this structure are as follows:

Identifier

A NUL-terminated char string that identifies an FPGA die and package. The string is in a format compatible with that
of a bitstream (.BIT) file, and thus may be usefully compared with the Identifier member of
ADMXRC3_BITSTREAMA to determine whether or not a target FPGA matches the bitstream file. An example string
is "5vsx240tff1738".

DeviceCode

Identifies the FPGA family and die size of the target FPGA, but yields no information about the package. This
member is one of the values of ADMXRC3_FPGA_TYPE.

FamilyCode

Identifies the FPGA family to which the target FPGA belongs. This member is one of the values of
ADMXRC3_FAMILY_TYPE.

SubfamilyCode

Identifies the FPGA subfamily to which the target FPGA belongs. This member is one of the values of
ADMXRC3_SUBFAMILY_TYPE.

PackageCode

The package of the FPGA is encoded in this member. Refer to ADMXRC3_PACKAGE_TYPE for information on
how a package is encoded.

Device

A NUL-terminated char string that identifies an FPGA die, excluding the package. For example, "5VLX220T".

Package

A NUL-terminated char string that identifies an FPGA package. For example, "FG456".

Flags

A bitwise-OR of flags that indicate which of the following members are valid. Currently, the following flags are
defined:

ADMXRC3_FPGA_SPEEDVALID
Indicates that the SpeedGrade member is valid.

•

ADMXRC3_FPGA_STEPPINGVALID
Indicates that the Stepping member is valid.

•

ADMXRC3_FPGA_NOTCONFIGURABLE
Indicates that FPGA in question is not configurable via functions such as ADMXRC3_ConfigureFromFile.
This flag is available in ADMXRC3 API version 1.4.0 and later; see remarks below.

•

SpeedGrade

Page 36 ADMXRC3 API Reference
AD-UG-0003Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

A NUL-terminated char string that identifies the speed grade and temperature grade. If the Flags member (see
above) contains ADMXRC3_FPGA_SPEEDVALID, then this member is valid. Otherwise, it is not valid, and speed
grade information is not available for the target FPGA.

The last character of the string represents the temperature grade, which can be 'I' for industrial or 'C' for commercial.
Example strings are are: "4C" (Virtex-II commercial), "1C" (Virtex-5 commercial), and "10I" (Virtex-4 industrial).
Correct interpretation of speed grade strings requires knowledge of the FPGA family and subfamily.

Stepping

A NUL-terminated char string that identifies the stepping level. If the Flags member (see above) contains
ADMXRC3_FPGA_STEPPINGVALID, then this member is valid. Otherwise, it is not valid, and stepping level
information is not available for the target FPGA.

Example strings are "ES", "0", "1", etc. Correct interpretation of stepping level strings requires knowledge of the
FPGA family and subfamily.

Present

TRUE if the site for the target FPGA is physically populated with an FPGA, otherwise FALSE. If this member is
FALSE, none of the above members are valid.

Description

This structure describes a target FPGA and is returned by ADMXRC3_GetFpgaInfoA.

Remarks

This is the ANSI / UTF-8 version of the ADMXRC3_FPGA_INFO structure. ADMXRC3_FPGA_INFO is actually a
macro defined to be either ADMXRC3_FPGA_INFOW if the _UNICODE preprocessor symbol is defined, or else
ADMXRC3_FPGA_INFO.

The most common reason for the ADMXRC3_FPGA_NOTCONFIGURABLE flag being present is that the FPGA in
question is both the PCI Express interface and the target FPGA. Reconfiguring it would destroy all PCI-E configuration
state, rendering it unusable until the next system reset. An FPGA for which this flag is present uses an alternative
method of programming such as (i) JTAG or (ii) by programming a bitstream into a nonvolatile memory, from which the
FPGA is automatically configured at power-up.

4.2.13 ADMXRC3_FPGA_INFOW
Declaration

typedef structure ... {
wchar_t Identifier[32];
ADMXRC3_FPGA_TYPE DeviceCode;
ADMXRC3_FAMILY_TYPE FamilyCode;
ADMXRC3_SUBFAMILY_TYPE SubfamilyCode;
ADMXRC3_PACKAGE_TYPE PackageCode;
wchar_t Device[16];
wchar_t Package[16];
uint32_t Flags;
wchar_t SpeedGrade[8];
wchar_t Stepping[8];
boolean_t Present;

} ADMXRC3_FPGA_INFOW;

Page 37ADMXRC3 API Reference
AD-UG-0003 Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

The members of this structure are as follows:

Identifier

A NUL-terminated wchar_t string that identifies an FPGA die and package. The string is in a format compatible with
that of a bitstream (.BIT) file, and thus may be usefully compared with the Identifier member of
ADMXRC3_BITSTREAMA to determine whether or not a target FPGA matches the bitstream file. An example string
is "5vsx240tff1738".

DeviceCode

Identifies the FPGA family and die size of the target FPGA, but yields no information about the package. This
member is one of the values of ADMXRC3_FPGA_TYPE.

FamilyCode

Identifies the FPGA family to which the target FPGA belongs. This member is one of the values of
ADMXRC3_FAMILY_TYPE.

SubfamilyCode

Identifies the FPGA subfamily to which the target FPGA belongs. This member is one of the values of
ADMXRC3_SUBFAMILY_TYPE.

PackageCode

The package of the FPGA is encoded in this member. Refer to ADMXRC3_PACKAGE_TYPE for information on
how a package is encoded.

Device

A NUL-terminated wchar_t string that identifies an FPGA die, excluding the package. For example, "5VLX220T".

Package

A NUL-terminated wchar_t string that identifies an FPGA package. For example, "FG456".

Flags

A bitwise-OR of flags that indicate which of the following members are valid. Currently, the following flags are
defined:

ADMXRC3_FPGA_SPEEDVALID
Indicates that the SpeedGrade member is valid.

•

ADMXRC3_FPGA_STEPPINGVALID
Indicates that the Stepping member is valid.

•

SpeedGrade

A NUL-terminated wchar_t string that identifies the speed grade and temperature grade. If the Flags member (see
above) contains ADMXRC3_FPGA_SPEEDVALID, then this member is valid. Otherwise, it is not valid, and speed
grade information is not available for the target FPGA.

Page 38 ADMXRC3 API Reference
AD-UG-0003Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

The last character of the string represents the temperature grade, which can be 'I' for industrial or 'C' for commercial.
Example strings are are: "4C" (Virtex-II commercial), "1C" (Virtex-5 commercial), and "10I" (Virtex-4 industrial).
Correct interpretation of speed grade strings requires knowledge of the FPGA family and subfamily.

Stepping

A NUL-terminated wchar_t string that identifies the stepping level. If the Flags member (see above) contains
ADMXRC3_FPGA_STEPPINGVALID, then this member is valid. Otherwise, it is not valid, and stepping level
information is not available for the target FPGA.

Example strings are "ES", "0", "1", etc. Correct interpretation of stepping level strings requires knowledge of the
FPGA family and subfamily.

Present

TRUE if the site for the target FPGA is physically populated with an FPGA, otherwise FALSE. If this member is
FALSE, none of the above members are valid.

Description

This structure describes a target FPGA and is returned by ADMXRC3_GetFpgaInfoW.

Remarks

This is the Unicode version of the ADMXRC3_FPGA_INFO structure. ADMXRC3_FPGA_INFO is actually a macro
defined to be either ADMXRC3_FPGA_INFOW if the _UNICODE preprocessor symbol is defined, or else
ADMXRC3_FPGA_INFO.

4.2.14 ADMXRC3_FPGA_TYPE
Declaration

typedef enum ... {
ADMXRC3_FPGA_V1000 = 4, Xilinx XCV1000 (Virtex)
ADMXRC3_FPGA_V400 = 5, Xilinx XCV400 (Virtex)
ADMXRC3_FPGA_V600 = 6, Xilinx XCV600 (Virtex)
ADMXRC3_FPGA_V800 = 7, Xilinx XCV800 (Virtex)
ADMXRC3_FPGA_V2000E = 8, Xilinx XCV2000E (Virtex-E)
ADMXRC3_FPGA_V1000E = 9, Xilinx XCV1000E (Virtex-E)
ADMXRC3_FPGA_V1600E = 10, Xilinx XCV1600E (Virtex-E)
ADMXRC3_FPGA_V3200E = 11, Xilinx XCV3200E (Virtex-E)
ADMXRC3_FPGA_V812E = 12, Xilinx XCV812E (Virtex-EM)
ADMXRC3_FPGA_V405E = 13, Xilinx XCV405E (Virtex-EM)
ADMXRC3_FPGA_2V1000 = 32, Xilinx XC2V1000 (Virtex-II)
ADMXRC3_FPGA_2V1500 = 33, Xilinx XC2V1500 (Virtex-II)
ADMXRC3_FPGA_2V2000 = 34, Xilinx XC2V2000 (Virtex-II)
ADMXRC3_FPGA_2V3000 = 35, Xilinx XC2V3000 (Virtex-II)
ADMXRC3_FPGA_2V4000 = 36, Xilinx XC2V4000 (Virtex-II)
ADMXRC3_FPGA_2V6000 = 37, Xilinx XC2V6000 (Virtex-II)
ADMXRC3_FPGA_2V8000 = 38, Xilinx XC2V8000 (Virtex-II)
ADMXRC3_FPGA_2V10000 = 39, Xilinx XC2V10000 (Virtex-II)
ADMXRC3_FPGA_2VP2 = 64, Xilinx XC2VP2 (Virtex-II Pro)
ADMXRC3_FPGA_2VP4 = 65, Xilinx XC2VP4 (Virtex-II Pro)
ADMXRC3_FPGA_2VP7 = 66, Xilinx XC2VP7 (Virtex-II Pro)
ADMXRC3_FPGA_2VP20 = 67, Xilinx XC2VP20 (Virtex-II Pro)
ADMXRC3_FPGA_2VP30 = 68, Xilinx XC2VP30 (Virtex-II Pro)
ADMXRC3_FPGA_2VP40 = 69, Xilinx XC2VP40 (Virtex-II Pro)
ADMXRC3_FPGA_2VP50 = 70, Xilinx XC2VP50 (Virtex-II Pro)
ADMXRC3_FPGA_2VP100 = 71, Xilinx XC2VP100 (Virtex-II Pro)

Page 39ADMXRC3 API Reference
AD-UG-0003 Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

ADMXRC3_FPGA_2VP125 = 72, Xilinx XC2VP125 (Virtex-II Pro)
ADMXRC3_FPGA_2VP70 = 73, Xilinx XC2VP70 (Virtex-II Pro)
ADMXRC3_FPGA_4VLX15 = 96, Xilinx XC4VLX15 (Virtex-4 LX)
ADMXRC3_FPGA_4VLX25 = 97, Xilinx XC4VLX25 (Virtex-4 LX)
ADMXRC3_FPGA_4VLX40 = 98, Xilinx XC4VLX40 (Virtex-4 LX)
ADMXRC3_FPGA_4VLX60 = 99, Xilinx XC4VLX60 (Virtex-4 LX)
ADMXRC3_FPGA_4VLX100 = 100, Xilinx XC4VLX100 (Virtex-4 LX)
ADMXRC3_FPGA_4VLX160 = 101, Xilinx XC4VLX160 (Virtex-4 LX)
ADMXRC3_FPGA_4VLX200 = 102, Xilinx XC4VLX200 (Virtex-4 LX)
ADMXRC3_FPGA_4VLX80 = 103, Xilinx XC4VLX80 (Virtex-4 LX)
ADMXRC3_FPGA_4VSX25 = 104, Xilinx XC4VSX25 (Virtex-4 SX)
ADMXRC3_FPGA_4VSX35 = 105, Xilinx XC4VSX35 (Virtex-4 SX)
ADMXRC3_FPGA_4VSX55 = 106, Xilinx XC4VSX55 (Virtex-4 SX)
ADMXRC3_FPGA_4VFX12 = 112, Xilinx XC4VFX12 (Virtex-4 FX)
ADMXRC3_FPGA_4VFX20 = 113, Xilinx XC4VFX20 (Virtex-4 FX)
ADMXRC3_FPGA_4VFX40 = 114, Xilinx XC4VFX40 (Virtex-4 FX)
ADMXRC3_FPGA_4VFX60 = 115, Xilinx XC4VFX60 (Virtex-4 FX)
ADMXRC3_FPGA_4VFX100 = 116, Xilinx XC4VFX100 (Virtex-4 FX)
ADMXRC3_FPGA_4VFX140 = 117, Xilinx XC4VFX140 (Virtex-4 FX)
ADMXRC3_FPGA_5VLX30 = 128, Xilinx XC5VLX30 (Virtex-5 LX)
ADMXRC3_FPGA_5VLX50 = 129, Xilinx XC5VLX50 (Virtex-5 LX)
ADMXRC3_FPGA_5VLX85 = 130, Xilinx XC5VLX85 (Virtex-5 LX)
ADMXRC3_FPGA_5VLX110 = 131, Xilinx XC5VLX110 (Virtex-5 LX)
ADMXRC3_FPGA_5VLX220 = 132, Xilinx XC5VLX220 (Virtex-5 LX)
ADMXRC3_FPGA_5VLX330 = 133, Xilinx XC5VLX330 (Virtex-5 LX)
ADMXRC3_FPGA_5VLX30T = 136, Xilinx XC5VLX30T (Virtex-5 LXT)
ADMXRC3_FPGA_5VLX50T = 137, Xilinx XC5VLX50T (Virtex-5 LXT)
ADMXRC3_FPGA_5VLX85T = 138, Xilinx XC5VLX85T (Virtex-5 LXT)
ADMXRC3_FPGA_5VLX110T = 139, Xilinx XC5VLX110T (Virtex-5 LXT)
ADMXRC3_FPGA_5VLX330T = 140, Xilinx XC5VLX330T (Virtex-5 LXT)
ADMXRC3_FPGA_5VLX220T = 141, Xilinx XC5VLX22T (Virtex-5 LXT)
ADMXRC3_FPGA_5VLX155T = 142, Xilinx XC5VLX155T (Virtex-5 LXT)
ADMXRC3_FPGA_5VSX35T = 144, Xilinx XC5VSX35T (Virtex-5 SXT)
ADMXRC3_FPGA_5VSX50T = 145, Xilinx XC5VSX50T (Virtex-5 SXT)
ADMXRC3_FPGA_5VSX95T = 146, Xilinx XC5VSX95T (Virtex-5 SXT)
ADMXRC3_FPGA_5VSX240T = 147, Xilinx XC5VSX240T (Virtex-5 SXT)
ADMXRC3_FPGA_5VFX100T = 152, Xilinx XC5VFX100T (Virtex-5 FXT)
ADMXRC3_FPGA_5VFX130T = 153, Xilinx XC5VFX130T (Virtex-5 FXT)
ADMXRC3_FPGA_5VFX200T = 154, Xilinx XC5VFX200T (Virtex-5 FXT)
ADMXRC3_FPGA_5VFX30T = 155, Xilinx XC5VFX30T (Virtex-5 FXT)
ADMXRC3_FPGA_5VFX70T = 156, Xilinx XC5VFX70T (Virtex-5 FXT)
ADMXRC3_FPGA_6VLX760 = 160, Xilinx XC6VLX760 (Virtex-6 LX)
ADMXRC3_FPGA_6VLX75T = 168, Xilinx XC6VLX75T (Virtex-6 LXT)
ADMXRC3_FPGA_6VLX130T = 169, Xilinx XC6VLX130T (Virtex-6 LXT)
ADMXRC3_FPGA_6VLX195T = 170, Xilinx XC6VLX195T (Virtex-6 LXT)
ADMXRC3_FPGA_6VLX240T = 171, Xilinx XC6VLX240T (Virtex-6 LXT)
ADMXRC3_FPGA_6VLX365T = 172, Xilinx XC6VLX365T (Virtex-6 LXT)
ADMXRC3_FPGA_6VLX550T = 173, Xilinx XC6VLX550T (Virtex-6 LXT)
ADMXRC3_FPGA_6VSX315T = 176, Xilinx XC6VLX315T (Virtex-6 SXT)
ADMXRC3_FPGA_6VSX475T = 177, Xilinx XC6VLX475T (Virtex-6 SXT)
ADMXRC3_FPGA_6VHX250T = 184, Xilinx XC6VHX250T (Virtex-6 HXT)
ADMXRC3_FPGA_6VHX255T = 185, Xilinx XC6VHX255T (Virtex-6 HXT)
ADMXRC3_FPGA_6VHX385T = 186, Xilinx XC6VHX385T (Virtex-6 HXT)
ADMXRC3_FPGA_6VHX565T = 187, Xilinx XC6VHX565T (Virtex-6 HXT)
ADMXRC3_FPGA_LASTVALUE = 188, Reserved for future products
ADMXRC3_FPGA_FORCE32BITS = 0x7FFFFFFF Force type to be at least 32 bits

} ADMXRC3_FPGA_TYPE;

Description

An enumerated type used to represent an FPGA device, excluding package and speed grade information. Values
beginning with ADMXRC3_FPGA_LASTVALUE are reserved for adding support for future models.

Page 40 ADMXRC3 API Reference
AD-UG-0003Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

4.2.15 ADMXRC3_HANDLE
Declaration

typedef ... ADMXRC3_HANDLE;

Description

A handle type used to represent a device handle. Most functions in the ADMXRC3 API require a valid device handle of
type ADMXRC3_HANDLE as the first parameter. A valid device handle is obtained via a call to ADMXRC3_Open.
When an application has finished with a device handle, it should close it by calling ADMXRC3_Close.

Remarks

It is good practice to initialize device handles (i.e. variables of type ADMXRC3_HANDLE) to the value
ADMXRC3_HANDLE_INVALID_VALUE, and to always set such variables to ADMXRC3_HANDLE_INVALID_VALUE
after closing them with ADMXRC3_Close. This enables an application to avoid attempting to close invalid device
handles.

In Windows, this type is a typedef of HANDLE. A value of type ADMXRC3_HANDLE can therefore be usefully passed
to certain functions that accept a HANDLE, notably WaitForSingleObject and WaitForMultipleObjects. CloseHandle
should not be used to close a device handle, as this prevents the user-mode part of the ADMXRC3 API from performing
cleanup operations, resulting in resource leaks. Instead, ADMXRC3_Close should be used.

In Linux and VxWorks, this type is a typedef of a file descriptor, i.e. int. A value of type ADMXRC3_HANDLE can
therefore be usefully passed to certain functions that accept file descriptors, such as poll. The close system call should
not be used to close a device handle, as this prevents the user-mode part of the ADMXRC3 API from performing
cleanup operations, resulting in resource leaks. Instead, ADMXRC3_Close should be used.

4.2.16 ADMXRC3_MODEL_TYPE
Declaration

typedef enum ... {
ADMXRC3_MODEL_GENERIC = 0, Unknown model
ADMXRC3_MODEL_ADMXRC2 = 4, ADM-XRC-II
ADMXRC3_MODEL_ADPEXRC5T = 0x100, ADPe-XRC-5T
ADMXRC3_MODEL_ADMXRC6TL = 0x101, ADM-XRC-6TL
ADMXRC3_MODEL_ADMXRC6T1 = 0x102, ADM-XRC-6T1
ADMXRC3_MODEL_ADMXRC6TGE = 0x103, ADM-XRC-6TGE
ADMXRC3_MODEL_ADMXRC6TADV8 = 0x104, ADM-XRC-6T-ADV8
ADMXRC3_MODEL_LASTVALUE = 0x105, Reserved for future models
ADMXRC3_MODEL_FORCE32BITS = 0x7FFFFFFF Force type to be at least 32 bits

} ADMXRC3_MODEL_TYPE;

Description

A datatype used to represent a model or product in Alpha Data's reconfigurable computing range. Legacy hardware is
represented by a value that is nonzero and less than 0x100. The API does not return the value
ADMXRC3_MODEL_GENERIC under normal circumstances, but if it does, it may indicate that the device is
experimental or development hardware. Values beginning with ADMXRC3_MODEL_LASTVALUE are reserved for
future models.

Remarks

The values ADMXRC3_MODEL_ADMXRC6TGE and ADMXRC3_MODEL_ADMXRC6TADV8 are available in
ADMXRC3 API version 1.3.0 and later.

Page 41ADMXRC3 API Reference
AD-UG-0003 Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

4.2.17 ADMXRC3_MODULE_INFOA
Declaration

typedef structure ... {
char Product[64];
char PartNumber[64];
char Manufacturer[64];
char SerialNumber[64];
double IoVoltage;
uint32_t ManufactureDate;
uint32_t Flags;
bool_t Present;

} ADMXRC3_MODULE_INFOA;

The members of this structure are as follows:

Product

A NUL-terminated char string that identifies the product name of the module, for example "XRM-OPT". See
description below about validity.

PartNumber

A NUL-terminated char string that identifies the part number of the module, for example "XRM2-OPT/1/
LNK-ST11/125". See description below about validity.

Manufacturer

A NUL-terminated char string that identifies the manufacturer of the module, for example "Alpha Data". See
description below about validity.

SerialNumber

A NUL-terminated char string that is the serial number of the module, for example "340". The string is not restricted
to numeric digits, and may contain letters and dashes, for example. See description below about validity.

IoVoltage

The nominal I/O voltage required by the module, measured in Volts. See description below about validity.

ManufactureDate

This value is the number of minutes since 00:00 1/1/1996 when the module was manufactured. See description
below about validity.

Flags

This value is a bitmask of properties that may apply to the module. The value consists of zero or more of the
following flags, ORed together:

ADMXRC3_MODULE_LEGACYXRM
Indicates that the module fitted is a legacy XRM, which does not posess a FRU ROM. If this flag is present,
then none of the Product, PartNumber, Manufacturer, SerialNumber or ManufactureDate members are
valid.

•

Page 42 ADMXRC3 API Reference
AD-UG-0003Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

ADMXRC3_MODULE_FORCE2V5
Indicates that the module fitted asserts the FORCE2V5 signal, indicating that it always requires a 2.5V I/O
voltage supply. This flag typically occurs for legacy XRMs, as they have no other means of indicating the
required I/O voltage.

•

ADMXRC3_MODULE_ROMERROR
Indicates that the driver detected an error in the data structure of the FRU ROM for the module. As a result,
the data in the first six members of this structure should be considered unreliable, and may be incomplete,
undefined or corrupted.

•

ADMXRC3_MODULE_CSUMERROR
Indicates that the driver detected an error in the checksum of at least one area in the data structure of the
FRU ROM for the module. As a result, the data in the first six members of this structure should be
considered unreliable, and may be incomplete, undefined or corrupted.

•

See description below about validity.

Present

Indicates whether or not a module is fitted to the specified module site. If FALSE, then none of the other members of
this structure are valid.

Description

This structure is returned by ADMXRC3_GetModuleInfoA and contains information about what, if anything, is fitted to
an I/O module site.

When inspecting this structure, the following algorithm is suggested:

If the Present member is FALSE, then nothing was detected in the site and none of the other members of the
structure are valid.

1.

Otherwise, the Flags member is inspected. If the ADMXRC3_MODULE_LEGACYXRM flag is present, then
none of the Product, PartNumber, Manufacturer, SerialNumber, IoVoltage and ManufactureDate members are
valid.

2.

Otherwise, if either the ADMXRC3_MODULE_ROMERROR or ADMXRC3_MODULE_CSUMERROR flags are
present, then the data in the Product, PartNumber, Manufacturer, SerialNumber, IoVoltage and
ManufactureDate members should be considered unreliable.

3.

Otherwise, the Product, PartNumber, Manufacturer, SerialNumber, IoVoltage and ManufactureDate members
are valid.

4.

Remarks

This datatype is available in ADMXRC3 API version 1.1.0 and later.

This is the ANSI / UTF-8 version of the ADMXRC3_MODULE_INFO structure. ADMXRC3_MODULE_INFO is actually
a macro defined to be either ADMXRC3_MODULE_INFOW if the _UNICODE preprocessor symbol is defined, or else
ADMXRC3_MODULE_INFOA.

Page 43ADMXRC3 API Reference
AD-UG-0003 Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

4.2.18 ADMXRC3_MODULE_INFOW
Declaration

typedef structure ... {
wchar_t Product[64];
wchar_t PartNumber[64];
wchar_t Manufacturer[64];
wchar_t SerialNumber[64];
double IoVoltage;
uint32_t ManufactureDate;
uint32_t Flags;
bool_t Present;

} ADMXRC3_MODULE_INFOW;

The members of this structure are as follows:

Product

A NUL-terminated wchar_t string that identifies the product name of the module, for example "XRM-OPT". See
description below about validity.

PartNumber

A NUL-terminated wchar_t string that identifies the part number of the module, for example "XRM2-OPT/1/
LNK-ST11/125". See description below about validity.

Manufacturer

A NUL-terminated wchar_t string that identifies the manufacturer of the module, for example "Alpha Data". See
description below about validity.

SerialNumber

A NUL-terminated wchar_t string that is the serial number of the module, for example "340". The string is not
restricted to numeric digits, and may contain letters and dashes, for example. See description below about validity.

IoVoltage

The nominal I/O voltage required by the module, measured in Volts. See description below about validity.

ManufactureDate

This value is the number of minutes since 00:00 1/1/1996 when the module was manufactured. See description
below about validity.

Flags

This value is a bitmask of properties that may apply to the module. The value consists of zero or more of the
following flags, ORed together:

ADMXRC3_MODULE_LEGACYXRM
Indicates that the module fitted is a legacy XRM, which does not posess a FRU ROM. If this flag is present,
then none of the Product, PartNumber, Manufacturer, SerialNumber or ManufactureDate members are
valid.

•

Page 44 ADMXRC3 API Reference
AD-UG-0003Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

ADMXRC3_MODULE_FORCE2V5
Indicates that the module fitted asserts the FORCE2V5 signal, indicating that it always requires a 2.5V I/O
voltage supply. This flag typically occurs for legacy XRMs, as they have no other means of indicating the
required I/O voltage.

•

ADMXRC3_MODULE_ROMERROR
Indicates that the driver detected an error in the data structure of the FRU ROM for the module. As a result,
the data in the first six members of this structure should be considered unreliable, and may be incomplete,
undefined or corrupted.

•

ADMXRC3_MODULE_CSUMERROR
Indicates that the driver detected an error in the checksum of at least one area in the data structure of the
FRU ROM for the module. As a result, the data in the first six members of this structure should be
considered unreliable, and may be incomplete, undefined or corrupted.

•

See description below about validity.

Present

Indicates whether or not a module is fitted to the specified module site. If FALSE, then none of the other members of
this structure are valid.

Description

This structure is returned by ADMXRC3_GetModuleInfoW and contains information about what, if anything, is fitted to
an I/O module site.

When inspecting this structure, the following algorithm is suggested:

If the Present member is FALSE, then nothing is fitted to the site and none of the other members of the
structure are valid.

1.

Otherwise, the Flags member is inspected. If the ADMXRC3_MODULE_LEGACYXRM flag is present, then
none of the Product, PartNumber, Manufacturer, SerialNumber, IoVoltage and ManufactureDate members are
valid.

2.

Otherwise, if either the ADMXRC3_MODULE_ROMERROR or ADMXRC3_MODULE_CSUMERROR flags are
present, then the data in the Product, PartNumber, Manufacturer, SerialNumber, IoVoltage and
ManufactureDate members should be considered unreliable.

3.

Otherwise, the Product, PartNumber, Manufacturer, SerialNumber, IoVoltage and ManufactureDate members
are valid.

4.

Remarks

This datatype is available in ADMXRC3 API version 1.1.0 and later.

This is the Unicode version of the ADMXRC3_MODULE_INFO structure. ADMXRC3_MODULE_INFO is actually a
macro defined to be either ADMXRC3_MODULE_INFOW if the _UNICODE preprocessor symbol is defined, or else
ADMXRC3_MODULE_INFOA.

Page 45ADMXRC3 API Reference
AD-UG-0003 Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

4.2.19 ADMXRC3_PACKAGE_TYPE
Declaration

typedef ... ADMXRC3_PACKAGE_TYPE;

Description

A type used to represent the package code of an FPGA device. It is a 32-bit unsigned integer composed of three
bit-fields:

1
st
 ASCII

character

2
nd

 ASCII

character
Number of pins

31:24 15:023:16

‘B’ ‘G’ 560Example:

Figure 10: ADMXRC3_PACKAGE_TYPE bit fields

The following macros are available for manipulating values of type ADMXRC3_PACKAGE_TYPE:

ADMXRC3_PACKAGE_GETPINS(n) returns the number of pins in the package, as a 16-bit unsigned integer
value. For example, ADMXRC3_PACKAGE_GETTYPE1(ADMXRC3_PACKAGE_MAKEFG(456)) returns 456.

•

ADMXRC3_PACKAGE_GETTYPE0(n) returns the first package type character. For example,
ADMXRC3_PACKAGE_GETTYPE0(ADMXRC3_PACKAGE_MAKEFG(456)) returns the ASCII character 'F'.

•

ADMXRC3_PACKAGE_GETTYPE1(n) returns the second package type character. For example,
ADMXRC3_PACKAGE_GETTYPE1(ADMXRC3_PACKAGE_MAKEFG(456)) returns the ASCII character 'G'.

•

ADMXRC3_PACKAGE_MAKE(t0, t1, n) constructs a package code, given the ASCII type characters t0, t1 and
a pin count n. For example, ADMXRC3_PACKAGE_MAKE('B', 'G', 560) constructs a value corresponding to
the BG560 package.

•

ADMXRC3_PACKAGE_MAKEBG(n) constructs a code representing a BG package, where n is the number of
pins. For example, ADMXRC3_PACKAGE_MAKEBG(560) constructs a value corresponding to the BG560
package.

•

ADMXRC3_PACKAGE_MAKEFF(n) constructs a code representing an FF package, where n is the number of
pins. For example, ADMXRC3_PACKAGE_MAKEFF(1738) constructs a value corresponding to the FF1738
package.

•

ADMXRC3_PACKAGE_MAKEFG(n) constructs a code representing an FG package, where n is the number of
pins. For example, ADMXRC3_PACKAGE_MAKEFG(456) constructs a value corresponding to the FG456
package.

•

Remarks

This datatype is a 32-bit unsigned integer. In Windows, this type is a typedef of UINT32, while in Linux it is a typedef of
uint32_t.

Page 46 ADMXRC3 API Reference
AD-UG-0003Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

4.2.20 ADMXRC3_SENSOR_INFOA
Declaration

typedef structure ... {
char Description[28];
uint32_t Capabilities;
uint32_t Error;
ADMXRC3_DATA_TYPE DataType;
ADMXRC3_UNIT_TYPE Unit;
int Exponent;

} ADMXRC3_SENSOR_INFOA;

The members of this structure are as follows:

Description

A NUL-terminated char string that describes the sensor, for example "1.5V supply rail".

Capabilities

A bitmask of flags that indicate the sensor's capabilities. The following flags are defined:

ADMXRC3_SENSOR_SWVALUE
The sensor does not represent a physical sensor, and the values are generated in software. Such a sensor
might be used for returning statistics about something.

•

Error

A value that indicates the accuracy of the sensor, as the maximum positive or negative deviation from the actual
value. Error values are scaled in the same way as values read from the sensor using ADMXRC3_ReadSensor.

DataType

A value of type ADMXRC3_DATA_TYPE that indicates the type of the data (boolean, double, integer etc.) returned
by the sensor.

Unit

A value of type ADMXRC3_UNIT_TYPE that indicates the unit of measurement (amperes, volts, degrees Celsius
etc.) of the data returned by the sensor.

Exponent

A value that indicates the exponent (power of 10) by which the Error member and values read from the sensor are
scaled.

Description

This structure is returned by ADMXRC3_GetSensorInfoA and contains information about a sensor.

Example:
Assume that for a given sensor, Error is 0.4, DataType is ADMXRC3_UNIT_DOUBLE, Unit is ADMXRC3_UNIT_V and
Exponent is -3. Assume also that ADMXRC3_ReadSensor returns 9.5. The unit is therefore mV, and the absolute
value read from the sensor is 9.5 mV. Furthermore, the error is ± 0.4 mV.

Page 47ADMXRC3 API Reference
AD-UG-0003 Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

Remarks

This datatype is available in ADMXRC3 API version 1.1.0 and later.

For boolean values (where DataType is ADMXRC3_DATA_BOOL), the Error and Exponent members are not valid and
should be ignored. The Unit member is always ADMXRCD_UNIT_NONE.

This is the ANSI / UTF-8 version of the ADMXRC3_SENSOR_INFO structure. ADMXRC3_SENSOR_INFO is actually
a macro defined to be either ADMXRC3_SENSOR_INFOW if the _UNICODE preprocessor symbol is defined, or else
ADMXRC3_SENSOR_INFOA.

4.2.21 ADMXRC3_SENSOR_INFOW
Declaration

typedef structure ... {
wchar_t Description[28];
uint32_t Capabilities;
uint32_t Error;
ADMXRC3_DATA_TYPE DataType;
ADMXRC3_UNIT_TYPE Unit;
int Exponent;

} ADMXRC3_SENSOR_INFOW;

The members of this structure are as follows:

Description

A NUL-terminated wchar_t string that describes the sensor, for example "1.5V supply rail".

Capabilities

A bitmask of flags that indicate the sensor's capabilities. The following flags are defined:

ADMXRC3_SENSOR_SWVALUE
The sensor does not represent a physical sensor, and the values are generated in software. Such a sensor
might be used for returning statistics about something.

•

Error

A value that indicates the accuracy of the sensor, as the maximum positive or negative deviation from the actual
value. Error values are scaled in the same way as values read from the sensor using ADMXRC3_ReadSensor.

DataType

A value of type ADMXRC3_DATA_TYPE that indicates the type of the data (boolean, double, integer etc.) returned
by the sensor.

Unit

A value of type ADMXRC3_UNIT_TYPE that indicates the unit of measurement (amperes, volts, degrees Celsius
etc.) of the data returned by the sensor.

Exponent

Page 48 ADMXRC3 API Reference
AD-UG-0003Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

A value that indicates the exponent (power of 10) by which the Error member and values read from the sensor are
scaled.

Description

This structure is returned by ADMXRC3_GetSensorInfoW and contains information about a sensor.

Example:
Assume that for a given sensor, Error is 0.4, DataType is ADMXRC3_UNIT_DOUBLE, Unit is ADMXRC3_UNIT_V and
Exponent is -3. Assume also that ADMXRC3_ReadSensor returns 9.5. The unit is therefore mV, and the absolute
value read from the sensor is 9.5 mV. Furthermore, the error is ± 0.4 mV.

Remarks

This datatype is available in ADMXRC3 API version 1.1.0 and later.

For boolean values (where DataType is ADMXRC3_DATA_BOOL), the Error and Exponent members are not valid and
should be ignored. The Unit member is always ADMXRCD_UNIT_NONE.

This is the Unicode version of the ADMXRC3_SENSOR_INFO structure. ADMXRC3_SENSOR_INFO is actually a
macro defined to be either ADMXRC3_SENSOR_INFOW if the _UNICODE preprocessor symbol is defined, or else
ADMXRC3_SENSOR_INFOA.

4.2.22 ADMXRC3_SENSOR_VALUE
Declaration

typedef union ... {
bool_t Bool;
double Double;
int32_t Int32;
uint32_t UInt32;

} ADMXRC3_SENSOR_VALUE;

The members of this union are as follows:

Bool

The current reading from the sensor.

Double

The current reading from the sensor.

Int32

The current reading from the sensor.

UInt32

The current reading from the sensor.

Description

Page 49ADMXRC3 API Reference
AD-UG-0003 Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

This union is returned by ADMXRC3_ReadSensor and contains the current readings from the sensor.

As this datatype is a union, interpretation of its value depends on the DataType member of the
ADMXRC3_SENSOR_INFO structure for the sensor in question, as returned by ADMXRC3_GetSensorInfo. It is the
application's responsibility to correctly interpret the value by using the appropriate member from the union (Bool,
Double, etc.).

Remarks

This datatype is available in ADMXRC3 API version 1.1.0 and later.

4.2.23 ADMXRC3_STATUS
Declaration

typedef enum ... {
ADMXRC3_SUCCESS = 0, Success
ADMXRC3_INTERNAL_ERROR = 0x100, An error in the API logic occurred
ADMXRC3_UNEXPECTED_ERROR = 0x101, An unexpected error caused the operation to fail
ADMXRC3_BAD_DRIVER = 0x102, The driver may not be correctly installed
ADMXRC2_NO_MEMORY = 0x103, Couldn't allocate memory required to complete operation
ADMXRC3_ACCESS_DENIED = 0x104, The calling process does not have permission to open the device
ADMXRC3_DEVICE_NOT_FOUND = 0x105, Failed to open the device with the specified index
ADMXRC3_FILE_NOT_FOUND = 0x106, Failed to open the .BIT file with the specified filename
ADMXRC3_HARDWARE_ERROR = 0x107, An error in the hardware was detected
ADMXRC3_FPGA_MISMATCH = 0x108, The FPGA on the card did not match that of the bitstream file
ADMXRC3_INVALID_BITSTREAM = 0x109, The .BIT file appeared to be corrupt
ADMXRC3_INVALID_BUFFER = 0x10A, The supplied buffer was invalid and could not be read/written
ADMXRC3_INVALID_FLAG = 0x10B, A flag was invalid or not recognized
ADMXRC3_INVALID_FREQUENCY = 0x10C, The frequency was not possible for the specified clock generator
ADMXRC3_INVALID_HANDLE = 0x10D, The device handle was invalid
ADMXRC3_INVALID_INDEX = 0x10E, The index parameter was invalid
ADMXRC3_INVALID_REGION = 0x10F, The offset and/or length parameters were invalid
ADMXRC3_NULL_POINTER = 0x110, A NULL pointer was passed where non-NULL was required
ADMXRC3_BUSY = 0x111, There is already an operation in progress for the specified device
ADMXRC3_CANCEL_FAILED = 0x112, There is nothing to cancel
ADMXRC3_CANCELLED = 0x113, The operation was cancelled
ADMXRC3_RESOURCE_LIMIT = 0x114, A resource limit was reached
ADMXRC3_REGION_TOO_LARGE = 0x115, The specified region was too large for a single operation
ADMXRC3_MUST_WAIT = 0x116, The specified operation couldn't be started immediately
ADMXRC3_NOT_OWNER = 0x117, The buffer handle belongs to a different device handle
ADMXRC3_PENDING = 0x118, The non-blocking operation is not yet complete
ADMXRC3_NONBLOCK_IDLE = 0x119, The non-blocking operation is not yet complete
ADMXRC3_INVALID_BUFFER_HANDLE = 0x11A, The buffer handle was invalid
ADMXRC3_INVALID_LOCAL_REGION = 0x11B, The local address region was invalid
ADMXRC3_DATATYPE_MISMATCH = 0x11C, The datatype was invalid for the specified sensor
ADMXRC3_NOT_SUPPORTED = 0x11D, The hardware does not support the requested operation
ADMXRC3_STATUS_FORCE32BITS = 0x7FFFFFFF Force type to be at least 32 bits

} ADMXRC3_STATUS;

Description

An enumerated type used as the return value from most ADMXRC3 API functions. A value of zero corresponds to
ADMXRC3_SUCCESS, and indicates success for most functions. However, the ADMRC3_StartXxx functions such as
ADMXRC3_StartReadDMA return ADMXRC3_PENDING in order to indicate that a non-blocking operation was
successfully started.

Page 50 ADMXRC3 API Reference
AD-UG-0003Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

4.2.24 ADMXRC3_SUBFAMILY_TYPE
Declaration

typedef enum ... {
ADMXRC3_SUBFAMILY_NONE = 0, Not in a subfamily
ADMXRC3_SUBFAMILY_E = 16, Xilinx Virtex-E
ADMXRC3_SUBFAMILY_EM = 17, Xilinx Virtex-EM
ADMXRC3_SUBFAMILY_2PROX = 48, Xilinx Virtex-II Pro-X
ADMXRC3_SUBFAMILY_4FX = 64, Xilinx Virtex-4 FX
ADMXRC3_SUBFAMILY_4LX = 65, Xilinx Virtex-4 LX
ADMXRC3_SUBFAMILY_4SX = 66, Xilinx Virtex-4 SX
ADMXRC3_SUBFAMILY_5LX = 80, Xilinx Virtex-5 LX
ADMXRC3_SUBFAMILY_5FXT = 84, Xilinx Virtex-5 FXT
ADMXRC3_SUBFAMILY_5LXT = 85, Xilinx Virtex-5 LXT
ADMXRC3_SUBFAMILY_5SXT = 86, Xilinx Virtex-5 SXT
ADMXRC3_SUBFAMILY_6LX = 96, Xilinx Virtex-6 LX
ADMXRC3_SUBFAMILY_6HXT = 97, Xilinx Virtex-6 HXT
ADMXRC3_SUBFAMILY_6LXT = 98, Xilinx Virtex-6 LXT
ADMXRC3_SUBFAMILY_6SXT = 99, Xilinx Virtex-6 SXT
ADMXRC3_SUBFAMILY_FORCE32BITS = 0x7FFFFFFF Force type to be at least 32 bits

} ADMXRC3_SUBFAMILY_TYPE;

Description

An enumerated type used to represent a subfamily within an FPGA device family.

4.2.25 ADMXRC3_TICKET
Declaration

typedef ... ADMXRC3_TICKET;

Description

A ticket used to keep track of a non-blocking operation. Every non-blocking operation requires a ticket, which must be
unique to that operation and valid from when the operation is initiated until it is finished. A ticket may be reused for
further non-blocking operations once the current non-blocking operation has finished.

In Windows, this is a structure that should be considered partially opaque by applications, and contains an
OVERLAPPED structure. It is initialized by first calling ADMXRC3_InitializeTicket and then setting the
Overlapped.hEvent member to a HANDLE value representing a non-auto-reset Win32 event. The event must be used
in at most one non-blocking operation at any given moment.

In Linux or VxWorks, this type should be considered fully opaque. It is initialized by ADMXRC3_InitializeTicket.

On all platforms, a ticket must be initialized at least once before its first use, regardless of how many times it is used.
Reinitializing a ticket (and/or changing the event in the case of Windows) between non-blocking operations is permitted.

A ticket is required by the following functions:

ADMXRC3_FinishDMA•
ADMXRC3_FinishNotificationWait•
ADMXRC3_StartNotificationWait•
ADMXRC3_StartReadDMA•
ADMXRC3_StartReadDMALocked•
ADMXRC3_StartWriteDMA•

Page 51ADMXRC3 API Reference
AD-UG-0003 Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

ADMXRC3_StartWriteDMALocked•

4.2.26 ADMXRC3_UNIT_TYPE
Declaration

typedef enum ... {
ADMXRC3_UNIT_NONE = 0, Unitless data
ADMXRC3_UNIT_A = 1, Ampere
ADMXRC3_UNIT_V = 2, Volt
ADMXRC3_UNIT_C = 3, Degrees Celsius
ADMXRC3_UNIT_HZ = 4, Frequency
ADMXRC3_UNIT_RPM = 5, Revolutions per minute
ADMXRC3_UNIT_S = 6, Seconds
ADMXRC3_UNIT_LASTVALUE = 7, Reserved for adding new units
ADMXRC3_UNIT_FORCE32BITS = 0x7FFFFFFF Force type to be at least 32 bits

} ADMXRC3_UNIT_TYPE;

Description

An enumerated type used to indicate the unit of measurement of the values returned by the ADMXRC3_ReadSensor
function. Values beginning with ADMXRC3_UNIT_LASTVALUE are reserved for adding new units in future revisions of
the API.

ADMXRC3_UNIT_HZ

Remarks

This datatype is available in ADMXRC3 API version 1.1.0 and later. The ADMXRC3_UNIT_S value is available in
ADMXRC3 API version 1.4.0 and later.

4.2.27 ADMXRC3_VERSION_INFO
Declaration

typedef structure ... {
struct {

uint16_t Major;
uint16_t Minor;
uint16_t Bugfix;

} Api;
struct {

uint16_t Major;
uint16_t Minor;
uint16_t Bugfix;

} Driver;
} ADMXRC3_VERSION_INFO;

The members of this structure are as follows:

Api

Api.Major

Major version number of ADMXRC3 API library.

Api.Minor

Page 52 ADMXRC3 API Reference
AD-UG-0003Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

Minor version number of ADMXRC3 API library.

Api.Bugfix

Bugfix version number of ADMXRC3 API library.

Driver

Driver.Major

Major version number of ADMXRC3 driver.

Driver.Minor

Minor version number of ADMXRC3 driver.

Driver.Bugfix

Bugfix version number of ADMXRC3 driver.

Description

This structure is returned by ADMXRC3_GetVersionInfo and indicates the version numbers of the components of the
ADMXRC3 API.

Remarks

The Major and Minor members may be incremented when functionality is added, such as support for new models, or
new API functions. The Bugfix member is incremented when defects are corrected, but is also reset to zero when either
the Major or Minor members are incremented.

4.2.28 ADMXRC3_WINDOW_INFO
Declaration

typedef structure ... {
uint64_t BusSize;
uint64_t BusBase;
uint64_t LocalSize;
uint64_t LocalBase;
uint64_t VirtualSize;

} ADMXRC3_WINDOW_INFO;

The members of this structure are as follows:

BusSize

The size, in bytes, of the window on its device's bus (typically PCI, PCI-X or PCI Express).

BusBase

The base address, in bytes, of the window on its device's bus (typically PCI, PCI-X or PCI Express).

LocalSize

Page 53ADMXRC3 API Reference
AD-UG-0003 Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

The size, in bytes, of the region of local address space that the window occupies.

If this member is nonzero, it is typically a window onto a target FPGA in the device. A target FPGA decodes the local
address in order to determine what function within the target FPGA is being accessed.

If this member is zero, it means that the window terminates within the bus interface of the device and does not
occupy any local address space. Such windows provide access to device registers in the bus interface of a
reconfigurable computing card.

LocalBase

The absolute base address, in bytes, of the region of local address space that the window occupies. This member is
not valid if the LocalSize member is zero.

VirtualSize

The size, in bytes, of the window if it were mapped in its entirety into a process' virtual address space. This is the
same as the BusSize member on most CPU architectures, but may be larger for a CPU architecture that uses
sparse I/O addressing. The topic of sparse I/O addressing is outside the scope of this document, but in such
architectures, attributes of load and store operations (alignment, byte mask, etc.) are encoded in the addresses
used to perform such loads and stores.

Description

This structure is returned by ADMXRC3_GetWindowInfo and indicates the size and base addresses, in various
address spaces, of a window provided by a device. An application may use this information to avoid errors when calling
ADMXRC3_MapWindow.

Remarks

In general, each model in Alpha Data's reconfigurable computing range provides a different set of windows, and the
purpose of each window can vary between models. In order to know which windows to map, an application requires
knowledge of the model in use. The model that is in use can be obtained by calling ADMXRC3_GetCardInfoEx and
inspecting the Model member of the returned ADMXRC3_CARD_INFOEX structure.

4.3 ADMXRC3 API functions
This section describes the functions available in the ADMXRC3 API. The semantics of "direction" for a function
parameter are as follows

(in) means that the parameter is used to pass data to a function, either by value or by reference to a data
structure that is read by the function.

•

(out) means that the parameter is used to return data from a function, by reference to a data structure that is
filled in by the function.

•

(inout) means that the parameter is used to both pass data to and return data from a function, by reference to a
data structure that is read and potentially modified by the function.

•

Page 54 ADMXRC3 API Reference
AD-UG-0003Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

4.3.1 ADMXRC3_Cancel
Declaration

ADMXRC3_STATUS
ADMXRC3_Cancel(

__in ADMXRC3_HANDLE hDevice);

The parameters of this function are as follows:

hDevice (in)

The device handle for which any ongoing API calls should cancelled.

Description

The ADMXRC3_Cancel function forces any ongoing ADMXRC3 API calls for a given device handle to return as soon
as possible. Function calls that return early due to a call to ADMXRC3_Cancel return a status value of
ADMXRC3_CANCELLED. However, a function call that happens to be completed, whether successfully or
unsuccessfully, at the same time as ADMXRC3_Cancel is called may return a status value other than
ADMXRC3_CANCELLED. The purpose of ADMXRC3_Cancel is to force any threads that are blocked inside
ADMXRC3 API functions to return early, so that error recovery mechanisms such as timeouts and watchdogs can be
implemented by an application.

ADMXRC3_Cancel itself does not wait for ongoing ADMXRC3 API calls to return; it returns as soon as action has been
taken to ensure that all other ongoing ADMXRC3 API calls for the specified handle will return.

ADMXRC3_Cancel affects only function calls made using the specified device handle. Function calls made using other
device handles are entirely unaffected.

Return Value

A value of ADMXRC3_SUCCESS indicates that the function executed successfully. Otherwise, if an error occurs, the
following values may be returned:

Return Value Description
ADMXRC3_INVALID_HANDLE The hDevice parameter is not a valid device handle.
ADMXRC3_CANCEL_FAILED There was nothing to cancel.

Remarks

ADMXRC3_Cancel does not affect ADMXRC3 API functions that do not block the calling thread for a significant length
of time. An example of such a function is ADMXRC3_GetCardInfoEx. In general, if an API function is guaranteed not
to block the caller for a user-perceptible length of time, ADMXRC3_Cancel has no effect on it.

ADMXRC3_Cancel can cancel only those ADMXRC3 API function calls that occur before ADMXRC3_Cancel is called.
For example, if thread A calls ADMXRC3_Cancel, and thread B calls ADMXRC3_ReadDMAEx, a degree of
uncertainty exists about whether ADMXRC3_Cancel occurs before or after ADMXRC3_ReadDMAEx, because either
thread may be preemptively descheduled in most operating systems. Applications should therefore not rely on
cancelled ADMXRC3 API calls always returning ADMXRC3_CANCELLED, because this represents a race condition.

Page 55ADMXRC3 API Reference
AD-UG-0003 Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

4.3.2 ADMXRC3_Close
Declaration

ADMXRC3_STATUS
ADMXRC3_Close(

__in ADMXRC3_HANDLE hDevice);

The parameters of this function are as follows:

hDevice (in)

The device handle that is to be closed.

Description

This function closes a device handle, invalidating it. It should be called when an application has finished with a device
handle.

If a thread closes a device handle using ADMXRC3_Close when other threads are executing inside ADMXRC3 API
functions using the same device handle or there is an ongoing non-blocking operation using the same device handle,
then the thread calling ADMXRC3_Close may either:

Block until all of the ADMXRC3 API calls of other threads have returned and any non-blocking operations are
finished, OR

(a)

Return without blocking, but cause the ADMXRC3 API calls of other threads to return early with an error status
value such ADMXRC3_CANCELLED, as if ADMXRC3_Cancel were called.

(b)

Which of these two behaviors occurs is operating-system dependent.

Return Value

A value of ADMXRC3_SUCCESS indicates that the function executed successfully. Otherwise, if an error occurs, the
following values may be returned:

Return Value Description
ADMXRC3_INVALID_HANDLE The hDevice parameter is not a valid device handle.

Remarks

Well-behaved applications should clean up by calling ADMXRC3_Close when finished with a device handle. Failure to
do so may lead to resource leaks, although leaked resources are reclaimed by the driver / operating system when an
application terminates (with the exception of VxWorks, which performs very little automatic cleanup). The following
cleanup is performed by ADMXRC3_Close:

Mapped memory windows (that were mapped using the same device handle) are unmapped, as if
ADMXRC3_UnmapWindow were called.

•

Locked user-space buffers (that were locked using the same the device handle) are unlocked, as if
ADMXRC3_Unlock were called.

•

If the device handle owns any target FPGAs, those target FPGAs become free again.•

Page 56 ADMXRC3 API Reference
AD-UG-0003Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

For each Flash memory bank in the device, if there exists a dirty block as a result of the device handle being
used to call ADMXRC3_EraseFlash or ADMXRC3_WriteFlash, the Flash memory bank is synchronized as if
ADMXRC3_SyncFlash were called. In other words, explicitly calling ADMXRC3_SyncFlash before
ADMXRC3_Close avoids a noticeable delay in the execution of ADMXRC3_Close.

•

In Windows, any Win32 Events registered with the device handle are unregistered, as if
ADMXRC3_UnregisterWin32Event were called.

•

In VxWorks, any semaphores registered with the device handle are unregistered, as if
ADMXRC3_UnregisterVxwSem were called.

•

It is good practice to set variables of type ADMXRC3_HANDLE to ADMXRC3_HANDLE_INVALID_VALUE after
closing them with ADMXRC3_Close.

4.3.3 ADMXRC3_ConfigureFromBuffer
Declaration

ADMXRC3_STATUS
ADMXRC3_ConfigureFromBuffer(

__in ADMXRC3_HANDLE hDevice,
__in unsigned int targetIndex,
__in uint32_t flags,
__in const void* pBuffer,
__in size_t length);

The parameters of this function are as follows:

hDevice (in)

Identifies the device that contains the target FPGA to be configured.

targetIndex (in)

The zero-based index of the target FPGA to be configured. This value must be less than the NumTargetFpga
member of ADMXRC3_CARD_INFOEX.

flags (in)

Flags that modify how the operation is performed. Currently the following flags are defined, which may be bitwise
ORed together:

ADMXRC3_CONFIGURE_PARTIAL
Causes a partial reconfiguration to be performed. A partial reconfiguration does not clear the target FPGA's
existing configuration before downloading the bitstream. If this flag is omitted, a full reconfiguration is
performed.

•

ADMXRC3_CONFIGURE_SHARE
Causes the device handle passed in hDevice not to take ownership of the target FPGA if configuration is
successful.

•

pBuffer (in)

Points to the bitstream data to be downloaded to the target FPGA.

length (in)

The number of bytes of bitstream data to be downloaded to the target FPGA.

Page 57ADMXRC3 API Reference
AD-UG-0003 Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

Description

This function downloads the bitstream data in a buffer to the specified device. The bitstream data is typically obtained
from the Data member of an ADMXRC3_BITSTREAM object, returned by ADMXRC3_LoadBitstream, but an
application may elect to use its own .BIT file loader to obtain the data. See the remarks below about the format of the
data.

The default behavior is that full reconfiguration of the target FPGA is performed, where the bitstream download is
preceded by unconfiguring the target FPGA. Full reconfiguration is described in Section 3.8.1.1, "Full
reconfiguration".

Partial reconfiguration of the target FPGA, as described in Section 3.8.1.2, "Partial reconfiguration", is performed if
the flags parameter contains ADMXRC3_CONFIGURE_PARTIAL.

In order to avoid the possibility that a target FPGA is inadvertantly reconfigured (perhaps by another process) whilst it is
in use, an ownership mechanism exists for target FPGAs. This ownership mechanism is described in Section 3.8.1.4,
"Target FPGA ownership".

Return Value

A value of ADMXRC3_SUCCESS indicates that the function executed successfully. Otherwise, if an error occurs, the
following values may be returned:

Return Value Description

ADMXRC3_ACCESS_DENIED The device handle was opened with insufficient privileges
for modifying device state.

ADMXRC3_CANCELLED
During the operation, another thread called
ADMXRC3_Cancel on the device handle, or the device
handle was closed.

ADMXRC3_HARDWARE_ERROR Configuring the target FPGA with the bitstream was not
successful due to a hardware error.

ADMXRC3_INVALID_BUFFER The pBuffer and length parameters represent a buffer
that is not valid in the caller's address space.

ADMXRC3_INVALID_FLAG The flags parameter contains an unrecognized flag.
ADMXRC3_INVALID_HANDLE The hDevice parameter is not a valid device handle.
ADMXRC3_INVALID_INDEX The targetIndex parameter is out of range.

ADMXRC3_NOT_OWNER The specified device handle is not the owner of the target
FPGA.

ADMXRC3_NULL_POINTER The pBuffer parameter was a NULL pointer.

Remarks

As already mentioned, an application can load a .BIT file into memory using ADMXRC3_LoadBitstream, or by using
its own loader functions. If using its own loader, an application should parse the .BIT file, keeping only the configuration
frame data from the .BIT file. The record structure in the header of the .BIT file should not be in the data passed to
ADMXRC3_ConfigureFromBuffer. The configuration frame data inside a .BIT file is a stream of bytes, where each
byte maps to the SelectMap data bits D0..D7 as follows:

Page 58 ADMXRC3 API Reference
AD-UG-0003Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

D0 D7D1 D2 D3 D4 D5 D6

Bit 7 Bit 0

Figure 11: SelectMap D0..D7 byte mapping

As can be seen from the above figure, SelectMap D0 is found in bit 7 of each byte and SelectMap D7 in bit 0. Despite
this, it is not necessary for an application to reorder the bits within each byte of the configuration frame data, because
ADMXRC3_ConfigureFromBuffer expects bitstream data in the above format, exactly as read from a .BIT file. If
necessary for the model in use, the data is automatically re-ordered by ADMXRC3_ConfigureFromBuffer.

Passing the ADMXRC3_CONFIGURE_PARTIAL flag with a length of zero can be used to take ownership of a take
FPGA without actually changing its configuration state.

An important difference between ADMXRC3_LoadBitstream and the legacy ADMXRC2_LoadBitstream function is
that ADMXRC2_LoadBitstream may reorder bits within each byte of the configuration frame data for some models,
and not for others. By contrast, ADMXRC3_LoadBitstream never reorders; it returns the configuration frame data as it
is found in the .BIT file.

4.3.4 ADMXRC3_ConfigureFromFileA
Declaration

ADMXRC3_STATUS
ADMXRC3_ConfigureFromFileA(

__in ADMXRC3_HANDLE hDevice,
__in unsigned int targetIndex,
__in uint32_t flags,
__in const char* pFilename);

The parameters of this function are as follows:

hDevice (in)

Identifies the device that contains the target FPGA to be configured.

targetIndex (in)

The zero-based index of the target FPGA to be configured. This value must be less than the NumTargetFpga
member of ADMXRC3_CARD_INFOEX.

flags (in)

Flags that modify how the operation is performed. Currently the following flags are defined, which may be bitwise
ORed together:

ADMXRC3_CONFIGURE_PARTIAL
Causes a partial reconfiguration to be performed. A partial reconfiguration does not clear the target FPGA's
existing configuration before downloading the bitstream. If this flag is omitted, a full reconfiguration is
performed.

•

ADMXRC3_CONFIGURE_SHARE
Causes the device handle passed in hDevice not to take ownership of the target FPGA if configuration is
successful.

•

Page 59ADMXRC3 API Reference
AD-UG-0003 Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

pFilename (in)

Specifies the name of a .BIT file to be downloaded to the target FPGA.

Description

This function downloads the data in a bitstream (.BIT) file to the specified device. As a .BIT file contains a record that
specifies for what kind of FPGA it was generated, this function verifies that the .BIT file FPGA type matches that of the
device, and returns an error if there is a mismatch.

The default behavior is that full reconfiguration of the target FPGA is performed, where the bitstream download is
preceded by unconfiguring the target FPGA. Full reconfiguration is described in Section 3.8.1.1, "Full
reconfiguration".

Partial reconfiguration of the target FPGA, as described in Section 3.8.1.2, "Partial reconfiguration", is performed if
the flags parameter contains ADMXRC3_CONFIGURE_PARTIAL.

In order to avoid the possibility that a target FPGA is inadvertantly reconfigured (perhaps by another process) whilst it is
in use, an ownership mechanism exists for target FPGAs. This ownership mechanism is described in Section 3.8.1.4,
"Target FPGA ownership".

Return Value

A value of ADMXRC3_SUCCESS indicates that the function executed successfully. Otherwise, if an error occurs, the
following values may be returned:

Return Value Description

ADMXRC3_ACCESS_DENIED The device handle was opened with insufficient privileges
for modifying device state.

ADMXRC3_CANCELLED
During the operation, another thread called
ADMXRC3_Cancel on the device handle, or the device
handle was closed.

ADMXRC3_FILE_NOT_FOUND The file identified by the pFilename parameter could not
be opened.

ADMXRC3_FPGA_MISMATCH The FPGA in the .BIT file header does not match the
target FPGA in the specified device.

ADMXRC3_HARDWARE_ERROR Configuring the target FPGA with the bitstream was not
successful due to a hardware error.

ADMXRC3_INVALID_BITSTREAM The file identified by the pFilename parameter is not a
valid .BIT file.

ADMXRC3_INVALID_FLAG The flags parameter contains an unrecognized flag.
ADMXRC3_INVALID_HANDLE The hDevice parameter is not a valid device handle.
ADMXRC3_INVALID_INDEX The targetIndex parameter is out of range.

ADMXRC3_NOT_OWNER The specified device handle is not the owner of the target
FPGA.

ADMXRC3_NO_MEMORY Memory to hold the bitstream data could not be
allocated.

ADMXRC3_NULL_POINTER The pFilename parameter was a NULL pointer.

Page 60 ADMXRC3 API Reference
AD-UG-0003Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

Remarks

This is the ANSI / UTF-8 version of ADMXRC3_ConfigureFromFile. ADMXRC3_ConfigureFromFile is actually a
macro defined to be either ADMXRC3_ConfigureFromFileW if the _UNICODE preprocessor symbol is defined, or else
ADMXRC3_ConfigureFromFileA.

4.3.5 ADMXRC3_ConfigureFromFileW
Declaration

ADMXRC3_STATUS
ADMXRC3_ConfigureFromFileW(

__in ADMXRC3_HANDLE hDevice,
__in unsigned int targetIndex,
__in uint32_t flags,
__in const wchar_t* pFilename);

The parameters of this function are as follows:

hDevice (in)

Identifies the device that contains the target FPGA to be configured.

targetIndex (in)

The zero-based index of the target FPGA to be configured. This value must be less than the NumTargetFpga
member of ADMXRC3_CARD_INFOEX.

flags (in)

Flags that modify how the operation is performed. Currently the following flags are defined, which may be bitwise
ORed together:

ADMXRC3_CONFIGURE_PARTIAL
Causes a partial reconfiguration to be performed. A partial reconfiguration does not clear the target FPGA's
existing configuration before downloading the bitstream. If this flag is omitted, a full reconfiguration is
performed.

•

ADMXRC3_CONFIGURE_SHARE
Causes the device handle passed in hDevice not to take ownership of the target FPGA if configuration is
successful.

•

pFilename (in)

Specifies the name of a .BIT file to be downloaded to the target FPGA.

Description

This function downloads the data in a bitstream (.BIT) file to the specified device. As a .BIT file contains a record that
specifies for what kind of FPGA it was generated, this function verifies that the .BIT file FPGA type matches that of the
device, and returns an error if there is a mismatch.

The default behavior is that full reconfiguration of the target FPGA is performed, where the bitstream download is
preceded by unconfiguring the target FPGA. Full reconfiguration is described in Section 3.8.1.1, "Full
reconfiguration".

Page 61ADMXRC3 API Reference
AD-UG-0003 Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

Partial reconfiguration of the target FPGA, as described in Section 3.8.1.2, "Partial reconfiguration", is performed if
the flags parameter contains ADMXRC3_CONFIGURE_PARTIAL.

In order to avoid the possibility that a target FPGA is inadvertantly reconfigured (perhaps by another process) whilst it is
in use, an ownership mechanism exists for target FPGAs. This ownership mechanism is described in Section 3.8.1.4,
"Target FPGA ownership".

Return Value

A value of ADMXRC3_SUCCESS indicates that the function executed successfully. Otherwise, if an error occurs, the
following values may be returned:

Return Value Description

ADMXRC3_ACCESS_DENIED The device handle was opened with insufficient privileges
for modifying device state.

ADMXRC3_CANCELLED
During the operation, another thread called
ADMXRC3_Cancel on the device handle, or the device
handle was closed.

ADMXRC3_FILE_NOT_FOUND The file identified by the pFilename parameter could not
be opened.

ADMXRC3_FPGA_MISMATCH The FPGA in the .BIT file header does not match the
target FPGA in the specified device.

ADMXRC3_HARDWARE_ERROR Configuring the target FPGA with the bitstream was not
successful due to a hardware error.

ADMXRC3_INVALID_BITSTREAM The file identified by the pFilename parameter is not a
valid .BIT file.

ADMXRC3_INVALID_FLAG The flags parameter contains an unrecognized flag.
ADMXRC3_INVALID_HANDLE The hDevice parameter is not a valid device handle.
ADMXRC3_INVALID_INDEX The targetIndex parameter is out of range.

ADMXRC3_NOT_OWNER The specified device handle is not the owner of the target
FPGA.

ADMXRC3_NO_MEMORY Memory to hold the bitstream data could not be
allocated.

ADMXRC3_NULL_POINTER The pFilename parameter was a NULL pointer.

Remarks

This is the Unicode version of ADMXRC3_ConfigureFromFile. ADMXRC3_ConfigureFromFile is actually a macro
defined to be either ADMXRC3_ConfigureFromFileW if the _UNICODE preprocessor symbol is defined, or else
ADMXRC3_ConfigureFromFileA.

Page 62 ADMXRC3 API Reference
AD-UG-0003Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

4.3.6 ADMXRC3_EraseFlash
Declaration

ADMXRC3_STATUS
ADMXRC3_EraseFlash(

__in ADMXRC3_HANDLE hDevice,
__in unsigned int flashIndex,
__in uint32_t flags,
__in uint64_t offset,
__in uint64_t length);

The parameters of this function are as follows:

hDevice (in)

The device handle of the device that contains the Flash memory bank of interest.

flashIndex (in)

Identifies the Flash memory bank of interest, within the specified device.

flags (in)

Flags that modify how the operation is performed. Currently, the following flags are defined, which may be bitwise
ORed together:

ADMXRC3_FLASH_SYNC
Causes this erase operation, as well as any previously pending erase and write operations, to be committed
to hardware before the function returns.

•

offset (in)

Offset, in bytes, into the Flash memory bank of the beginning of region that is to be erased.

length (in)

Length, in bytes, of the region that is to be erased.

Description

The ADMXRC3_EraseFlash function erases a region of a Flash memory bank.

Depending on the model, not all locations in a Flash memory bank may be erased using this function. This is required
in order to prevent inadvertant corruption of VPD, firmware etc. on some models. To determine the region of a Flash
memory bank that is modifiable, an application calls ADMXRC3_GetFlashInfo. Attempts to modify any location outside
of the modifiable region will fail.

ADMXRC3_EraseFlash performs a read-erase-write cycle when the region specified by offset and length does not
start and end exactly on block boundaries. Applications are therefore not required to have knowledge of the
block-architecture of Flash chips, and can treat a Flash memory bank as an array of bytes.

The ADMXRC3 API implements a caching mechanism for each Flash memory bank. Passing the
ADMXRC3_FLASH_SYNC flag ensures that the cache for the specified Flash memory bank is synchronized with the
hardware before the function returns. An alternative way of ensuring synchronization is to call ADMXRC3_SyncFlash.

Page 63ADMXRC3 API Reference
AD-UG-0003 Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

Return Value

A value of ADMXRC3_SUCCESS indicates that the function executed successfully. Otherwise, if an error occurs, the
following values may be returned:

Return Value Description

ADMXRC3_ACCESS_DENIED The device handle was opened with insufficient privileges
for modifying device state.

ADMXRC3_CANCELLED
During the operation, another thread called
ADMXRC3_Cancel on the device handle, or the device
handle was closed.

ADMXRC3_HARDWARE_ERROR Erasing the Flash region was not successful due to a
hardware error.

ADMXRC3_INVALID_FLAG The flags parameter contains an unrecognized flag.
ADMXRC3_INVALID_HANDLE The hDevice parameter is not a valid device handle.
ADMXRC3_INVALID_INDEX The flashIndex parameter is out of range.

ADMXRC3_INVALID_REGION
The offset and length parameters specify a region that is
partially or wholly out of bounds of the specified Flash
bank.

Remarks

Erasing a region of Flash memory results in all bytes in the erased region returning 0xFF when subsequently read.

Depending on the model, a Flash memory bank may hold several kinds of data:

Vital Product Data (VPD)1.
"Soft jumper" information, such as default clock frequencies2.
Non-target FPGA firmware images3.
Target FPGA bitstreams4.

Of these types of data, the first three cannot be erased using ADMXRC3_EraseFlash, because they always lie outside
of the user-programmable region in the Flash memory bank. Attempting to do so results in a error being returned. This
is done as a safety measure to protect against inadvertant corruption of data that is vital to the operation of the
hardware. The fourth type of data, target FPGA bitstreams, is usually stored in the user-programmable area and can
therefore be erased or written.

For information about a particular model's Flash address map, refer to the User Guide for that model.

Page 64 ADMXRC3 API Reference
AD-UG-0003Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

4.3.7 ADMXRC3_FinishDMA
Declaration

ADMXRC3_STATUS
ADMXRC3_FinishDMA(

__in ADMXRC3_HANDLE hDevice,
__in ADMXRC3_TICKET* pTicket,
__in bool_t bWait);

The parameters of this function are as follows:

hDevice (in)

The device handle for which a non-blocking DMA operation is pending.

pTicket (in)

Points to the ticket used for the non-blocking operation. Ticket structures must be initialized according to Section
3.3.2, "Tickets".

bWait (in)

Specifies whether to wait for completion, or poll for completion.

Description

This function can be used to finish a previously-started non-blocking DMA operation, optionally waiting for it to be
completed in the hardware (if bWait is TRUE). If bWait is FALSE, the function polls for whether or not the operation has
been completed, returning ADMXRC3_PENDING if not.

This function is suitable for use with the following functions that initiate non-blocking operations:

ADMXRC3_StartReadDMA•
ADMXRC3_StartReadDMABus•
ADMXRC3_StartReadDMAEx•
ADMXRC3_StartReadDMALocked•
ADMXRC3_StartReadDMALockedEx•
ADMXRC3_StartWriteDMA•
ADMXRC3_StartWriteDMABus•
ADMXRC3_StartWriteDMAEx•
ADMXRC3_StartWriteDMALocked•
ADMXRC3_StartWriteDMALockedEx•

Every non-blocking operation that is successfully initiated on a given device handle using one of the above set of
functions (that is, ADMXRC3_PENDING was returned from one of the above set of functions) must eventually be
finished by a call to ADMXRC3_FinishDMA. Failure to obey this rule means that attempting to start further
non-blocking operations using the same device handle results in undefined behavior.

Return Value

A value of ADMXRC3_SUCCESS indicates that the non-blocking operation was completed successfully. Otherwise, the
following values may be returned:

Page 65ADMXRC3 API Reference
AD-UG-0003 Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

Return Value Description

ADMXRC3_CANCELLED
During the operation, another thread called
ADMXRC3_Cancel on the device handle, or the device
handle was closed.

ADMXRC3_HARDWARE_ERROR The DMA transfer failed due to a hardware error.
ADMXRC3_INVALID_HANDLE The hDevice parameter is not a valid device handle.
ADMXRC3_NONBLOCK_IDLE There was no non-blocking operation to finish.

ADMXRC3_PENDING The non-blocking operation is ongoing. This value should
never be returned if bWait is TRUE.

Remarks

Refer to Section 3.3, "Non-blocking operations" for an overview of the non-blocking functions in the ADMXRC3 API.

4.3.8 ADMXRC3_FinishNotificationWait
Declaration

ADMXRC3_STATUS
ADMXRC3_FinishNotificationWait(

__in ADMXRC3_HANDLE hDevice,
__in ADMXRC3_TICKET* pTicket,
__in bool_t bWait);

The parameters of this function are as follows:

hDevice (in)

The device handle for which a non-blocking operation is pending.

pTicket (in)

Points to the ticket used for the non-blocking operation. Ticket structures must be initialized according to Section
3.3.2, "Tickets".

bWait (in)

Specifies whether to wait for completion, or poll for completion.

Description

This function is the counterpart of ADMXRC3_StartNotificationWait. It must be called to finish a non-blocking
operation that was successfully started with ADMXRC3_StartNotificationWait (i.e. ADMXRC3_PENDING was
returned).

Return Value

A value of ADMXRC3_SUCCESS indicates that the non-blocking operation was completed successfully. Otherwise, the
following values may be returned:

Page 66 ADMXRC3 API Reference
AD-UG-0003Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

Return Value Description

ADMXRC3_CANCELLED
During the operation, another thread called
ADMXRC3_Cancel on the device handle, or the device
handle was closed.

ADMXRC3_INVALID_HANDLE The hDevice parameter is not a valid device handle.
ADMXRC3_NONBLOCK_IDLE There was no non-blocking operation to finish.

ADMXRC3_PENDING The non-blocking operation is ongoing. This value should
never be returned if bWait is TRUE.

Remarks

This function is available in ADMXRC3 API version 1.1.0 and later.

Refer to Section 3.3, "Non-blocking operations" for an overview of the non-blocking functions in the ADMXRC3 API.

4.3.9 ADMXRC3_GetBankInfo
Declaration

ADMXRC3_STATUS
ADMXRC3_GetBankInfo(

__in ADMXRC3_HANDLE hDevice,
__in unsigned int bankIndex,
__out ADMXRC3_BANK_INFO* pBankInfo);

The parameters of this function are as follows:

hDevice (in)

Identifies the device that contains the memory bank for which information is required.

bankIndex (in)

Specifies the memory bank within the device for which information is required. This is a zero-based index that must
be less than the NumMemoryBank member of ADMXRC3_CARD_INFOEX.

pBankInfo (out)

Points to an object of type ADMXRC3_BANK_INFO in which to return information about the memory bank.

Description

This function returns information about a memory bank in a device.

Return Value

A value of ADMXRC3_SUCCESS indicates that the function executed successfully. Otherwise, if an error occurs, the
following values may be returned:

Page 67ADMXRC3 API Reference
AD-UG-0003 Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

Return Value Description

ADMXRC3_HARDWARE_ERROR The information could not be retrieved due to an error
reading the device's Vital Product Data.

ADMXRC3_INVALID_HANDLE The hDevice parameter is not a valid device handle.
ADMXRC3_INVALID_INDEX The bankIndex parameter is out of range.
ADMXRC3_NULL_POINTER The pBankInfo parameter is NULL.

4.3.10 ADMXRC3_GetCardInfo
Declaration

ADMXRC3_STATUS
ADMXRC3_GetCardInfo(

__in ADMXRC3_HANDLE hDevice,
__out ADMXRC3_CARD_INFO* pCardInfo);

The parameters of this function are as follows:

hDevice (in)

Identifies the device for which information is required.

pCardInfo (out)

Points to an object of type ADMXRC3_CARD_INFO in which to return information about the device.

Description

This function returns information about a device.

Return Value

A value of ADMXRC3_SUCCESS indicates that the function executed successfully. Otherwise, if an error occurs, the
following values may be returned:

Return Value Description

ADMXRC3_HARDWARE_ERROR The information could not be retrieved due to an error
reading the device's Vital Product Data.

ADMXRC3_INVALID_HANDLE The hDevice parameter is not a valid device handle.
ADMXRC3_NULL_POINTER The pCardInfo parameter is NULL.

Remarks

ADMXRC3_GetCardInfo has been superseded by ADMXRC3_GetCardInfoEx, as the latter returns a superset of the
information returned by ADMXRC3_GetCardInfo.

Page 68 ADMXRC3 API Reference
AD-UG-0003Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

4.3.11 ADMXRC3_GetCardInfoEx
Declaration

ADMXRC3_STATUS
ADMXRC3_GetCardInfoEx(

__in ADMXRC3_HANDLE hDevice,
__out ADMXRC3_CARD_INFOEX* pCardInfoEx);

The parameters of this function are as follows:

hDevice (in)

Identifies the device for which information is required.

pCardInfoEx (out)

Points to an object of type ADMXRC3_CARD_INFOEX in which to return information about the device.

Description

This function returns information about a device.

Return Value

A value of ADMXRC3_SUCCESS indicates that the function executed successfully. Otherwise, if an error occurs, the
following values may be returned:

Return Value Description

ADMXRC3_HARDWARE_ERROR The information could not be retrieved due to an error
reading the device's Vital Product Data.

ADMXRC3_INVALID_HANDLE The hDevice parameter is not a valid device handle.
ADMXRC3_NULL_POINTER The pCardInfoEx parameter is NULL.

Remarks

This function is available in ADMXRC3 API version 1.1.0 and later, and supersedes ADMXRC3_GetCardInfo. The
information returned by ADMXRC3_GetCardInfoEx is a superset of that of ADMXRC3_GetCardInfo.

4.3.12 ADMXRC3_GetClockFrequency
Declaration

ADMXRC3_STATUS
ADMXRC3_GetClockFrequency(

__in ADMXRC3_HANDLE hDevice,
__in unsigned int clockIndex,
__out double* pActualFrequency);

The parameters of this function are as follows:

hDevice (in)

Identifies the device that contains the clock generator whose current frequency is to be returned.

clockIndex (in)

Page 69ADMXRC3 API Reference
AD-UG-0003 Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

Specifies the clock generator within the device whose current frequency is to be returned. This is a zero-based index
that must be less than the NumClockGen member of ADMXRC3_CARD_INFOEX.

pActualFrequency (out)

Points to an object of type double in which to return the current frequency of the clock generator.

Description

This function returns the current frequency being output by a clock generator in a device.

Return Value

A value of ADMXRC3_SUCCESS indicates that the function executed successfully. Otherwise, if an error occurs, the
following values may be returned:

Return Value Description
ADMXRC3_INVALID_HANDLE The hDevice parameter is not a valid device handle.
ADMXRC3_INVALID_INDEX The clockIndex parameter is out of range.
ADMXRC3_NULL_POINTER The pActualFrequency parameter is NULL.

4.3.13 ADMXRC3_GetFlashBlockInfo
Declaration

ADMXRC3_STATUS
ADMXRC3_GetFlashBlockInfo(

__in ADMXRC3_HANDLE hDevice,
__in unsigned int flashIndex,
__in uint64_t address,
__out ADMXRC3_FLASHBLOCK_INFO* pFlashBlockInfo);

The parameters of this function are as follows:

hDevice (in)

Identifies the device that contains the Flash memory bank of interest.

flashIndex (in)

Identifies the Flash memory bank of interest, within the device. This is a zero-based index that must be less than the
NumFlashBank member of ADMXRC3_CARD_INFOEX.

address (in)

An address, in bytes, within the Flash memory bank of interest.

pFlashBlockInfo (out)

Points to an object of type ADMXRC3_FLASHBLOCK_INFO in which to return information about the Flash block.

Description

Page 70 ADMXRC3 API Reference
AD-UG-0003Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

This function returns information about a Flash block, given any address within that block.

Return Value

A value of ADMXRC3_SUCCESS indicates that the function executed successfully. Otherwise, if an error occurs, the
following values may be returned:

Return Value Description

ADMXRC3_HARDWARE_ERROR The information could not be retrieved because the Flash
device is malfunctioning or not present.

ADMXRC3_INVALID_HANDLE The hDevice parameter is not a valid device handle.
ADMXRC3_INVALID_INDEX The flashIndex parameter is out of range.

ADMXRC3_INVALID_REGION The address parameter is out of range.
ADMXRC3_NULL_POINTER The pFlashBlockInfo parameter is NULL.

4.3.14 ADMXRC3_GetFlashInfoA
Declaration

ADMXRC3_STATUS
ADMXRC3_GetFlashInfoA(

__in ADMXRC3_HANDLE hDevice,
__in unsigned int flashIndex,
__out ADMXRC3_FLASH_INFOA* pFlashInfo);

The parameters of this function are as follows:

hDevice (in)

Identifies the device that contains the Flash memory bank of interest.

flashIndex (in)

Identifies the Flash memory bank of interest, within the device. This is a zero-based index that must be less than the
NumFlashBank member of ADMXRC3_CARD_INFOEX.

pFlashInfo (out)

Points to an object of type ADMXRC3_FLASH_INFOA in which to return information about the Flash memory bank.

Description

This function returns information about a Flash memory bank.

Return Value

A value of ADMXRC3_SUCCESS indicates that the function executed successfully. Otherwise, if an error occurs, the
following values may be returned:

Page 71ADMXRC3 API Reference
AD-UG-0003 Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

Return Value Description

ADMXRC3_HARDWARE_ERROR The information could not be retrieved because the Flash
device is malfunctioning or not present.

ADMXRC3_INVALID_HANDLE The hDevice parameter is not a valid device handle.
ADMXRC3_INVALID_INDEX The flashIndex parameter is out of range.
ADMXRC3_NULL_POINTER The pFlashInfo parameter is NULL.

Remarks

This is the ANSI / UTF-8 version of ADMXRC3_GetFlashInfo. ADMXRC3_GetFlashInfo is actually a macro defined to
be either ADMXRC3_GetFlashInfoW if the _UNICODE preprocessor symbol is defined, or else
ADMXRC3_GetFlashInfoA.

4.3.15 ADMXRC3_GetFlashInfoW
Declaration

ADMXRC3_STATUS
ADMXRC3_GetFlashInfoW(

__in ADMXRC3_HANDLE hDevice,
__in unsigned int flashIndex,
__out ADMXRC3_FLASH_INFOW* pFlashInfo);

The parameters of this function are as follows:

hDevice (in)

Identifies the device that contains the Flash memory bank of interest.

flashIndex (in)

Identifies the Flash memory bank of interest, within the device. This is a zero-based index that must be less than the
NumFlashBank member of ADMXRC3_CARD_INFOEX.

pFlashInfo (out)

Points to an object of type ADMXRC3_FLASH_INFOW in which to return information about the Flash memory bank.

Description

This function returns information about a Flash memory bank.

Return Value

A value of ADMXRC3_SUCCESS indicates that the function executed successfully. Otherwise, if an error occurs, the
following values may be returned:

Page 72 ADMXRC3 API Reference
AD-UG-0003Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

Return Value Description

ADMXRC3_HARDWARE_ERROR The information could not be retrieved because the Flash
device is malfunctioning or not present.

ADMXRC3_INVALID_HANDLE The hDevice parameter is not a valid device handle.
ADMXRC3_INVALID_INDEX The flashIndex parameter is out of range.
ADMXRC3_NULL_POINTER The pFlashInfo parameter is NULL.

Remarks

This is the Unicode version of ADMXRC3_GetFlashInfo. ADMXRC3_GetFlashInfo is actually a macro defined to be
either ADMXRC3_GetFlashInfoW if the _UNICODE preprocessor symbol is defined, or else
ADMXRC3_GetFlashInfoA.

4.3.16 ADMXRC3_GetFpgaInfoA
Declaration

ADMXRC3_STATUS
ADMXRC3_GetFpgaInfoA(

__in ADMXRC3_HANDLE hDevice,
__in unsigned int targetIndex,
__out ADMXRC3_FPGA_INFOA* pFpgaInfo);

The parameters of this function are as follows:

hDevice (in)

Identifies the device that contains the target FPGA of interest.

targetIndex (in)

Identifies the target FPGA of interest, within the device. This is a zero-based index that must be less than the
NumTargetFpga member of ADMXRC3_CARD_INFOEX.

pFpgaInfo (out)

Points to an object of type ADMXRC3_FPGA_INFOA in which to return information about the target FPGA.

Description

This function returns information about a target FPGA.

Return Value

A value of ADMXRC3_SUCCESS indicates that the function executed successfully. Otherwise, if an error occurs, the
following values may be returned:

Page 73ADMXRC3 API Reference
AD-UG-0003 Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

Return Value Description

ADMXRC3_HARDWARE_ERROR The information could not be retrieved due to an error
reading the device's Vital Product Data.

ADMXRC3_INVALID_HANDLE The hDevice parameter is not a valid device handle.
ADMXRC3_INVALID_INDEX The targetIndex parameter is out of range.
ADMXRC3_NULL_POINTER The pFpgaInfo parameter is NULL.

Remarks

This is the ANSI / UTF-8 version of ADMXRC3_GetFpgaInfo. ADMXRC3_GetFpgaInfo is actually a macro defined to
be either ADMXRC3_GetFpgaInfoW if the _UNICODE preprocessor symbol is defined, or else
ADMXRC3_GetFpgaInfoA.

4.3.17 ADMXRC3_GetFpgaInfoW
Declaration

ADMXRC3_STATUS
ADMXRC3_GetFpgaInfoW(

__in ADMXRC3_HANDLE hDevice,
__in unsigned int targetIndex,
__out ADMXRC3_FPGA_INFOW* pFpgaInfo);

The parameters of this function are as follows:

hDevice (in)

Identifies the device that contains the target FPGA of interest.

targetIndex (in)

Identifies the target FPGA of interest, within the device. This is a zero-based index that must be less than the
NumTargetFpga member of ADMXRC3_CARD_INFOEX.

pFpgaInfo (out)

Points to an object of type ADMXRC3_FPGA_INFOW in which to return information about the target FPGA.

Description

This function returns information about a target FPGA.

Return Value

A value of ADMXRC3_SUCCESS indicates that the function executed successfully. Otherwise, if an error occurs, the
following values may be returned:

Page 74 ADMXRC3 API Reference
AD-UG-0003Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

Return Value Description

ADMXRC3_HARDWARE_ERROR The information could not be retrieved due to an error
reading the device's Vital Product Data.

ADMXRC3_INVALID_HANDLE The hDevice parameter is not a valid device handle.
ADMXRC3_INVALID_INDEX The targetIndex parameter is out of range.
ADMXRC3_NULL_POINTER The pFpgaInfo parameter is NULL.

Remarks

This is the Unicode version of ADMXRC3_GetFpgaInfo. ADMXRC3_GetFpgaInfo is actually a macro defined to be
either ADMXRC3_GetFpgaInfoW if the _UNICODE preprocessor symbol is defined, or else
ADMXRC3_GetFpgaInfoA.

4.3.18 ADMXRC3_GetModuleInfoA
Declaration

ADMXRC3_STATUS
ADMXRC3_GetModuleInfoA(

__in ADMXRC3_HANDLE hDevice,
__in unsigned int moduleIndex,
__out ADMXRC3_MODULE_INFOA* pModuleInfo);

The parameters of this function are as follows:

hDevice (in)

Identifies the device that contains the module site of interest.

moduleIndex (in)

Identifies the module site of interest, within the device. This is a zero-based index that must be less than the
NumModuleSite member of ADMXRC3_CARD_INFOEX.

pModuleInfo (out)

Points to an object of type ADMXRC3_MODULE_INFOA in which to return information about the module.

Description

This function returns information about an I/O personality module site.

Return Value

A value of ADMXRC3_SUCCESS indicates that the function executed successfully. Otherwise, if an error occurs, the
following values may be returned:

Page 75ADMXRC3 API Reference
AD-UG-0003 Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

Return Value Description
ADMXRC3_INVALID_HANDLE The hDevice parameter is not a valid device handle.
ADMXRC3_INVALID_INDEX The moduleIndex parameter is out of range.
ADMXRC3_NULL_POINTER The pModuleInfo parameter is NULL.

Remarks

This function is available in ADMXRC3 API version 1.1.0 and later.

This is the ANSI / UTF-8 version of ADMXRC3_GetModuleInfo. ADMXRC3_GetModuleInfo is actually a macro
defined to be either ADMXRC3_GetModuleInfoW if the _UNICODE preprocessor symbol is defined, or else
ADMXRC3_GetModuleInfoA.

4.3.19 ADMXRC3_GetModuleInfoW
Declaration

ADMXRC3_STATUS
ADMXRC3_GetModuleInfoW(

__in ADMXRC3_HANDLE hDevice,
__in unsigned int moduleIndex,
__out ADMXRC3_MODULE_INFOW* pModuleInfo);

The parameters of this function are as follows:

hDevice (in)

Identifies the device that contains the module site of interest.

moduleIndex (in)

Identifies the module site of interest, within the device. This is a zero-based index that must be less than the
NumModuleSite member of ADMXRC3_CARD_INFOEX.

pModuleInfo (out)

Points to an object of type ADMXRC3_MODULE_INFOW in which to return information about the module.

Description

This function returns information about an I/O personality module site.

Return Value

A value of ADMXRC3_SUCCESS indicates that the function executed successfully. Otherwise, if an error occurs, the
following values may be returned:

Page 76 ADMXRC3 API Reference
AD-UG-0003Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

Return Value Description
ADMXRC3_INVALID_HANDLE The hDevice parameter is not a valid device handle.
ADMXRC3_INVALID_INDEX The moduleIndex parameter is out of range.
ADMXRC3_NULL_POINTER The pModuleInfo parameter is NULL.

Remarks

This function is available in ADMXRC3 API version 1.1.0 and later.

This is the Unicode version of ADMXRC3_GetModuleInfo. ADMXRC3_GetModuleInfo is actually a macro defined to
be either ADMXRC3_GetModuleInfoW if the _UNICODE preprocessor symbol is defined, or else
ADMXRC3_GetModuleInfoA.

4.3.20 ADMXRC3_GetSensorInfoA
Declaration

ADMXRC3_STATUS
ADMXRC3_GetSensorInfoA(

__in ADMXRC3_HANDLE hDevice,
__in unsigned int sensorIndex,
__out ADMXRC3_SENSOR_INFOA* pSensorInfo);

The parameters of this function are as follows:

hDevice (in)

Identifies the device that contains the sensor of interest.

sensorIndex (in)

Identifies the sensor of interest, within the device. This is a zero-based index that must be less than the NumSensor
member of ADMXRC3_CARD_INFOEX.

pSensorInfo (out)

Points to an object of type ADMXRC3_SENSOR_INFOA in which to return information about the sensor.

Description

This function returns information about a sensor.

Return Value

A value of ADMXRC3_SUCCESS indicates that the function executed successfully. Otherwise, if an error occurs, the
following values may be returned:

Page 77ADMXRC3 API Reference
AD-UG-0003 Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

Return Value Description
ADMXRC3_INVALID_HANDLE The hDevice parameter is not a valid device handle.
ADMXRC3_INVALID_INDEX The sensorIndex parameter is out of range.
ADMXRC3_NULL_POINTER The pSensorInfo parameter is NULL.

Remarks

This function is available in ADMXRC3 API version 1.1.0 and later.

This is the ANSI / UTF-8 version of ADMXRC3_GetSensorInfo. ADMXRC3_GetSensorInfo is actually a macro
defined to be either ADMXRC3_GetSensorInfoW if the _UNICODE preprocessor symbol is defined, or else
ADMXRC3_GetSensorInfoA.

4.3.21 ADMXRC3_GetSensorInfoW
Declaration

ADMXRC3_STATUS
ADMXRC3_GetSensorInfoW(

__in ADMXRC3_HANDLE hDevice,
__in unsigned int sensorIndex,
__out ADMXRC3_SENSOR_INFOW* pSensorInfo);

The parameters of this function are as follows:

hDevice (in)

Identifies the device that contains the sensor of interest.

sensorIndex (in)

Identifies the sensor of interest, within the device. This is a zero-based index that must be less than the NumSensor
member of ADMXRC3_CARD_INFOEX.

pSensorInfo (out)

Points to an object of type ADMXRC3_SENSOR_INFOW in which to return information about the sensor.

Description

This function returns information about a sensor.

Return Value

A value of ADMXRC3_SUCCESS indicates that the function executed successfully. Otherwise, if an error occurs, the
following values may be returned:

Page 78 ADMXRC3 API Reference
AD-UG-0003Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

Return Value Description
ADMXRC3_INVALID_HANDLE The hDevice parameter is not a valid device handle.
ADMXRC3_INVALID_INDEX The sensorIndex parameter is out of range.
ADMXRC3_NULL_POINTER The pSensorInfo parameter is NULL.

Remarks

This function is available in ADMXRC3 API version 1.1.0 and later.

This is the Unicode version of ADMXRC3_GetSensorInfo. ADMXRC3_GetSensorInfo is actually a macro defined to
be either ADMXRC3_GetSensorInfoW if the _UNICODE preprocessor symbol is defined, or else
ADMXRC3_GetSensorInfoA.

4.3.22 ADMXRC3_GetStatusStringA
Declaration

const char*
ADMXRC3_GetStatusStringA(

__in ADMXRC3_STATUS code,
__in boolean_t bShort);

The parameters of this function are as follows:

code (in)

Identifies the device that contains the target FPGA of interest.

bShort (in)

Specifies whether the description should be the full description, or merely a string of the corresponding symbolic value
as defined by the ADMXRC3 API.

Description

This function returns a textual description of an ADMXRC3_STATUS code. The following example illustrates how the
'code' parameter affects the returned string:

FALSE

Return Value

The return value is a pointer to a NUL-terminated char string that describes the error code.

Remarks

The returned string is statically allocated, so an application must treat it as read-only.

This is the ANSI / UTF-8 version of ADMXRC3_GetStatusString. ADMXRC3_GetStatusString is actually a macro
defined to be either ADMXRC3_GetStatusStringW if the _UNICODE preprocessor symbol is defined, or else
ADMXRC3_GetStatusStringA.

Page 79ADMXRC3 API Reference
AD-UG-0003 Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

4.3.23 ADMXRC3_GetStatusStringW
Declaration

const wchar_t*
ADMXRC3_GetStatusStringW(

__in ADMXRC3_STATUS code,
__in boolean_t bShort);

The parameters of this function are as follows:

code (in)

Identifies the device that contains the target FPGA of interest.

bShort (in)

Specifies whether the description should be the full description, or merely a string of the corresponding symbolic value
as defined by the ADMXRC3 API.

Description

This function returns a textual description of an ADMXRC3_STATUS code. The following example illustrates how the
'code' parameter affects the returned string:

FALSE

Return Value

The return value is a pointer to a NUL-terminated wchar_t string that describes the error code.

Remarks

The returned string is statically allocated, so an application must treat it as read-only.

This is the Unicode version of ADMXRC3_GetStatusString. ADMXRC3_GetStatusString is actually a macro defined
to be either ADMXRC3_GetStatusStringW if the _UNICODE preprocessor symbol is defined, or else
ADMXRC3_GetStatusStringA.

4.3.24 ADMXRC3_GetVersionInfo
Declaration

ADMXRC3_STATUS
ADMXRC3_GetVersionInfo(

__in ADMXRC3_HANDLE hDevice,
__out ADMXRC3_VERSION_INFO* pVersionInfo);

The parameters of this function are as follows:

hDevice (in)

Identifies the device handle to use to retrieve version information.

pVersionInfo (out)

Points to an object of type ADMXRC3_VERSION_INFO in which to return version information.

Page 80 ADMXRC3 API Reference
AD-UG-0003Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

Description

This function returns version information for the ADMXRC3 API library and ADMXRC3 driver.

Return Value

A value of ADMXRC3_SUCCESS indicates that the function executed successfully. Otherwise, if an error occurs, the
following values may be returned:

Return Value Description
ADMXRC3_INVALID_HANDLE The hDevice parameter is not a valid device handle.
ADMXRC3_NULL_POINTER The pVersionInfo parameter is NULL.

4.3.25 ADMXRC3_GetWindowInfo
Declaration

ADMXRC3_STATUS
ADMXRC3_GetWindowInfo(

__in ADMXRC3_HANDLE hDevice,
__in unsigned int windowIndex,
__out ADMXRC3_WINDOW_INFO* pWindowInfo);

The parameters of this function are as follows:

hDevice (in)

Identifies the device that contains the memory window of interest.

windowIndex (in)

Identifies the memory window of interest, within the device. This is a zero-based index that must be less than the
NumWindow member of ADMXRC3_CARD_INFOEX.

pWindowInfo (out)

Points to an object of type ADMXRC3_WINDOW_INFO in which to return information about the memory window.

Description

This function returns information about a memory window that can be used to access device registers and/or target
FPGAs.

Return Value

A value of ADMXRC3_SUCCESS indicates that the function executed successfully. Otherwise, if an error occurs, the
following values may be returned:

Page 81ADMXRC3 API Reference
AD-UG-0003 Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

Return Value Description
ADMXRC3_INVALID_HANDLE The hDevice parameter is not a valid device handle.
ADMXRC3_INVALID_INDEX The windowIndex parameter is out of range.
ADMXRC3_NULL_POINTER The pWindowInfo parameter is NULL.

4.3.26 ADMXRC3_InitializeTicket
Declaration

void
ADMXRC3_InitializeTicket(

__out ADMXRC3_TICKET* pTicket);

The parameters of this function are as follows:

pTicket (out)

Points to the ticket to be initialized.

Description

This function initializes an ADMXRC3_TICKET structure, and must be called in order to initialize a ticket.

In Windows, after calling ADMXRC3_InitializeTicket, the Overlapped.hEvent member of the ticket must also be set to
a valid event handle, as described in ADMXRC3_TICKET.

Attempting to use an uninitialized ticket for a non-blocking operation may result in an error being returned, or undefined
behavior.

Remarks

In some operating systems, this function is a macro that does nothing.

4.3.27 ADMXRC3_LoadBitstreamA
Declaration

ADMXRC3_STATUS
ADMXRC3_LoadBitstreamA(

__in const char* pFilename,
__out ADMXRC3_BITSTREAMA** ppBitstream);

The parameters of this function are as follows:

pFilename (in)

NUL-terminated char string that specifies the name of bitstream (.BIT) file.

ppBitstream (out)

Points to a variable of type ADMXRC3_BITSTREAMA*, which is initialized to point to an ADMXRC3_BITSTREAMA
object.

Description

Page 82 ADMXRC3 API Reference
AD-UG-0003Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

This function loads a bitstream (.BIT) file into memory, returing a pointer to an object of type ADMXRC3_BITSTREAMA
via the ppBitstream parameter. The Data member of the ADMXRC3_BITSTREAMA object represents the beginning of
an array containing configuration frame data suitable for passing to ADMXRC3_ConfigureFromBuffer.

ADMXRC3_LoadBitstreamW allocates memory to hold the entire bitstream, and an application eventually must free
the object using ADMXRC3_UnloadBitstreamW.

Return Value

A value of ADMXRC3_SUCCESS indicates that the function executed successfully. Otherwise, if an error occurs, the
following values may be returned:

Return Value Description

ADMXRC3_FILE_NOT_FOUND The file identified by the pFilename parameter could not
be opened.

ADMXRC3_INVALID_BITSTREAM The file identified by the pFilename parameter is not a
valid .BIT file.

ADMXRC3_NO_MEMORY Memory to hold the bitstream data could not be
allocated.

ADMXRC3_NULL_POINTER The pFilename and / or ppBitstream parameter is a
NULL pointer.

Remarks

This is the ANSI / UTF-8 version of ADMXRC3_LoadBitstream. ADMXRC3_LoadBitstream is actually a macro
defined to be either ADMXRC3_LoadBitstreamW if the _UNICODE preprocessor symbol is defined, or else
ADMXRC3_LoadBitstreamA.

4.3.28 ADMXRC3_LoadBitstreamW
Declaration

ADMXRC3_STATUS
ADMXRC3_LoadBitstreamW(

__in const wchar_t* pFilename,
__out ADMXRC3_BITSTREAMW** ppBitstream);

The parameters of this function are as follows:

pFilename (in)

NUL-terminated wchar_t string that specifies the name of bitstream (.BIT) file.

ppBitstream (out)

Points to a variable of type ADMXRC3_BITSTREAMW*, which is initialized to point to an ADMXRC3_BITSTREAMW
object.

Description

Page 83ADMXRC3 API Reference
AD-UG-0003 Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

This function loads a bitstream (.BIT) file into memory, returing a pointer to an object of type
ADMXRC3_BITSTREAMW via the ppBitstream parameter. The Data member of the ADMXRC3_BITSTREAMW object
represents the beginning of an array containing configuration frame data suitable for passing to
ADMXRC3_ConfigureFromBuffer.

ADMXRC3_LoadBitstreamW allocates memory to hold the entire bitstream, and an application eventually must free
the object using ADMXRC3_UnloadBitstreamW.

Return Value

A value of ADMXRC3_SUCCESS indicates that the function executed successfully. Otherwise, if an error occurs, the
following values may be returned:

Return Value Description

ADMXRC3_FILE_NOT_FOUND The file identified by the pFilename parameter could not
be opened.

ADMXRC3_INVALID_BITSTREAM The file identified by the pFilename parameter is not a
valid .BIT file.

ADMXRC3_NO_MEMORY Memory to hold the bitstream data could not be
allocated.

ADMXRC3_NULL_POINTER The pFilename and / or ppBitstream parameter is a
NULL pointer.

Remarks

This is the Unicode version of ADMXRC3_LoadBitstream. ADMXRC3_LoadBitstream is actually a macro defined to
be either ADMXRC3_LoadBitstreamW if the _UNICODE preprocessor symbol is defined, or else
ADMXRC3_LoadBitstreamA.

4.3.29 ADMXRC3_Lock
Declaration

ADMXRC3_STATUS
ADMXRC3_Lock(

__in ADMXRC3_HANDLE hDevice,
__in const void* pBuffer,
__in size_t length,
__out ADMXRC3_BUFFER_HANDLE* phBuffer);

The parameters of this function are as follows:

hDevice (in)

The device handle that is to be the owner of the locked buffer.

pBuffer (in)

Points to the buffer to be locked.

length (in)

The size of the buffer to be locked, in bytes.

Page 84 ADMXRC3 API Reference
AD-UG-0003Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

phBuffer (out)

Points to a variable of type ADMXRC3_BUFFER_HANDLE that is to receive the handle to the locked buffer.

Description

This function locks a user-space buffer into memory so that the operating system cannot swap it out to backing store. If
successful, then the function returns a handle of type ADMXRC3_BUFFER_HANDLE, and guarantees that the buffer
will be wholly resident in physical memory until:

The application unlocks the buffer with an inverse call to ADMXRC3_Unlock, or•
The application closes the device handle with a call to ADMXRC3_Close, or•
The application terminates without cleaning up; in this case, the buffer is unlocked when the system
automatically closes any open device handles. However, this does not happen in VxWorks because it does not
automatically close device handles when a task exits.

•

Use of this function reduces the overhead incurred in performing DMA transfers by eliminating the need to lock and
unlock a user-space buffer for every DMA transfer. A user-space buffer can be locked once when an application
initializes, used in an arbitrary number of DMA transfers, and unlocked when the application terminates. The following
DMA functions target a locked user-space buffer:

ADMXRC3_StartReadDMALocked•
ADMXRC3_StartReadDMALockedEx•
ADMXRC3_StartWriteDMALocked•
ADMXRC3_StartWriteDMALockedEx•
ADMXRC3_ReadDMALocked•
ADMXRC3_ReadDMALockedEx•
ADMXRC3_WriteDMALocked•
ADMXRC3_WriteDMALockedEx•

ADMXRC3_BUFFER_HANDLE values are global to the system. This enables one process to lock a buffer, and if it can
somehow communicate the buffer handle to another process, the other process can also use the buffer handle to
perform DMA transfers. However, every buffer handle has an owner, which is the device handle that was used to create
it. Only the owning device handle used can be used to successfully call ADMXRC3_Unlock.

A user-space buffer can be wholly or partially locked multiple times if necessary. If a user-space buffer is locked several
times, yielding several buffer handles, it will only become swappable after every one of the buffer handles has been
passed to ADMXRC3_Unlock.

Return Value

A value of ADMXRC3_SUCCESS indicates that the function executed successfully. Otherwise, if an error occurs, the
following values may be returned:

Page 85ADMXRC3 API Reference
AD-UG-0003 Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

Return Value Description

ADMXRC3_ACCESS_DENIED The device handle was opened with insufficient privileges
for modifying device state.

ADMXRC3_INVALID_BUFFER The pBuffer and length parameters represent a buffer
that is not valid in the caller's address space.

ADMXRC3_INVALID_HANDLE The hDevice parameter is not a valid device handle.

ADMXRC3_NO_MEMORY Memory for keeping track of the locked buffer could not
be allocated.

ADMXRC3_NULL_POINTER The phBuffer parameter was a NULL pointer.

ADMXRC3_RESOURCE_LIMIT The maximum number of locked buffers was already
reached.

Remarks

Applications should avoid locking so much memory that the system no longer has enough physical memory left for the
working sets of other processes in the system, such as applications and system services.

In order to avoid potential system memory corruption due to a badly behaved application, locked buffers have a
reference counting mechanism. A locked user-space buffer begins with a reference count of 1. Calling
ADMXRC3_Unlock invalidates the buffer handle and decrements the reference count. Each DMA transfer performed
using the buffer increments the reference count when it begins and decrements the reference count when complete.
When the reference count reaches zero, the user-space buffer is made swappable again. Thus, while a DMA transfer is
in progress on a buffer, that buffer is not swappable, even if ADMXRC3_Unlock is called during the DMA transfer.

Locking is implemented with a page granuality by the operating system, where each user-space page has a lock count
(separate to that of the reference count of buffer). Therefore, to be precise, the effect of this function is to iterate over
each page of the user-space buffer and increment its lock count by 1. The implication of this is that any part of a
user-space buffer can be locked multiple times, regardless of whether or not those parts are disjoint or overlapping. As
long as there are matching calls to ADMXRC3_Unlock, the lock counts of all pages eventually return to 0.

4.3.30 ADMXRC3_MapWindow
Declaration

ADMXRC3_STATUS
ADMXRC3_MapWindow(

__in ADMXRC3_HANDLE hDevice,
__in unsigned int windowIndex,
__in uint64_t offset,
__in uint64_t length,
__out void** ppVirtualBase);

The parameters of this function are as follows:

hDevice (in)

Identifies the device that contains the window of interest.

windowIndex (in)

Identifies the window of interest in the device.

offset (in)

Page 86 ADMXRC3 API Reference
AD-UG-0003Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

The byte offset in the window of interest of the region to be mapped.

length (in)

The length of the region to be mapped, in bytes.

ppVirtualBase (out)

Points to a variable of type void* that is to receive the address of where the region is mapped in the caller's address
space.

Description

This function maps a region of a memory window into a caller's address space. If successful, the returned pointer can
then be dereferenced in order to read and write the mapped region. The region remains mapped until one of the
following occurs:

The region is unmapped by a call to ADMXRC3_UnmapWindow.•
The device handle used to map the window is closed by a call to ADMXRC3_Close.•
The process terminates without cleaning up, in which case the mapping is lost as the device handle is
automatically closed by the operating system and the process is destroyed.

•

A device's windows can be enumerated by calling ADMXRC3_GetWindowInfo in order to avoid errors when calling
ADMXRC3_MapWindow. It is legal to wholly or partially map a window more than once.

Return Value

A value of ADMXRC3_SUCCESS indicates that the function executed successfully. Otherwise, if an error occurs, the
following values may be returned:

Return Value Description

ADMXRC3_ACCESS_DENIED The device handle was opened with insufficient privileges
for modifying device state.

ADMXRC3_INVALID_HANDLE The hDevice parameter was not a valid device handle.

ADMXRC3_INVALID_INDEX The windowIndex parameter specifies a nonexistent
window.

ADMXRC3_INVALID_REGION The offset and length parameters specify an invalid
region of the specified window.

ADMXRC3_NO_MEMORY Memory could not be allocated for keeping track of the
mapping.

ADMXRC3_NULL_POINTER The ppVirtualBase parameter was a NULL pointer.

ADMXRC3_REGION_TOO_LARGE
The region specified by the offset and length parameters
was too large to be mapped in a single operation. See
remarks below.

Remarks

This function is useful for mapping a target FPGA's registers in a caller's address space. As described in Section
3.8.2.1, "Mapping memory windows into user-space", reading and writing using pointer dereference avoids the
overhead of calling the ADMXRC3 API that is incurred with ADMXRC3_Read and ADMXRC3_Write.

Page 87ADMXRC3 API Reference
AD-UG-0003 Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

There are a number of issues to be aware of when dereferencing the returned pointer to perform reads and writes,
notably write buffers, load / store ordering and barriers. A discussion of these issues is outside the scope of this
document, but applications must take account of them in order to guarantee the desired behavior.

The mapped region will generally be noncacheable by the CPU, as memory windows usually correspond to device
registers or target FPGAs.

If ADMXRC3_REGION_TOO_LARGE is returned, the specified region is larger than the OS-dependent limit for a single
map operation. The region should be split into two or more smaller regions which should then be mapped separately.

In VxWorks, this function does very little other than return a pointer to the region to be mapped, as VxWorks typically
has a single global address space shared by the kernel and tasks alike.

4.3.31 ADMXRC3_Open
Declaration

ADMXRC3_STATUS
ADMXRC3_Open(

__in unsigned int index,
__out ADMXRC3_HANDLE* phCard);

The parameters of this function are as follows:

index (in)

Identifies the device to open.

phCard (out)

Points to a variable of type ADMXRC3_HANDLE that is to receive the handle to the opened device.

Description

This function opens a device and returns a handle to it that can be used in subsequent ADMXRC3 API calls. The
handle remains valid until ADMXRC3_Close is called. A given device can be opened multiple times, by the same
process or different processes.

It is equivalent to calling ADMXRC3_OpenEx where the bPassive parameter is FALSE and the cooperativeLevel
parameter is 0. Therefore, assuming the call succeeds, there are no restrictions on what API functions can be used with
the returned device handle.

Return Value

A value of ADMXRC3_SUCCESS indicates that the function executed successfully. Otherwise, if an error occurs, the
following values may be returned:

Return Value Description

ADMXRC3_ACCESS_DENIED The calling process does not have sufficient privileges to
open the device.

ADMXRC3_DEVICE_NOT_FOUND The index parameter specifies a device that does not
exist in the system.

ADMXRC3_NO_MEMORY Memory could not be allocated for keeping track of a new
device handle.

Page 88 ADMXRC3 API Reference
AD-UG-0003Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

Remarks

With the exception of VxWorks, the operating system automatically closes any open handles if a process terminates
without cleaning up.

4.3.32 ADMXRC3_OpenEx
Declaration

ADMXRC3_STATUS
ADMXRC3_OpenEx(

__in unsigned int index,
__in bool_t bPassive,
__in uint32_t cooperativeLevel,
__out ADMXRC3_HANDLE* phCard);

The parameters of this function are as follows:

index (in)

Identifies the device to open.

bPassive (in)

Specifies how the device is to be opened.

cooperativeLevel (in)

Must currently be zero.

phCard (out)

Points to a variable of type ADMXRC3_HANDLE that is to receive the handle to the opened device.

Description

This function opens a device and returns a handle to it that can be used in subsequent ADMXRC3 API calls. The
handle remains valid until ADMXRC3_Close is called. A given device can be opened multiple times, by the same
process or different processes.

The bPassive parameter controls how the device is opened:

If the bPassive parameter is TRUE, the device is opened in "passive" mode. This allows unprivileged
processes to open the device, but any subsequent calls using the returned device handle that modify device
state will fail with the error ADMXRC3_ACCESS_DENIED. Most informational functions, such as
ADMXRC3_GetCardInfoEx are callable, along with the diagnostic functions such as
ADMXRC3_ReadSensor.

•

If the bPassive parameter is FALSE, the device is opened in "active" mode. Only privileged processes can
open a device in this manner, but unlike the passive case, there is no restriction on what API functions can be
used with the returned device handle. If an unprivileged process attempts to call ADMXRC3_OpenEx in active
mode, the call will fail and return an error code of ADMXRC3_ACCESS_DENIED.

•

This function is useful for monitoring applications that do not modify device state. The following is the list of functions
that can be used with a device handle that has been opened in passive mode:

Page 89ADMXRC3 API Reference
AD-UG-0003 Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

ADMXRC3_Cancel•
ADMXRC3_Close•
ADMXRC3_FinishNotificationWait•
ADMXRC3_GetBankInfo•
ADMXRC3_GetCardInfo•
ADMXRC3_GetCardInfoEx•
ADMXRC3_GetClockFrequency•
ADMXRC3_GetFlashBlockInfo•
ADMXRC3_GetFlashInfoA•
ADMXRC3_GetFlashInfoW•
ADMXRC3_GetFpgaInfoA•
ADMXRC3_GetFpgaInfoW•
ADMXRC3_GetSensorInfoA•
ADMXRC3_GetSensorInfoW•
ADMXRC3_GetVersionInfo•
ADMXRC3_GetWindowInfo•
ADMXRC3_ReadSensor•
ADMXRC3_RegisterWin32Event•
ADMXRC3_RegisterVxwSem•
ADMXRC3_StartNotificationWait•
ADMXRC3_UnregisterWin32Event•
ADMXRC3_UnregisterVxwSem•

Return Value

A value of ADMXRC3_SUCCESS indicates that the function executed successfully. Otherwise, if an error occurs, the
following values may be returned:

Return Value Description

ADMXRC3_ACCESS_DENIED The calling process does not have sufficient privileges to
open the device.

ADMXRC3_DEVICE_NOT_FOUND The index parameter specifies a device that does not
exist in the system.

ADMXRC3_NO_MEMORY Memory could not be allocated for keeping track of a new
device handle.

Remarks

With the exception of VxWorks, the operating system automatically closes any open handles if a process terminates
without cleaning up.

Page 90 ADMXRC3 API Reference
AD-UG-0003Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

4.3.33 ADMXRC3_Read
Declaration

ADMXRC3_STATUS
ADMXRC3_Read(

__in ADMXRC3_HANDLE hDevice,
__in unsigned int windowIndex,
__in uint32_t flags,
__in size_t offset,
__in size_t length,
__out void* pBuffer);

The parameters of this function are as follows:

hDevice (in)

Identifies the device that contains the window to be read.

windowIndex (in)

Identifies the window within the device to be read.

flags (in)

Flags that modify the behavior of the function. There are no flags currently defined, and so this parameter must be
zero.

offset (in)

The byte offset into the window at which reading is to begin.

length (in)

The number of bytes to read.

pBuffer (out)

Points to the buffer to receive the the data read from the window.

Description

This function reads data from a memory window in a device, starting at the specified offset within the window. The data
transfer is performed by the CPU, and is therefore CPU intensive for large blocks of data.

Return Value

A value of ADMXRC3_SUCCESS indicates that the function executed successfully. Otherwise, if an error occurs, the
following values may be returned:

Page 91ADMXRC3 API Reference
AD-UG-0003 Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

Return Value Description

ADMXRC3_ACCESS_DENIED The device handle was opened with insufficient privileges
for modifying device state.

ADMXRC3_CANCELLED
During the operation, another thread called
ADMXRC3_Cancel on the device handle, or the device
handle was closed.

ADMXRC3_INVALID_BUFFER The pBuffer and length parameters represent a buffer
that is not valid in the caller's address space.

ADMXRC3_INVALID_FLAG The flags parameter contains an unrecognized flag.
ADMXRC3_INVALID_HANDLE The hDevice parameter was not a valid device handle.

ADMXRC3_INVALID_INDEX The windowIndex parameter specifies a nonexistent
window.

ADMXRC3_INVALID_REGION The offset and length parameters specify an invalid
region of the specified window.

Remarks

Calling ADMXRC3_Read incurs a certain overhead, but is acceptable for tasks that are not performance-critical, such
as reading registers during initialization of an application. As described in Section 3.8.2.1, "Mapping memory
windows into user-space", mapping a memory window into the caller's address space and using pointer
dereferencing is generally faster when many register reads must be performed.

For large blocks of data, consider using DMA transfers, as described in Section 3.8.3.2, "DMA transfers with host
memory".

If this function is used to read data from a target FPGA, the FPGA design must be able to cope with arbitrary byte
enables being presented during reads, and side-effects on reads are best avoided. This is because the operand size
used for load instructions in the data copying routines used by the ADMXRC3 API may vary depending upon CPU
architecture, buffer alignment, etc. and even upon timing.

This function does not perform any endian-conversion on the data. Refer to Section 3.6, "Endian issues" for a
discussion of how to make an application portable between big- and little-endian CPU architectures.

4.3.34 ADMXRC3_ReadDMA
Declaration

ADMXRC3_STATUS
ADMXRC3_ReadDMA(

__in ADMXRC3_HANDLE hDevice,
__in unsigned int dmaChannel,
__in uint32_t flags,
__out void* pBuffer,
__in size_t length,
__in uint32_t localAddress);

The parameters of this function are as follows:

hDevice (in)

Identifies the device to perform the DMA transfer.

dmaChannel (in)

Page 92 ADMXRC3 API Reference
AD-UG-0003Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

Specifies which DMA channel in the device is to be used to perform the DMA transfer.

flags (in)

Flags that modify how the operation is performed. Currently the following flags are defined, which may be bitwise
ORed together:

ADMXRC3_DMA_FIXEDLOCAL
Causes the local address to be held constant throughout the entire DMA transfer.

•

ADMXRC3_DMA_DONOTQUEUE
Causes the function to return an error immediately, rather than wait in a queue, if the DMA transfer cannot be
started immediately due to another DMA transfer ongoing on the same DMA channel.

•

pBuffer (out)

Points to the buffer that is to receive the data read from the device.

length (in)

Number of bytes to read from the device.

localAddress (in)

The local address (in bytes) in the device at which to begin reading.

Description

This function reads a block of data from a device into a buffer, starting at the specified local address. The data transfer
is performed by a DMA engine within the device. DMA transfers in the ADMXRC3 API are described in general terms in
Section 3.8.3.2, "DMA transfers with host memory".

DMA transfers are subject to a queueing mechanism unless the ADMXRC3_DMA_DONOTQUEUE flag is passed. This
flag causes the function to give up immediately and return an error if it finds that another DMA transfer is in progress on
the same DMA channel. The queueing mechanism is described in general terms in Section 3.4, "Queueing".

Because buffers in user-space may be wholly or partially swapped out to backing store at any time in most operating
systems, this function locks the buffer into physical memory before starting the DMA transfer proper. When the DMA
transfer is finished, the buffer is unlocked and made swappable again. Locking and unlocking a user-space buffer
incurs a certain overhead, so for performance-critical applications, ADMXRC3_ReadDMALocked may be more
appropriate than ADMXRC3_ReadDMA.

Return Value

A value of ADMXRC3_SUCCESS indicates that the function executed successfully. Otherwise, if an error occurs, the
following values may be returned:

Page 93ADMXRC3 API Reference
AD-UG-0003 Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

Return Value Description

ADMXRC3_ACCESS_DENIED The device handle was opened with insufficient
privileges for modifying device state.

ADMXRC3_CANCELLED
During the operation, another thread called
ADMXRC3_Cancel on the device handle, or the device
handle was closed.

ADMXRC3_HARDWARE_ERROR A hardware error occurred during the DMA transfer.

ADMXRC3_INVALID_BUFFER The pBuffer and length parameters represent a buffer
that is not valid in the caller's address space.

ADMXRC3_INVALID_FLAG The flags parameter contains an unrecognized flag.
ADMXRC3_INVALID_HANDLE The hDevice parameter was not a valid device handle.

ADMXRC3_INVALID_INDEX The dmaChannel parameter specifies a nonexistent
DMA channel.

ADMXRC3_INVALID_LOCAL_REGION The localAddress and length parameters specify a
region of local bus address space that is invalid.

ADMXRC3_NO_MEMORY A control block could not be allocated for keeping track
of the DMA transfer.

Remarks

This function does not perform any endian-conversion on the data. Refer to Section 3.6, "Endian issues" for a
discussion of how to make an application portable between big- and little-endian CPU architectures.

4.3.35 ADMXRC3_ReadDMABus
Declaration

ADMXRC3_STATUS
ADMXRC3_ReadDMABus(

__in ADMXRC3_HANDLE hDevice,
__in unsigned int dmaChannel,
__in uint32_t flags,
__in uint64_t busAddress,
__in size_t length,
__in uint64_t localAddress);

The parameters of this function are as follows:

hDevice (in)

Identifies the device to perform the DMA transfer.

dmaChannel (in)

Specifies which DMA channel in the device is to be used to perform the DMA transfer.

flags (in)

Flags that modify how the operation is performed. Currently the following flags are defined, which may be bitwise
ORed together:

ADMXRC3_DMA_FIXEDLOCAL
Causes the local address to be held constant throughout the entire DMA transfer.

•

Page 94 ADMXRC3 API Reference
AD-UG-0003Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

ADMXRC3_DMA_DONOTQUEUE
Causes the function to return an error immediately, rather than wait in a queue, if the DMA transfer cannot be
started immediately due to another DMA transfer ongoing on the same DMA channel.

•

busAddress (in)

The starting bus address at which data read from the device is stored.

length (in)

Number of bytes to read from the device.

localAddress (in)

The local address (in bytes) in the device at which to begin reading.

Description

This function is intended for scenarios where data must be transferred directly between two peers on a bus, where at
least one of the devices is a Gen 3 reconfigurable computing device. It reads a block of data from a device, starting at
the specified local address, and writes it beginning at the specified bus address. The data transfer is performed by a
DMA engine within the device. DMA transfers in the ADMXRC3 API are described in general terms in Section 3.8.3.3,
"DMA transfers with peer devices".

DMA transfers are subject to a queueing mechanism unless the ADMXRC3_DMA_DONOTQUEUE flag is passed. This
flag causes the function to give up immediately and return an error if it finds that another DMA transfer is in progress on
the same DMA channel. The queueing mechanism is described in general terms in Section 3.4, "Queueing".

Unlike ADMXRC3_ReadDMA and ADMXRC3_ReadDMAEx, this function does not lock anything into memory because
the data is read directly from the device specified by hDevice and written to the bus address specified by busAddress.
Thus, in some CPU architectures and platforms, there can be significantly less overhead in calling
ADMXRC3_ReadDMABus compared to ADMXRC3_ReadDMA or ADMXRC3_ReadDMAEx.

Return Value

A value of ADMXRC3_SUCCESS indicates that the function executed successfully. Otherwise, if an error occurs, the
following values may be returned:

Page 95ADMXRC3 API Reference
AD-UG-0003 Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

Return Value Description

ADMXRC3_ACCESS_DENIED The device handle was opened with insufficient
privileges for modifying device state.

ADMXRC3_CANCELLED
During the operation, another thread called
ADMXRC3_Cancel on the device handle, or the device
handle was closed.

ADMXRC3_HARDWARE_ERROR A hardware error occurred during the DMA transfer.
ADMXRC3_INVALID_FLAG The flags parameter contains an unrecognized flag.

ADMXRC3_INVALID_HANDLE The hDevice parameter was not a valid device handle.

ADMXRC3_INVALID_INDEX The dmaChannel parameter specifies a nonexistent
DMA channel.

ADMXRC3_INVALID_LOCAL_REGION The localAddress and length parameters specify a
region of local bus address space that is invalid.

ADMXRC3_NO_MEMORY A control block could not be allocated for keeping track
of the DMA transfer.

Remarks

This function is available in ADMXRC3 API version 1.4.0 and later.

This function does not perform any endian-conversion on the data. Refer to Section 3.6, "Endian issues" for a
discussion of how to make an application portable between big- and little-endian CPU architectures.

The way in which the busAddress parameter is interpreted depends upon the I/O bus standard used by the device
specified by hDevice. For example, if hDevice refers to an ADM-XRC-6T1, which has a PCI Express host interface,
busAddress is a PCI Express memory space address.

In models that have a PCI Express host interface, it is not possible to determine when no PCI Express endpoint claims
the address specified by busAddress. This is because PCI Express does not provide a standard mechanism for this
type of error to be reported to the bus master. In such cases, the data that was read from the device is silently
discarded and (assuming no other detectable errors occur) the return value is ADMXRC3_SUCCESS.

4.3.36 ADMXRC3_ReadDMAEx
Declaration

ADMXRC3_STATUS
ADMXRC3_ReadDMAEx(

__in ADMXRC3_HANDLE hDevice,
__in unsigned int dmaChannel,
__in uint32_t flags,
__out void* pBuffer,
__in size_t length,
__in uint64_t localAddress);

The parameters of this function are as follows:

hDevice (in)

Identifies the device to perform the DMA transfer.

dmaChannel (in)

Specifies which DMA channel in the device is to be used to perform the DMA transfer.

Page 96 ADMXRC3 API Reference
AD-UG-0003Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

flags (in)

Flags that modify how the operation is performed. Currently the following flags are defined, which may be bitwise
ORed together:

ADMXRC3_DMA_FIXEDLOCAL
Causes the local address to be held constant throughout the entire DMA transfer.

•

ADMXRC3_DMA_DONOTQUEUE
Causes the function to return an error immediately, rather than wait in a queue, if the DMA transfer cannot be
started immediately due to another DMA transfer ongoing on the same DMA channel.

•

pBuffer (out)

Points to the buffer that is to receive the data read from the device.

length (in)

Number of bytes to read from the device.

localAddress (in)

The local address (in bytes) in the device at which to begin reading.

Description

This function reads a block of data from a device into a buffer, starting at the specified local address. The data transfer
is performed by a DMA engine within the device. DMA transfers in the ADMXRC3 API are described in general terms in
Section 3.8.3.2, "DMA transfers with host memory".

DMA transfers are subject to a queueing mechanism unless the ADMXRC3_DMA_DONOTQUEUE flag is passed. This
flag causes the function to give up immediately and return an error if it finds that another DMA transfer is in progress on
the same DMA channel. The queueing mechanism is described in general terms in Section 3.4, "Queueing".

Because buffers in user-space may be wholly or partially swapped out to backing store at any time in most operating
systems, this function locks the buffer into physical memory before starting the DMA transfer proper. When the DMA
transfer is finished, the buffer is unlocked and made swappable again. Locking and unlocking a user-space buffer
incurs a certain overhead, so for performance-critical applications, ADMXRC3_ReadDMALockedEx may be more
appropriate than ADMXRC3_ReadDMAEx.

Return Value

A value of ADMXRC3_SUCCESS indicates that the function executed successfully. Otherwise, if an error occurs, the
following values may be returned:

Page 97ADMXRC3 API Reference
AD-UG-0003 Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

Return Value Description

ADMXRC3_ACCESS_DENIED The device handle was opened with insufficient
privileges for modifying device state.

ADMXRC3_CANCELLED
During the operation, another thread called
ADMXRC3_Cancel on the device handle, or the device
handle was closed.

ADMXRC3_HARDWARE_ERROR A hardware error occurred during the DMA transfer.

ADMXRC3_INVALID_BUFFER The pBuffer and length parameters represent a buffer
that is not valid in the caller's address space.

ADMXRC3_INVALID_FLAG The flags parameter contains an unrecognized flag.
ADMXRC3_INVALID_HANDLE The hDevice parameter was not a valid device handle.

ADMXRC3_INVALID_INDEX The dmaChannel parameter specifies a nonexistent
DMA channel.

ADMXRC3_INVALID_LOCAL_REGION The localAddress and length parameters specify a
region of local bus address space that is invalid.

ADMXRC3_NO_MEMORY A control block could not be allocated for keeping track
of the DMA transfer.

Remarks

This function is available in ADMXRC3 API version 1.2.0 and later.

This function does not perform any endian-conversion on the data. Refer to Section 3.6, "Endian issues" for a
discussion of how to make an application portable between big- and little-endian CPU architectures.

4.3.37 ADMXRC3_ReadDMALocked
Declaration

ADMXRC3_STATUS
ADMXRC3_ReadDMALocked(

__in ADMXRC3_HANDLE hDevice,
__in unsigned int dmaChannel,
__in uint32_t flags,
__in ADMXRC3_BUFFER_HANDLE hBuffer,
__in size_t offset,
__in size_t length,
__in uint32_t localAddress);

The parameters of this function are as follows:

hDevice (in)

Identifies the device to perform the DMA transfer.

dmaChannel (in)

Specifies which DMA channel in the device is to be used to perform the DMA transfer.

flags (in)

Flags that modify how the operation is performed. Currently the following flags are defined, which may be bitwise
ORed together:

Page 98 ADMXRC3 API Reference
AD-UG-0003Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

ADMXRC3_DMA_FIXEDLOCAL
Causes the local address to be held constant throughout the entire DMA transfer.

•

ADMXRC3_DMA_DONOTQUEUE
Causes the function to return an error immediately, rather than wait in a queue, if the DMA transfer cannot be
started immediately due to another DMA transfer ongoing on the same DMA channel.

•

hBuffer (in)

Handle to the locked buffer where data read from the device should be placed.

offset (in)

Offset into the locked buffer where data read from the device should be placed.

length (in)

Number of bytes to read from the device.

localAddress (in)

The local address (in bytes) in the device at which to begin reading.

Description

This function reads a block of data from a device into a locked buffer, starting at the specified local address. The data
transfer is performed by a DMA engine within the device. DMA transfers in the ADMXRC3 API are described in general
terms in Section 3.8.3.2, "DMA transfers with host memory".

DMA transfers are subject to a queueing mechanism unless the ADMXRC3_DMA_DONOTQUEUE flag is passed. This
flag causes the function to give up immediately and return an error if it finds that another DMA transfer is in progress on
the same DMA channel. The queueing mechanism is described in general terms in Section 3.4, "Queueing".

This function must be passed a handle to an already locked buffer, obtained by calling ADMXRC3_Lock.
ADMXRC3_ReadDMALocked has less overhead than ADMXRC3_ReadDMA, since it does not need to lock anything
in physical memory before starting the DMA transfer.

Return Value

A value of ADMXRC3_SUCCESS indicates that the function executed successfully. Otherwise, if an error occurs, the
following values may be returned:

Page 99ADMXRC3 API Reference
AD-UG-0003 Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

Return Value Description

ADMXRC3_ACCESS_DENIED The device handle was opened with insufficient
privileges for modifying device state.

ADMXRC3_CANCELLED
During the operation, another thread called
ADMXRC3_Cancel on the device handle, or the device
handle was closed.

ADMXRC3_HARDWARE_ERROR A hardware error occurred during the DMA transfer.

ADMXRC3_INVALID_BUFFER_HANDLE The hBuffer parameters is not a valid handle to a locked
buffer.

ADMXRC3_INVALID_FLAG The flags parameter contains an unrecognized flag.
ADMXRC3_INVALID_HANDLE The hDevice parameter was not a valid device handle.

ADMXRC3_INVALID_INDEX The dmaChannel parameter specifies a nonexistent
DMA channel.

ADMXRC3_INVALID_LOCAL_REGION The localAddress and length parameters specify a
region of local bus address space that is invalid.

ADMXRC3_INVALID_REGION The offset and length parameters represent a region
that exceeds the bounds of the locked buffer.

ADMXRC3_NO_MEMORY A control block could not be allocated for keeping track
of the DMA transfer.

Remarks

Before starting DMA transfer in the hardware, this function increments the reference count of the locked buffer so that it
cannot be inadvertantly unlocked if a badly-behaved application calls ADMXRC3_Unlock before the DMA transfer
finishes. When the DMA transfer finishes, the locked buffer's reference count is decremented.

This function does not perform any endian-conversion on the data. Refer to Section 3.6, "Endian issues" for a
discussion of how to make an application portable between big- and little-endian CPU architectures.

4.3.38 ADMXRC3_ReadDMALockedEx
Declaration

ADMXRC3_STATUS
ADMXRC3_ReadDMALockedEx(

__in ADMXRC3_HANDLE hDevice,
__in unsigned int dmaChannel,
__in uint32_t flags,
__in ADMXRC3_BUFFER_HANDLE hBuffer,
__in size_t offset,
__in size_t length,
__in uint64_t localAddress);

The parameters of this function are as follows:

hDevice (in)

Identifies the device to perform the DMA transfer.

dmaChannel (in)

Specifies which DMA channel in the device is to be used to perform the DMA transfer.

Page 100 ADMXRC3 API Reference
AD-UG-0003Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

flags (in)

Flags that modify how the operation is performed. Currently the following flags are defined, which may be bitwise
ORed together:

ADMXRC3_DMA_FIXEDLOCAL
Causes the local address to be held constant throughout the entire DMA transfer.

•

ADMXRC3_DMA_DONOTQUEUE
Causes the function to return an error immediately, rather than wait in a queue, if the DMA transfer cannot be
started immediately due to another DMA transfer ongoing on the same DMA channel.

•

hBuffer (in)

Handle to the locked buffer where data read from the device should be placed.

offset (in)

Offset into the locked buffer where data read from the device should be placed.

length (in)

Number of bytes to read from the device.

localAddress (in)

The local address (in bytes) in the device at which to begin reading.

Description

This function reads a block of data from a device into a locked buffer, starting at the specified local address. The data
transfer is performed by a DMA engine within the device. DMA transfers in the ADMXRC3 API are described in general
terms in Section 3.8.3.2, "DMA transfers with host memory".

DMA transfers are subject to a queueing mechanism unless the ADMXRC3_DMA_DONOTQUEUE flag is passed. This
flag causes the function to give up immediately and return an error if it finds that another DMA transfer is in progress on
the same DMA channel. The queueing mechanism is described in general terms in Section 3.4, "Queueing".

This function must be passed a handle to an already locked buffer, obtained by calling ADMXRC3_Lock.
ADMXRC3_ReadDMALockedEx has less overhead than ADMXRC3_ReadDMAEx, since it does not need to lock
anything in physical memory before starting the DMA transfer.

Return Value

A value of ADMXRC3_SUCCESS indicates that the function executed successfully. Otherwise, if an error occurs, the
following values may be returned:

Page 101ADMXRC3 API Reference
AD-UG-0003 Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

Return Value Description

ADMXRC3_ACCESS_DENIED The device handle was opened with insufficient
privileges for modifying device state.

ADMXRC3_CANCELLED
During the operation, another thread called
ADMXRC3_Cancel on the device handle, or the device
handle was closed.

ADMXRC3_HARDWARE_ERROR A hardware error occurred during the DMA transfer.

ADMXRC3_INVALID_BUFFER_HANDLE The hBuffer parameters is not a valid handle to a locked
buffer.

ADMXRC3_INVALID_FLAG The flags parameter contains an unrecognized flag.
ADMXRC3_INVALID_HANDLE The hDevice parameter was not a valid device handle.

ADMXRC3_INVALID_INDEX The dmaChannel parameter specifies a nonexistent
DMA channel.

ADMXRC3_INVALID_LOCAL_REGION The localAddress and length parameters specify a
region of local bus address space that is invalid.

ADMXRC3_INVALID_REGION The offset and length parameters represent a region
that exceeds the bounds of the locked buffer.

ADMXRC3_NO_MEMORY A control block could not be allocated for keeping track
of the DMA transfer.

Remarks

Before starting DMA transfer in the hardware, this function increments the reference count of the locked buffer so that it
cannot be inadvertantly unlocked if a badly-behaved application calls ADMXRC3_Unlock before the DMA transfer
finishes. When the DMA transfer finishes, the locked buffer's reference count is decremented.

This function does not perform any endian-conversion on the data. Refer to Section 3.6, "Endian issues" for a
discussion of how to make an application portable between big- and little-endian CPU architectures.

4.3.39 ADMXRC3_ReadFlash
Declaration

ADMXRC3_STATUS
ADMXRC3_ReadFlash(

__in ADMXRC3_HANDLE hDevice,
__in unsigned int flashIndex,
__in uint32_t flags,
__in size_t address,
__in size_t length,
__out void* pBuffer);

The parameters of this function are as follows:

hDevice (in)

Identifies the device containing the Flash memory bank to be read.

flashIndex (in)

Specifies which Flash memory bank in the device is to be read.

flags (in)

Page 102 ADMXRC3 API Reference
AD-UG-0003Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

Flags that modify how the operation is performed. Currently the following flags are defined, which may be bitwise
ORed together:

ADMXRC3_FLASH_SYNC
Causes the cache for the Flash memory bank to be synchronized with the hardware before the function
returns. For a description of the caching mechanism, refer to Section 3.8.5.1, "Flash memory caching"

•

address (in)

The byte address in the Flash memory bank at which to begin reading.

length (in)

Number of bytes to read from the Flash memory bank.

pBuffer (out)

The buffer that should receive the data read from the Flash memory bank.

Description

This function reads a block of data from Flash memory bank in a device. The data transfer is performed by the CPU, so
is CPU intensive for large blocks.

The region of the Flash memory bank that is read, which is specified by the address and length parameters, can be of
arbitrary alignment and does not (for example) need to be aligned to block boundaries. The region must be inside the
user-programmable region, the bounds of which can be determined by calling ADMXRC3_GetFlashInfo.

The ADMXRC3 API implements a caching mechanism for each Flash memory bank. Passing the
ADMXRC3_FLASH_SYNC flag ensures that the cache for the specified Flash memory bank is synchronized with the
hardware before the function returns.

Return Value

A value of ADMXRC3_SUCCESS indicates that the function executed successfully. Otherwise, if an error occurs, the
following values may be returned:

Page 103ADMXRC3 API Reference
AD-UG-0003 Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

Return Value Description

ADMXRC3_ACCESS_DENIED The device handle was opened with insufficient privileges
for modifying device state.

ADMXRC3_CANCELLED
During the operation, another thread called
ADMXRC3_Cancel on the device handle, or the device
handle was closed.

ADMXRC3_HARDWARE_ERROR A hardware error occurred while reading the Flash
memory bank.

ADMXRC3_INVALID_BUFFER The pBuffer and length parameters represent a buffer
that is not valid in the caller's address space.

ADMXRC3_INVALID_FLAG The flags parameter contains an unrecognized flag.
ADMXRC3_INVALID_HANDLE The hDevice parameter was not a valid device handle.

ADMXRC3_INVALID_INDEX The flashIndex parameter specifies a nonexistent Flash
memory bank.

ADMXRC3_INVALID_REGION The offset and length parameters represent a region that
exceeds the bounds of the Flash memory bank.

ADMXRC3_NO_MEMORY A control block could not be allocated for keeping track of
the Flash read operation.

Remarks

Although the region specified by the address and length parameters need not bear any relationship to Flash block
boundaries, an application can call ADMXRC3_GetFlashBlockInfo in order to determine which block contains a
particular address. An application can enumerate every block in a Flash memory bank by beginning at address 0 and
repeatedly calling ADMXRC3_GetFlashBlockInfo until the end of the bank is reached.

Although this function reads a Flash memory bank, in the event of an error, the returned error code may imply that a
write or erase operation failed. This can occur because the caching mechanism may need to write a dirty block back to
the hardware before another block is read.

This function does not perform any endian-conversion on the data. Refer to Section 3.6, "Endian issues" for a
discussion of how to make an application portable between big- and little-endian CPU architectures.

4.3.40 ADMXRC3_ReadSensor
Declaration

ADMXRC3_STATUS
ADMXRC3_ReadSensor(

__in ADMXRC3_HANDLE hDevice,
__in unsigned int sensorIndex,
__out ADMXRC3_SENSOR_VALUE* pValue);

The parameters of this function are as follows:

hDevice (in)

Identifies the device that contains the sensor of interest.

sensorIndex (in)

Identifies the sensor of interest within the device. This is a zero-based index that must be less than the NumSensor
member of ADMXRC3_CARD_INFOEX.

Page 104 ADMXRC3 API Reference
AD-UG-0003Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

pValue (out)

Points to an object of type ADMXRC3_SENSOR_VALUE in which to return the sensor reading.

Description

This function reads a sensor, returning the current reading via the union ADMXRC3_SENSOR_VALUE.

Return Value

A value of ADMXRC3_SUCCESS indicates that the function executed successfully. Otherwise, if an error occurs, the
following values may be returned:

Return Value Description
ADMXRC3_HARDWARE_ERROR A hardware error occurred while reading the sensor.
ADMXRC3_INVALID_HANDLE The hDevice parameter was not a valid device handle.

ADMXRC3_INVALID_INDEX The sensorIndex parameter specifies a nonexistent
sensor.

ADMXRC3_NULL_POINTER The pValue parameter was a NULL pointer.

Remarks

This function is available in ADMXRC3 API version 1.1.0 and later.

The datatype of the sensor, as returned by ADMXRC3_GetSensorInfo, determines how an application should interpret
a value of type ADMXRC3_SENSOR_VALUE. It is the application's responsibility to be aware of a sensor's datatype
and correctly interpret the returned sensor value.

4.3.41 ADMXRC3_ReadVPD
Declaration

ADMXRC3_STATUS
ADMXRC3_ReadVPD(

__in ADMXRC3_HANDLE hDevice,
__in uint32_t flags,
__in size_t offset,
__in size_t length,
__out void* pBuffer);

The parameters of this function are as follows:

hDevice (in)

Identifies the device from which to read the VPD.

flags (in)

Flags that modify how the operation is performed. Currently no flags are defined, so this parameter must be zero.

offset (in)

The byte offset into the VPD memory at which to begin reading.

Page 105ADMXRC3 API Reference
AD-UG-0003 Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

length (in)

Number of bytes to read from the VPD memory.

pBuffer (out)

The buffer that should receive the data read from the VPD memory.

Description

This function reads a block of Vital Product Data (VPD) from a device. The data transfer is performed by the CPU, so is
CPU intensive for large blocks. For an overview, refer to Section 3.8.6, "Vital Product Data".

Return Value

A value of ADMXRC3_SUCCESS indicates that the function executed successfully. Otherwise, if an error occurs, the
following values may be returned:

Return Value Description

ADMXRC3_ACCESS_DENIED The device handle was opened with insufficient privileges
for modifying device state.

ADMXRC3_CANCELLED
During the operation, another thread called
ADMXRC3_Cancel on the device handle, or the device
handle was closed.

ADMXRC3_HARDWARE_ERROR A hardware error occurred while reading the VPD
memory.

ADMXRC3_INVALID_BUFFER The pBuffer and length parameters represent a buffer
that is not valid in the caller's address space.

ADMXRC3_INVALID_HANDLE The hDevice parameter was not a valid device handle.
ADMXRC3_INVALID_FLAG The flags parameter contains an unrecognized flag.

ADMXRC3_INVALID_REGION The offset and length parameters represent a region that
exceeds the bounds of the VPD memory.

ADMXRC3_NO_MEMORY A control block could not be allocated for keeping track of
the VPD read operation.

Remarks

This function does not perform any endian-conversion on the data. Refer to Section 3.6, "Endian issues" for a
discussion of how to make an application portable between big- and little-endian CPU architectures.

Page 106 ADMXRC3 API Reference
AD-UG-0003Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

4.3.42 ADMXRC3_RegisterWin32Event
Declaration

ADMXRC3_STATUS
ADMXRC3_RegisterWin32Event(

__in ADMXRC3_HANDLE hDevice,
__in uint32_t notification,
__in HANDLE hEvent);

The parameters of this function are as follows:

hDevice (in)

Identifies the device for which the Win32 Event should be registered.

notification (in)

The type of notification for which the Win32 Event should be registered.

hEvent (in)

The handle to the Win32 Event that is to be registered.

Description

This Windows-specific function registers a Win32 Event that is signalled whenever a certain event occurs within a
device. The prototype for this function exists only for Windows; it is not defined for other operating systems.

The type of notification must be one of the following values:

ADMXRC3_EVENT_FPGAALERT(targetIndex)
Notification of overtemperature alerts for a target FPGA, where 'targetIndex' is the index of the target FPGA.

•

ADMXRC3_EVENT_FPGAINTERRUPT(targetIndex)
Notification of interrupts generated by a target FPGA, where 'targetIndex' is the index of the target FPGA.

•

A Win32 Event that is registered using this function is associated with the device handle used to register it. It is legal to
register the same Win32 Event with several different devices, although the application will not be able to determine why
the Win32 Event was signalled unless it checks each device in some application-specific manner. Multiple events may
be registered with the same device handle for the same notification type, if necessary.

To unregister a Win32 Event so that it will no longer be signalled, an application calls
ADMXRC3_UnregisterWin32Event using the same device handle that was used to register it. Attempting to unregister
a Win32 Event using a different device handle to the one used to register it will fail.

Return Value

A value of ADMXRC3_SUCCESS indicates that the function executed successfully. Otherwise, if an error occurs, the
following values may be returned:

Page 107ADMXRC3 API Reference
AD-UG-0003 Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

Return Value Description

ADMXRC3_INVALID_HANDLE The hDevice parameter was not a valid device handle, or
the hEvent parameter is not a valid Win32 Event handle.

ADMXRC3_INVALID_INDEX The notification parameter specifies a type of notification
that the API does not recognize.

ADMXRC3_NO_MEMORY Memory could not be allocated for keeping track of the
registered Win32 Event.

Remarks

When a notification is delivered, a Win32 Event registered for that notification is signalled regardless of whether or not it
is already in a signalled state.

There is no queueing or counting of notifications in the ADMXRC3 API. A notification that occurs when there is no
Win32 Event registered for it is lost. If a second notification is delivered via a Win32 Event before the application
responds to the first notification, the application will see only one notification.

There are no restrictions on the parameters to the Win32 CreateEvent function when creating an event for use with
ADMXRC3_RegisterWin32Event.

The ADMXRC3 API automatically unregisters any Win32 Events when a device handle is closed. This can occur either
because of call to ADMXRC3_Close, or when a device handle is automatically closed by the operating system, as the
result of a process terminating without cleaning up.

4.3.43 ADMXRC3_RegisterVxwSem
Declaration

ADMXRC3_STATUS
ADMXRC3_RegisterVxwSem(

__in ADMXRC3_HANDLE hDevice,
__in uint32_t notification,
__in SEM_ID semId);

The parameters of this function are as follows:

hDevice (in)

Identifies the device for which the semaphore should be registered.

notification (in)

The type of notification for which the semaphore should be registered.

semId (in)

The ID of the VxWorks semaphore that is to be registered.

Description

This VxWorks-specific function registers a semaphore that is signalled whenever a certain event occurs within a device.
The prototype for this function exists only for VxWorks; it is not defined for other operating systems.

The type of notification must be one of the following values:

Page 108 ADMXRC3 API Reference
AD-UG-0003Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

ADMXRC3_EVENT_FPGAALERT(targetIndex)
Notification of overtemperature alerts for a target FPGA, where 'targetIndex' is the index of the target FPGA.

•

ADMXRC3_EVENT_FPGAINTERRUPT(targetIndex)
Notification of interrupts generated by a target FPGA, where 'targetIndex' is the index of the target FPGA.

•

A VxWorks semaphore that is registered using this function is associated with the device handle used to register it. It is
legal to register the same semaphore with several different devices, although the application will not be able to
determine why the semaphore was signalled unless it checks each device in some application-specific manner. Multiple
semaphores may be registered with the same device handle for the same notification type, if necessary.

To unregister a semaphore so that it will no longer be signalled, an application calls ADMXRC3_UnregisterVxwSem
using the same device handle that was used to register it. Attempting to unregister a semaphore using a different
device handle to the one used to register it will fail.

Return Value

A value of ADMXRC3_SUCCESS indicates that the function executed successfully. Otherwise, if an error occurs, the
following values may be returned:

Return Value Description

ADMXRC3_INVALID_HANDLE
The hDevice parameter was not a valid device handle, or
the semId parameter is not a valid VxWorks semaphore
ID.

ADMXRC3_INVALID_INDEX The notification parameter specifies a type of notification
that the API does not recognize.

ADMXRC3_NO_MEMORY Memory could not be allocated for keeping track of the
registered VxWorks semaphore.

Remarks

This function is available in ADMXRC3 API version 1.1.0 and later.

When a notification is delivered, a semaphore registered for that notification is signalled regardless of whether or not it
is already in a signalled state.

There is no queueing or counting of notifications in the ADMXRC3 API. A notification that occurs when there is no
semaphore registered for it is lost. If a second notification is delivered via a semaphore before the application responds
to the first notification, the application will see only one notification unless a counting semaphore is used.

There are no restrictions on the type of VxWorks semaphore (binary, counting etc.) when creating a semaphore for use
with ADMXRC3_RegisterVxwSem.

The ADMXRC3 API automatically unregisters any semaphores when a device handle is closed.

Page 109ADMXRC3 API Reference
AD-UG-0003 Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

4.3.44 ADMXRC3_SetClockFrequency
Declaration

ADMXRC3_STATUS
ADMXRC3_SetClockFrequency(

__in ADMXRC3_HANDLE hDevice,
__in unsigned int clockIndex,
__in uint32_t flags,
__in double frequency,
__out double* pActualFrequency);

The parameters of this function are as follows:

hDevice (in)

Identifies the device that contains the clock generator of interest.

clockIndex (in)

Specifies which clock generator within the device is of interest. This is a zero-based index that must be less than the
NumClockGen member of ADMXRC3_CARD_INFOEX.

flags (in)

Flags that modify how the operation is performed. Currently the following flags are defined, which may be bitwise
ORed together:

ADMXRC3_SETCLOCK_TESTONLY
Causes the actual frequency to be calculated, but does not actually program the hardware.

•

ADMXRC3_SETCLOCK_MAXIMUM
Causes the algorithm that generates the programming information for the clock generator to return an actual
frequency that is not greater than the requested frequency.

•

ADMXRC3_SETCLOCK_MINIMUM
Causes the algorithm that generates the programming information for the clock generator to return an actual
frequency that is not less than the requested frequency.

•

frequency (in)

Specifies the requested frequency, in Hz.

pActualFrequency (out)

Points to an object of type double in which to return the actual frequency (in Hz) that is (or would be) programmed
into the clock generator. This parameter may be NULL if an application does not require the actual programmed
frequency.

Description

This function programs a clock generator in a device to output a clock signal at a specified frequency.

Clock generator chips are typically implemented as a phase-locked loop with programmable division and multiplication
factors. This means that a clock generator does not have a continuous frequency range, but is capable generating a
large number of discrete frequencies. Thus ADMXRC3_SetClockFrequency returns the achievable frequency that is
closest to the requested frequency.

Page 110 ADMXRC3 API Reference
AD-UG-0003Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

The ADMXRC3_SETCLOCK_TESTONLY flag can be passed when an application wishes to determine how close the
actual frequency will be to the requested frequency, before actually programming the hardware. It causes the function
to return without actually programming the hardware.

Return Value

A value of ADMXRC3_SUCCESS indicates that the function executed successfully. Otherwise, if an error occurs, the
following values may be returned:

Return Value Description

ADMXRC3_ACCESS_DENIED The device handle was opened with insufficient privileges
for modifying device state.

ADMXRC3_CANCELLED
During the operation, another thread called
ADMXRC3_Cancel on the device handle, or the device
handle was closed.

ADMXRC3_HARDWARE_ERROR A hardware error occurred while programming the clock
generator.

ADMXRC3_INVALID_FLAG The flags parameter contains an unrecognized flag.

ADMXRC3_INVALID_FREQUENCY The requested frequency could not be programmed. See
remarks below.

ADMXRC3_INVALID_HANDLE The hDevice parameter was not a valid device handle.

ADMXRC3_INVALID_INDEX The clockIndex parameter specifies a nonexistent clock
generator.

ADMXRC3_NO_MEMORY A control block could not be allocated for keeping track of
the clock programming operation.

Remarks

Depending on the model, this function may take up 50 milliseconds to execute, as some clock generator chips require a
significant length of time to lock to the new frequency. During the transition period, the clock signal does not exhibit
discontinuities or glitches.

Passing both the ADMXRC3_SETCLOCK_MAXIMUM and ADMXRC3_SETCLOCK_MINIMUM flags together means
that if the clock generator cannot generate the exact requested frequency, it returns an error.

If the function returns ADMXRC3_INVALID_FREQUENCY, it may be because the flags were too restrictive (e.g.
ADMXRC3_SETCLOCK_MINIMUM and ADMXRC3_SETCLOCK_MAXIMUM passed together, requiring the frequency
to be "exact"), or because the requested frequency is too high or low for the clock generator in question.

Page 111ADMXRC3 API Reference
AD-UG-0003 Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

4.3.45 ADMXRC3_StartNotificationWait
Declaration

ADMXRC3_STATUS
ADMXRC3_StartNotificationWait(

__in ADMXRC3_HANDLE hDevice,
__in ADMXRC3_TICKET pTicket,
__in uint32_t notification);

The parameters of this function are as follows:

hDevice (in)

Identifies the device for which to perform the wait.

pTicket (in)

A ticket used to keep track of the non-blocking operation.

notification (in)

The type of notification for which to wait.

Description

This function begins a non-blocking operation that waits for a notification from a device. The type of notification must be
one of the following values:

ADMXRC3_EVENT_FPGAALERT(targetIndex)
Notification of overtemperature alerts for a target FPGA, where 'targetIndex' is the index of the target FPGA.

•

ADMXRC3_EVENT_FPGAINTERRUPT(targetIndex)
Notification of interrupts generated by a target FPGA, where 'targetIndex' is the index of the target FPGA.

•

The counterpart to this function is ADMXRC3_FinishNotificationWait, which finishes the non-blocking operation.
Every call to ADMXRC3_StartNotificationWait that succeeds (i.e. returns ADMXRC3_PENDING) must be finished
with a call to ADMXRC3_FinishNotificationWait.

Return Value

A value of ADMXRC3_PENDING indicates that the function executed successfully and that a non-blocking operation
was started. Otherwise, if an error occurs, a non-blocking operation was not started and the following values may be
returned:

Return Value Description
ADMXRC3_INVALID_HANDLE The hDevice parameter was not a valid device handle.

ADMXRC3_INVALID_INDEX The notification parameter specifies a type of notification
that the API does not recognize.

ADMXRC3_NO_MEMORY A control block could not be allocated for keeping track of
the notification wait operation.

Remarks

Page 112 ADMXRC3 API Reference
AD-UG-0003Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

This function is available in ADMXRC3 API version 1.1.0 and later, and provides a mechanism that is broadly equivalent
to ADMXRC3_RegisterWin32Event or ADMXRC3_RegisterVxwSem, except that instead of registering a wait object
with the API, it is a direct-call mechanism.

There is no queueing of notifications. If some event occurs in a device and no thread is waiting for that notification, the
event is lost.

4.3.46 ADMXRC3_StartReadDMA
Declaration

ADMXRC3_STATUS
ADMXRC3_StartReadDMA(

__in ADMXRC3_HANDLE hDevice,
__in ADMXRC3_TICKET pTicket,
__in unsigned int dmaChannel,
__in uint32_t flags,
__out void* pBuffer,
__in size_t length,
__in uint32_t localAddress);

The parameters of this function are as follows:

hDevice (in)

Identifies the device to perform the DMA transfer.

pTicket (in)

A ticket used to keep track of the non-blocking operation.

dmaChannel (in)

Specifies which DMA channel in the device is to be used to perform the DMA transfer.

flags (in)

Flags that modify how the operation is performed. Currently the following flags are defined, which may be bitwise
ORed together:

ADMXRC3_DMA_FIXEDLOCAL
Causes the local address to be held constant throughout the entire DMA transfer.

•

ADMXRC3_DMA_DONOTQUEUE
Causes the function to return an error immediately, rather than wait in a queue, if the DMA transfer cannot be
started immediately due to another DMA transfer ongoing on the same DMA channel.

•

pBuffer (out)

Points to the buffer that is to receive the data read from the device.

length (in)

Number of bytes to read from the device.

localAddress (in)

Page 113ADMXRC3 API Reference
AD-UG-0003 Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

The local address (in bytes) in the device at which to begin reading.

Description

This function reads a block of data from a device into a buffer, starting at the specified local address. The data transfer
is performed by a DMA engine within the device. DMA transfers in the ADMXRC3 API are described in general terms in
Section 3.8.3.2, "DMA transfers with host memory".

This is the non-blocking version of ADMXRC3_ReadDMA, and the pTicket parameter must follow the rules laid out in
Section 3.3, "Non-blocking operations". To finish the non-blocking operation and determine the success or failure of
the DMA transfer, call ADMXRC3_FinishDMA.

DMA transfers are subject to a queueing mechanism unless the ADMXRC3_DMA_DONOTQUEUE flag is passed. This
flag causes the function to give up immediately and return an error if it finds that another DMA transfer is in progress on
the same DMA channel. The queueing mechanism is described in general terms in Section 3.4, "Queueing".

Because buffers in user-space may be wholly or partially swapped out to backing store at any time in most operating
systems, this function locks the buffer into physical memory before starting the DMA transfer proper. When the DMA
transfer is finished, the buffer is unlocked and made swappable again. Locking and unlocking a user-space buffer
incurs a certain overhead, so for performance-critical applications, ADMXRC3_StartReadDMALocked may be more
appropriate than ADMXRC3_StartReadDMA.

Return Value

A value of ADMXRC3_PENDING indicates that the function executed successfully and that a non-blocking operation
was started. Otherwise, if an error occurs, a non-blocking operation was not started and the following values may be
returned:

Return Value Description

ADMXRC3_ACCESS_DENIED The device handle was opened with insufficient
privileges for modifying device state.

ADMXRC3_HARDWARE_ERROR A hardware error occurred during the DMA transfer.

ADMXRC3_INVALID_BUFFER The pBuffer and length parameters represent a buffer
that is not valid in the caller's address space.

ADMXRC3_INVALID_FLAG The flags parameter contains an unrecognized flag.
ADMXRC3_INVALID_HANDLE The hDevice parameter was not a valid device handle.

ADMXRC3_INVALID_INDEX The dmaChannel parameter specifies a nonexistent
DMA channel.

ADMXRC3_INVALID_LOCAL_REGION The localAddress and length parameters specify a
region of local bus address space that is invalid.

ADMXRC3_NO_MEMORY A control block could not be allocated for keeping track
of the DMA transfer.

Remarks

This function does not perform any endian-conversion on the data. Refer to Section 3.6, "Endian issues" for a
discussion of how to make an application portable between big- and little-endian CPU architectures.

Page 114 ADMXRC3 API Reference
AD-UG-0003Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

4.3.47 ADMXRC3_StartReadDMABus
Declaration

ADMXRC3_STATUS
ADMXRC3_StartReadDMABus(

__in ADMXRC3_HANDLE hDevice,
__in ADMXRC3_TICKET pTicket,
__in unsigned int dmaChannel,
__in uint32_t flags,
__in uint64_t busAddress,
__in size_t length,
__in uint64_t localAddress);

The parameters of this function are as follows:

hDevice (in)

Identifies the device to perform the DMA transfer.

pTicket (in)

A ticket used to keep track of the non-blocking operation.

dmaChannel (in)

Specifies which DMA channel in the device is to be used to perform the DMA transfer.

flags (in)

Flags that modify how the operation is performed. Currently the following flags are defined, which may be bitwise
ORed together:

ADMXRC3_DMA_FIXEDLOCAL
Causes the local address to be held constant throughout the entire DMA transfer.

•

ADMXRC3_DMA_DONOTQUEUE
Causes the function to return an error immediately, rather than wait in a queue, if the DMA transfer cannot be
started immediately due to another DMA transfer ongoing on the same DMA channel.

•

busAddress (in)

The starting bus address at which data read from the device is stored.

length (in)

Number of bytes to read from the device.

localAddress (in)

The local address (in bytes) in the device at which to begin reading.

Description

Page 115ADMXRC3 API Reference
AD-UG-0003 Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

This function is intended for scenarios where data must be transferred directly between two peers on a bus, where at
least one of the devices is a Gen 3 reconfigurable computing device. It reads a block of data from a device, starting at
the specified local address, and writes it beginning at the specified bus address. The data transfer is performed by a
DMA engine within the device. DMA transfers in the ADMXRC3 API are described in general terms in Section 3.8.3.3,
"DMA transfers with peer devices".

This is the non-blocking version of ADMXRC3_ReadDMABus, and the pTicket parameter must follow the rules laid out
in Section 3.3, "Non-blocking operations". To finish the non-blocking operation and determine the success or failure
of the DMA transfer, call ADMXRC3_FinishDMA.

DMA transfers are subject to a queueing mechanism unless the ADMXRC3_DMA_DONOTQUEUE flag is passed. This
flag causes the function to give up immediately and return an error if it finds that another DMA transfer is in progress on
the same DMA channel. The queueing mechanism is described in general terms in Section 3.4, "Queueing".

Unlike ADMXRC3_StartReadDMA and ADMXRC3_StartReadDMAEx, this function does not lock anything into
memory because the data is read directly from the device specified by hDevice and written to the bus address
specified by busAddress. Thus, in some CPU architectures and platforms, there can be significantly less overhead in
calling ADMXRC3_StartReadDMABus compared to ADMXRC3_StartReadDMA or ADMXRC3_StartReadDMAEx.

Return Value

A value of ADMXRC3_PENDING indicates that the function executed successfully and that a non-blocking operation
was started. Otherwise, if an error occurs, a non-blocking operation was not started and the following values may be
returned:

Return Value Description

ADMXRC3_ACCESS_DENIED The device handle was opened with insufficient
privileges for modifying device state.

ADMXRC3_HARDWARE_ERROR A hardware error occurred during the DMA transfer.
ADMXRC3_INVALID_FLAG The flags parameter contains an unrecognized flag.

ADMXRC3_INVALID_HANDLE The hDevice parameter was not a valid device handle.

ADMXRC3_INVALID_INDEX The dmaChannel parameter specifies a nonexistent
DMA channel.

ADMXRC3_INVALID_LOCAL_REGION The localAddress and length parameters specify a
region of local bus address space that is invalid.

ADMXRC3_NO_MEMORY A control block could not be allocated for keeping track
of the DMA transfer.

Remarks

This function is available in ADMXRC3 API version 1.4.0 and later.

This function does not perform any endian-conversion on the data. Refer to Section 3.6, "Endian issues" for a
discussion of how to make an application portable between big- and little-endian CPU architectures.

The way in which the busAddress parameter is interpreted depends upon the I/O bus standard used by the device
specified by hDevice. For example, if hDevice refers to an ADM-XRC-6T1, which has a PCI Express host interface,
busAddress is a PCI Express memory space address.

Page 116 ADMXRC3 API Reference
AD-UG-0003Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

In models that have a PCI Express host interface, it is not possible to determine when no PCI Express endpoint claims
the address specified by busAddress. This is because PCI Express does not provide a standard mechanism for this
type of error to be reported to the bus master. In such cases, the data that was read from the device is silently
discarded and (assuming no other detectable errors occur) the return value from ADMXRC3_FinishDMA is
ADMXRC3_SUCCESS.

4.3.48 ADMXRC3_StartReadDMAEx
Declaration

ADMXRC3_STATUS
ADMXRC3_StartReadDMAEx(

__in ADMXRC3_HANDLE hDevice,
__in ADMXRC3_TICKET pTicket,
__in unsigned int dmaChannel,
__in uint32_t flags,
__out void* pBuffer,
__in size_t length,
__in uint64_t localAddress);

The parameters of this function are as follows:

hDevice (in)

Identifies the device to perform the DMA transfer.

pTicket (in)

A ticket used to keep track of the non-blocking operation.

dmaChannel (in)

Specifies which DMA channel in the device is to be used to perform the DMA transfer.

flags (in)

Flags that modify how the operation is performed. Currently the following flags are defined, which may be bitwise
ORed together:

ADMXRC3_DMA_FIXEDLOCAL
Causes the local address to be held constant throughout the entire DMA transfer.

•

ADMXRC3_DMA_DONOTQUEUE
Causes the function to return an error immediately, rather than wait in a queue, if the DMA transfer cannot be
started immediately due to another DMA transfer ongoing on the same DMA channel.

•

pBuffer (out)

Points to the buffer that is to receive the data read from the device.

length (in)

Number of bytes to read from the device.

localAddress (in)

The local address (in bytes) in the device at which to begin reading.

Page 117ADMXRC3 API Reference
AD-UG-0003 Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

Description

This function reads a block of data from a device into a buffer, starting at the specified local address. The data transfer
is performed by a DMA engine within the device. DMA transfers in the ADMXRC3 API are described in general terms in
Section 3.8.3.2, "DMA transfers with host memory".

This is the non-blocking version of ADMXRC3_ReadDMAEx, and the pTicket parameter must follow the rules laid out
in Section 3.3, "Non-blocking operations". To finish the non-blocking operation and determine the success or failure
of the DMA transfer, call ADMXRC3_FinishDMA.

DMA transfers are subject to a queueing mechanism unless the ADMXRC3_DMA_DONOTQUEUE flag is passed. This
flag causes the function to give up immediately and return an error if it finds that another DMA transfer is in progress on
the same DMA channel. The queueing mechanism is described in general terms in Section 3.4, "Queueing".

Because buffers in user-space may be wholly or partially swapped out to backing store at any time in most operating
systems, this function locks the buffer into physical memory before starting the DMA transfer proper. When the DMA
transfer is finished, the buffer is unlocked and made swappable again. Locking and unlocking a user-space buffer
incurs a certain overhead, so for performance-critical applications, ADMXRC3_StartReadDMALockedEx may be more
appropriate than ADMXRC3_StartReadDMAEx.

Return Value

A value of ADMXRC3_PENDING indicates that the function executed successfully and that a non-blocking operation
was started. Otherwise, if an error occurs, a non-blocking operation was not started and the following values may be
returned:

Return Value Description

ADMXRC3_ACCESS_DENIED The device handle was opened with insufficient
privileges for modifying device state.

ADMXRC3_HARDWARE_ERROR A hardware error occurred during the DMA transfer.

ADMXRC3_INVALID_BUFFER The pBuffer and length parameters represent a buffer
that is not valid in the caller's address space.

ADMXRC3_INVALID_FLAG The flags parameter contains an unrecognized flag.
ADMXRC3_INVALID_HANDLE The hDevice parameter was not a valid device handle.

ADMXRC3_INVALID_INDEX The dmaChannel parameter specifies a nonexistent
DMA channel.

ADMXRC3_INVALID_LOCAL_REGION The localAddress and length parameters specify a
region of local bus address space that is invalid.

ADMXRC3_NO_MEMORY A control block could not be allocated for keeping track
of the DMA transfer.

Remarks

This function is available in ADMXRC3 API version 1.2.0 and later.

This function does not perform any endian-conversion on the data. Refer to Section 3.6, "Endian issues" for a
discussion of how to make an application portable between big- and little-endian CPU architectures.

Page 118 ADMXRC3 API Reference
AD-UG-0003Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

4.3.49 ADMXRC3_StartReadDMALocked
Declaration

ADMXRC3_STATUS
ADMXRC3_StartReadDMALocked(

__in ADMXRC3_HANDLE hDevice,
__in ADMXRC3_TICKET pTicket,
__in unsigned int dmaChannel,
__in uint32_t flags,
__in ADMXRC3_BUFFER_HANDLE hBuffer,
__in size_t offset,
__in size_t length,
__in uint32_t localAddress);

The parameters of this function are as follows:

hDevice (in)

Identifies the device to perform the DMA transfer.

pTicket (in)

A ticket used to keep track of the non-blocking operation.

dmaChannel (in)

Specifies which DMA channel in the device is to be used to perform the DMA transfer.

flags (in)

Flags that modify how the operation is performed. Currently the following flags are defined, which may be bitwise
ORed together:

ADMXRC3_DMA_FIXEDLOCAL
Causes the local address to be held constant throughout the entire DMA transfer.

•

ADMXRC3_DMA_DONOTQUEUE
Causes the function to return an error immediately, rather than wait in a queue, if the DMA transfer cannot be
started immediately due to another DMA transfer ongoing on the same DMA channel.

•

hBuffer (in)

Handle to the locked buffer where data read from the device should be placed.

offset (in)

Offset into the locked buffer where data read from the device should be placed.

length (in)

Number of bytes to read from the device.

localAddress (in)

The local address (in bytes) in the device at which to begin reading.

Page 119ADMXRC3 API Reference
AD-UG-0003 Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

Description

This function reads a block of data from a device into a locked buffer, starting at the specified local address. The data
transfer is performed by a DMA engine within the device. DMA transfers in the ADMXRC3 API are described in general
terms in Section 3.8.3.2, "DMA transfers with host memory".

This is the non-blocking version of ADMXRC3_ReadDMALocked, and the pTicket parameter must follow the rules laid
out in Section 3.3, "Non-blocking operations". To finish the non-blocking operation and determine the success or
failure of the DMA transfer, call ADMXRC3_FinishDMA.

DMA transfers are subject to a queueing mechanism unless the ADMXRC3_DMA_DONOTQUEUE flag is passed. This
flag causes the function to give up immediately and return an error if it finds that another DMA transfer is in progress on
the same DMA channel. The queueing mechanism is described in general terms in Section 3.4, "Queueing".

This function must be passed a handle to an already locked buffer, obtained by calling ADMXRC3_Lock.
ADMXRC3_StartReadDMALocked has less overhead than ADMXRC3_StartReadDMA, since it does not need to lock
anything in physical memory before starting the DMA transfer.

Return Value

A value of ADMXRC3_PENDING indicates that the function executed successfully and that a non-blocking operation
was started. Otherwise, if an error occurs, a non-blocking operation was not started and the following values may be
returned:

Return Value Description

ADMXRC3_ACCESS_DENIED The device handle was opened with insufficient
privileges for modifying device state.

ADMXRC3_HARDWARE_ERROR A hardware error occurred during the DMA transfer.

ADMXRC3_INVALID_BUFFER_HANDLE The hBuffer parameters is not a valid handle to a locked
buffer.

ADMXRC3_INVALID_FLAG The flags parameter contains an unrecognized flag.
ADMXRC3_INVALID_HANDLE The hDevice parameter was not a valid device handle.

ADMXRC3_INVALID_INDEX The dmaChannel parameter specifies a nonexistent
DMA channel.

ADMXRC3_INVALID_LOCAL_REGION The localAddress and length parameters specify a
region of local bus address space that is invalid.

ADMXRC3_INVALID_REGION The offset and length parameters represent a region
that exceeds the bounds of the locked buffer.

ADMXRC3_NO_MEMORY A control block could not be allocated for keeping track
of the DMA transfer.

Remarks

Before starting DMA transfer in the hardware, this function increments the reference count of the locked buffer so that it
cannot be inadvertantly unlocked if a badly-behaved application calls ADMXRC3_Unlock before the DMA transfer
finishes. When the DMA transfer finishes, the locked buffer's reference count is decremented.

This function does not perform any endian-conversion on the data. Refer to Section 3.6, "Endian issues" for a
discussion of how to make an application portable between big- and little-endian CPU architectures.

Page 120 ADMXRC3 API Reference
AD-UG-0003Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

4.3.50 ADMXRC3_StartReadDMALockedEx
Declaration

ADMXRC3_STATUS
ADMXRC3_StartReadDMALockedEx(

__in ADMXRC3_HANDLE hDevice,
__in ADMXRC3_TICKET pTicket,
__in unsigned int dmaChannel,
__in uint32_t flags,
__in ADMXRC3_BUFFER_HANDLE hBuffer,
__in size_t offset,
__in size_t length,
__in uint64_t localAddress);

The parameters of this function are as follows:

hDevice (in)

Identifies the device to perform the DMA transfer.

pTicket (in)

A ticket used to keep track of the non-blocking operation.

dmaChannel (in)

Specifies which DMA channel in the device is to be used to perform the DMA transfer.

flags (in)

Flags that modify how the operation is performed. Currently the following flags are defined, which may be bitwise
ORed together:

ADMXRC3_DMA_FIXEDLOCAL
Causes the local address to be held constant throughout the entire DMA transfer.

•

ADMXRC3_DMA_DONOTQUEUE
Causes the function to return an error immediately, rather than wait in a queue, if the DMA transfer cannot be
started immediately due to another DMA transfer ongoing on the same DMA channel.

•

hBuffer (in)

Handle to the locked buffer where data read from the device should be placed.

offset (in)

Offset into the locked buffer where data read from the device should be placed.

length (in)

Number of bytes to read from the device.

localAddress (in)

The local address (in bytes) in the device at which to begin reading.

Page 121ADMXRC3 API Reference
AD-UG-0003 Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

Description

This function reads a block of data from a device into a locked buffer, starting at the specified local address. The data
transfer is performed by a DMA engine within the device. DMA transfers in the ADMXRC3 API are described in general
terms in Section 3.8.3.2, "DMA transfers with host memory".

This is the non-blocking version of ADMXRC3_ReadDMALockedEx, and the pTicket parameter must follow the rules
laid out in Section 3.3, "Non-blocking operations". To finish the non-blocking operation and determine the success or
failure of the DMA transfer, call ADMXRC3_FinishDMA.

DMA transfers are subject to a queueing mechanism unless the ADMXRC3_DMA_DONOTQUEUE flag is passed. This
flag causes the function to give up immediately and return an error if it finds that another DMA transfer is in progress on
the same DMA channel. The queueing mechanism is described in general terms in Section 3.4, "Queueing".

This function must be passed a handle to an already locked buffer, obtained by calling ADMXRC3_Lock.
ADMXRC3_StartReadDMALockedEx has less overhead than ADMXRC3_StartReadDMAEx, since it does not need
to lock anything in physical memory before starting the DMA transfer.

Return Value

A value of ADMXRC3_PENDING indicates that the function executed successfully and that a non-blocking operation
was started. Otherwise, if an error occurs, a non-blocking operation was not started and the following values may be
returned:

Return Value Description

ADMXRC3_ACCESS_DENIED The device handle was opened with insufficient
privileges for modifying device state.

ADMXRC3_HARDWARE_ERROR A hardware error occurred during the DMA transfer.

ADMXRC3_INVALID_BUFFER_HANDLE The hBuffer parameters is not a valid handle to a locked
buffer.

ADMXRC3_INVALID_FLAG The flags parameter contains an unrecognized flag.
ADMXRC3_INVALID_HANDLE The hDevice parameter was not a valid device handle.

ADMXRC3_INVALID_INDEX The dmaChannel parameter specifies a nonexistent
DMA channel.

ADMXRC3_INVALID_LOCAL_REGION The localAddress and length parameters specify a
region of local bus address space that is invalid.

ADMXRC3_INVALID_REGION The offset and length parameters represent a region
that exceeds the bounds of the locked buffer.

ADMXRC3_NO_MEMORY A control block could not be allocated for keeping track
of the DMA transfer.

Remarks

Before starting DMA transfer in the hardware, this function increments the reference count of the locked buffer so that it
cannot be inadvertantly unlocked if a badly-behaved application calls ADMXRC3_Unlock before the DMA transfer
finishes. When the DMA transfer finishes, the locked buffer's reference count is decremented.

This function does not perform any endian-conversion on the data. Refer to Section 3.6, "Endian issues" for a
discussion of how to make an application portable between big- and little-endian CPU architectures.

Page 122 ADMXRC3 API Reference
AD-UG-0003Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

4.3.51 ADMXRC3_StartWriteDMA
Declaration

ADMXRC3_STATUS
ADMXRC3_StartWriteDMA(

__in ADMXRC3_HANDLE hDevice,
__in ADMXRC3_TICKET pTicket,
__in unsigned int dmaChannel,
__in uint32_t flags,
__in const void* pBuffer,
__in size_t length,
__in uint32_t localAddress);

The parameters of this function are as follows:

hDevice (in)

Identifies the device to perform the DMA transfer.

pTicket (in)

A ticket used to keep track of the non-blocking operation.

dmaChannel (in)

Specifies which DMA channel in the device is to be used to perform the DMA transfer.

flags (in)

Flags that modify how the operation is performed. Currently the following flags are defined, which may be bitwise
ORed together:

ADMXRC3_DMA_FIXEDLOCAL
Causes the local address to be held constant throughout the entire DMA transfer.

•

ADMXRC3_DMA_DONOTQUEUE
Causes the function to return an error immediately, rather than wait in a queue, if the DMA transfer cannot be
started immediately due to another DMA transfer ongoing on the same DMA channel.

•

pBuffer (in)

Points to the buffer that contains data to write to the device.

length (in)

Number of bytes to write to the device.

localAddress (in)

The local address (in bytes) in the device at which to begin writing.

Description

This function writes a block of data from a buffer into a device, starting at the specified local address. The data transfer
is performed by a DMA engine within the device. DMA transfers in the ADMXRC3 API are described in general terms in
Section 3.8.3.2, "DMA transfers with host memory".

Page 123ADMXRC3 API Reference
AD-UG-0003 Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

This is the non-blocking version of ADMXRC3_WriteDMA, and the pTicket parameter must follow the rules laid out in
Section 3.3, "Non-blocking operations". To finish the non-blocking operation and determine the success or failure of
the DMA transfer, call ADMXRC3_FinishDMA.

DMA transfers are subject to a queueing mechanism unless the ADMXRC3_DMA_DONOTQUEUE flag is passed. This
flag causes the function to give up immediately and return an error if it finds that another DMA transfer is in progress on
the same DMA channel. The queueing mechanism is described in general terms in Section 3.4, "Queueing".

Because buffers in user-space may be wholly or partially swapped out to backing store at any time in most operating
systems, this function locks the buffer into physical memory before starting the DMA transfer proper. When the DMA
transfer is finished, the buffer is unlocked and made swappable again. Locking and unlocking a user-space buffer
incurs a certain overhead, so for performance-critical applications, ADMXRC3_StartWriteDMALocked may be more
appropriate than ADMXRC3_StartWriteDMA.

Return Value

A value of ADMXRC3_PENDING indicates that the function executed successfully and that a non-blocking operation
was started. Otherwise, if an error occurs, a non-blocking operation was not started and the following values may be
returned:

Return Value Description

ADMXRC3_ACCESS_DENIED The device handle was opened with insufficient
privileges for modifying device state.

ADMXRC3_HARDWARE_ERROR A hardware error occurred during the DMA transfer.

ADMXRC3_INVALID_BUFFER The pBuffer and length parameters represent a buffer
that is not valid in the caller's address space.

ADMXRC3_INVALID_FLAG The flags parameter contains an unrecognized flag.
ADMXRC3_INVALID_HANDLE The hDevice parameter was not a valid device handle.

ADMXRC3_INVALID_INDEX The dmaChannel parameter specifies a nonexistent
DMA channel.

ADMXRC3_INVALID_LOCAL_REGION The localAddress and length parameters specify a
region of local bus address space that is invalid.

ADMXRC3_NO_MEMORY A control block could not be allocated for keeping track
of the DMA transfer.

Remarks

This function does not perform any endian-conversion on the data. Refer to Section 3.6, "Endian issues" for a
discussion of how to make an application portable between big- and little-endian CPU architectures.

Page 124 ADMXRC3 API Reference
AD-UG-0003Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

4.3.52 ADMXRC3_StartWriteDMABus
Declaration

ADMXRC3_STATUS
ADMXRC3_StartWriteDMABus(

__in ADMXRC3_HANDLE hDevice,
__in ADMXRC3_TICKET pTicket,
__in unsigned int dmaChannel,
__in uint32_t flags,
__in uint64_t busAddress,
__in size_t length,
__in uint64_t localAddress);

The parameters of this function are as follows:

hDevice (in)

Identifies the device to perform the DMA transfer.

pTicket (in)

A ticket used to keep track of the non-blocking operation.

dmaChannel (in)

Specifies which DMA channel in the device is to be used to perform the DMA transfer.

flags (in)

Flags that modify how the operation is performed. Currently the following flags are defined, which may be bitwise
ORed together:

ADMXRC3_DMA_FIXEDLOCAL
Causes the local address to be held constant throughout the entire DMA transfer.

•

ADMXRC3_DMA_DONOTQUEUE
Causes the function to return an error immediately, rather than wait in a queue, if the DMA transfer cannot be
started immediately due to another DMA transfer ongoing on the same DMA channel.

•

busAddress (in)

The starting bus address from which data is read.

length (in)

Number of bytes to write to the device.

localAddress (in)

The local address (in bytes) in the device at which to begin writing.

Description

Page 125ADMXRC3 API Reference
AD-UG-0003 Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

This function is intended for scenarios where data must be transferred directly between two peers on a bus, where at
least one of the devices is a Gen 3 reconfigurable computing device. It reads a block of data, starting at the specified
bus address, and writes it to the specified device, starting at the specified local address. The data transfer is performed
by a DMA engine within the device. DMA transfers in the ADMXRC3 API are described in general terms in Section
3.8.3.3, "DMA transfers with peer devices".

This is the non-blocking version of ADMXRC3_WriteDMABus, and the pTicket parameter must follow the rules laid out
in Section 3.3, "Non-blocking operations". To finish the non-blocking operation and determine the success or failure
of the DMA transfer, call ADMXRC3_FinishDMA.

DMA transfers are subject to a queueing mechanism unless the ADMXRC3_DMA_DONOTQUEUE flag is passed. This
flag causes the function to give up immediately and return an error if it finds that another DMA transfer is in progress on
the same DMA channel. The queueing mechanism is described in general terms in Section 3.4, "Queueing".

Unlike ADMXRC3_StartWriteDMA and ADMXRC3_StartWriteDMAEx, this function does not lock anything into
memory because the data is read directly from the bus address specified by busAddress and written to the the device
specified by hDevice. Thus, in some CPU architectures and platforms, there can be significantly less overhead in
calling ADMXRC3_StartWriteDMABus compared to ADMXRC3_StartWriteDMA or ADMXRC3_StartWriteDMAEx.

Return Value

A value of ADMXRC3_PENDING indicates that the function executed successfully and that a non-blocking operation
was started. Otherwise, if an error occurs, a non-blocking operation was not started and the following values may be
returned:

Return Value Description

ADMXRC3_ACCESS_DENIED The device handle was opened with insufficient
privileges for modifying device state.

ADMXRC3_HARDWARE_ERROR A hardware error occurred during the DMA transfer.

ADMXRC3_INVALID_BUFFER The pBuffer and length parameters represent a buffer
that is not valid in the caller's address space.

ADMXRC3_INVALID_FLAG The flags parameter contains an unrecognized flag.
ADMXRC3_INVALID_HANDLE The hDevice parameter was not a valid device handle.

ADMXRC3_INVALID_INDEX The dmaChannel parameter specifies a nonexistent
DMA channel.

ADMXRC3_INVALID_LOCAL_REGION The localAddress and length parameters specify a
region of local bus address space that is invalid.

ADMXRC3_NO_MEMORY A control block could not be allocated for keeping track
of the DMA transfer.

Remarks

This function is available in ADMXRC3 API version 1.4.0 and later.

This function does not perform any endian-conversion on the data. Refer to Section 3.6, "Endian issues" for a
discussion of how to make an application portable between big- and little-endian CPU architectures.

The way in which the busAddress parameter is interpreted depends upon the I/O bus standard used by the device
specified by hDevice. For example, if hDevice refers to an ADM-XRC-6T1, which has a PCI Express host interface,
busAddress is a PCI Express memory space address.

Page 126 ADMXRC3 API Reference
AD-UG-0003Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

When no PCI Express endpoint claims the address specified by busAddress, the DMA engine will not receive any data
and will time out within a few tens of microseconds of beginning the DMA transfer. In such cases, the return value from
ADMXRC3_FinishDMA is ADMXRC3_HARDWARE_ERROR.

4.3.53 ADMXRC3_StartWriteDMAEx
Declaration

ADMXRC3_STATUS
ADMXRC3_StartWriteDMAEx(

__in ADMXRC3_HANDLE hDevice,
__in ADMXRC3_TICKET pTicket,
__in unsigned int dmaChannel,
__in uint32_t flags,
__in const void* pBuffer,
__in size_t length,
__in uint64_t localAddress);

The parameters of this function are as follows:

hDevice (in)

Identifies the device to perform the DMA transfer.

pTicket (in)

A ticket used to keep track of the non-blocking operation.

dmaChannel (in)

Specifies which DMA channel in the device is to be used to perform the DMA transfer.

flags (in)

Flags that modify how the operation is performed. Currently the following flags are defined, which may be bitwise
ORed together:

ADMXRC3_DMA_FIXEDLOCAL
Causes the local address to be held constant throughout the entire DMA transfer.

•

ADMXRC3_DMA_DONOTQUEUE
Causes the function to return an error immediately, rather than wait in a queue, if the DMA transfer cannot be
started immediately due to another DMA transfer ongoing on the same DMA channel.

•

pBuffer (in)

Points to the buffer that contains data to write to the device.

length (in)

Number of bytes to write to the device.

localAddress (in)

The local address (in bytes) in the device at which to begin writing.

Page 127ADMXRC3 API Reference
AD-UG-0003 Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

Description

This function writes a block of data from a buffer into a device, starting at the specified local address. The data transfer
is performed by a DMA engine within the device. DMA transfers in the ADMXRC3 API are described in general terms in
Section 3.8.3.2, "DMA transfers with host memory".

This is the non-blocking version of ADMXRC3_WriteDMAEx, and the pTicket parameter must follow the rules laid out
in Section 3.3, "Non-blocking operations". To finish the non-blocking operation and determine the success or failure
of the DMA transfer, call ADMXRC3_FinishDMA.

DMA transfers are subject to a queueing mechanism unless the ADMXRC3_DMA_DONOTQUEUE flag is passed. This
flag causes the function to give up immediately and return an error if it finds that another DMA transfer is in progress on
the same DMA channel. The queueing mechanism is described in general terms in Section 3.4, "Queueing".

Because buffers in user-space may be wholly or partially swapped out to backing store at any time in most operating
systems, this function locks the buffer into physical memory before starting the DMA transfer proper. When the DMA
transfer is finished, the buffer is unlocked and made swappable again. Locking and unlocking a user-space buffer
incurs a certain overhead, so for performance-critical applications, ADMXRC3_StartWriteDMALockedEx may be more
appropriate than ADMXRC3_StartWriteDMAEx.

Return Value

A value of ADMXRC3_PENDING indicates that the function executed successfully and that a non-blocking operation
was started. Otherwise, if an error occurs, a non-blocking operation was not started and the following values may be
returned:

Return Value Description

ADMXRC3_ACCESS_DENIED The device handle was opened with insufficient
privileges for modifying device state.

ADMXRC3_HARDWARE_ERROR A hardware error occurred during the DMA transfer.

ADMXRC3_INVALID_BUFFER The pBuffer and length parameters represent a buffer
that is not valid in the caller's address space.

ADMXRC3_INVALID_FLAG The flags parameter contains an unrecognized flag.
ADMXRC3_INVALID_HANDLE The hDevice parameter was not a valid device handle.

ADMXRC3_INVALID_INDEX The dmaChannel parameter specifies a nonexistent
DMA channel.

ADMXRC3_INVALID_LOCAL_REGION The localAddress and length parameters specify a
region of local bus address space that is invalid.

ADMXRC3_NO_MEMORY A control block could not be allocated for keeping track
of the DMA transfer.

Remarks

This function is available in ADMXRC3 API version 1.2.0 and later.

This function does not perform any endian-conversion on the data. Refer to Section 3.6, "Endian issues" for a
discussion of how to make an application portable between big- and little-endian CPU architectures.

Page 128 ADMXRC3 API Reference
AD-UG-0003Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

4.3.54 ADMXRC3_StartWriteDMALocked
Declaration

ADMXRC3_STATUS
ADMXRC3_StartWriteDMALocked(

__in ADMXRC3_HANDLE hDevice,
__in ADMXRC3_TICKET pTicket,
__in unsigned int dmaChannel,
__in uint32_t flags,
__in ADMXRC3_BUFFER_HANDLE hBuffer,
__in size_t offset,
__in size_t length,
__in uint32_t localAddress);

The parameters of this function are as follows:

hDevice (in)

Identifies the device to perform the DMA transfer.

pTicket (in)

A ticket used to keep track of the non-blocking operation.

dmaChannel (in)

Specifies which DMA channel in the device is to be used to perform the DMA transfer.

flags (in)

Flags that modify how the operation is performed. Currently the following flags are defined, which may be bitwise
ORed together:

ADMXRC3_DMA_FIXEDLOCAL
Causes the local address to be held constant throughout the entire DMA transfer.

•

ADMXRC3_DMA_DONOTQUEUE
Causes the function to return an error immediately, rather than wait in a queue, if the DMA transfer cannot be
started immediately due to another DMA transfer ongoing on the same DMA channel.

•

hBuffer (in)

Handle to the locked buffer that contains the data to be written to the device.

offset (in)

Offset into the locked buffer where the data to be written to the device is located.

length (in)

Number of bytes to write to the device.

localAddress (in)

The local address (in bytes) in the device at which to begin writing.

Page 129ADMXRC3 API Reference
AD-UG-0003 Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

Description

This function writes a block of data from a locked buffer into a device, starting at the specified local address. The data
transfer is performed by a DMA engine within the device. DMA transfers in the ADMXRC3 API are described in general
terms in Section 3.8.3.2, "DMA transfers with host memory".

This is the non-blocking version of ADMXRC3_WriteDMALocked, and the pTicket parameter must follow the rules laid
out in Section 3.3, "Non-blocking operations". To finish the non-blocking operation and determine the success or
failure of the DMA transfer, call ADMXRC3_FinishDMA.

DMA transfers are subject to a queueing mechanism unless the ADMXRC3_DMA_DONOTQUEUE flag is passed. This
flag causes the function to give up immediately and return an error if it finds that another DMA transfer is in progress on
the same DMA channel. The queueing mechanism is described in general terms in Section 3.4, "Queueing".

This function must be passed a handle to an already locked buffer, obtained by calling ADMXRC3_Lock.
ADMXRC3_StartWriteDMALocked has less overhead than ADMXRC3_StartWriteDMA, since it does not need to
lock anything in physical memory before starting the DMA transfer.

Return Value

A value of ADMXRC3_PENDING indicates that the function executed successfully and that a non-blocking operation
was started. Otherwise, if an error occurs, a non-blocking operation was not started and the following values may be
returned:

Return Value Description

ADMXRC3_ACCESS_DENIED The device handle was opened with insufficient
privileges for modifying device state.

ADMXRC3_HARDWARE_ERROR A hardware error occurred during the DMA transfer.

ADMXRC3_INVALID_BUFFER_HANDLE The hBuffer parameters is not a valid handle to a locked
buffer.

ADMXRC3_INVALID_FLAG The flags parameter contains an unrecognized flag.
ADMXRC3_INVALID_HANDLE The hDevice parameter was not a valid device handle.

ADMXRC3_INVALID_INDEX The dmaChannel parameter specifies a nonexistent
DMA channel.

ADMXRC3_INVALID_LOCAL_REGION The localAddress and length parameters specify a
region of local bus address space that is invalid.

ADMXRC3_INVALID_REGION The offset and length parameters represent a region
that exceeds the bounds of the locked buffer.

ADMXRC3_NO_MEMORY A control block could not be allocated for keeping track
of the DMA transfer.

Remarks

Before starting DMA transfer in the hardware, this function increments the reference count of the locked buffer so that it
cannot be inadvertantly unlocked if a badly-behaved application calls ADMXRC3_Unlock before the DMA transfer
finishes. When the DMA transfer finishes, the locked buffer's reference count is decremented.

This function does not perform any endian-conversion on the data. Refer to Section 3.6, "Endian issues" for a
discussion of how to make an application portable between big- and little-endian CPU architectures.

Page 130 ADMXRC3 API Reference
AD-UG-0003Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

4.3.55 ADMXRC3_StartWriteDMALockedEx
Declaration

ADMXRC3_STATUS
ADMXRC3_StartWriteDMALockedEx(

__in ADMXRC3_HANDLE hDevice,
__in ADMXRC3_TICKET pTicket,
__in unsigned int dmaChannel,
__in uint32_t flags,
__in ADMXRC3_BUFFER_HANDLE hBuffer,
__in size_t offset,
__in size_t length,
__in uint64_t localAddress);

The parameters of this function are as follows:

hDevice (in)

Identifies the device to perform the DMA transfer.

pTicket (in)

A ticket used to keep track of the non-blocking operation.

dmaChannel (in)

Specifies which DMA channel in the device is to be used to perform the DMA transfer.

flags (in)

Flags that modify how the operation is performed. Currently the following flags are defined, which may be bitwise
ORed together:

ADMXRC3_DMA_FIXEDLOCAL
Causes the local address to be held constant throughout the entire DMA transfer.

•

ADMXRC3_DMA_DONOTQUEUE
Causes the function to return an error immediately, rather than wait in a queue, if the DMA transfer cannot be
started immediately due to another DMA transfer ongoing on the same DMA channel.

•

hBuffer (in)

Handle to the locked buffer that contains the data to be written to the device.

offset (in)

Offset into the locked buffer where the data to be written to the device is located.

length (in)

Number of bytes to write to the device.

localAddress (in)

The local address (in bytes) in the device at which to begin writing.

Page 131ADMXRC3 API Reference
AD-UG-0003 Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

Description

This function writes a block of data from a locked buffer into a device, starting at the specified local address. The data
transfer is performed by a DMA engine within the device. DMA transfers in the ADMXRC3 API are described in general
terms in Section 3.8.3.2, "DMA transfers with host memory".

This is the non-blocking version of ADMXRC3_WriteDMALockedEx, and the pTicket parameter must follow the rules
laid out in Section 3.3, "Non-blocking operations". To finish the non-blocking operation and determine the success or
failure of the DMA transfer, call ADMXRC3_FinishDMA.

DMA transfers are subject to a queueing mechanism unless the ADMXRC3_DMA_DONOTQUEUE flag is passed. This
flag causes the function to give up immediately and return an error if it finds that another DMA transfer is in progress on
the same DMA channel. The queueing mechanism is described in general terms in Section 3.4, "Queueing".

This function must be passed a handle to an already locked buffer, obtained by calling ADMXRC3_Lock.
ADMXRC3_StartWriteDMALockedEx has less overhead than ADMXRC3_StartWriteDMAEx, since it does not need
to lock anything in physical memory before starting the DMA transfer.

Return Value

A value of ADMXRC3_PENDING indicates that the function executed successfully and that a non-blocking operation
was started. Otherwise, if an error occurs, a non-blocking operation was not started and the following values may be
returned:

Return Value Description

ADMXRC3_ACCESS_DENIED The device handle was opened with insufficient
privileges for modifying device state.

ADMXRC3_HARDWARE_ERROR A hardware error occurred during the DMA transfer.

ADMXRC3_INVALID_BUFFER_HANDLE The hBuffer parameters is not a valid handle to a locked
buffer.

ADMXRC3_INVALID_FLAG The flags parameter contains an unrecognized flag.
ADMXRC3_INVALID_HANDLE The hDevice parameter was not a valid device handle.

ADMXRC3_INVALID_INDEX The dmaChannel parameter specifies a nonexistent
DMA channel.

ADMXRC3_INVALID_LOCAL_REGION The localAddress and length parameters specify a
region of local bus address space that is invalid.

ADMXRC3_INVALID_REGION The offset and length parameters represent a region
that exceeds the bounds of the locked buffer.

ADMXRC3_NO_MEMORY A control block could not be allocated for keeping track
of the DMA transfer.

Remarks

Before starting DMA transfer in the hardware, this function increments the reference count of the locked buffer so that it
cannot be inadvertantly unlocked if a badly-behaved application calls ADMXRC3_Unlock before the DMA transfer
finishes. When the DMA transfer finishes, the locked buffer's reference count is decremented.

This function does not perform any endian-conversion on the data. Refer to Section 3.6, "Endian issues" for a
discussion of how to make an application portable between big- and little-endian CPU architectures.

Page 132 ADMXRC3 API Reference
AD-UG-0003Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

4.3.56 ADMXRC3_SyncFlash
Declaration

ADMXRC3_STATUS
ADMXRC3_SyncFlash(

__in ADMXRC3_HANDLE hDevice,
__in unsigned int flashIndex,
__in uint32_t flags);

The parameters of this function are as follows:

hDevice (in)

Identifies the device containing the Flash memory bank to be synchronized.

flashIndex (in)

Specifies which Flash memory bank in the device is to synchronized.

flags (in)

Flags that modify how the operation is performed. Currently there are no flags defined, so this parameter must be
zero.

Description

This function ensures that the cache for a Flash memory bank is "clean" before returning. Applications can call it to
ensure that write or erase operations have been committed to the hardware. The caching mechanism for Flash memory
banks is described in Section 3.8.5.1, "Flash memory caching".

Return Value

A value of ADMXRC3_SUCCESS indicates that the function executed successfully. Otherwise, if an error occurs, the
following values may be returned:

Return Value Description

ADMXRC3_ACCESS_DENIED The device handle was opened with insufficient privileges
for modifying device state.

ADMXRC3_CANCELLED
During the operation, another thread called
ADMXRC3_Cancel on the device handle, or the device
handle was closed.

ADMXRC3_HARDWARE_ERROR A hardware error occurred while synchronizing the Flash
memory bank.

ADMXRC3_INVALID_FLAG The flags parameter contains an unrecognized flag.
ADMXRC3_INVALID_HANDLE The hDevice parameter was not a valid device handle.

ADMXRC3_INVALID_INDEX The flashIndex parameter specifies a nonexistent Flash
memory bank.

ADMXRC3_NO_MEMORY A control block could not be allocated for keeping track of
the Flash synchronization operation.

Remarks

Page 133ADMXRC3 API Reference
AD-UG-0003 Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

For Flash memory banks that use chips with a block-oriented architecture, calling this function may result in noticeable
delays in execution, because some Flash chips have noticeable block erase and programming periods.

4.3.57 ADMXRC3_Unconfigure
Declaration

ADMXRC3_STATUS
ADMXRC3_Unconfigure(

__in ADMXRC3_HANDLE hDevice,
__in unsigned int flashIndex,
__in uint32_t flags);

The parameters of this function are as follows:

hDevice (in)

Identifies the device containing the target FPGA of interest.

flashIndex (in)

Specifies which target FPGA within a device is of interest.

flags (in)

Flags that modify how the operation is performed. Currently the following flags are defined, which may be bitwise
ORed together:

ADMXRC3_CONFIGURE_PARTIAL
Causes the target FPGA not to be unconfigured.

•

ADMXRC3_CONFIGURE_SHARE
Causes ownership to be unchanged.

•

Description

This function unconfigures a target FPGA and/or relinquishes ownership.

Passing the ADMXRC3_CONFIGURE_PARTIAL flag causes an unconfiguration sequence, as described in Section
3.8.1.3, "Unconfiguration", not to be performed on the target FPGA.

Passing the ADMXRC3_CONFIGURE_SHARE flag causes the target FPGA's ownership state to be unchanged.

Return Value

A value of ADMXRC3_SUCCESS indicates that the function executed successfully. Otherwise, if an error occurs, the
following values may be returned:

Page 134 ADMXRC3 API Reference
AD-UG-0003Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

Return Value Description

ADMXRC3_ACCESS_DENIED The device handle was opened with insufficient privileges
for modifying device state.

ADMXRC3_CANCELLED
During the operation, another thread called
ADMXRC3_Cancel on the device handle, or the device
handle was closed.

ADMXRC3_HARDWARE_ERROR Unconfiguring the target FPGA was not successful. See
remarks below.

ADMXRC3_INVALID_FLAG The flags parameter contains an unrecognized flag.
ADMXRC3_INVALID_HANDLE The hDevice parameter is not a valid device handle.
ADMXRC3_INVALID_INDEX The targetIndex parameter is out of range.

ADMXRC3_NOT_OWNER The specified device handle is not the owner of the target
FPGA.

Remarks

Passing only the ADMXRC3_CONFIGURE_PARTIAL flag is how a device handle can relinquish ownership of a target
FPGA without unconfiguring it.

Passing only the ADMXRC3_CONFIGURE_SHARE flag is how a device handle can unconfigure a target FPGA without
relinquishing ownership.

Passing both the ADMXRC3_CONFIGURE_PARTIAL and ADMXRC3_CONFIGURE_SHARE flags is legal but results
in a no-operation.

If the function returns ADMXRC3_HARDWARE_ERROR, the target FPGA will be in an indeterminate state (may or
may not be configured).

4.3.58 ADMXRC3_UnloadBitstreamA
Declaration

ADMXRC3_STATUS
ADMXRC3_UnloadBitstreamA(

__inout ADMXRC3_BITSTREAMA* pBitstream);

The parameters of this function are as follows:

pBitstream (inout)

Points to the object of type ADMXRC3_BITSTREAMA that is to be freed.

Description

This function unloads a bitstream (.BIT) file, freeing the memory used by it. It is the inverse of
ADMXRC3_LoadBitstreamA.

Return Value

A value of ADMXRC3_SUCCESS indicates that the function executed successfully. Otherwise, if an error occurs, the
following values may be returned:

Page 135ADMXRC3 API Reference
AD-UG-0003 Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

Return Value Description
ADMXRC3_NULL_POINTER The pBitstream parameter was a NULL pointer.

Remarks

This is the ANSI / UTF-8 version of ADMXRC3_UnloadBitstream. ADMXRC3_UnloadBitstream is actually a macro
defined to be either ADMXRC3_UnloadBitstreamW if the _UNICODE preprocessor symbol is defined, or else
ADMXRC3_UnloadBitstreamA.

This function must be used to deallocate an object of type ADMXRC3_BITSTREAMA, rather than free. In Windows,
attempting to use free results in heap corruption because memory must be freed using the same heap that was used to
allocate it.

4.3.59 ADMXRC3_UnloadBitstreamW
Declaration

ADMXRC3_STATUS
ADMXRC3_UnloadBitstreamW(

__inout ADMXRC3_BITSTREAMW* pBitstream);

The parameters of this function are as follows:

pBitstream (inout)

Points to the object of type ADMXRC3_BITSTREAMW that is to be freed.

Description

This function unloads a bitstream (.BIT) file, freeing the memory used by it. It is the inverse of
ADMXRC3_LoadBitstreamW.

Return Value

A value of ADMXRC3_SUCCESS indicates that the function executed successfully. Otherwise, if an error occurs, the
following values may be returned:

Return Value Description
ADMXRC3_NULL_POINTER The pBitstream parameter was a NULL pointer.

Remarks

This is the ANSI / UTF-8 version of ADMXRC3_UnloadBitstream. ADMXRC3_UnloadBitstream is actually a macro
defined to be either ADMXRC3_UnloadBitstreamW if the _UNICODE preprocessor symbol is defined, or else
ADMXRC3_UnloadBitstreamA.

This function must be used to deallocate an object of type ADMXRC3_BITSTREAMW, rather than free. In Windows,
attempting to use free results in heap corruption because memory must be freed using the same heap that was used to
allocate it.

Page 136 ADMXRC3 API Reference
AD-UG-0003Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

4.3.60 ADMXRC3_Unlock
Declaration

ADMXRC3_STATUS
ADMXRC3_Unlock(

__in ADMXRC3_HANDLE hDevice,
__in ADMXRC3_BUFFER_HANDLE hBuffer);

The parameters of this function are as follows:

hDevice (in)

The device handle that was used to create the locked buffer.

hBuffer (in)

Identifies the locked buffer that is to be unlocked.

Description

This function unlocks a locked user-space buffer so that the operating system can again swap it out to backing store.
An application should assume that an operating system may begin swapping the buffer out as soon as this function is
called. ADMXRC3_Unlock is the inverse of ADMXRC3_Lock.

ADMXRC3_BUFFER_HANDLE values are global to the system. However, every buffer handle has an owner, which is
the device handle that was used to create it. Only the device handle used to lock a buffer can be used to successfully
call ADMXRC3_Unlock.

A user-space buffer can be locked multiple times if necessary. If a user-space buffer is locked several times, yielding
several buffer handles, it will only become swappable once more after every one of the locked buffer handles has been
passed to ADMXRC3_Unlock.

Return Value

A value of ADMXRC3_SUCCESS indicates that the function executed successfully. Otherwise, if an error occurs, the
following values may be returned:

Return Value Description

ADMXRC3_BUFFER_INVALID_HANDLE The hBuffer parameter was not a valid handle to a
locked buffer.

ADMXRC3_INVALID_HANDLE The hDevice parameter was not a valid device handle.

ADMXRC3_NOT_OWNER The locked buffer was created using a different device
handle.

Remarks

In order to avoid potential system memory corruption due to a badly behaved application, locked buffers have a
reference counting mechanism. A locked user-space buffer begins with a reference count of 1. Calling
ADMXRC3_Unlock invalidates the buffer handle and decrements the reference count. Each DMA transfer performed
using the buffer increments the reference count when it begins and decrements the reference count when complete.
When the reference count reaches zero, the user-space buffer is made swappable again. Thus, while a DMA transfer is
in progress on a buffer, that buffer is not swappable, even if ADMXRC3_Unlock is called during the DMA transfer.

Page 137ADMXRC3 API Reference
AD-UG-0003 Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

Locking is implemented with a page granuality by the operating system, where each user-space page has a lock count.
Therefore, to be precise, this function iterates through each page of the user-space buffer and decrements its lock
count by 1. The implication of this is that any part of a user-space buffer can be locked multiple times, regardless of
whether or not those parts are disjoint or overlapping. As long as there are matching calls to ADMXRC3_Unlock, the
lock counts of all pages eventually return to 0.

4.3.61 ADMXRC3_UnmapWindow
Declaration

ADMXRC3_STATUS
ADMXRC3_UnmapWindow(

__in ADMXRC3_HANDLE hDevice,
__in void* pVirtualBase);

The parameters of this function are as follows:

hDevice (in)

Identifies the device that contains the window of interest.

pVirtualBase (in)

The base virtual address of a region that was mapped using ADMXRC3_MapWindow.

Description

This function unmaps a region of a memory window from the caller's address space, and is the inverse of
ADMXRC3_MapWindow. An application must consider the region that pVirtualBase points to invalid as soon as this
function is called.

Partially unmapping a region is not possible, so the pVirtualBase parameter must be the value previously returned by
ADMXRC3_MapWindow, and cannot be offset by some amount.

If an application terminates without unmapping any regions that it mapped, automatic cleanup is performed by the
operating system (except in VxWorks).

Return Value

A value of ADMXRC3_SUCCESS indicates that the function executed successfully. Otherwise, if an error occurs, the
following values may be returned:

Return Value Description
ADMXRC3_INVALID_HANDLE The hDevice parameter was not a valid device handle.

ADMXRC3_INVALID_REGION The pVirtualBase parameter is recognized as the base
address of a mapped region of device memory.

ADMXRC3_NULL_POINTER The pVirtualBase was a NULL pointer.

Remarks

In VxWorks, this function is a essentially a no-operation, as VxWorks typically has a single global address space
shared by the kernel and tasks alike.

Page 138 ADMXRC3 API Reference
AD-UG-0003Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

4.3.62 ADMXRC3_UnregisterWin32Event
Declaration

ADMXRC3_STATUS
ADMXRC3_UnregisterWin32Event(

__in ADMXRC3_HANDLE hDevice,
__in uint32_t notification,
__in HANDLE hEvent);

The parameters of this function are as follows:

hDevice (in)

Identifies the device for which the Win32 Event should no longer be registered.

notification (in)

The type of notification for which the Win32 Event should no longer be registered.

hEvent (in)

The handle to the Win32 Event that is to be unregistered.

Description

This Windows-specific function unregisters a Win32 Event that was previously registered using
ADMXRC3_RegisterWin32Event. The prototype for this function exists only for Windows; it is not defined for other
operating systems.

The type of notification must be one of the following values:

ADMXRC3_EVENT_FPGAALERT(targetIndex)
Notification of overtemperature alerts for a target FPGA, where 'targetIndex' is the index of the target FPGA.

•

ADMXRC3_EVENT_FPGAINTERRUPT(targetIndex)
Notification of interrupts generated by a target FPGA, where 'targetIndex' is the index of the target FPGA.

•

Unregistering a Win32 Event fails if the Win32 Event is not currently registered for the specified notification for the
specified device handle.

Return Value

A value of ADMXRC3_SUCCESS indicates that the function executed successfully. Otherwise, if an error occurs, the
following values may be returned:

Return Value Description

ADMXRC3_INVALID_HANDLE
The hDevice parameter was not a valid device handle, or
the hEvent was not recognized as a valid Win32 Event
registered with the specified device handle.

ADMXRC3_INVALID_INDEX The notification parameter specifies a type of notification
that the API does not recognize.

Remarks

Page 139ADMXRC3 API Reference
AD-UG-0003 Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

The ADMXRC3 API automatically unregisters any Win32 Events when a device handle is closed. This can occur either
because of call to ADMXRC3_Close, or when a device handle is automatically closed by the operating system, as the
result of a process terminating without cleaning up.

4.3.63 ADMXRC3_UnregisterVxwSem
Declaration

ADMXRC3_STATUS
ADMXRC3_UnregisterVxwSem(

__in ADMXRC3_HANDLE hDevice,
__in uint32_t notification,
__in SEM_ID semId);

The parameters of this function are as follows:

hDevice (in)

Identifies the device for which the semaphore should no longer be registered.

notification (in)

The type of notification for which the semaphore should no longer be registered.

semId (in)

Identifies the semaphore that is to be unregistered.

Description

This VxWorks-specific function unregisters a VxWorks semaphore that was previously registered using
ADMXRC3_RegisterVxwSem. The prototype for this function exists only for VxWorks; it is not defined for other
operating systems.

The type of notification must be one of the following values:

ADMXRC3_EVENT_FPGAALERT(targetIndex)
Notification of overtemperature alerts for a target FPGA, where 'targetIndex' is the index of the target FPGA.

•

ADMXRC3_EVENT_FPGAINTERRUPT(targetIndex)
Notification of interrupts generated by a target FPGA, where 'targetIndex' is the index of the target FPGA.

•

Unregistering a semaphore fails if the semaphore is not currently registered for the specified notification type for the
specified device handle.

Return Value

A value of ADMXRC3_SUCCESS indicates that the function executed successfully. Otherwise, if an error occurs, the
following values may be returned:

Page 140 ADMXRC3 API Reference
AD-UG-0003Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

Return Value Description

ADMXRC3_INVALID_HANDLE

The hDevice parameter was not a valid device handle, or
the semId parameter was not recognized as a valid
VxWorks semaphore registered with the specified device
handle.

ADMXRC3_INVALID_INDEX The notification parameter specifies a type of notification
that the API does not recognize.

Remarks

This function is available in ADMXRC3 API version 1.1.0 and later.

The ADMXRC3 API automatically unregisters any semaphores when a device handle is closed.

4.3.64 ADMXRC3_Write
Declaration

ADMXRC3_STATUS
ADMXRC3_Write(

__in ADMXRC3_HANDLE hDevice,
__in unsigned int windowIndex,
__in uint32_t flags,
__in size_t offset,
__in size_t length,
__in const void* pBuffer);

The parameters of this function are as follows:

hDevice (in)

Identifies the device that contains the window to be written.

windowIndex (in)

Identifies the window within the device to be written.

flags (in)

Flags that modify the behavior of the function. There are no flags currently defined, and so this parameter must be
zero.

offset (in)

The byte offset into the window at which writing is to begin.

length (in)

The number of bytes to write.

pBuffer (in)

Points to the buffer containing the data to be written to the window.

Description

Page 141ADMXRC3 API Reference
AD-UG-0003 Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

This function writes data from a buffer to a memory window in a device, starting at the specified offset within the
window. The data transfer is performed by the CPU, and is therefore CPU intensive for large blocks of data.

Return Value

A value of ADMXRC3_SUCCESS indicates that the function executed successfully. Otherwise, if an error occurs, the
following values may be returned:

Return Value Description

ADMXRC3_ACCESS_DENIED The device handle was opened with insufficient privileges
for modifying device state.

ADMXRC3_INVALID_BUFFER The pBuffer and length parameters represent a buffer
that is not valid in the caller's address space.

ADMXRC3_INVALID_FLAG The flags parameter contains an unrecognized flag.
ADMXRC3_INVALID_HANDLE The hDevice parameter was not a valid device handle.

ADMXRC3_INVALID_INDEX The windowIndex parameter specifies a nonexistent
window.

ADMXRC3_INVALID_REGION The offset and length parameters specify an invalid
region of the specified window.

Remarks

Calling ADMXRC3_Write incurs a certain overhead, but is acceptable for tasks that are not performance-critical, such
as writing to registers during initialization of an application. As described in Section 3.8.2.1, "Mapping memory
windows into user-space", mapping a memory window into the caller's address space and using pointer
dereferencing is generally faster when many register writes must be performed.

For large blocks of data, consider using DMA transfers, as described in Section 3.8.3.2, "DMA transfers with host
memory".

If this function is used to write data to a target FPGA, the FPGA design must be able to cope with arbitrary byte enables
being presented during writes. Side-effects during writes are allowed, but should always be qualified by byte enables.
This is because the operand size used for store instructions in the data copying routines used by the ADMXRC3 API
may vary depending upon CPU architecture, buffer alignment, etc. and even upon timing.

This function does not perform any endian-conversion on the data. Refer to Section 3.6, "Endian issues" for a
discussion of how to make an application portable between big- and little-endian CPU architectures.

Page 142 ADMXRC3 API Reference
AD-UG-0003Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

4.3.65 ADMXRC3_WriteDMA
Declaration

ADMXRC3_STATUS
ADMXRC3_WriteDMA(

__in ADMXRC3_HANDLE hDevice,
__in unsigned int dmaChannel,
__in uint32_t flags,
__in const void* pBuffer,
__in size_t length,
__in uint32_t localAddress);

The parameters of this function are as follows:

hDevice (in)

Identifies the device to perform the DMA transfer.

dmaChannel (in)

Specifies which DMA channel in the device is to be used to perform the DMA transfer.

flags (in)

Flags that modify how the operation is performed. Currently the following flags are defined, which may be bitwise
ORed together:

ADMXRC3_DMA_FIXEDLOCAL
Causes the local address to be held constant throughout the entire DMA transfer.

•

ADMXRC3_DMA_DONOTQUEUE
Causes the function to return an error immediately, rather than wait in a queue, if the DMA transfer cannot be
started immediately due to another DMA transfer ongoing on the same DMA channel.

•

pBuffer (in)

Points to the buffer that contains the data to write to the device.

length (in)

Number of bytes to write to the device.

localAddress (in)

The local address (in bytes) in the device at which to begin writing.

Description

This function writes a block of data from buffer into a device, starting at the specified local address. The data transfer is
performed by a DMA engine within the device. DMA transfers in the ADMXRC3 API are described in general terms in
Section 3.8.3.2, "DMA transfers with host memory".

DMA transfers are subject to a queueing mechanism unless the ADMXRC3_DMA_DONOTQUEUE flag is passed. This
flag causes the function to give up immediately and return an error if it finds that another DMA transfer is in progress on
the same DMA channel. The queueing mechanism is described in general terms in Section 3.4, "Queueing".

Page 143ADMXRC3 API Reference
AD-UG-0003 Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

Because buffers in user-space may be wholly or partially swapped out to backing store at any time in most operating
systems, this function locks the buffer into physical memory before starting the DMA transfer proper. When the DMA
transfer is finished, the buffer is unlocked and made swappable again. Locking and unlocking a user-space buffer
incurs a certain overhead, so for performance-critical applications, ADMXRC3_WriteDMALocked may be more
appropriate than ADMXRC3_WriteDMA.

Return Value

A value of ADMXRC3_SUCCESS indicates that the function executed successfully. Otherwise, if an error occurs, the
following values may be returned:

Return Value Description

ADMXRC3_ACCESS_DENIED The device handle was opened with insufficient
privileges for modifying device state.

ADMXRC3_CANCELLED
During the operation, another thread called
ADMXRC3_Cancel on the device handle, or the device
handle was closed.

ADMXRC3_HARDWARE_ERROR A hardware error occurred during the DMA transfer.

ADMXRC3_INVALID_BUFFER The pBuffer and length parameters represent a buffer
that is not valid in the caller's address space.

ADMXRC3_INVALID_FLAG The flags parameter contains an unrecognized flag.
ADMXRC3_INVALID_HANDLE The hDevice parameter was not a valid device handle.

ADMXRC3_INVALID_INDEX The dmaChannel parameter specifies a nonexistent
DMA channel.

ADMXRC3_INVALID_LOCAL_REGION The localAddress and length parameters specify a
region of local bus address space that is invalid.

ADMXRC3_NO_MEMORY A control block could not be allocated for keeping track
of the DMA transfer.

Remarks

This function does not perform any endian-conversion on the data. Refer to Section 3.6, "Endian issues" for a
discussion of how to make an application portable between big- and little-endian CPU architectures.

4.3.66 ADMXRC3_WriteDMABus
Declaration

ADMXRC3_STATUS
ADMXRC3_WriteDMABus(

__in ADMXRC3_HANDLE hDevice,
__in unsigned int dmaChannel,
__in uint32_t flags,
__in uint64_t busAddress,
__in size_t length,
__in uint64_t localAddress);

The parameters of this function are as follows:

hDevice (in)

Identifies the device to perform the DMA transfer.

Page 144 ADMXRC3 API Reference
AD-UG-0003Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

dmaChannel (in)

Specifies which DMA channel in the device is to be used to perform the DMA transfer.

flags (in)

Flags that modify how the operation is performed. Currently the following flags are defined, which may be bitwise
ORed together:

ADMXRC3_DMA_FIXEDLOCAL
Causes the local address to be held constant throughout the entire DMA transfer.

•

ADMXRC3_DMA_DONOTQUEUE
Causes the function to return an error immediately, rather than wait in a queue, if the DMA transfer cannot be
started immediately due to another DMA transfer ongoing on the same DMA channel.

•

busAddress (in)

The starting bus address from which data is read.

length (in)

Number of bytes to write to the device.

localAddress (in)

The local address (in bytes) in the device at which to begin writing.

Description

This function is intended for scenarios where data must be transferred directly between two peers on a bus, where at
least one of the devices is a Gen 3 reconfigurable computing device. It reads a block of data, starting at the specified
bus address, and writes it to the specified device, starting at the specified local address. The data transfer is performed
by a DMA engine within the device. DMA transfers in the ADMXRC3 API are described in general terms in Section
3.8.3.3, "DMA transfers with peer devices".

DMA transfers are subject to a queueing mechanism unless the ADMXRC3_DMA_DONOTQUEUE flag is passed. This
flag causes the function to give up immediately and return an error if it finds that another DMA transfer is in progress on
the same DMA channel. The queueing mechanism is described in general terms in Section 3.4, "Queueing".

Unlike ADMXRC3_WriteDMA and ADMXRC3_WriteDMAEx, this function does not lock anything into memory
because the data is read directly from the bus address specified by busAddress and written to the the device specified
by hDevice. Thus, in some CPU architectures and platforms, there can be significantly less overhead in calling
ADMXRC3_WriteDMABus compared to ADMXRC3_WriteDMA or ADMXRC3_WriteDMAEx.

Return Value

A value of ADMXRC3_SUCCESS indicates that the function executed successfully. Otherwise, if an error occurs, the
following values may be returned:

Page 145ADMXRC3 API Reference
AD-UG-0003 Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

Return Value Description

ADMXRC3_ACCESS_DENIED The device handle was opened with insufficient
privileges for modifying device state.

ADMXRC3_CANCELLED
During the operation, another thread called
ADMXRC3_Cancel on the device handle, or the device
handle was closed.

ADMXRC3_HARDWARE_ERROR A hardware error occurred during the DMA transfer.
ADMXRC3_INVALID_FLAG The flags parameter contains an unrecognized flag.

ADMXRC3_INVALID_HANDLE The hDevice parameter was not a valid device handle.

ADMXRC3_INVALID_INDEX The dmaChannel parameter specifies a nonexistent
DMA channel.

ADMXRC3_INVALID_LOCAL_REGION The localAddress and length parameters specify a
region of local bus address space that is invalid.

ADMXRC3_NO_MEMORY A control block could not be allocated for keeping track
of the DMA transfer.

Remarks

This function is available in ADMXRC3 API version 1.4.0 and later.

This function does not perform any endian-conversion on the data. Refer to Section 3.6, "Endian issues" for a
discussion of how to make an application portable between big- and little-endian CPU architectures.

The way in which the busAddress parameter is interpreted depends upon the I/O bus standard used by the device
specified by hDevice. For example, if hDevice refers to an ADM-XRC-6T1, which has a PCI Express host interface,
busAddress is a PCI Express memory space address.

When no PCI Express endpoint claims the address specified by busAddress, the DMA engine will not receive any data
and will time out within a few tens of microseconds of beginning the DMA transfer. In such cases, the return value is
ADMXRC3_HARDWARE_ERROR.

4.3.67 ADMXRC3_WriteDMAEx
Declaration

ADMXRC3_STATUS
ADMXRC3_WriteDMAEx(

__in ADMXRC3_HANDLE hDevice,
__in unsigned int dmaChannel,
__in uint32_t flags,
__in const void* pBuffer,
__in size_t length,
__in uint64_t localAddress);

The parameters of this function are as follows:

hDevice (in)

Identifies the device to perform the DMA transfer.

dmaChannel (in)

Specifies which DMA channel in the device is to be used to perform the DMA transfer.

Page 146 ADMXRC3 API Reference
AD-UG-0003Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

flags (in)

Flags that modify how the operation is performed. Currently the following flags are defined, which may be bitwise
ORed together:

ADMXRC3_DMA_FIXEDLOCAL
Causes the local address to be held constant throughout the entire DMA transfer.

•

ADMXRC3_DMA_DONOTQUEUE
Causes the function to return an error immediately, rather than wait in a queue, if the DMA transfer cannot be
started immediately due to another DMA transfer ongoing on the same DMA channel.

•

pBuffer (in)

Points to the buffer that contains the data to write to the device.

length (in)

Number of bytes to write to the device.

localAddress (in)

The local address (in bytes) in the device at which to begin writing.

Description

This function writes a block of data from buffer into a device, starting at the specified local address. The data transfer is
performed by a DMA engine within the device. DMA transfers in the ADMXRC3 API are described in general terms in
Section 3.8.3.2, "DMA transfers with host memory".

DMA transfers are subject to a queueing mechanism unless the ADMXRC3_DMA_DONOTQUEUE flag is passed. This
flag causes the function to give up immediately and return an error if it finds that another DMA transfer is in progress on
the same DMA channel. The queueing mechanism is described in general terms in Section 3.4, "Queueing".

Because buffers in user-space may be wholly or partially swapped out to backing store at any time in most operating
systems, this function locks the buffer into physical memory before starting the DMA transfer proper. When the DMA
transfer is finished, the buffer is unlocked and made swappable again. Locking and unlocking a user-space buffer
incurs a certain overhead, so for performance-critical applications, ADMXRC3_WriteDMALockedEx may be more
appropriate than ADMXRC3_WriteDMAEx.

Return Value

A value of ADMXRC3_SUCCESS indicates that the function executed successfully. Otherwise, if an error occurs, the
following values may be returned:

Page 147ADMXRC3 API Reference
AD-UG-0003 Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

Return Value Description

ADMXRC3_ACCESS_DENIED The device handle was opened with insufficient
privileges for modifying device state.

ADMXRC3_CANCELLED
During the operation, another thread called
ADMXRC3_Cancel on the device handle, or the device
handle was closed.

ADMXRC3_HARDWARE_ERROR A hardware error occurred during the DMA transfer.

ADMXRC3_INVALID_BUFFER The pBuffer and length parameters represent a buffer
that is not valid in the caller's address space.

ADMXRC3_INVALID_FLAG The flags parameter contains an unrecognized flag.
ADMXRC3_INVALID_HANDLE The hDevice parameter was not a valid device handle.

ADMXRC3_INVALID_INDEX The dmaChannel parameter specifies a nonexistent
DMA channel.

ADMXRC3_INVALID_LOCAL_REGION The localAddress and length parameters specify a
region of local bus address space that is invalid.

ADMXRC3_NO_MEMORY A control block could not be allocated for keeping track
of the DMA transfer.

Remarks

This function is available in ADMXRC3 API version 1.2.0 and later.

This function does not perform any endian-conversion on the data. Refer to Section 3.6, "Endian issues" for a
discussion of how to make an application portable between big- and little-endian CPU architectures.

4.3.68 ADMXRC3_WriteDMALocked
Declaration

ADMXRC3_STATUS
ADMXRC3_WriteDMALocked(

__in ADMXRC3_HANDLE hDevice,
__in unsigned int dmaChannel,
__in uint32_t flags,
__in ADMXRC3_BUFFER_HANDLE hBuffer,
__in size_t offset,
__in size_t length,
__in uint32_t localAddress);

The parameters of this function are as follows:

hDevice (in)

Identifies the device to perform the DMA transfer.

dmaChannel (in)

Specifies which DMA channel in the device is to be used to perform the DMA transfer.

flags (in)

Flags that modify how the operation is performed. Currently the following flags are defined, which may be bitwise
ORed together:

Page 148 ADMXRC3 API Reference
AD-UG-0003Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

ADMXRC3_DMA_FIXEDLOCAL
Causes the local address to be held constant throughout the entire DMA transfer.

•

ADMXRC3_DMA_DONOTQUEUE
Causes the function to return an error immediately, rather than wait in a queue, if the DMA transfer cannot be
started immediately due to another DMA transfer ongoing on the same DMA channel.

•

hBuffer (in)

Handle to the locked buffer that contains the data to be written to the device.

offset (in)

Offset into the locked buffer where the data to be written to the device is located.

length (in)

Number of bytes to write from the device.

localAddress (in)

The local address (in bytes) in the device at which to begin writing.

Description

This function writes a block of data from a locked buffer into device, starting at the specified local address. The data
transfer is performed by a DMA engine within the device. DMA transfers in the ADMXRC3 API are described in general
terms in Section 3.8.3.2, "DMA transfers with host memory".

DMA transfers are subject to a queueing mechanism unless the ADMXRC3_DMA_DONOTQUEUE flag is passed. This
flag causes the function to give up immediately and return an error if it finds that another DMA transfer is in progress on
the same DMA channel. The queueing mechanism is described in general terms in Section 3.4, "Queueing".

This function must be passed a handle to an already locked buffer, obtained by calling ADMXRC3_Lock.
ADMXRC3_WriteDMALocked has less overhead than ADMXRC3_WriteDMA, since it does not need to lock anything
in physical memory before starting the DMA transfer.

Return Value

A value of ADMXRC3_SUCCESS indicates that the function executed successfully. Otherwise, if an error occurs, the
following values may be returned:

Page 149ADMXRC3 API Reference
AD-UG-0003 Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

Return Value Description

ADMXRC3_ACCESS_DENIED The device handle was opened with insufficient
privileges for modifying device state.

ADMXRC3_CANCELLED
During the operation, another thread called
ADMXRC3_Cancel on the device handle, or the device
handle was closed.

ADMXRC3_HARDWARE_ERROR A hardware error occurred during the DMA transfer.

ADMXRC3_INVALID_BUFFER_HANDLE The hBuffer parameters is not a valid handle to a locked
buffer.

ADMXRC3_INVALID_FLAG The flags parameter contains an unrecognized flag.
ADMXRC3_INVALID_HANDLE The hDevice parameter was not a valid device handle.

ADMXRC3_INVALID_INDEX The dmaChannel parameter specifies a nonexistent
DMA channel.

ADMXRC3_INVALID_LOCAL_REGION The localAddress and length parameters specify a
region of local bus address space that is invalid.

ADMXRC3_INVALID_REGION The offset and length parameters represent a region
that exceeds the bounds of the locked buffer.

ADMXRC3_NO_MEMORY A control block could not be allocated for keeping track
of the DMA transfer.

Remarks

Before starting DMA transfer in the hardware, this function increments the reference count of the locked buffer so that it
cannot be inadvertantly unlocked if a badly-behaved application calls ADMXRC3_Unlock before the DMA transfer
finishes. When the DMA transfer finishes, the locked buffer's reference count is decremented.

This function does not perform any endian-conversion on the data. Refer to Section 3.6, "Endian issues" for a
discussion of how to make an application portable between big- and little-endian CPU architectures.

4.3.69 ADMXRC3_WriteDMALockedEx
Declaration

ADMXRC3_STATUS
ADMXRC3_WriteDMALockedEx(

__in ADMXRC3_HANDLE hDevice,
__in unsigned int dmaChannel,
__in uint32_t flags,
__in ADMXRC3_BUFFER_HANDLE hBuffer,
__in size_t offset,
__in size_t length,
__in uint64_t localAddress);

The parameters of this function are as follows:

hDevice (in)

Identifies the device to perform the DMA transfer.

dmaChannel (in)

Specifies which DMA channel in the device is to be used to perform the DMA transfer.

Page 150 ADMXRC3 API Reference
AD-UG-0003Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

flags (in)

Flags that modify how the operation is performed. Currently the following flags are defined, which may be bitwise
ORed together:

ADMXRC3_DMA_FIXEDLOCAL
Causes the local address to be held constant throughout the entire DMA transfer.

•

ADMXRC3_DMA_DONOTQUEUE
Causes the function to return an error immediately, rather than wait in a queue, if the DMA transfer cannot be
started immediately due to another DMA transfer ongoing on the same DMA channel.

•

hBuffer (in)

Handle to the locked buffer that contains the data to be written to the device.

offset (in)

Offset into the locked buffer where the data to be written to the device is located.

length (in)

Number of bytes to write from the device.

localAddress (in)

The local address (in bytes) in the device at which to begin writing.

Description

This function writes a block of data from a locked buffer into device, starting at the specified local address. The data
transfer is performed by a DMA engine within the device. DMA transfers in the ADMXRC3 API are described in general
terms in Section 3.8.3.2, "DMA transfers with host memory".

DMA transfers are subject to a queueing mechanism unless the ADMXRC3_DMA_DONOTQUEUE flag is passed. This
flag causes the function to give up immediately and return an error if it finds that another DMA transfer is in progress on
the same DMA channel. The queueing mechanism is described in general terms in Section 3.4, "Queueing".

This function must be passed a handle to an already locked buffer, obtained by calling ADMXRC3_Lock.
ADMXRC3_WriteDMALockedEx has less overhead than ADMXRC3_WriteDMAEx, since it does not need to lock
anything in physical memory before starting the DMA transfer.

Return Value

A value of ADMXRC3_SUCCESS indicates that the function executed successfully. Otherwise, if an error occurs, the
following values may be returned:

Page 151ADMXRC3 API Reference
AD-UG-0003 Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

Return Value Description

ADMXRC3_ACCESS_DENIED The device handle was opened with insufficient
privileges for modifying device state.

ADMXRC3_CANCELLED
During the operation, another thread called
ADMXRC3_Cancel on the device handle, or the device
handle was closed.

ADMXRC3_HARDWARE_ERROR A hardware error occurred during the DMA transfer.

ADMXRC3_INVALID_BUFFER_HANDLE The hBuffer parameters is not a valid handle to a locked
buffer.

ADMXRC3_INVALID_FLAG The flags parameter contains an unrecognized flag.
ADMXRC3_INVALID_HANDLE The hDevice parameter was not a valid device handle.

ADMXRC3_INVALID_INDEX The dmaChannel parameter specifies a nonexistent
DMA channel.

ADMXRC3_INVALID_LOCAL_REGION The localAddress and length parameters specify a
region of local bus address space that is invalid.

ADMXRC3_INVALID_REGION The offset and length parameters represent a region
that exceeds the bounds of the locked buffer.

ADMXRC3_NO_MEMORY A control block could not be allocated for keeping track
of the DMA transfer.

Remarks

Before starting DMA transfer in the hardware, this function increments the reference count of the locked buffer so that it
cannot be inadvertantly unlocked if a badly-behaved application calls ADMXRC3_Unlock before the DMA transfer
finishes. When the DMA transfer finishes, the locked buffer's reference count is decremented.

This function does not perform any endian-conversion on the data. Refer to Section 3.6, "Endian issues" for a
discussion of how to make an application portable between big- and little-endian CPU architectures.

4.3.70 ADMXRC3_WriteFlash
Declaration

ADMXRC3_STATUS
ADMXRC3_WriteFlash(

__in ADMXRC3_HANDLE hDevice,
__in unsigned int flashIndex,
__in uint32_t flags,
__in size_t address,
__in size_t length,
__in const void* pBuffer);

The parameters of this function are as follows:

hDevice (in)

Identifies the device containing the Flash memory bank to be written.

flashIndex (in)

Specifies which Flash memory bank in the device is to be written.

flags (in)

Page 152 ADMXRC3 API Reference
AD-UG-0003Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

Flags that modify how the operation is performed. Currently the following flags are defined, which may be bitwise
ORed together:

ADMXRC3_FLASH_SYNC
Causes the cache for the Flash memory bank to be synchronized with the hardware before the function
returns. For a description of the caching mechanism, refer to Section 3.8.5.1, "Flash memory caching"

•

address (in)

The byte address in the Flash memory bank at which to begin writing.

length (in)

Number of bytes to write to the Flash memory bank.

pBuffer (in)

The buffer that contains the data to be written to the the Flash memory bank.

Description

This function writes a block of data from a buffer into a Flash memory bank in a device. The data transfer is performed
by the CPU, so is CPU intensive for large blocks.

Depending on the model, not all locations in Flash memory bank may be writable using this function. This is required in
order to prevent inadvertant corruption of VPD, firmware etc. on some models. To determine the region of a Flash
memory bank that is modifiable, an application calls ADMXRC3_GetFlashInfo. Attempts to modify any location outside
of the modifiable region will fail.

The region of the Flash memory bank that is written, which is specified by the address and length parameters, can be
of arbitrary alignment and does not (for example) need to be aligned to block boundaries. The region must be inside the
user-programmable region, the bounds of which can be determined by calling ADMXRC3_GetFlashInfo.

The ADMXRC3 API implements a caching mechanism for each Flash memory bank. Passing the
ADMXRC3_FLASH_SYNC flag ensures that the cache for the specified Flash memory bank is synchronized with the
hardware before the function returns. An alternative way of ensuring synchronization is to call ADMXRC3_SyncFlash.

Return Value

A value of ADMXRC3_SUCCESS indicates that the function executed successfully. Otherwise, if an error occurs, the
following values may be returned:

Page 153ADMXRC3 API Reference
AD-UG-0003 Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

Return Value Description

ADMXRC3_ACCESS_DENIED The device handle was opened with insufficient privileges
for modifying device state.

ADMXRC3_CANCELLED
During the operation, another thread called
ADMXRC3_Cancel on the device handle, or the device
handle was closed.

ADMXRC3_HARDWARE_ERROR A hardware error occurred while writing to the Flash
memory bank.

ADMXRC3_INVALID_BUFFER The pBuffer and length parameters represent a buffer
that is not valid in the caller's address space.

ADMXRC3_INVALID_HANDLE The hDevice parameter was not a valid device handle.

ADMXRC3_INVALID_INDEX The flashIndex parameter specifies a nonexistent Flash
memory bank.

ADMXRC3_INVALID_REGION The offset and length parameters represent a region that
exceeds the bounds of the Flash memory bank.

ADMXRC3_NO_MEMORY A control block could not be allocated for keeping track of
the Flash write operation.

Remarks

Although the region specified by the address and length parameters need not bear any relationship to a Flash block
boundaries, an application can call ADMXRC3_GetFlashBlockInfo in order to determine which block contains a
particular address. An application can enumerate every block in a Flash memory bank by beginning at address 0 and
repeatedly calling ADMXRC3_GetFlashBlockInfo until the end of the bank is reached.

For Flash memory banks that use chips with block-oriented architectures, calling this function may result in noticeable
delays in execution because of the caching mechanism and block erase and programming delays.

This function does not perform any endian-conversion on the data. Refer to Section 3.6, "Endian issues" for a
discussion of how to make an application portable between big- and little-endian CPU architectures.

4.3.71 ADMXRC3_WriteVPD
Declaration

ADMXRC3_STATUS
ADMXRC3_WriteVPD(

__in ADMXRC3_HANDLE hDevice,
__in uint32_t flags,
__in size_t offset,
__in size_t length,
__in const void* pBuffer);

The parameters of this function are as follows:

hDevice (in)

Identifies the device whose VPD is to be written.

flags (in)

Flags that modify how the operation is performed. Currently no flags are defined, so this parameter must be zero.

offset (in)

Page 154 ADMXRC3 API Reference
AD-UG-0003Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

The byte offset into the VPD memory at which to begin writing.

length (in)

Number of bytes to write to the VPD memory.

pBuffer (in)

The buffer that contains the data to be written to the VPD memory.

Description

This function writes a block of Vital Product Data (VPD) to a device. The data transfer is performed by the CPU, so is
CPU intensive for large blocks. For an overview, refer to Section 3.8.6, "Vital Product Data".

VPD memory area is normally read-only and protected by a write-protection mechanism. The VPD write-protection
mechanism is operating-system dependent; refer to the release notes for the ADB3 driver specific to your operating
system for details.

Return Value

A value of ADMXRC3_SUCCESS indicates that the function executed successfully. Otherwise, if an error occurs, the
following values may be returned:

Return Value Description

ADMXRC3_ACCESS_DENIED The device handle was opened with insufficient privileges
for modifying device state.

ADMXRC3_CANCELLED
During the operation, another thread called
ADMXRC3_Cancel on the device handle, or the device
handle was closed.

ADMXRC3_HARDWARE_ERROR
A hardware error occurred while writing to the VPD
memory. This may indicate that the write-protection
mechanism has not been disabled.

ADMXRC3_INVALID_BUFFER The pBuffer and length parameters represent a buffer
that is not valid in the caller's address space.

ADMXRC3_INVALID_FLAG The flags parameter contains an unrecognized flag.
ADMXRC3_INVALID_HANDLE The hDevice parameter was not a valid device handle.

ADMXRC3_INVALID_REGION The offset and length parameters represent a region that
exceeds the bounds of the VPD memory.

ADMXRC3_NO_MEMORY A control block could not be allocated for keeping track of
the VPD write operation.

Remarks

VPD may be stored in a Flash device, an EEPROM device, or something else, depending on the model. For some
types of nonvolatile memory that have block-oriented architectures, calling this function may result in noticeable delays
in execution due to block erase and block programming delays.

This function does not perform any endian-conversion on the data. Refer to Section 3.6, "Endian issues" for a
discussion of how to make an application portable between big- and little-endian CPU architectures.

Page 155ADMXRC3 API Reference
AD-UG-0003 Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

Page Intentionally left blank.

Page 156 ADMXRC3 API Reference
AD-UG-0003Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

Appendix A: Duplicating device handles

Most operating systems provide a means of duplicating a file handle. Windows has DuplicateHandle, whilst Linux and
VxWorks have the dup and dup2 system calls. These functions are not suitable as a means of duplicating a device
handle of type ADMXRC3_HANDLE. The reason is that at the kernel level, a device driver is unable to distinguish
between the duplicated handle and the original one. The following example illustrates this.

First, a Linux or VxWorks application opens a device using ADMXRC3_Open. After the call returns, the device handle
can be envisaged as follows:

File

context

structure

Device

structure

device handle

= 7

User space Kernel

Process file

descriptor

table

6

7

8

9

10

Figure 1: An open device handle

Next, the application duplicates the handle using dup. After the call returns, the device handles can be envisaged as
follows:

File

context

structure

Device

structure

device handle

= 7

User space Kernel

Process file

descriptor

table

6

7

8

9

10

dup’ed device

handle = 8

Figure 2: After duplicating a device handle

This should be contrasted with the result of calling ADMXRC3_Open again instead of dup:

Page 157Duplicating device handles
AD-UG-0003 Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

File

context

structure
Device

structure

device handle

= 7

Process file

descriptor

table

6

7

8

9

10

device handle

= 8

User space Kernel

File

context

structure

Figure 3: After opening a device twice

In Windows the terminology is different, but the same principle applies. The device driver maintains per-device-handle
state in the file context structure, so it is essential for ADMXRC3_Open or ADMXRC3_OpenEx to be used in order for
the driver to be able to distinguish between two device handles. This is important for non-blocking operations, as
described in Section 3.3, "Non-blocking operations".

Page 158 Duplicating device handles
AD-UG-0003Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

INDEX
ADMXRC3_BANK_INFO, 25
ADMXRC3_BITSTREAM, 21
ADMXRC3_BITSTREAMA, 27
ADMXRC3_BITSTREAMW, 28
ADMXRC3_BUFFER_HANDLE, 29
ADMXRC3_Cancel, 55
ADMXRC3_CARD_INFO, 29
ADMXRC3_CARD_INFOEX, 31
ADMXRC3_Close, 56
ADMXRC3_ConfigureFromBuffer, 57
ADMXRC3_ConfigureFromFile, 21
ADMXRC3_ConfigureFromFileA, 59
ADMXRC3_ConfigureFromFileW, 61
ADMXRC3_DATA_TYPE, 32
ADMXRC3_EraseFlash, 63
ADMXRC3_FAMILY_TYPE, 33
ADMXRC3_FinishDMA, 65
ADMXRC3_FinishNotificationWait, 66
ADMXRC3_FLASH_INFO, 21
ADMXRC3_FLASH_INFOA, 33
ADMXRC3_FLASH_INFOW, 34
ADMXRC3_FLASHBLOCK_INFO, 35
ADMXRC3_FPGA_INFO, 22
ADMXRC3_FPGA_INFOA, 35
ADMXRC3_FPGA_INFOW, 37
ADMXRC3_FPGA_TYPE, 39
ADMXRC3_GetBankInfo, 67
ADMXRC3_GetCardInfo, 68
ADMXRC3_GetCardInfoEx, 69
ADMXRC3_GetClockFrequency, 69
ADMXRC3_GetFlashBlockInfo, 70
ADMXRC3_GetFlashInfo, 22
ADMXRC3_GetFlashInfoA, 71
ADMXRC3_GetFlashInfoW, 72
ADMXRC3_GetFpgaInfo, 22
ADMXRC3_GetFpgaInfoA, 73
ADMXRC3_GetFpgaInfoW, 74
ADMXRC3_GetModuleInfo, 23
ADMXRC3_GetModuleInfoA, 75
ADMXRC3_GetModuleInfoW, 76
ADMXRC3_GetSensorInfo, 23
ADMXRC3_GetSensorInfoA, 77
ADMXRC3_GetSensorInfoW, 78
ADMXRC3_GetStatusString, 23
ADMXRC3_GetStatusStringA, 79
ADMXRC3_GetStatusStringW, 80
ADMXRC3_GetVersionInfo, 80
ADMXRC3_GetWindowInfo, 81
ADMXRC3_HANDLE, 41
ADMXRC3_HANDLE_INVALID_VALUE, 24
ADMXRC3_InitializeTicket, 82

ADMXRC3_LoadBitstream, 24
ADMXRC3_LoadBitstreamA, 82
ADMXRC3_LoadBitstreamW, 83
ADMXRC3_Lock, 84
ADMXRC3_MapWindow, 86
ADMXRC3_MODEL_TYPE, 41
ADMXRC3_MODULE_INFO, 24
ADMXRC3_MODULE_INFOA, 42
ADMXRC3_MODULE_INFOW, 44
ADMXRC3_Open, 88
ADMXRC3_OpenEx, 89
ADMXRC3_PACKAGE_TYPE, 46
ADMXRC3_Read, 91
ADMXRC3_ReadDMA, 92
ADMXRC3_ReadDMABus, 94
ADMXRC3_ReadDMAEx, 96
ADMXRC3_ReadDMALocked, 98
ADMXRC3_ReadDMALockedEx, 100
ADMXRC3_ReadFlash, 102
ADMXRC3_ReadSensor, 104
ADMXRC3_ReadVPD, 105
ADMXRC3_RegisterVxwSem, 108
ADMXRC3_RegisterWin32Event, 107
ADMXRC3_SENSOR_INFO, 25
ADMXRC3_SENSOR_INFOA, 47
ADMXRC3_SENSOR_INFOW, 48
ADMXRC3_SENSOR_VALUE, 49
ADMXRC3_SetClockFrequency, 110
ADMXRC3_StartNotificationWait, 112
ADMXRC3_StartReadDMA, 113
ADMXRC3_StartReadDMABus, 115
ADMXRC3_StartReadDMAEx, 117
ADMXRC3_StartReadDMALocked, 119
ADMXRC3_StartReadDMALockedEx, 121
ADMXRC3_StartWriteDMA, 123
ADMXRC3_StartWriteDMABus, 125
ADMXRC3_StartWriteDMAEx, 127
ADMXRC3_StartWriteDMALocked, 129
ADMXRC3_StartWriteDMALockedEx, 131
ADMXRC3_STATUS, 50
ADMXRC3_SUBFAMILY_TYPE, 51
ADMXRC3_SyncFlash, 133
ADMXRC3_TICKET, 51
ADMXRC3_Unconfigure, 134
ADMXRC3_UNIT_TYPE, 52
ADMXRC3_UnloadBitstream, 25
ADMXRC3_UnloadBitstreamA, 135
ADMXRC3_UnloadBitstreamW, 136
ADMXRC3_Unlock, 137
ADMXRC3_UnmapWindow, 138
ADMXRC3_UnregisterVxwSem, 140

Page 159Duplicating device handles
AD-UG-0003 Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

ADMXRC3_UnregisterWin32Event, 139
ADMXRC3_VERSION_INFO, 52
ADMXRC3_WINDOW_INFO, 53
ADMXRC3_Write, 141
ADMXRC3_WriteDMA, 143
ADMXRC3_WriteDMABus, 144
ADMXRC3_WriteDMAEx, 146
ADMXRC3_WriteDMALocked, 148
ADMXRC3_WriteDMALockedEx, 150
ADMXRC3_WriteFlash, 152
ADMXRC3_WriteVPD, 154

Page 160 Duplicating device handles
AD-UG-0003Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

Page Intentionally left blank.

Page 161Duplicating device handles
AD-UG-0003 Alpha Data Parallel Systems Ltd.

ADMXRC3 API 1.4.0 Specification
(v1.5 - 24th August 2011)

Revision History:

Date Revision Nature of Change
14/04/2010 1.0 Initial version.

09/07/2010 1.1

General corrections and clarifications.
Added commonly-encountered error codes for
ADMXRC API functions.
Documented changes in ADMXRC3 API version 1.1.0.
Added subsection about string encoding issues and
changed references to ASCII strings to ANSI / UTF-8.
Corrected NumMemoryBank and NumTargetFpga
shown in the wrong order in the section for
ADMXRC3_CARD_INFO.

21/09/2010 1.2

Added VxWorks-specific API functions
ADMXRC3_RegisterVxwSem and
ADMXRC3_UnregisterVxwSem
Clarified information about linking VxWorks
applications that use the ADMXRC3 API.

04/03/2011 1.3

Added ADMXRC3_*DMA*Ex functions.
Documented changes in ADMXRC3 API version 1.2.0.
Corrected datatype for localAddress parameters of
non-Ex DMA functions; was incorrectly documented
as uint64_t but is actually uint32_t.
Reorganized the sections about hardware features
and added figures illustrating memory windows and
methods of data transfer.

24/06/2011 1.4

Documented changes in ADMXRC3 API version 1.3.0.
Added new enum values for models ADM-XRC-6TGE
and ADM-XRC-6T-ADV8.
Added new value ADMXRC3_NOT_SUPPORTED for
ADMXRC3_STATUS enumerated type.

05/08/2011 1.5 Documented changes in ADMXRC3 API version 1.4.0:
Added new API functions ADMXRC3_ReadDMABus

ADMXRC3_S­
tartReadMABus

ADMXRC3_S­
tartWriteDMABus

and
ADMXRC3_­

WriteDMABus.
Added new

flag
ADMXRC3_F­
PGA_NOTCO­
NFIGURABLE.

Added new
value

ADMXRC3_U­
NIT_S to

ADMXRC3_U­
NIT_TYPE

enumerated
type.

©2011 Alpha Data Parallel Systems Ltd. All rights reserved. All other trademarks and registered trademarks are the
property of their respective owners.

Address: 4 West Silvermills Lane,
 Edinburgh, EH3 5BD, UK
Telephone: +44 131 558 2600
Fax: +44 131 558 2700
email: sales@alpha-data.com
website: http://www.alpha-data.com

Address: 3507 Ringsby Court Suite 105
 Denver, CO 80216
Telephone: (303) 954 8768
Fax: (866) 820 9956 - toll free
email: sales@alpha-data.com
website: http://www.alpha-data.com

v3.36

	1 Introduction
	1.1 New in ADMXRC3 API version 1.1.0
	1.1.1 New model
	1.1.2 Extended card information
	1.1.3 Hardware monitoring
	1.1.4 I/O personality modules
	1.1.5 Direct-call mechanism for consuming notifications
	1.1.6 VxWorks-specific API functions for consuming notifications

	1.2 New in ADMXRC3 API version 1.2.0
	1.2.1 DMA functions for 64-bit local addresses

	1.3 New in ADMXRC3 API version 1.3.0
	1.3.1 Support for new models
	1.3.2 New value for ADMXRC3_STATUS

	1.4 New in ADMXRC3 API version 1.4.0
	1.4.1 Support for DMA to bus addresses
	1.4.2 New flag ADMXRC3_FPGA_NOTCONFIGURABLE
	1.4.3 New value ADMXRC3_UNIT_S for enumerated type ADMXRC3_UNIT_TYPE

	2 Building C and C++ applications
	2.1 Building applications for Windows
	2.1.1 Compiling for Windows
	2.1.2 Linking for Windows

	2.2 Building applications for Linux
	2.2.1 Compiling for Linux
	2.2.2 Linking for Linux

	2.3 Building applications for VxWorks
	2.3.1 Compiling for VxWorks
	2.3.2 Linking for VxWorks

	3 Concepts
	3.1 Hardware, devices and device handles
	3.2 Multithreading
	3.2.1 Multithreading with blocking API functions
	3.2.2 Multithreading with non-blocking API functions

	3.3 Non-blocking operations
	3.3.1 Multithreading and non-blocking operations
	3.3.2 Tickets
	3.3.2.1 Tickets in Windows
	3.3.2.2 Tickets in Linux and VxWorks

	3.4 Queueing
	3.5 Notifications
	3.5.1 Event / Semaphore registration
	3.5.2 Direct-call notification

	3.6 Endian issues
	3.7 String encoding issues
	3.8 Hardware features
	3.8.1 Target FPGAs
	3.8.1.1 Full reconfiguration
	3.8.1.2 Partial reconfiguration
	3.8.1.3 Unconfiguration
	3.8.1.4 Target FPGA ownership

	3.8.2 Memory windows
	3.8.2.1 Mapping memory windows into user-space

	3.8.3 FPGA data transfer
	3.8.3.1 CPU-initiated transfers
	3.8.3.2 DMA transfers with host memory
	3.8.3.2.1 Unlocked DMA functions
	3.8.3.2.2 Locked DMA functions

	3.8.3.3 DMA transfers with peer devices

	3.8.4 Clock generators
	3.8.5 Flash memory
	3.8.5.1 Flash memory caching

	3.8.6 Vital Product Data
	3.8.7 Hardware monitoring
	3.8.8 I/O personality modules

	4 ADMXRC3 API Reference
	4.1 ADMXRC3 API constants and macros
	4.1.1 ADMXRC3_BITSTREAM
	4.1.2 ADMXRC3_ConfigureFromFile
	4.1.3 ADMXRC3_FLASH_INFO
	4.1.4 ADMXRC3_FPGA_INFO
	4.1.5 ADMXRC3_GetFlashInfo
	4.1.6 ADMXRC3_GetFpgaInfo
	4.1.7 ADMXRC3_GetModuleInfo
	4.1.8 ADMXRC3_GetSensorInfo
	4.1.9 ADMXRC3_GetStatusString
	4.1.10 ADMXRC3_HANDLE_INVALID_VALUE
	4.1.11 ADMXRC3_LoadBitstream
	4.1.12 ADMXRC3_MODULE_INFO
	4.1.13 ADMXRC3_SENSOR_INFO
	4.1.14 ADMXRC3_UnloadBitstream

	4.2 ADMXRC3 API datatypes
	4.2.1 ADMXRC3_BANK_INFO
	4.2.2 ADMXRC3_BITSTREAMA
	4.2.3 ADMXRC3_BITSTREAMW
	4.2.4 ADMXRC3_BUFFER_HANDLE
	4.2.5 ADMXRC3_CARD_INFO
	4.2.6 ADMXRC3_CARD_INFOEX
	4.2.7 ADMXRC3_DATA_TYPE
	4.2.8 ADMXRC3_FAMILY_TYPE
	4.2.9 ADMXRC3_FLASH_INFOA
	4.2.10 ADMXRC3_FLASH_INFOW
	4.2.11 ADMXRC3_FLASHBLOCK_INFO
	4.2.12 ADMXRC3_FPGA_INFOA
	4.2.13 ADMXRC3_FPGA_INFOW
	4.2.14 ADMXRC3_FPGA_TYPE
	4.2.15 ADMXRC3_HANDLE
	4.2.16 ADMXRC3_MODEL_TYPE
	4.2.17 ADMXRC3_MODULE_INFOA
	4.2.18 ADMXRC3_MODULE_INFOW
	4.2.19 ADMXRC3_PACKAGE_TYPE
	4.2.20 ADMXRC3_SENSOR_INFOA
	4.2.21 ADMXRC3_SENSOR_INFOW
	4.2.22 ADMXRC3_SENSOR_VALUE
	4.2.23 ADMXRC3_STATUS
	4.2.24 ADMXRC3_SUBFAMILY_TYPE
	4.2.25 ADMXRC3_TICKET
	4.2.26 ADMXRC3_UNIT_TYPE
	4.2.27 ADMXRC3_VERSION_INFO
	4.2.28 ADMXRC3_WINDOW_INFO

	4.3 ADMXRC3 API functions
	4.3.1 ADMXRC3_Cancel
	4.3.2 ADMXRC3_Close
	4.3.3 ADMXRC3_ConfigureFromBuffer
	4.3.4 ADMXRC3_ConfigureFromFileA
	4.3.5 ADMXRC3_ConfigureFromFileW
	4.3.6 ADMXRC3_EraseFlash
	4.3.7 ADMXRC3_FinishDMA
	4.3.8 ADMXRC3_FinishNotificationWait
	4.3.9 ADMXRC3_GetBankInfo
	4.3.10 ADMXRC3_GetCardInfo
	4.3.11 ADMXRC3_GetCardInfoEx
	4.3.12 ADMXRC3_GetClockFrequency
	4.3.13 ADMXRC3_GetFlashBlockInfo
	4.3.14 ADMXRC3_GetFlashInfoA
	4.3.15 ADMXRC3_GetFlashInfoW
	4.3.16 ADMXRC3_GetFpgaInfoA
	4.3.17 ADMXRC3_GetFpgaInfoW
	4.3.18 ADMXRC3_GetModuleInfoA
	4.3.19 ADMXRC3_GetModuleInfoW
	4.3.20 ADMXRC3_GetSensorInfoA
	4.3.21 ADMXRC3_GetSensorInfoW
	4.3.22 ADMXRC3_GetStatusStringA
	4.3.23 ADMXRC3_GetStatusStringW
	4.3.24 ADMXRC3_GetVersionInfo
	4.3.25 ADMXRC3_GetWindowInfo
	4.3.26 ADMXRC3_InitializeTicket
	4.3.27 ADMXRC3_LoadBitstreamA
	4.3.28 ADMXRC3_LoadBitstreamW
	4.3.29 ADMXRC3_Lock
	4.3.30 ADMXRC3_MapWindow
	4.3.31 ADMXRC3_Open
	4.3.32 ADMXRC3_OpenEx
	4.3.33 ADMXRC3_Read
	4.3.34 ADMXRC3_ReadDMA
	4.3.35 ADMXRC3_ReadDMABus
	4.3.36 ADMXRC3_ReadDMAEx
	4.3.37 ADMXRC3_ReadDMALocked
	4.3.38 ADMXRC3_ReadDMALockedEx
	4.3.39 ADMXRC3_ReadFlash
	4.3.40 ADMXRC3_ReadSensor
	4.3.41 ADMXRC3_ReadVPD
	4.3.42 ADMXRC3_RegisterWin32Event
	4.3.43 ADMXRC3_RegisterVxwSem
	4.3.44 ADMXRC3_SetClockFrequency
	4.3.45 ADMXRC3_StartNotificationWait
	4.3.46 ADMXRC3_StartReadDMA
	4.3.47 ADMXRC3_StartReadDMABus
	4.3.48 ADMXRC3_StartReadDMAEx
	4.3.49 ADMXRC3_StartReadDMALocked
	4.3.50 ADMXRC3_StartReadDMALockedEx
	4.3.51 ADMXRC3_StartWriteDMA
	4.3.52 ADMXRC3_StartWriteDMABus
	4.3.53 ADMXRC3_StartWriteDMAEx
	4.3.54 ADMXRC3_StartWriteDMALocked
	4.3.55 ADMXRC3_StartWriteDMALockedEx
	4.3.56 ADMXRC3_SyncFlash
	4.3.57 ADMXRC3_Unconfigure
	4.3.58 ADMXRC3_UnloadBitstreamA
	4.3.59 ADMXRC3_UnloadBitstreamW
	4.3.60 ADMXRC3_Unlock
	4.3.61 ADMXRC3_UnmapWindow
	4.3.62 ADMXRC3_UnregisterWin32Event
	4.3.63 ADMXRC3_UnregisterVxwSem
	4.3.64 ADMXRC3_Write
	4.3.65 ADMXRC3_WriteDMA
	4.3.66 ADMXRC3_WriteDMABus
	4.3.67 ADMXRC3_WriteDMAEx
	4.3.68 ADMXRC3_WriteDMALocked
	4.3.69 ADMXRC3_WriteDMALockedEx
	4.3.70 ADMXRC3_WriteFlash
	4.3.71 ADMXRC3_WriteVPD

	Appendix A Duplicating device handles
	Tables
	Table 1: char string encoding in ADMXRC3 API by operating system
	Table 2: Methods of FPGA data transfer

	Figures
	Figure 1: Target FPGA ownership state machine
	Figure 2: BARs in a reconfigurable computing device
	Figure 3: Methods of FPGA data transfer
	Figure 4: CPU-initiated read of a target FPGA
	Figure 5: CPU-initiated write of a target FPGA
	Figure 6: DMA read of a target FPGA
	Figure 7: DMA write of a target FPGA
	Figure 8: DMA transfer from a target FPGA to a peer device
	Figure 9: DMA transfer from a peer device to a target FPGA
	Figure 10: ADMXRC3_PACKAGE_TYPE bit fields
	Figure 11: SelectMap D0..D7 byte mapping
	Figure A1: An open device handle
	Figure A2: After duplicating a device handle
	Figure A3: After opening a device twice

	Alpha Data Website

