e,ALPHA DATA

ADM-XRC Gen 3
SDK 1.4.0
User Guide

Revision: 1.5
Date: 24th August 2011

@ALPHA DATA

ADM-XRC Gen 3 SDK 1.4.0 User Guide
(V1.5 - 24th August 2011)

©2011 Copyright Alpha Data Parallel Systems Ltd.
All rights reserved.
This publication is protected by Copyright Law, with all rights reserved. No

part of ti

publication may be reproduced, in any shape or form, without

prior written consent from Alpha Data Parallel Systems Limited.

Address
Telephone
Fax

email
website

Head Office

4 West Silvermills Lane,
Edinburgh, EH3 58D, UK

+44 131 558 2600

+44 131 558 2700
sales@alpha-data.com
http:/fwww.alpha-data.com

US Office

3507 Ringsby Court Suite 105
Denver, CO 80216

(303) 954 8768
(866) 820 9956 - toll free
sales@alpha-data.com
hitp://www.alpha-data.com

ADM-XRC Gen 3 SDK 1.4.0 User Guide
(VL5 - 24th August 2011) @ ALPHA DATA

Table Of Contents
1

1.1 Document
1.2 Supported operating syste:
1.3 Supported Alpha Data hardware
1.4 Installation
1.4.1 Installation in Windoy
1.4.2 Installation in Linu
1.4.3 Installation in VxWork:
1.5 Structure of this SDK
Getting started
2.1 Getting started in Windows 2000 / XP / Server 2003
2.2 Getting started in Windows Vista and later
2.3 Getting started in Linux
2.4 Getting started in VxWorks

~

3 Example for Windows and Linu
3.1 Building the example in Wind
3.2 Building the example in Linu
3.3 DUMP utiity.

3.4 FLASH utilty.
3.4.1 Failsafe bitstream mechanism.

3.5 INFO utilty

3.6 ITEST example.

BELEREERovaasnmomn e e e e

3.7 MEMTESTH imple 22
3.8 MONITOR utility 23
3.9 SIMPLE example. 24
310 SYSMON utiity. 25
3.10.1 SYSMON sensor data logging 27
3.10.2 Building SYSMON in L 29
311 VPD uilty 30
4 Example for VxWorks 34
4.1 Building the example VxWorks in Window: 3
4.2 Building the example VxWorks in Linw 34
4.3 MAKE options for the example VxWorks 34
4.4 FLASH utilty (VxWorks) 37
4.4.1 Failsafe bitstream mechanism (VxWorks) 38
4.5 INFO utility (VxWorks) 0
4.6 ITEST example (VxWorks) 42
4.7 MEMTESTH example (VxWorks) 44
4.8 MONITOR utiity (VxWorks) a5
4.9 SIMPLE example (VxWorks) 46
410 VPD utiity (VxWorks) a7
5 Example HDL FPGA Designs 51
5.1 Introduction. 51

ADM-XRC Gen 3 SDK 1.4.0 User Guide

@ALPHA DATA (V15 - 24th August 2011)

5.2 Design Simulation Using Modelsim 51
5.2.1 Full MPTL Simulation (TARGET_USE = SIM_MPTL) 51
5.2.2 OCP-Only Simulation (TARGET_USE = SIM_OCP) 52

5.3 Bitstream Build Using Xilinx ISE 52
5.3.1 Building All Example Bitstreams for Wind 52
5.3.2 Building All Example Bitstreams for Linu 53
5.3.3 Building Specific Device Bitstreams 53

5.4 Simple Example FPGA Design 54
5.4.1 Board Support 54
5.4.2 Source Location 54

5.4.2.1 VHDL Source Files for Simulation 54
5.4.2.2 VHDL Source Files for Synthesi: 54
5.4.2.3 XST File: 54
5424 Constraint File: 54
5.4.3 Design Synthesis and Bitstream Build 54
5.4.4 Design Description 56
5.4.4.1 Clock and Reset Generation 59
5.4.4.2 Target MPTL Interfac 0
5.4.4.3 Target PCle Interface 59
5.4.4.4 OCP to Simple Bus Interface. 59
5.4.4.5 Simple Test Registers. 60
5.4.4.5.1 Register Description 60
5.4.5 Testbench Description 61
5.4.5.1 Clock Generation. 64
5.45.2 Bridge MPTL Interface 64
5.4.5.3 Host PCle Interface 65
5.4.5.4 Direct Slave OCP Channel Probe 65
5.45.5 Stimulus Generation and Verification 65
5.4.5.5.1 Direct Slave OCP Channel 65
5.4.5.5.1.1 Simple Test 65

5.4.6 Design Simulation 65
5.4.6.1 Initialisation Results (MPTL). 66
5.4.6.2 Direct Slave OCP Channel Result 66
5.4.6.3 Completion Results 66

5.5 Uber Example FPGA Design 67
5.5.1 Board Support 67
5.5.2 Source Location 67

5.5.2.1 VHDL Source Files for Simulation 67
5.5.2.2 VHDL Source Files for Synthesi 67
5.5.2.3 XST Fil 67
5524 Constraint File: 67
5.5.3 Design Synthesis and Bitstream Build 67
5.5.3.1 Date/Time Package Generation 60
5.5.4 Design Description 70

5.5.4.1 Clock and Reset Generation 77

ADM-XRC Gen 3 SDK 1.4.0 User Guide
(VL5 - 24th August 2011) @ ALPHA DATA

5.5.4.1.1 Internal Clock Generation (MMCM). 7
5.5.4.1.2 Internal Reset Generation (MMCM) 78
5.5.4.1.3 MPTL Interface Clock Generation 78
5.5.4.1.4 PCle Interface Clock Generation. 78
5.5.4.1.5 Input Clock Buffering 78
5.5.4.1.6 Input Clock Extraction (MGT Sourced). 78
5.5.4.1.7 Output Clock Generation. 78
5.5.4.2 Target MPTL Interfac 81
5.5.4.3 Target PCle Interface 81
5.5.4.4 OCP Direct Slave Block. 81
5.5.4.4.1 Direct Slave Address Space Spliter. 84
5.5.4.4.2 Direct Slave Register Address Space 84
55.4.4.2.1 Direct Slave Clock Domain Interface 84
55.4.4.2.2 Direct Slave Register Address Space Spliter ... S 84
55.4.4.2.3 Simple Test Register Block 8
55.4.4.2.3.1 Description 85
55.4.4.2.3.2 Register Description 86
55.4.4.2.4 Clock Frequency Register Block 86
55.4.4.2.4.1 Description 86
55.4.4.2.4.2 Register Description &7
55.4.4.25 Interrupt Test Register Block 89
55.4.4.2.5.1 Description 89
55.4.4.2.5.2 Register Description 89
554426 Register Block %
5.5.4.4.2.6.1 Description 90
5.5.4.4.2.6.2 Register Description 91
5.5.4.4.2.7 GPIO Test Register Block. 93
5.5.4.4.2.7.1 Description 93
5.5.4.4.2.7.2 Register Description 93
5.5.4.4.2.8 On-Board Memory Register Block 101
5.5.4.4.2.8.1 Description 101
5.5.4.4.2.8.2 Register Description 101
5.5.4.4.3 Direct Slave BRAM Address Space 108
5.5.4.4.3.1 Description 10¢
5.5.4.4.3.2 Direct Slave BRAM Access Window 108
5.5.4.4.4 Direct Slave On-Board Memory Address Space 108
5.5.4.4.4.1 Description 10¢
5.5.4.4.4.2 Direct Slave On-Board Memory Access Window ... 105
5.5.4.5 OCP Switching Block. 106
5.5.4.5.1 Direct Slave On-Board Memory OCP Address Space Splitter Block 108
5.5.4.5.2 BRAM OCP Multiplexor Block 108
5.5.4.5.3 DMA Channel 0 OCP Address Space Splitter Block 108
5.5.4.5.4 On-Board Memory Bank OCP 109
5.5.4.6 BRAM Block 109

5.5.4.7 On-Board Memory Interface Block a1

@ALPHA DATA

ADM-XRC Gen 3 SDK 1.4.0 User Guide
(VL5 - 24th August 2011)

a

5.5.6 Design Simulation

.5 Testbench Description

5.5.5.3 Host PCle Interfa

5.5.5.4 OCP Channel Probe

5.5.6.2 Initialisation Resls

5.5.4.8 On-Board Memory Application Block. 13
5.5.4.9 ChipScope Connection Block (optional) 13
5.5.4.10 Design Package (uber_pkg) 13
16
55.5.1 Clock Generation and Test 121
55.5.2 Bridge MPTL Interface 121
1
1
55.5.5 Stimulus Generation and Verification 1
55.5.5.1 Non-OCP Functions 1
555511 Clock Output Test, 1
55.55.1.2 MPTL GPIO Bus Test (MPTL) 1
5.5.5.5.1.3 DMA Abort Bus Test 1
5.5.5.5.2 Direct Slave OCP Channel 1
5.5.5.5.2.1 Simple Test 1
5.5.5.5.2.2 Clock Frequency Test. 124
55.5.5.2.3 XRM GPIO Test 124
55.5.5.2.4 Pna/Pné GPIO Test 125
55,5,5.2.5 Interrupt Test 126
555526 Register Test, 126
55.55.2.7 BRAM Test 1
5.5.5.5.2.8 On-Board Memory Test 1
555.5.5.3 DMA OCP Channel: 129
5.5,5,5.3.1 DMA OCP Command and Write Data Process 130
5.5.5.5.3.2 DMA OCP Response Proc 130
5.5.5.6 On-Board Memory Simulation Models 131
5.5.5.7 Testbench Package (uber_tb_pkg) 131
133
5.5.6.1 Date/Time Package Generation 134
135
5.5.6.2.1 DDR3 SDRAM MIG Core MMCM Status 135
5.5.6.2.2 Testbench Status (MPTL) 135
5.5.6.2.3 DDR3 SDRAM Initialisation 13
5.5.6.3 Non-OCP Functions Results 13¢
55.6.3.1 MPTL GPIO Bus Test Results (MPTL) 13¢
5.5.6.4 Direct Slave OCP Channel Result 136
5.5.6.4.1 Simple Test Result 136
555.6.4.2 Clock Frequency Test Result 136
55.6.4.3 XRM GPIO Test Resdlt 136
555.6.4.4 Pna/Pn6 GPIO Test Result 1
55.6.4.5 Interrupt Test Results (MPTL) 1
55646 Register Test Result 138
55.6.4.7 BRAM Test Results 138
5.5.6.4.8 On-Board Memory Test Results 139

5.5.6.5 DMA OCP Channels Results.

ADM-XRC Gen 3 SDK 1.4.0 User Guide
(VL5 - 24th August 2011)

@ALPHA DATA

5.5.6.6 Completion Result

6 Common HDL C

6.1 ADB3 OCP.

6.1.3 ADB3 OCP Component

61311

6.1.3.1.2 Interface

6.1.3.1.3 Description

6.1.3.2 adb3_ocp_mux_b

61321

6.1.3.2.2 Interface

6.1.3.2.3 Description

6.1.3.3 adb3_ocp_mux_nb
61331

6.1.3.3.2 Interface

6.1.3.3.3 Description

61341

6.1.3.4.2 Interface

6.1.351

6.1.3.5.2 Interface

6.1.36.1

6.1.3.6.2 Interface

141
142
143
6.1.1 ADB3 OCP Profile Definition Package (adb3_ocp) 143
6.1.2 ADB3 OCP Component Declaration Package (adb3_ocp_comp). 144
15
6.1.3.1 adb3_ocp_cross_clk_dom 145
145
145
145
6.1.3.1.3.1 Command Path 147
6.1.3.1.3.2 Write Data Path 147
6.1.3.1.3.3 Read Response Path 147
148
148
148
148
149
149
149
149
6.1.3.3.3.1 Command Path 151
6.1.3.3.3.2 Write Data Path 151
6.1.3.3.3.3 Read Response Path 15
6.1.3.4 adb3_ocp_ocp2ddr3_nb. 154
154
154
6.1.3.4.3 Description 155
6.1.3.4.3.1 Command Path 15
6.1.3.4.3.2 Write Data Path 158
6.1.3.4.3.3 Read Response Path 158
6.1.3.5 adb3_ocp_retime_nb. 159
159
159
6.1.3.5.3 Description 159
6.1.3.5.3.1 Command Path 161
6.1.3.5.3.2 Write Data Path 161
6.1.3.5.3.3 Read Response Path 161
6.1.3.5.3.4 SRLIGE Retime Block (adb3_ocp_srl16_ret) 161
6.1.3.6 adb3_ocp_simple_bus_if. 161
161
161
6.1.3.6.3 Description 161
6.1.3.6.3.1 Example Waveforms 164
166

6.1.3.7 adb3_ocp_simple_bus_if_nb.

ADM-XRC Gen 3 SDK 1.4.0 User Guide

OALPHA DATA (025 24 Augost 2011)
6.1.37.1 166
6.1.3.7.2 Interface 166
6.1.3.7.3 Description 16

6.1.3.7.3.1 Command Path 169
6.1.3.7.3.2 Write Data Path 169
6.1.3.7.3.3 Read Response Path 170
6.1.3.7.3.4 Example Waveforms 170
6.1.3.8 adb3_ocp_split_b 173
61381 173
6.1.3.8.2 Interface 173
6.1.3.8.3 Description 173
6.1.3.9 adb3_ocp_split_nb 174
6139.1 174
6.1.3.9.2 Interface 174
6.1.3.9.3 Description 174
6.1.3.9.3.1 Command Path 176
6.1.3.9.3.2 Write Data Path 176
6.1.3.9.3.3 Read Response Path 177
6.1.4 ADB3 OCP Testbench Package (adb3_ocp_tb_pkg) 179
6.2 ADB3 Target 180
6.2.1 ADB3 Target Types Definition Package (adb3_{arget_types_pKQ).............cwwroiosvrres 180
6.2.2 ADB3 Target Include Package (adb3_target_inc_pkg) 181
6.2.3 ADB3 Target Package (adb3_target_pkg) 184
6.2.4 ADB3 Target Component L85
6.2.4.1 Target MPTL Interface Wrapper (mptl_if_target_wrap) 185
62411 185
6.2.4.1.2 Interface 185
6.2.4.1.3 Description 186
6.2.4.1.3.1 OCP-Only Simulation 186
6.2.4.1.3.2 Full MPTL Simulation and Synthesi 18
6.2.4.1.3.2.1 Full MPTL simulation. 18]
6.2.4.1.3.2.2 Synthesi: 188
6.2.4.2 Target PCle Interface Wrapper (pcie_if_target_wrap) 189
62421 189
6.2.4.2.2 Interface 189
6.2.4.2.3 Description 190
6.2.4.2.3.1 OCP-Only Simulation 190
6.2.4.2.3.2 Synthesi 191
6.2.5 ADB3 Target Testbench Include Package (adb3_target_tb_inc_pkg).. B 192
6.2.6 ADB3 Target Testbench Package (adb3_target_tb_pkg) 19:
6.2.7 ADB3 Target Testbench Components 194
6.2.7.1 Bridge MPTL Interface Wrapper (mpt_if_bridge_wrap) 194
6.27.1.1 194
6.2.7.1.2 Interface 194

6.2.7.1.3 Description 16t

ADM-XRC Gen 3 SDK 1.4.0 User Guide

e e o Onienn oara
6.2.7.1.3.1 OCP-Only Simulation 19
6.2.7.1.3.2 Full MPTL Simulation 196

6.2.7.2 Host PCle Interface Wrapper (pcie_if_host_wrap) 198
627.2.1 198
6.2.7.2.2 Interface 198
6.2.7.2.3 Description 199

6.2.7.2.3.1 OCP-Only Simulation 199

6.2.7.3 Board Clock Generation and Test (test_board_clks). 01
62731 01
6.2.7.3.2 Interface 01
6.2.7.3.3 Description 0;

6.3 ADB3 Probe 0;
6.3.1 ADB3 Probe Package (adb3_probe_pkg) 0;
6.3.2 ADB3 Probe Component 0;

6.3.2.1 adb3_ocp_transaction_probe 0;
63211 0;
63.2.1.2 Interface 03
6.3.2.1.3 Description 04

6.4 Memory Interface 05
6.4.1 Memory Interface Package (mem_if_pkg) 05
6.4.2 Xilinx DDR3 SDRAM MIG Core: 06
6.4.2.1 Xilinx DDR3 SDRAM MIG Core Generation 06
6.4.3 Memory Interface Component o

6.4.3.1 DDR3 SDRAM Memory Interface Bank (ddr3._i R———
64311 0
6.4.3.1.2 Interface 0
6.4.3.1.3 Description 08

6.4.3.1.3.1 adb3_ocp_ocp2ddr3_nb 08
6.4.3.1.3.2 Xilinx DDR3 SDRAM MIG Core 09

6.5 Memory Application 10
6.5.1 Memory Application Component: 0

6.5.1.1 Memory Test Block (blk_mem_test) 10
65111 10
65.1.1.2 Interface 10
6.5.1.1.3 Description 11

6.6 Memory Model. 1
6.6.1 DDR3 SDRAM Memory Model 1

6.6.1.1 DDR3 SDRAM Model Package (ddr3_sdram_pkg) 1

6.6.1.2 DDR3 SDRAM Model Component: 14
6.6.1.2.1 DDR3 SDRAM Model (ddr3_sdram) 14

6.6.1.2.1.1 Introduction.)

6.6.1.2.1.2 Interface 14

6.6.1.2.1.3 Description 1
6.6.1.2.1.3.1 Message Reporting 1

6.6.1.2.1.3.2 Part Selection 1

@ALPHA DATA

ADM-XRC Gen 3 SDK 1.4.0 User Guide
(VL5 - 24th August 2011)

6.6.1.2.1.3.3 Initialisation Delay Selection. 1
6.6.1.2.1.3.4 Memory Contents Initalisation 1
6.6.1.2.1.3.5 Memory Contents Logging 16
6.7 Clock Frequency 18
6.7.1 Clock Frequency Component: 18
6.7.1.1 Clock Frequency Measurement Block (blk_clock_freq| 218
67111 18
6.7.1.1.2 Interface 18
6.7.1.1.3 Description 19
6.7.1.1.3.1 Clock Frequency Measurement Block Constraints 219
6.8 ChipScope 0
6.8.1 ChipScope Components 0
6.8.1.1 ChipScope Block (blk_chipscope) 0
6.8.1.1.1 0
6.8.1.1.2 Interface 0
6.8.1.1.3 Description 1
6.8.1.1.3.1 Synthesis 1
6.8.1.1.3.2 OCP-Only/Full MPTL Simulation
6.8.1.1.4 Xilinx ChipScope Core Generation (ICON/ILA).
7 FPGA Design Guide 3
7.1 ADB3 OCP Protocol Reference. 3
7.1.1 Introduction. 3
7.1.2 Port Signal Definition: 3
7.1.3 OCP Port Operation 4
7.1.4 Example OCP Transaction Waveforms 5
8 The ADMXRC3 API 31
Tables
Table 1: Example applications for Windows and Linux 11
Table2: Naming conventions for VxWorks examples binary 36
Table 3: Example HDL FPGA Design: 51
Table 4: Simple Design Makefile Targets 54
Table 5: Available Variants of the Simple Example Design 56
Table 6: Simple Design Direct Slave Address Map 60
Table 7: Simple Design, DATA Register (0x000000) 60
Table 8: Available Variants of the Simple Example Design Testbench 61
Table 9: Uber Design Makefile Target: 68
Table 10: Available Variants of the Uber Example Design 70
Table 11: Available Variants of blk_clks Block. n
Table 12: Uber Design Direct Slave Address Space 84
Table 13: Uber Design Direct Slave Register Address Spac 85
Table 14: Simple Test Register Block Address Map 86
Table 15: Simple Test Register Block, DATA Register (0x000000) 86
Table 16: Available Variants of blk_ds_clk_read Block 86

ADM-XRC Gen 3 SDK 1.4.0 User Guide
(VL5 - 24th August 2011)

@ALPHA DATA

Table 17:
Table 18:
Table 19:
Table 20:
Table 21:
Table 22:

Table 23:
Table 24:
Table 25:
Table 26:
Table 27:
Table 28:
Table 29:
Table 30:
Table 31:
Table 32:
Table 33:
Table 34:
Table 35:
Table 36:
Table 37:
Table 38:
Table 39:
Table 40:
Table 41:
Table 42:
Table 43:
Table 44:
Table 45:
Table 46:
Table 47:
Table 48:
Table 49:
Table 50:
Table 51:
Table 52:
Table 53:
Table 54:
Table 55:
Table 56:
Table 57:
Table 58:
Table 59:
Table 60:
Table 61:

Internally Generated Clock Frequency

86

Externally Sourced Clock Frequency (ADM-XRC-6T1)

87

Clock Frequency Measurement Register Block Address Map.
Clock Frequency Measurement Register Block, SEL Register (oxuuquo)
Clock Frequency Measurement Register Block, CTRL/STAT Register (0x000044)
Clock Frequency Measurement Register Block, FREQ Register (0x000048)
Interrupt Test Register Block Address Map

87
88
88
89
89

Interrupt Test Register Block, SET Register (0x0000C0)
Interrupt Test Register Block, CLEAR/STAT Register (0x0000C4)
Interrupt Test Register Block, MASK Register (0x0000C8) ..
Interrupt Test Register Block, ARM Register (0x0000CC)

89
90
90
90

Interrupt Test Register Block, COUNT Register (0x0000D0).

90

o1

Informational Register Block Address Map
Informational Register Block, DATE Register (0x000140)...
Informational Register Block, TIME Register (0x000144)
Informational Register Block, SPLIT Register (0x000148)............
nformational Register Block, BRAM_BASE Register (0x00014C)...
Informational Register Block, BRAM_MASK Register (0x000150)..
Informational Register Block, MEM_BASE Register (0x000154)

Informational Register Block, MEM_MASK Register (0x000158)

91
91
o1
92
92
92
92

Informational Register Block, MEM_BANKS Register (0x00015C)
Informational Register Block, SDK_VER Register (0x000160)
Available Variants of blk_ds._io_test Component

92
92
93

GPIO Test Register Block Address Map

93

GPIO Test Register Block, XRM_GPIO_DA_DATAO Register (0x000200)
GPIO Test Register Block, XRM_GPIO_DA_DATAI Register (0x000204)
GPIO Test Register Block, XRM_GPIO_DA_TRI Register (0x000208)
GPIO Test Register Block, XRM_GPIO_DB_DATAO Register (0x00020C)
GPIO Test Register Block, XRM_GPIO_DB_DATAI Register (0x000210) .
GPIO Test Register Block, XRM_GPIO_DB_TRI Register (0x000214)
GPIO Test Register Block, XRM_GPIO_DC_DATAO Register (0x000218)
GPIO Test Register Block, XRM_GPIO_DC_DATAI Register (0x00021C).
GPIO Test Register Block, XRM_GPIO_DC_TRI Register (0x000220)
GPIO Test Register Block, XRM_GPIO_DD_DATAO Register (0x000224)
GPIO Test Register Block, XRM_GPIO_DD_DATAI Register (0x000228) .
GPIO Test Register Block, XRM_GPIO_DD_TRI Register (0x00022C)
GPIO Test Register Block, XRM_GPIO_CS_DATAO Register (0x000230)
GPIO Test Register Block, XRM_GPIO_CS_DATAI Register (0x000234)
GPIO Test Register Block, XRM_GPIO_CS_TRI Register (0x000238).
GPIO Test Register Block, PN4_GPIO_P_DATAO Register (0x00023C)...
GPIO Test Register Block, PN4_GPIO_P_DATAI Register (0x000240).....
GPIO Test Register Block, PN4_GPIO_P_TRI Register (0x000244)......
GPIO Test Register Block, PN4_GPIO_N_DATAO Register (0x000248)
GPIO Test Register Block, PN4_GPIO_N_DATAI Register (0x00024C) .
GPIO Test Register Block, PN4_GPIO_N_TRI Register (0x000250).

94
94
94
95
95
95
95
95
95
95
9
9%
9%
9
97
98
98
98
98
98
98

@ALPHA DATA

ADM-XRC Gen 3 SDK 1.4.0 User Guide
(V1.5 - 24th August 2011)

Table 62:
Table 63:
Table 64:
Table 65:
Table 66:
Table 67:
Table 68:
Table 69:
Table 70:
Table 71:
Table 72:
Table 73:
Table 74:
Table 75:
Table 76:
Table 77:
Table 78:
Table 79:
Table 80:
Table 81:
Table 82:
Table 83:
Table 84:
Table 85:
Table 86:
Table 87:
Table 88:
Table 89:
Table 90:
Table 91:
Table 92:
Table 93:
Table 94:
Table 95:
Table 96:
Table 97:
Table 98:
Table 99:

Table 100:

Table 10:

Table 102:
Table 103:

Table 10
Table 10!

Table 106:

GPIO Test Register Block, PN6_GPIO_MS_DATAO Register (0x000254)
GPIO Test Register Block, PN6_GPIO_MS_DATAI Register (0x000258)...
GPIO Test Register Block, PN6_GPIO_MS_TRI Register (0x00025C).
GPIO Test Register Block, PN6_GPIO_LS_DATAO Register (0x000260)
GPIO Test Register Block, PN6_GPIO_LS_DATAI Register (0x000264)...
GPIO Test Register Block, PN6_GPIO_LS_TRI Register (0x000268)

On-Board Memory Register Block Address Map

99
99
99

100

100

100

101

On-Board Memory Register Block, DS_BANK Register (0x000300)

10:

On-Board Memory Register Block, DS_PAGE Register (0x000304)..
On-Board Memory Register Block, BANKx_CTRL Register (0x000320, 0000340, ..).......
On-Board Memory Register Block, BANKx_OFFSET Register (0x000324, 0x000344, ..)...
On-Board Memory Register Block, BANKx_LENGTH Register (0x000328, 0x000348, ..) ..
On-Board Memory Register Block, BANKx_INFO Register (0x00032C, 0x00034C, ..
On-Board Memory Register Block, BANKx_STAT Register (0x000330, 0x000350,
On-Board Memory Register Block, BANKx_APP_ERR_ADDR Register (0000334, 0x000354,
On-Board Memory Register Block, BANKx_MUX_ERR Register (0x000338, 0x000358,
On-Board Memory Register Block, BANKx_IF_ERR Register (0x00033C, 0x00035C, ...)

Direct Slave BRAM Access Window.

102
102
103
103
103
103
104
104

Direct Slave On-Board Memory Access Windo

Uber Design Direct Slave On-Board Memory Address Map

Uber Design DMA Channel 0 Address Map

Available Variants of blk_mem_if Block

Available Variants of the Uber Example Design Testbench

Available Variants of test_uber_mem Component

Available Variants of On-Board Memory Model

Available Variants of uber_tb_pkg Package
adb3_ocp_cross_clk_dom Component Interface

adb3_ocp_mux_b Component Interf

adb3_ocp_mux_nb Component Interface.

adb3_ocp_ocp2ddr3_nb Component Interface
adb3_ocp_retime_nb Component Interface

adb3_ocp_simple_bus_if Component Interface

adb3_ocp_simple_bus_if_nb Component Interface

adb3_ocp_split_b Component Interface

adb3_ocp_split_nb Component Interface

Available Variants of the adb3_target_inc_pkg Packag

Available Variants of the adb3_target_pkg Package

mptl_if_target_wrap Component Interfa

Available Variants of Simulation Only Version of mptl_if_target_wrap Component.

Available Variants of mptl_if_target_wrap Component

Available Variants of Target MPTL Interface Netlist

Available Variants of MPTL Interface Core

pcie_if_target_wrap Component Interfa

Available Variants of Simulation Only Version of pcie_if_target_wrap Component....

Available Variants of pie_if_target_wrap Component

ADM-XRC Gen 3 SDK 1.4.0 User Guide
(VL5 - 24th August 2011)

@ALPHA DATA

Table 107:
Table 108:
Table 109:

Table 110:

Table 111:

Table 112
Table 113:
Table 114:
Table 115:
Table 116:
Table 117
Table 118:
Table 119:

Table 120:
Table 121:
Table 122:
Table 123:
Table 124:
Table 125:
Table 126:
Table 127:
Table 128:

Figures

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:

Available Variants of PCle Interface Core

101

Available Variants of the adb3_target_tb_inc_pkg Packagy
Available Variants of the adb3_target_tb_pkg Package

mptl_i

19:

193

194

bridge_wrap Component Interface.

Available Variants of Simulation Only Version of mptl_if_bridge_wrap Componen...
Available Variants of mptl_if_bridge_wrap Component
Available Variants of Bridge MPTL Interface Netlist

pcie_if_host_wrap Component Interface

Available Variants of Simulation Only Version of pcie_if_host_wrap Component

test_board_clks Component Interface

Available Variants of test_board_clks Component

adb3_ocp_transaction_probe Component Interfacy

MIG vs ISE Version Compatibility

Versions of DDR3 SDRAM MIG Core in Use

ddr3_if_bank Component Interface

Available Variants of ddr3._if_bank Component.

blk_mem_test Component Interface

ddr3_sdram Component Interface

blk_clock_freq Component Interface

blk_chipscope Component Interface

Master Port To Slave Port Signal:

Slave Port To Master Port Signal:

Structure of the ADM-XRC Gen 3 SDK

SYSMON user interface

25

SYSMON notification area icon

26

SYSMON sensor information tab.

26

SYSMON 'scope tab.

27

SYSMON Action menu in Linu

27

SYSMON Action menu in Windows

28

Simple Design Block Diagram (MPTL)

57

Simple Design Block Diagram (PCle)

58

Simple Design Testbench and Top Level Block Diagram (MPTL) ..
Simple Design Testbench and Top Level Block Diagram (PCle)
Uber Design Top Level Block Diagram (MPTL)

62
63
72

73

Uber Design Top Level Block Diagram (PCle)

Uber Design Top Level Hierarchy (MPTL)

74

Uber Design Top Level Hierarchy (PCle).

75

Uber Design Package D

76

Uber Design Internal Clock Generation (MMCM)

79

Uber Design Clock

80

Uber Direct Slave Block Diagram

83

Uber OCP Switching Block

101

ADM-XRC Gen 3 SDK 1.4.0 User Guide
@ ALPHA DATA (V1.5 - 24th August 201)

Figure 21: Uber BRAM Block Diagram 110
Figure 22: Uber Memory Interface Block Diagram. 11
Uber Design Testbench and Top Level Block Diagram (MPTL). 17
Uber Design Testbench and Top Level Block Diagram (PCle) B . 118
Uber Design Testbench Hierarchy (MPTL) 19
Uber Design Testbench Hierarchy (PCle). 120
adb3_ocp_cross_clk_dom Component Interface 145
adb3_ocp_cross_clk_dom Block Diagram. 146
adb3_ocp_mux_b Component Interfacy 148
adb3_ocp_mux_nb Component Interfac 149
adb3_ocp_mux_nb Block Diagram 150
adb3_ocp_ocp2ddr3_nb Component Interface 154
adb3_ocp_ocp2ddr3_nb Block Diagram. 156
adb3_ocp_retime_nb Component Interface. 159
adb3_ocp_retime_nb Block Diagram. 160
adb3_ocp_srl16_ret Block Diagram. 161
adb3_ocp_simple_bus_if Component Interface 16
OCP Writes (Burst Length = 1) To 32-bit Simple Bu: 164
OCP Read From 32-bit Simple Bus (Read Latency . 164
OCP Writes/Reads (Burst Length = 1) To/From 128-bit smple BUS.. 165
adb3_ocp_simple_bus_if_nb Component Interface 166
adb3_ocp_simple_bus_if_nb Block Diagram 168
OCP Writes (Burst Length = 1) To 32-bit Simple Bu: 170
OCP Read From 32-bit Simple Bus (Read Latency = 1) S — e ATL
‘OCP Writes/Reads (Burst Length = 1) To/From 128-bit Simple Bus 171
adb3_ocp_split_b Component Interface 173
adb3_ocp_split_nb Component Interface 174
adb3_ocp_split_nb Block Diagram 175
mptL_if_target_wrap Component Interface. 185
pcie_if_target_wrap Component Interface. 189
104
pie_if_host_wrap Component Interface 198
test_board_clks Component Interface 01
adb3_ocp_transaction_probe Component Interf 03
ddra_if_bank Component Interface 07
blk_mem_test Component Interf 10
ddr3_sdram Component Interf 14
blk_clock_freq Component Interface 18
blk_chipscope Component Interface 0
Single Beat Write 6
Single Beat Read
Burst Write 8
Burst Read 9

Figure 64: 'Valid' Controlled 0

ADM-XRC Gen 3 SDK 1.4.0 User Guide.

(VL5 - 241h August 2011) @ALPHA DATA

1 Introduction

This document describes the ADM-XRC Gen 3 Software Development Kit (SDK), which provides resources for
developers working with the third generation of reconfigurable computing hardware from Alpha Data. The key features
of the SDK are:

Example applications that use the ADMXRC3 API.
Example HDL FPGA designs that target third generation Alpha Data hardware such as the ADM-XRC-6TL.
These designs are built from a number of HDL components that are also provided in this SDK.

Utilties for working with third generation Alpha Data hardware.

I
HN

Document conventions

In order to avoid unnecessary repetition of information pertaining to both Windows and Linux environments, the
directory separator character for pathnames in this document s the forward slash (/). A pathname or directory name in
aWindows environment has forward slashes replaced by backslashes. For example, the path hdlivhdl s also hdlivhdl
in a Linux environment, but is hdl\vhdl in a Windows environment.
A pathname ending in a forward slash implies that the pathname refers to a directory as opposed to a file. For example,
apps/src/ is the name of directory.
Unless stated otherwise or preceded by a forward slash or a Windows drive letter, pathnames and filenames in this
document are relative to where this SDK has been installed on the development or host machine. For example:
+ Ci/Program Files/Alpha Data/ is an absolute pathname that translates to the directory C:\Program
Files\Alpha Datal in a Windows environment

+ appsisrciitestitest.c is a pathname relative to the root of the SDK that translates to the file /opt/

4 inaLinux assuming that the root of the SDK is fopt/

admxreg3sdk-1.4.0/.

Itis assumed that the environment variable ADMXRC3_SDK is set to point to the root of the SDK. This environment
variable is referenced in Linux shell commands as SADMXRC3_SDK and as %ADMXRC3_SDKY% in Windows shell
commands. The installer for the Windows SDK normally sets this environment variable automatically so that it is
present in the user's environment, but in Linux a user must manually add this variable to his or her environment

1.2 Supported operating systems
This SDK supports the following operating systems:

+ Windows NT-based operating systems beginning with Windows 2000. Both 32-bit and 64-bit editions are
supported.
 Linux distributions running a 2.6.x kernel.

Beginning with release 1.2.0, this SDK includes header files and example code for VxWorks. For VxWorks

development, it is assumed that a host / development machine is available that runs one of the above operating
systems.

1.3 Supported Alpha Data hardware

The example applications and HDL code in this SDK support the following models in Alpha Data's range of
reconfigurable computing hardware:

. ADM-XRC-6TL

+ ADM-XRC6TL

Introduction Page 1
AD-UG-0004 Alpha Data Parallel Systems Ltd

ADMXRC Gen 3 SDK 1.4.0 User Guide
’ALF“‘ DATA (v1.5 - 24th August 2011)

1.4 Installation
1.4.1 Installation in Windows
The default installation location depends upon whether the operating system is a 32-bit or 64-bit edition of Windows:
. Y%ProgramFiles%/ADMXRCG3SDK-1.4.0/ in 32-bit editions of Windows.
. %ProgramFiles(x86)%/ADMXRCG3SDK-1.4.0/ in 64-bit editions of Windows.
During installation, the installer automatically creates an environment variable ADMXRC3_SDK that points to where the
SDK is installed. Certain example applications use this environment variable to locate FPGA bitstream (.BIT) files. A

user need not manually set this variable, but if using several versions of the SDK, it can be set manually according to
which version of the SDK is in use.

1.4.2 Installation in Linux
This SDK is supplied as a tarball (tar.gz extension) that should normally be extracted to the fopt/ directory, which
places the root of the SDK atioptiadmxrcg3sdk-1.4.0/.

After installation, an environment variable ADMXRC3_SDK must be defined that points to where the SDK is installed.
Certain example applications use this environment variable to locate FPGA bitstream (BIT) files. A convenient way to
permanently define this variable for a given user is to add the following to the user's .bash_profile:

ADMXRC3_SOK=/0pt/adnxrcg3sdk-1.4.0
export ADMXRC3_SDK

1.4.3 Installation in VxWorks

Since VxWorks normally requires a Windows, Linux or UNIX host, this SDK must be installed on a Windows or Linux
host as described in Section 1.4.1 or Section 1.4.2.

1.5 Structure of this SDK

Page 2 Introduction
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide
(VL5 - 24th August 2011)

@ALPHA DATA

“The root of the SDK, e.g. JopUadmxrcg3sdk-1.1.0

common —

platform
linux_—
wing2

dump
flash —

Example appi d uilties.

Makefiles and project files for Linux

Project iles for Windows

Source code for example applications
‘Source code shared by multple example applications

Linux-specific portability source code.
Windows-specific portabillty source code

Source code for DUMP utity
‘Source code for FLASH utity

Prebuilt binaries for le applicati

L win32

[l

Prebuit binaries for x64 editions of Windows
Prebuilt binaries for x86 editions of Windows

Prebuilt bitstreams for example FPGA designs

admxrcstl
admxrestl -

common

= doc for SDK; contains
hal
L vhal
comi Common VHDL libraries; shared by muliple example FPGA designs
ad
adb3_probe
examples — Example VHDL FPGA designs
simple SIMPLE example FPGA design
admxrcst ADM-XRC-6TL-specific code for SIMPLE example FPGA design
admxrcstl ——— ADM-XRC-6TL specific code for SIMPLE example FPGA design
common Model-independent code for SIMPLE example FPGA design
uber UBER example FPGA design

ADM-XRC-6TL-specific code for UBER example FPGA design
ADM-XRC-6T1-specific code for UBER example FPGA design

Model-independent code for UBER example FPGA design

API header fies

API lbrary files
DLL for x64 editions of Windows
86 oLL for Windows

Figure 1: Structure of the ADM-XRC Gen 3 SDK

Alpha Data Parallel Systems Ltd.

Page 3

ADM-XRC Gen 3 SDK 1.4.0 User Guide

@ALPHA DATA (V15 - 24th August 2011)

2 Getting started
2.1 Getting started in Windows 2000 / XP / Server 2003

| Note: This section also applies to Windows Vista and later when User Account Control (UAC) is disabled.

This section describes how to run a basic confidence test on Alpha Data hardware, in Windows 2000/ XP / Server
003. This confidence test assumes the following:
1. Allfeatures of the SDK were installed, as described in Section 1.4.
2. Any model from Alpha Data's reconfigurable computing range that is supported by this SDK is installed in the
machine. For a list of hardware supported, refer to Section 1.3

3. The ADB3 driver is installed. The ADB3 driver for Windows is available from Alpha Data's public FTP site: ftp://
ftp.alpha-data.com/publadmxrcg/windows.
4. You are logged on as a user that is a member of the Administrators group.

First, start an SDK command prompt by clicking on the 'SDK Command Prompt’ shortcut from the ‘ADM-XRC Gen 3
SDK' group on the Windows start menu. This command prompt automatically starts with the working directory set to the
bin/win32/x86/ folder of the SDK and also ensures that the ADMXRC3_SDK environment variable is set correctly.

Next, run the info utility. The output looks like this:

APY infornat
AP

Tbrary version 1.1.2
Driver version a2

Card infornation

Mod ADN-XRC-6TL.
Serial number 106(0X6A)

Nunber of programmable clocks 1

Number of OWA charnels 2
Number of target Fi 1
Nimber of Tocal bus windows 4
10
1
1
Nunber of mefory banks a

Bank presence bitnap oxF
Target FPGA information
FPGA O XC6VIX3B5LFFI759-2C stepping ES
Nemory bank information
ank 0 SORMA, DDR3. GSSI6(OX10000) KiW X 32+0 bits
303.0 MHz -

Conn
Bank 1 SDRAM, DDR3, sssae(oxwom) kil x 32+0 bits

303.0'Wz - 5333 W

nect
Bank 2 SDRAM, DDR3, assae(oxwooo) kil x 32+0 bits
303.0'Uz 5333
Connectivity m
Bank 3 SDRAM, DDR3, 65536(0xwum) kil x 32+0 bits
303.0 NHz - '533.3 Wi
Connectivity mask o

Local bus window information
Window 0 (Target FPGA O pre Bus base OXF5800000 Size 0x400000
Local base 0x0 size 0x400000

Virtual size 0x400000

ndow 1 (Target FFGA 0 non Bus base OXFB40D000 size 0x400000
ocal base 0x0 size
Virtual size 0x400000

ndow 2 (ADN-XRC-GTL-speci Bus base OXFB2FFO00 Size 0x1000
Local base 0x0 size 0x0

Page 4 Getting started
Alpha Data Parallel Systems Ltd. AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide
(VL5 - 24th August 2011) @ ALPHA DATA

Virtual size 0x1000

Window 3 (ADB3 bridge regis Bus base OxFB2FE000 size 0x1000
Local base Ox0 size OXO
Virtual size 0x1000

Now run the simple example application. It prompts the user to enter hexadecimal values (up to 32 bits), and displays
these value nibble-reversed. The nibble-reversal is performed by the target FPGA. Pressing CTRL-Z exits this example.
The output looks like this:

Enter values for 1/0
(CTRL-D / CTRL-Z to exit)

1234abcd
OUT = 0x1234abed, IN = Oxdcbad32l
deadbeef

OUT = Oxdeadbeef, IN = Oxfeebdaed
cafe

reface
OUT = Oxcafeface, IN = Oxecafefac
If everything works s described above, then the hardware, driver and SDK are all correctly installed and substantially
working. Possible next steps are:

+ Experiment with modifying and rebuilding the simple example application in order to become familiar with the
basics of the ADMXRC3 AP

+ Experiment with modifying and rebuilding the simple example FPGA design in order to become familiar with
creating FPGA designs for Alpha Data hardware.

2.2 Getting started in Windows Vista and later

| Note: If User Account Control is disabled, please refer instead to the instructions in Section 2.1.

This section describes how (o run a basic confidence test on Alpha Data hardware, in versions of Windows that have

User Account Control (UAC) such as Windows Vista and later. This confidence test assumes the following

1. Allfeatures of the SDK were installed, as described in Section 1.4.

2. Any model from Alpha Data’s reconfigurable computing range that is supported by this SDK is installed in the
machine. For a list of hardware supported, refer to section Section 1.3

3. The ADB3 driver is installed. The ADB3 driver for Windows is available from Alpha Data's public FTP site: ftp://
ftp.alpha-data.com/publadmxrcg3/windows.

4. You are logged on as a user that is a member of the Administrators group.

Because of User Account Control (UAC), it is not possible to make use of the ‘SDK Command Prompt’ shortcut that is
installed along with the SDK. Instead, start a command prompt by right-clicking on the ‘Command Prompt’ shorteut in
the ‘Accessories' program group and selecting ‘Run as administrator'. This willtypically incur a UAC confirmation
prompt. Then, enter the following command (do not omit the double quotes)

“HADMXRC3_SDK¥\env . bat™

This executes the env.bat batch file, which sets up the environment and changes to the folder containing the prebuilt
example application binaries. In order for this to work correctly, the ADMXRC3_SDK system environment variable must
be correctly defined. The installer normally sets this variable, but if not, it must be set using the Windows Control Panel
as a system environment variable to point to where the SDK is installed.

Next, run the info utiity. The output looks like this:

Getting started Page 5
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.4.0 User Guide
@ ALPHA DATA (V1.5 - 24th August 201)

card infornation
Nodel ADI-XRC-6TL.
Serial number 106(0x6A)

Number of progranmable clocks 1
Number of DWA channels 2
Number of target FPGAS 1
Number of local bus windows 4

Number of sensors 10

H
S
g
N
E
H
g
g
H
<
g
g
H
sae

Nunber of merory banks
Bank presence bitnap oxF

Target FPGA information
FPGA 0

Xc6VIX365LFFI759-2C Stepping ES

Nemory bank informat

SORAN, DOR3, 6S536(0X10000) kil x 3240 bits
3.0 Wz - 523.3

Connectivity m
Bank 1 SORAN, DOR3, 65536(0x10000) Kill x 3240 bits
303.0'
Comnoctivity nask
Bank 2 SORAU, DDR3, 65536(0x1m)ou) KiW x 32+0 bits

3.0 Wz - 5333 W

ty m
Bank 3 SR DORS 65536(0)(10000) Kill x 32+0 bits
303.0 MHz - 533.3 NHz

Connectivity nask 0x1
Local bus window information
Window 0 (Target FPGA O pre Bus base OXF5800000 size 0x400000
Local base Ox0 Size 0x400000
Virtual size 0x400000
ndow 1 (Target FPGA O non Bus base OXFB400000 Size 0x400000
Local base 0x0 size 0x400000
Virtual size 0x400000
Window 2 (ADM-XRC-GTL-speci Bus base OxFB2FFO00 size 0x1000
Local base 0x0 size Ox0
Virtual size 0x1000
ndow 3 (ADB3 bridge regis Bus base OxFB2FE000 Size 0x1000
Local base 0x0 size 0x0
Virtual size 0x1000

Now run the simple example application. It prompts the user to enter hexadecimal values (up to 32 bits), and displays
these value nibble-reversed. The nibble-reversal is performed by the target FPGA. Pressing CTRL-Z exits this example.
The output Iooks like this:

Enter values for 1/(
(CTRL-D / CTRL-Z to exll)

1234abed
OUT = 0x1234abed, IN = Oxdcbad32l

ee
OUT = Oxdeadbeef, IN = Oxfeebdaed
fefac
UT = Oxcafeface, IN = Oxecafefac
If everything works s described above, then the hardware, driver and SDK are all correctly installed and substantially
working. Possible next steps are:
« Make a copy of the SDK in your own filespace, and use the copy to experiment with modiifying and rebuilding
the simple example application in order to become familiar with the basics of the ADMXRC3 API
« Make a copy of the SDK in your own filespace, and use the copy to experiment with modifying and rebuilding

the simple example FPGA design in order to become familiar with creating FPGA designs for Alpha Data
hardware.

Page 6 Getting started
Alpha Data Parallel Systems Ltd. AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide

(VL5 - 24th August 2011) @ ALPHA DATA

2.3 Getting started in Linux

This section describes how to run a basic confidence test on Alpha Data hardware, in Linux. This confidence test
assumes the following:

1. This SDK is installed as described in Section 1.4, and the ADMXRC3_SDK environment variable is set to
point to where the SDK has been installe

2. Any model from Alpha Data's reconfigurable computing fange that s supported by this SDK is installed in the
machine. For a list of hardware supported, refer to Section 1.

3. The ADB3 driver is installed. The ADB3 driver for Linux is available from Alpha Datas public FTP site: ftp://

ftp.alpha-data.com/publadmxrcg3/linux.

Note: In the following text, it is assumed that it is possible to log in as ‘root'. If a Linux distribution is used
where users are expected to use 'sudo’ rather than logging in as root, then in all of the following
instructions, commands should be prefixed with ‘sudo’ so that the effect is the same as 'su' to ‘root.

Log in as root (if possible), change directory to where the SDK has been installed, and then run the configure script:

$ cd SADNXRC3_SDK
$ _/configure

This detects certain features of the operating system environment so that the example applications can be built. Next,
change directory to the Linux application directory:

$ od apps/linux
$ make clean all

Having built the example applications, run the info utiiy:
s info/info

‘The output Iooks like this:

APY infornat
AP

n
ibrary version 1.1.2
Driver version 112
Card infornation
ADI-XRC-6TL
nunber 106(0x6A)
of programnable clocks 1
of DA channels 2
of 1
of local bus windows 4
of sensors 10
of 1/0 nodule sites 1
of local bus windows 4
OF menory banks 4
Bank presence bitnap oxF
Target FPGA infornation
FPGA 0 XC6VIX3B5LFFI759-2C stepping ES
Nemory bank information
Bank 0 SORMA, DDR3. 6SSI6(OX10000) KiW X 32+0 bits
303.0'M
Comoctivity nas
Bank 1 SDRAM, DDR3, 65536(0xwum) kil x 32+0 bits
303.0 Nz - 'S
Connectivity m
Bank 2 SORAN. DR, 65536(0x10000) kil x 3240 bits
303.0'M
Comnoctivity nask
Bank 3 SDRAM, DDR3, essae(oxwum) kil x 32+0 bits
Getting started Page 7

AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.4.0 User Guide
@ ALPHA DATA (V1.5 - 24th August 201)

303.0 WHz - 533.3 WHz
Connectivity mask Ox1

Local bus window infornation

Window 0 (Target FPGA O pre Bus base OXF5800000 size 0x400000
Local base OxD Size 0x400000
Virtual size 0x400000

ndow 1 (Target FPGA 0 non Bus base OxFBA400000 size 0x400000
Local base O0x0 size 0x400000
Virtual size 0x400000

Window 2 (ADN-XRC-6TL-speci Bus base OxFB2FFO00 Size 0x1000
Local base Ox0 size OXO
Virtual size 0x10

rdow 3 (ADRS bridge regls Bus bass OEBZREDOD size 0x1000
Local base 0x0 size
Virtual size 0x1000

Now run the simple example application:
B

it prompts the user to enter hexadecimal values (up to 32 bits), and displays these value nibble-reversed. The
nibble-reversal is performed by the target FPGA. Pressing CTRL-D exits this example. The output looks like this:

ple/simple

Enter values for 1/0
(CTRL-D / CTRL-Z to exit)

1234ab
o = uxuuabcu IN = Oxdcbad321
dea
o

deeadheef, IN = Oxfeebdaed

cafeface

OUT = Oxcafeface, IN = Oxecafefac
If everything works as described above, then the hardware, driver and SDK are all correctly installed and substantially
working. Possible next steps are:

Experiment with modifying and rebuilding the simple example application in order to become familiar with the

basics of the ADMXRC3 API
Experiment with modifying and rebuilding the simple example FPGA design in order to become familiar with
creating FPGA designs for Alpha Data hardware.

2.4 Getting started in VxWorks

Note: Before attempting to follow the instructions in this section, we recommend first building the ADB3
Driver for VxWorks and following the instructions for getting started, verifying that the driver appears to
start correctly on the target system. For details, please refer to the release notes for the ADB3 Driver for
VxWorks

The example VxWorks applications in this SDK are supplied only in source code form because it is impractical to
provide binaries for the near-infinite number of possible VxWorks configurations. As a result, a downloadable module
binary for the examples must be built using one of the supported Wind River VxWorks tooichains (DIAB or GNU).

A second consideration is how the target system will access the downloadable module that you build. In the following
discussion, the term staging area refers to the some location on the development machine's filesystem(s) that the
target system can access via FTP, NFS, or whatever other method the target system uses for host file access. There
are two main approaches:

Getting started

Page 8
Alpha Data Parallel Systems Ltd. AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide

(VL5 - 24th August 2011) @ ALPHA DATA

+ Copythe entire SDK into the staging area, and build the examples there into a downloadable module. The
target system can then access the downloadable module from the staging area. This approach is convenient
‘as no manual copying of files is required atter building, but may be problematic on some host operating
systems if file permissions in the staging area do not permit the execution of build commands in the staging
area.

+ Copythe SDK to an arbitrary location (e.g. your personal folder on the development machine) and build the
examples there into a downloadable module. The downloadble module must then be copied to the staging
area, and the target system can then access it. This approach is compatible with restrictive file permissions in
the staging area, but the downside is the inconvenience of manually copying of the downloadable module into
the staging area each time it is built

Whichever approach is chosen, the next step is build the example applications as described in Section 4.1 or Section
4.2 This yields a file admxrc3Apps.out containing all of the examples that can be downloaded to the target system.
The location of this file is as shown in Table 2.

To download the file onto the target system, use the target system's console or a VxWorks host shell on the target
system in order to enter the following command:

> 1d <host:/path/to/adnxrc3Apps .out
where host:/pathitol is replaced by the host and folder that contains admxrc3Apps.out.

Now the INFO utiity can be run as a basic confidence test that the applications were built correctly. Enter the following
command:

-> admxre3info
The output looks like this:

API information

APY library version 1.1.2
Driver version 112

card infornation

Nodel ADI-XRC-6TL
Serial number 106(0x6A)
Nunber of programmable clocks 1

Nunber of DMA channels 2

Number of target FPGAS 1

Nunber of local bus windows 4

Nunber of sensors 10
Nunber of 1/0 module sites
Number of Tocal bus windows
Nunber of merory banks

Bank presence bitnap oxF

Target FPGA informat
FPGA 0

sape

Xc6vIx365tFf1759-2C step ES

Nerory bank inforrat
SDRAW, DDR3, 65536 Kilord x 32+0 bits
303.0 NHz -'533.3 MHz
Connectivity mask 0x1

Bank 1 SDRAW, DDR3, 65536 Killord x 32+0 bits
303.0 NHz - 533.3 NHz
Cor 1

Bank 2 SDRAW, DDR3, 65536 Kilord x 32+0 bits
303.0 NHz -'533.3 WHz
Connectivity mask 0x1

Bank 3 SDRAW, DDR3, 65536 Killord x 32+0 bits
303.0 NHz - 533.3 NHz

Connectivity mask Ox1

Local bus window infornation

Vindow 0 (Target FPGA O pre Bus base OxF1400000 size 0x400000
Local base OxD Size 0x400000

Getting started Page 9
AD-UG-0004 Alpha Data Parallel Systems Ltd.

@ALPHA DATA

ADM-XRC Gen 3 SDK 1.4.0 User Guide
(V1.5 - 24th August 2011)

ndow 1 (Target FPGA 0 non

ndow 2 (ADN-XRC-6TL-speci

ndow 3 (ADB3 bridge re

Now run the simple example:

> adnxrcasinp!

Virtual size 0x400000
Bus base OxF0400000 size 0x400000
Local base OxD size 0x400000

irtual size 0x400000

Bus base OXFOB00000 Size 0x1000
cal b 00 size 00

Virtual size Ox10

Beebase 7 ONFORDI000 size 0x1000

Local 0x0 size 0x0

Virtual size 0x1000

It prompts the user to enter hexadecimal values (up to 32 bits), and displays these value nibble-reversed. The
nibble-reversal is performed by the target FPGA. Pressing CTRL-D exits this example. The output looks like this:

Enter values for 1/0
(CTRL-D / CTRL-Z to exi

1234abed
OUT = Ox1234abcd, IN
deadbeef

OUT = Oxdeadbeef.

ca
OUT = Oxcafeface, IN

Oxdcba4321
. IN = Oxfeebdaed

Oxecafefac

If everything works as described above, then the hardware, driver and SDK are all correctly installed and substantially

working. Possible next steps are:

« Experiment with modifying and rebuilding the simple example application in order to become familiar with the

basics of the ADMXRC3 AP,

« Experiment with modifying and rebuilding the simple example FPGA design in order to become familiar with
creating FPGA designs for Alpha Data hardware.

Page 10

Getting started

Alpha Data Parallel Systems Ltd. AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide
(VL5 - 241h August 2011) @ALPHA DATA

3 Example applications for Windows and Linux

The example applications and utilties are described in the following subsections.

DUMP Utilty for reading and writing memory access windows

FLASH Utilty for programming FPGA bitstream (.BIT) files in user-programmable Flash memory

INFO Utilty for displaying information about a reconfigurable computing device

[TesT Example demonstrating how to consume target FPGA interrupt notifications in an
application

MEMTESTH | Example demonstrating host-driven memory test

MONITOR | uility that displays sensor readings

SIMPLE Example demonstrating how to read and write registers in a target FPGA
Utilty that combines the functionality of the INFO and MONITOR utiltes in a graphical
SYSMON
user interface
. Utilty that allows the Vital Product Data of a reconfigurable computing device to be read
or written

Table 1: Example applications for Windows and Linux

Source code for the example Windows and Linux applications is provided in the apps/src directory, relative to the root
of the SDK.

3.1 Building the example applications in Windows
A Microsoft Visual Studio 2008 solution apps/win32/apps.sin is provided, containing all of the Windows examples. To
build all of the examples, use the "Batch Build" command in Visual Studio.

3.2 Building the example applications in Linux

o build all of the example applications, excluding the SYSMON utiity, at once, enter the following shell commands in a
BASH shell:
$ cd SADVXRC3_SDK/apps/|

$ _/configure
$ make clean al

When compiling on 64-bit bi-architecture machine such as x86_64, two executables are buil for each example
application: a 64-bit native version and a 32-bit version. For example, the native version of INFO is named info, and the
32-bit version is info32. For machines that are not bi-architecture, only the native version is built. The configure script
determines whether o not to build bi-architecture versions of the example applications.

The SYSMON utilty must be built separately, because it depends upon certain packages being present in the system.
For further details, refer to Section 3.10.2.

Example applications for Windows and Linux Page 11
AD-UG-0004 Alpha Data Parallel Systems Ltd

ADMXRC Gen 3 SDK 1.4.0 User Guide
’ALF“‘ DATA (v1.5 - 24th August 2011)

3.3 DUMP utility

Command line

dunp offset [n]
dump B offset [n]
dunp offset [n]
dump B offset [n]
dump offset [n] 1
dump o offset [n] 1
dump offset [n] 1
dump o offset [n] 1
where
window is the memory window to read or wite.
offset is the offset into the window at which to begin reading or writing.
n is the number of bytes to read or write.
data is an optional data item, valid for write commands.

and the following options are accepted;

-index <index> Specifies the index of the card to open (default 0).
-sn <#f> Specifies the serial number of the card to open.
-be Causes the data to be read or written to be treated as litle-endian (default).
+be Causes the data to be read or written to be treated as big-endian.
hex Causes write values to be interpreted as decimal unless prefixed by '0x'
(defaul)
+hex Causes write values to be interpreted as hexadecimal always.
Summary

Displays data read from a memory access window, or writes data to a memory access window.
Description

The DUMP utility operates in of two modes:

+ Reading data from a memory access window and displaying it for this mode, use the rb, rw, rd or rq
commands.

Writing data to a memory access window; for this mode, use the wb, ww, wd o wq commands.

In either mode, the option +be may be passed, before the command. This causes the DUMP utility to adopt bi
byte ordering convention as opposed to litle-endian (the default).

Read mode

The read command implies the radix for displaying data:

Byte (8-bit) reads; data is displayed as bytes.

Page 12 Example applications for Windows and Linux
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide
(VL5 - 241h August 2011) @ALPHA DATA

w

Word (16-bit) reads; data is displayed as words.

Doubleword (32-bit) reads; data is displayed as doublewords,
q

Quadword (64-bit) reads; data is displayed as quadwords,

After the read command, a window index and an offset must be supplied, in that order. This specifies the memory
access window to be read, and where in that window to begin reading data. An optional length parameter, in bytes, can
also be supplied. If omitted, the length is equal to the radix implied by the read command. If present, the length
parameter specifies how many bytes to read and display. The length should be an integer multiple of the width; if not,
the length is rounded down.
For example, the command

dump rw 0 0x80000 Ox60
produces output of the form

Window 0 offset 0x80000 mapped @ 0x00150000
Dump of memory at 0x00150000 + 96(0x60) bytes:
00 06 08 0a OC

: 000e 000F 000c b4S6 c567 d678 5asa
ceee ecee ee2? eeee eece eece eeee
ecee ecce eece ecee ecce ceee eeee
afa7 596 445d 8232 163f 8414 ldle
294 faSc cd61 d464 d39d leed 69f8
0x00150050: 5858 489 20ff b77b ef92 ad3a 6a27 €620

Write mode

The write command implies the radix (that is, word size) to be used when performing writes:
. wb
Data is written as bytes (8-bit).

ww
Data is written as words (16-bi).

. wd

Data is written as doublewords (32-bit).

wa
Data is written as quadwords (64-bit),

After the write command, a window index and an offset must be supplied, in that order. This specifies the memory
access window to be read, and where i that window to begin writing data. An optional length parameter, in bytes, can
also be supplied. If omitted, the length is equal to the radix implied by the write command. If present, the length
parameter specifies how many bytes to write. The length should be an integer multiple of the width; if not, the length is
rounded down.

The program obtains the values to be written in two ways: from any additional parameters on the command line after
the length parameter, and then from the standard input stream (stdin). This works as follows:

1. Any remaining command line arguments, if present after the length parameter, are interpreted as data values.
to be written. These values are assumed to be of the radix implied by the command, and are witten to the
memory window, incrementing the offset with each word written. If there are enough values passed on the
command line to satisfy the byte count, the program terminates.

Example applications for Windows and Linux Page 13
o

AD-UG-0004 Alpha Data Parallel Systems Ltd

ADM-XRC Gen 3 SDK 1.4.0 User Guide
@ ALPHA DATA (V15 - 24th August 2011)

2. Ifthere are insufficient data values passed on the command line, the program waits for values to be entered on
the standard input stream. Values entered this way are also assumed to be of the radix implied by the
command, and are witten to the memory window, incrementing the offset with each word written. When the
entire byte count that was specified in the length parameter has been satisfied or end-of-ile is encountered,
the program terminates.

An example session looks like this:

Codurp rd 0 0x80000 0xd0

Vindow 0 offset 0x80000 mapped @ 0x00200000

Dump of memory at 0x00200000 + 80(0xd0) bytes:
00 04 08 oc

0x002d0000: 00000000 00000000 00000000 00000000

0x002d0010: 00000000 00000000 00000000 00000000

0x002d0020: 00000000 00000000 00000000 00000000

0x002d0030: 00000000 00000000 00000000 00000000

C>dump wd 0 0x80004 Ox8 Oxdeadbeef

Window 0 offset 0x80004 mapped @ 0x00110004
0xB0004: OXDEADBEEF

0x80008: Oxcafeface

C>dump rd 0 0x80000 Ox40

Window 0 offset 0x80000 mapped @ 0X00110000
Dunp of memory at 0x00110000 + 64(0x40) bytes:

00 04 08

0c
0x00110000: 00000000 deadbeef cafeface 00000000

Oa0110030: 00500000 00300000 00000000 2060000

Remarks

When entering data for write commands, values are expressed in decimal by default. To express data as hexadecimal,
prefix it with ‘0x’ or use the +hex option.

The DUMP utility uses store instructions for writes that are equal to the width specified on the command line, it
possible. This is not possible f the CPU architecture in use does not have store instructions of the required width o if
the offset specified on the command line would result in unaligned stores. In the case of an unaligned offset, writes are
performed as a sequence of byte stores, because unaligned stores are illegal on some CPU architectures.,

Page 14 Example applications for Windows and Linux
Alpha Data Parallel Systems Ltd. AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide
(VL5 - 24th August 2011) @ ALPHA DATA

3.4 FLASH utility

WARNING: Incorrect use of the +failsafe option may impact long-term reliability of a reconfigurable
computing card. Please refer to Section 3.4.1 below for an explanation of the +failsafe option and how it
may be used

Command line

Tlash et-
i chkblank target-
flash ase target-
flash progran target-
flash verify target-
where
target-index is the index of a target FPGA.
filename is the name of a .BIT file (program or verify commands only).

and the following options are accepted;

-index <index> Specifies the index of the card to open (default 0)
-sn <> Specifies the serial number of the card to open.
failsafe Causes the default image to be erased / programmed / verified (default).

Causes the failsafe image to be erased / programmed / verified; see

Hallsafe Failsafe bitstream mechanism below.
force Causes a mismatch between the target FPGA device and the BIT file device
to resultin an error (default).
+orce Causes a mismatch between the target FPGA device and the BIT file device
10 be ignore
Summary
Blank-checks, erases, programs or verifies a target FPGA bitstream image in the user-programmable Flash memory of
adevice
Description

The FLASH utiity has five commands:

chkblank <target-index>
Verifies that an image is blank, i.e. all bytes are OxFF.

erase <target-index>

Erases an image so that it becomes blank, i.e. all bytes are OXFF.

info <target-index>

Displays information about the Flash memory that holds an image.

program <target-index> <filename>

Programs the specified bitstream (.BIT) file into an image so that the target FPGA is configured from the image
at power-on or reset.

Example applications for Windows and Linux
AD-UG-00(

Page 15
04 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.4.0 User Guide

@ALPHA DATA (V15 - 24th August 2011)

« verify <target-index> <filename>
Verifies that an image contains the specified bitstream (.BIT) fle.

chkblank command

The chkblank command verifies that a target FPGA image is blank, i.e. all bytes are OxFF, but does not modify the
Flash memory bank. Following the command, an index of a target FPGA in the device must be specified. The index of
the target FPGA is normally zero but may be nonzero in models with multiple target FPGAS,

For example, to blank-check the default image for target FPGA 0:

flash program 0 /path/to/my_design.bi

erase command

The erase command erases a target FPGA image so that it becomes blank, i.e. all bytes are OxFF. It automatically
performs a blank-check after erasing. Following the command, an index of a target FPGA in the device must be
specified. The index of the target FPGA is normally zero but may be nonzero in models with multiple target FPGAS.
For example, to erase the default image for target FPGA 0:

flash erase 0

info command

The info command displays information about the Flash memory and then exits, without doing anything else. Following
the command, an index of a target FPGA in the device must be specified. The index of the target FPGA is normally zero
but may be nonzero in models with multiple target FPGAS.

program command

The program command programs a target FPGA image with the data in the specified bitstream (.BIT) file. Following
the command, an index of a target FPGA in the device and the name of a bitstream (.BIT) filename must be specified.
The index of the target FPGA is normally zero but may be nonzero in models with multiple target FPGAS.

If the device in the .BIT file does not match the target FPGA, this command fails with an error and does not program the
target FPGA image, unless the +force option is passed. Verification is automatically performed after programming.

For example, to program the default image for target FPGA 0 with bitstream file called my_design.bit:

flash program 0 /path/to/my_design.bit

verify command

The verify command verifies that a target FPGA image contains the data in the specified bitstream (.BIT) file, but does
not modify the Flash memory bank. Following the command, an index of a target FPGA in the device and the name of a
bitstream (BIT) filename must be specified. The index of the target FPGA is normally zero but may be nonzero in in
models with multiple target FPGAs.
If the device in the _BIT file does not match the target FPGA, this command fails with an error unless the +force option
is passed. If discrepancies between the target FPGA image and the data in the .BIT file are found, they are displayed
(up to a certain number of erroneous bytes), followed by a failure message.
For example, to verify that the default image for target FPGA 0 contains the data in bitstrean file called
my_design.bit:

flash verify 0 /path/to/ny_design.bit

3.4.1 Failsafe bitstream mechanism

Page 16 Example applications for Windows and Linux
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide
(VL5 - 24th August 2011) @ ALPHA DATA

Due to errata in certain Xilinx FPGA families, the following Gen 3 models have a "failsafe bitstream" mechanism:
+ ADM-XRC-6TL

+ ADM-XRC-6T1

+ ADM-XRC-6TGE

+ ADM-XRC-6T-ADV8

In the above models, each target FPGA has two images: a default image, and a failsafe image. Alpha Data
factory-programs a known-good “null bitstream" into the failsafe image. When power is applied to a card, the firmware.
on the card first looks for a valid bitstream in the default image. If no bitstream s found, the firmware uses the null
bitstream in the failsafe image to configure the target FPGA. In this way, the firmware ensures that the target FPGA is
always configured with something when it is powered-on.

Because the purpose of the failsafe image is to protect the target FPGA from sub-micron effects that would otherwise
degrade the performance of the target FPGA over time, Alpha Data recommends that the failsafe image should never
be erased. If overwritien, a customer must ensure that the bitstream is valid, known-good and satisfies the
requirements for protecting the target FPGA from sub-micron effects.

Xilinx answer record 35055 elaborates on protecting Virtex-6 GTX transceivers from performance degradation over
time

Example applications for Windows and Linux Page 17

AD-UG-0004 Alpha Data Parallel Systems Ltd

http://www.xilinx.com/support/answers/35055.htm

ADM-XRC Gen 3 SDK 1.4.0 User Guide

@ALPHA DATA (V15 - 24th August 2011)

3.5 INFO utility

Command line
info [op 1
where the following options are accepted:

n

flash Causes Flash bank information not to be shown (defaul)
+flash Causes Flash bank information to be shown.
index <index> Specifies the index of the card to open (default 0).
-0 Causes /0 module information not to be shown (defaul).
+io Causes /0 module information to be shown.
-sensor Causes sensor information not to be shown (defaul).
+sensor Causes sensor information to be shown.
-sn <#> Specifies the serial number of the card to open.
Summary

Displays information about a reconfigurable computing device.

Description

The INFO utility demonstrates the use of most of the informational functions in the ADMXRC3 API. It uses
ADMXRC3_OpenEx to open a device in passive mode, meaning that an unprivileged user can successfully run it. The
output consists of several sections, the first of which is obtained using ADMXRC3_GetVersioninfo:

API infornation
A rary version 111
Driver version 110

‘The second section shows information obtained using ADMXRC3_GetCardinfoEx, and shows the information in the
ADMXRC3_CARD_INFOEX structure:

card infornation
Node ADII-XRC-6TL
serial 101(0x65)
Nunber of programmable clocks 1

Nunber of DA channels

Nunber of target FPGAS

Nunber of local bus windows 4
Nunber of sensors 1
Nunber of 1/0 module sites 1
Nunber of local bus windows 4
Nunber of merory banks

Bank presence bitnap oxF

o

The third section uses the NumTargetFpga member of the ADMXRC3_CARD_INFOEX structure and
ADMXRC3_GetFpgalnfo to enumerate the target FPGAS in the device:
Target FPGA information
FPGA O XC6VIX240LFF1759
The fourth section uses the NumMemoryBank member of the ADMXRC3_CARD_INFOEX structure and
ADMXRC3_GetBankinfo to enumerate the memory banks (non-Flash) in the device:

Nemory bank information
ank 0 SDRAW, DDR3, 65536 Killord x 32+0 bits

Page 18 Example applications for Windows and Linux
Alpha Data Parallel Systems Ltd. AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide

(VL5 2400 August 2011) @aLena oaTa
303.0 MHz - 533.3 WHz
Connectivity mask Ox1
Bank 1 SDRAM, DDR3, 65536 kl\‘/urd x 32+0 bits

3.0 Wz - 5333 W

ty m
Bank 2 snww. o0R3. 65536 kiwom X 3240 bits
303.0 M

Bank 3 SDRAM, DDR3, 65536 kl\‘/urd X 32+0 bits
303.0 MHz - 533.3 Wi
Connectivity mask ot

The fourth section uses the NumWindow member of the ADMXRC3_CARD_INFOEX structure and
ADMXRC3_GetWindowinfo to enumerate the memory access windows in the device:

Local bus window information
Window 0 (Target FPGA O pre Bus base OxF5400000 Size 0x400000
Local base 0x0 size 0x400000

Virtual size 0x400000

(Target FPGA 0 non Bus base OXFACO0000 Size 0x400000
Local base Ox0 Size 0x400000
Virtual size 0x4000(

(ADN-XRC-6TL-speci Bus base OXFAAFFO00 Size 0x1000
Local base 0x0 size 0x0
Virtual size 0x1000

(ADB3 bridge regis Bus base OXFAAFEO00 Size 0x1000
Local base 0x0 size Ox0
Virtual size 0x1000

The next section appears if the +flash option is passed on the command line. It uses the NumFlashBank member of

the ADMXRC3_CARD_INFOEX structure and ADMXRC3_GetFlashinfo to enumerate the Flash memory banks in the
device:

Flash bank information
Bank 0 Intel 28F256P30, 65536(0x10000) Kil
Useable area 0x1200000-0x3FFFFFF

The next section appears if the +io option is passed on the command line. It uses the NumModuleSite member of the

ADMXRC3_CARD_INFOEX structure and ADMXRC3_GetModulelnfo to enumerate the I/O module sites in the device

and show what s fited, if anything
1/0 module information
Module 0 Not present

The final section appears if the +sensor option is passed on the command line. It uses the NumSensor member of the

ADMXRC3_CARD_INFOEX structure and ADMXRC3_GetSensorinfo to enumerate the sensors in the device:

Sensor information

Sensor 0 1V supply rai
V. double 0. error 0.0
sensor 1 175V supply ra
V. double,” exponent 0, error 0.0
sensor 2 178V supply rail
V. double,” exponent 0, error 0.0
sensor 3 2/5v supply rail
V. double.” exponent 0, error 0.1
Sensor 4 33y supiy rail
doul nent 0, error 0.1
sensor 5 5 supply r:
V. Gouble, exponent 0, error 0.1
sensor 6 rra
V. double. exponent 0, error 0.2
sensor 7 XRI_1/0 voltage
V. double, exponent 0, error 0.1
sensor 8 Lig7 internal temperature
deg. C. double, exponent 0, error 3.0
sensor 9 Target FPGA temperature
deg. C. double, exponent 0, error 4.0
Example applications for Windows and Linux Page 19
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADMXRC Gen 3 SDK 1.4.0 User Guide
’ALF“‘ DATA (v1.5 - 24th August 2011)

3.6 ITEST example

Command line

est [option ...]
where the following options are accepted:

-index <index> Specifies the index of the card to open (default 0).
-sn <> Specifies the serial number of the card to open.

Summary

D of FPGA interrupt

Description

This example demonstrates how to consume FPGA interrupt noltifications in an application. It uses the interrupt test
register block of the Uber example FPGA design, described in Section 5.5.4.4.2 as a means of generating FPGA
interrupt notifications, and starts a thread whose purpose is to wait for and acknowledge interrupts from the target
FPGA.

When ITEST is started, the main thread first configures target FPGA O with the bitstream (b file) for the Uber example
FPGA design. The main thread then launches an interrupt thread that waits for notifications, in a loop. The main thread
then proceeds o wait for input, also in a loop. At this point, the user may press RETURN (o generate an interrupt, or
enter 'q’ to terminate the program. On termination, the program displays the number of FPGA interrupt notifications that
the interrupt thread consumed during execution.

A sample session looks like this

Enter *q° to quit, or anything else to generate an interrupt:
d

Interrupt thread startec

Enter *q* to quit, or anything else to generate an interrupt:
Enter "q" to quit, or anything else to generate an interrupt:
Enter "q" to quit, or anything else to generate an interrupt:
Enter *q" to quit, or anything else to generate an interrup
Enter *q" to quit, or anything else to generate an interrupt:

Generated 5 interrupts

Interrupt thread saw 5 interrupt(s)
The blank lines in the above session are simply empty lines where the user has pressed return. As can be seen, each
of the 5 interrupts generated results in the interrupt thread consuming a notification.

Remarks

As noted in the ADMXRC3 API Specification (see functions ADMXRC3_RegisterWin32Event,

ADMXRC3_Register m and ADMXRC3_ ificati the ADMXRC3 AP! does not queue each type
of notification. Therefore, this example works as expected as long as the frequency of target FPGA interrupt
notifications is not too fast for the interrupt thread. Since the rate of generation of notifications in this example is limited
the user's keyboard input rate, the interrupt thread should be able to keep up (as long as the machine is not heavily
loaded with other processes). Nevertheless, it is important to note that in this simple example, there is no mechanism
for throttling the rate of notifications so that notifications cannot be lost. In a real application, the preferred design
approaches are:

Page 20 Example applications for Windows and Linux

Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide
(VL5 - 24th August 2011) @ ALPHA DATA

1. Architect the FPGA design and host application so that they tolerate out-of-date notifications being missed. For
example, if the target FPGA generates an interrupt when data arrives via an /O interface, it does not matter if
the host application does not succeed in consuming every target FPGA interrupt notification, because the
notifications before the latest one are considered out-of-date. When the host application handies a notification,
it reads a register in the target FPGA o determine the amount of new data rather than using the number of
notifications consumed. What matters is that regardiess of how many times the target FPGA generates an
interrupt, the host application is guaranteed to eventually wake up and check for new data.

2. Use a fully handshaked system, where the host application must positively acknowledge a target FPGA
interrupt before the target FPGA generates a new interrupt.

In fact, the above two approaches are best used together, because minimizing the number of FPGA interrupts
minimizes unnecessary context switches in the operating system

Example applications for Windows and Linux
o

Page 21
AD-UG-0004 Alpha Data Parallel Systems Ltd.

@ALPHA DATA

ADM-XRC Gen 3 SDK 1.4.0 User Guide
(V1.5 - 24th August 2011)

3.7 MEMTESTH example

Command line

mentesth [option .

1

where the following options are accepted:

-banks <bitmask>

-dma

+dma

-index <index>

-maxerror <#>

-repeat <i#>

sn<#>

Summary

Specifies which banks to test, as a bitmask (default all banks).

Use CPU-initiated data transfer instead of DMA data transfer during the test;
this is relatively slow and may increase runtime to minutes instead of
seconds.

Use DMA transfers for transferring data between host memory and the target
FPGA (default).

Specifies the index of the card to open (default 0).

Specifies the maximum number of data verification errors to display; note
that further errors are still counted and a total is displayed at the end of the
test (default 20).

Specifies the number of times to repeat the data test; 0 means "for ever"
(default 1),

Specifies the serial number of the card to open.

Performs a host-driven test of the memory banks on a reconfigurable computing card.

Description

The MEMTESTH example demonstrates the transfer of data between host memory and on-board memory devices (for
example, DDR3 SDRAM on the ADM-XRC-6T1), via the target FPGA. A number of test phases are performed, each
with a different data generation method, such as alternating an 55 / AA patter, “own address" etc. In each phase, each
bank is tested by first fillng the bank with data and then reading it back in order to verify that data transfers are

error-free.

This example makes use of the Uber example FPGA design. Assuming no errors are detected, running it produces

output of the form:

Bank 00: DDR-3 SDRAM.

262144 (0x40000)

. 262144 (0x40000)
. 262144 (0x40000)
. 262144 (0x40000)
X000T

performing host-driven memory test. ..
Phase 1 - 0x55 pattern

Phase 2 - OxAA pattern

Phase 3 - own address pattern

Phase 4 - pseudorandon data

Neasuring throughput. ..

Throughput from host to memory is 439.7 M
Throughput fron memory to host is 1009.6 MiB/s

Page 22 Example applications for Windows and Linux

Alpha Data Parallel Systems Ltd

AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide
(VL5 - 24th August 2011)

@ALPHA DATA

3.8 MONITOR utility

Command line

monitor [option ...]

where the following options are accepted:

-index <index>
-period <delay>

-repeat <n>

sn<#>

Summary

Specifies the index of the card to open (default 0),

Specifies the update period, in seconds,

Specifies the number of updates to perform (default 0); a value of zero

means "repeat for ever"

Specifies the serial number of the card to open.

Displays readings from all sensors.

Description

The MONITOR utilty repeatedly displays sensor readings in the command shell at the interval specified by the -period
option. The number of updates to perform before terminating can be specified on the command line using the -repeat
option, but by default, the program runs until interrupted with CTRL-C.

It makes use of the ADMXRC3_GetSensorinfo and ADMXRC3_ReadSensor functions from the ADMXRC3 APY, and
because it opens a device in passive mode using ADMXRC3_OpenEx, it can run alongside other reconfigurable
computing applications without disturbing them

‘The output looks like this:

Sensor

5
e varisble

LMB7 internal temperature: 49.
Target FPGA temperature: 57.000000 deg C

257 (0x101) => ADM-XRC-6TL

101 (0x69)

22987000 v

1V supply
rail: 1.500186 V

rail: 1.803192 V
2.5 supply 20508896 V
3.3V supply 3.268082 V

supply

oviel
XRM 170 voltage:
000000 deg C

Example applications for Windows and Linux

AD-UG-0004

Alpha Data Parallel Systems Ltd

Page 23

ADM-XRC Gen 3 SDK 1.4.0 User Guide
@ ALPHA DATA (V1.5 - 24th August 201)

3.9 SIMPLE example

Command line
simple [option ...]
where the following options are accepted:

-index <index> Specifies the index of the card to open (default 0).
-sn <> Specifies the serial number of the card to open.
-uber Uses SIMPLE FPGA design (default).
+uber Uses UBER FPGA design.

Summary

Demonstrates access to target FPGA registers.
Description

The SIMPLE example application demonstrates accessing FPGA registers in its simplest form. I first configures target

FPGA 0 with the Simple example FPGA design, or the Uber example FPGA design if the +uber option is specified.

It then waits for input from the user. The user enters hexadecimal values (up to 32 bits in length), and for each value:

1. The program writes the value to a register in the target FPGA.

2. The target FPGA nibble-reverses the value and makes the reversed value available to be read via a register.
Here, nibble-reversing means that the FPGA swaps bits 31:28 with 3:0, 27:24 with 7:4 etc.

3. The program reads back and displays the nibble-reversed value.

The program terminates on CTRL-D (Linux) or CTRL-Z (Windows). A sample session looks like this:

Enter values for 1/0
(CTRL-D / CTRL-Z t0 &

1234abed
OUT = 0x1234abcd, IN = Oxdcbad321
deadbeef
OUT = Oxdeadbeef, IN = Oxfeebdaed
cafeface
OUT = Oxcafeface, IN = Oxecafefac

Page 24 Example applications for Windows and Linux
Alpha Data Parallel Systems Ltd. AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide
(VL5 - 24th August 2011) @ ALPHA DATA

3.10 SYSMON utility

Command line

sysmon

Summary

Utility presenting device information and hardware sensors in a graphical user interface.

Description

The SYSMON utility combines the information shown by the INFO and MONITOR utilities with a graphical user
interface. Its main function is graphical display of hardware sensor data, and it can be minimized to the notification area
of the deskiop (the "System Tray" in Windows) in order to run unobtrusively.

It makes use of the ADMXRC3_GetSensorinfo and ADMXRC3_ReadSensor functions from the ADMXRC3 AP, and
because it opens a device in passive mode using ADMXRC3_OpenEx, it can run alongside other reconfigurable
computing applications without disturbing them

The user interface of the Linux version of SYSMON is as follows, upon starting the utiity:

ADMXRC3

agnostics o x

Device |Index 0 ADM-JA-6TL SN #102 |¢| Update period |15 o 2 Action.

[Device information | sensor Information | Sensor Readout]—o
APTTATOTET

-~ API version 141
Driver version 141

< summary information

F Model 257 (0x101) => ADM-XRC-6TL

b Serial Number 102 (0x66)

I Number of target FPGAs 1

L Number of clock generators 1
Number of DMA channels 2

- Number of windows 4
Number of sensors 13

F Number of I/0 module sites. 1
-~ Number of Flash memory banks 1

Figure 2: SYSMON user interface

Referring to Figure 2, the user interface elements are as follows

1. Acombo box that specifies which reconfigurable computing device to use.

2. Acombo box that selects the time interval between sensor readings.

3. Abution that reveals the Action menu when clicked. The Action menu allows sensor data logging as
described in Section 3.10.1 below. The Windows version of SYSMON does not have this button, but instead
hosts equivalent functionality via the system menu.

Example applications for Windows and Linux Page 25

AD-UG-0004 Alpha Data Parallel Systems Ltd

@ALPHA DATA

ADM-XRC Gen 3 SDK 1.4.0 User Guide
(V1.5 - 24th August 2011)

Pag

4. Atab control whose tabs are as follows:
+ The device information tab shows information about the currently selected device.
. The sensor information tab shows information about the available sensors in the currently selected
device.
« The 'scope tab displays sensor data graphically in up to four 'scopes.

When minimized (item 5), sysmon appears in the notification area of the desktop:

q},; 2 WedAug24, 3:3!

Figure 3: SYSMON notification area icon

The icon shown in the notification area has a context menu activated by a right-click, and this can be used to restore
the application to the deskiop, as well as offering the same logging functions as the Action menu. Refer to Section
3.10.1 for a description of data logging

o actually close the application as opposed to minimizing it click the close button of the window.

The set of information shown in the device information tab is approximately the same as that shown by the
command-fine INFO utiity, but with a collapsible tree structure.

SYSMON sensor information tab

‘The sensor information tab is a tabular view of the available sensors, including the current reading for each sensor:

ADMXRC3 Diagnostics o x
Device | Index 0 ADM-XRC-6TL SN #102 | & Update period |1 c| |Action
Device Information | Sensor Information | sensor Readout

Description Value | Unit B
1 1.5V supply rail 151 Vv

2 1.8V supply rail 181 Vv

3 2.5V supply rail 251 v

4 3.3V supply rail 32 v |
5 5V supply rail 499 v 1
6 XMCvariable power rail 12V

7 XRM 1/0 voltage 248 Vv

8 LM87 internal temperature 31 deg.C

9 TargetFPGAext.temp. 40 deg.C

10 Bridge temperature 482 deg.C

11 Bridge VCCINT 099 vV

Figure 4: SYSMON sensor information tab

'Scope tal Example applications for Windows and Linux
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide
(VL5 - 241h August 2011) @ALPHA DATA

The 'scope tab displays sensor readings in graphical form:

ADMXRC3 Diagnostics o x

Device | Index 0 ADM-XRC-6TLSN #102 < | Update period |1 3, Action...

Device Information | Sensor Information | Sensor Readout

deg, 1000
80.0

60.0-

400

200

Figure 5: SYSMON "scope tab

Initially, the ‘scope is empty and displays no sensors. The above figure shows two scopes, one showing temperatures
and the other showing voltages. The user interface elements of the ‘scope toolbar are as follows:

The temperature button sets the 'scope to display all temperature sensors in the device, and starts updates.

‘The voltage button sets the ‘scope to display all voltage sensors in the device, and starts updates.

The current button sets the 'scope to display all current sensors in the device, and starts updates.

Mouse over the key to see which sensor corresponds to which colored trace.

©®No o

The pause / resume button can be used to pause and resume update of the 'scope.

10. Abutton that adds another ‘scope when clicked, to a maximum of 4, so that various types of sensor can be
viewed at the same time.

Abutton that destroys a 'scope when clicked. If there is only one 'scope, the button is disabled.

3.10.1 SYSMON sensor data logging

In Linux, SYSMON can log sensor data over an arbitrary time period via the Action menu:

"Append to log fle

About

Figure 6: SYSMON Action menu in Linux

Example applications for Windows and Linux Page 27
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.4.0 User Guide
@ ALPHA DATA (V15 - 24th August 2011)

In Windows, the Action button is not present, and the Action menu items are located in the system menu:

> ADMXRCS Diagnostics.

mm tolog| i

About ADHYRC3 Diaghastis
Nuberof vindows: &

Figure 7: SYSMON Action menu in Windows

Data logging works as follows:
+ The Start new log file option prompts for a filename into which sensor data is to be logged. If a file of that
name already exists, it will be overwritten.

‘The Append to log file option prompts for a filename into which sensor data is to be logged, but unlike Start
new log file, if a file of that name already exists, new data will be appended to i

“The Stop logging option is only enabled after logging has successfully been started using Start new log file
or Append to log file, and causes SYSMON to cease logging data.

The files created are in comma-separated value (CSV) format (some rows and columns deleted for brevity):

START, 11:50:07 23 Aug 2011
COMMENT , MODEL , SERIAL#

DEVICE, ADN-XRC-6TL , 102

COMENT .SENSOR# DeScr iption.Unit
SENSOR, 0,1V supply rail v
SENSOR. 115V Supply rai
SENSOR.2,1.8V supply rai
SENSOR.3.2.5V supply rai

SENSOR,12,Bridge VCCAUX.V

COMMENT, TIMESTAWP, 1V supply rail, 1.5V supply rail,1.8V supply rail,2.5V supply ra
COMMENT s, V.,V, V.V
DATA,583,0.987000,1.509186, 1812988, 2. 508896,

DATA,14663,0.987000, 1.509186, 1512988, 2. 508896, .
STOP,11:50:22 23 Aug 2011

The string in column 1 of each row indicates what information a row contains:

START signifies the start of a logging session, in case the file contains multiple sessions that were obtained
using the Append to log file option.

STOP signifies the end of a logging session, in case the file contains multiple sessions that were obtained
using the Append to log file option.

CCOMMENT signifies a comment, for the benefit of human readers, and can be filtered out by a program that
reads the file.

Page 28 Example applications for Windows and Linux
Alpha Data Parallel Systems Ltd. AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide.

(VL5 - 241h August 2011) @ALPHA DATA

+ DEVICE identifies the model and serial number, in the second and third cells respectively, of the physical card
from which the data was collected.

+ SENSOR signifies information about a sensor. The second cell s the sensor index, the third cellis the sensor's
description and the fourth cell is the unit for that sensor.

+ DATAsignifies a set of sensor readings at a given instant. The second cell s a timestamp, in milliseconds,
relative to the time and date in the START row. The third and subsequent cells are individual sensor values,
where the third cell corresponds to the SENSOR row whose sensor index is 0, the fourth cell corresponds to
the SENSOR row whose sensor index is 1 etc.

3.10.2 Building SYSMON in Linux
The Linux version of the SYSMON utility uses GTKMM-2.4. This package is present in recent Linux distributions, but

may not be present in some Linux distributions. For this reason, SYSMON is built separately from the other example
applications. A non-exhaustive list of the packages that are required to build SYSMON is as follows:

gtkmm24-devel cairomm-devel
libsige++20-devel glibmm24-devel
pangomm-devel pkgconfig

To run SYSMON, the corresponding runtime packages are required:

gtkmm24 cairomm
libsige++20 glibmma24
pangomm

To build the "Release" configuration of SYSMON, enter the following commands in a BASH shell:

$ cd SADNXRC3_SDK/apps/linux
$ /configure

$ cd sysmon
$ make CONFIG=Release clean al

The path is then
Example applications for Windows and Linux Page 20
AD-UG-0004 Alpha Data Parallel Systems Ltd

ADMXRC Gen 3 SDK 1.4.0 User Guide
’ALF“‘ DATA (v1.5 - 24th August 2011)

3.11 VPD utility

Command line

vpd 1 b address n [data]
vpd 7 fw address n
vpd 1 fd address n
vpd 1 Tq address n
vpd 1 s address n
vpd 7 b address
vpd 1 rv address
vpd 7 rd address
vpd 1 rq address
vpd 7 wb address
vpd 1w address
vpd 7 wd address
vpd 1 wq address
vpd 1 ws address
where
address is the address in VPD memory at which to begin reading or writing.
n is the number of bytes to read or write.
data is a numeric data item, valid for fill and write commands.
string is a string data item, valid for fil and write commands.

and the following options are accepted;

-index <index> Specifies the index of the card to open (default 0).
-sn <#> Specifies the serial number of the card to open.
Causes numeric data values to be interpreted as decimal unless prefixed by
-hex o
'0x' (default).
+hex Causes numeric data values to be interpreted as hexadecimal always.
Summary

Displays data read from VPD memory, or writes data to VPD memory.

Description

The VPD utility operates in one of three modes:

« Filling a region of VPD memory with a value or string; for this mode, use the fb, fw, fd, fq or fs commands.
+ Reading data from VPD memory and displaying it for this mode, use the rb, rw, rd or rq commands.

* Writing numeric or string data to a region of VPD memory; for this mode, use the wb, ww, wd, wq or ws
commands.

Fill mode

When filling a region of VPD memory with data, the fill command specifies whether the data is numeric or string data. In
the case of numeric data, the command also implies the radix (i.e. word size) of the data. The available fill commands
are:

Page 30 Example applications for Windows and Linux
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide.

(VL5 - 241h August 2011) @ALPHA DATA

©
Fill value is a byte (8-bit).
. fw
Fill value is a word (16-bit).
.M

Fill value is a doubleword (32-bif).

fq

Fill value is a quadword (64-bit).

fs

Fill value is an ASCII string (8-bit characters).

The next 3 arguments after the fil command must be:

(a) address - the byte address within VPD memory at which to begin filling

(b) n - byte count; the number of bytes of VPD memory to fill

(c) data or string - the numeric or string value to place in the specified region of VPD memory

If the command is s and the string value is shorter than the byte count n, the string is repeated untilthe byte count is
satisfied. If the string is longer than the byte count n, only the first n characters are used. If a string contains spaces, it
must be quoted on the command line so that it is not interpreted by the shell as two or more separate arguments,

For the numeric fil commands b, fw, fd and fa, the numeric value is repeated unti the byte count is satisfied.

Read mode

The read command implies the radix (i.e. word size) used for displaying the data:

Byte (8-bit) reads; data is displayed as bytes.

w
Word (16-bit) reads; data is displayed as words.

« o

Doubleword (32-bit) reads; data is displayed as doublewords,

q
Quadword (64-bit) reads; data is displayed as quadwords,

After the read command, an address must be supplied, which specifies where in VPD memory to begin reading. An
optional length parameter, in bytes, can also be supplied. If omitted, the length is equal to the radix implied by the read
command. If present, the length parameter specifies how many bytes to read and display. The length should be an
integer multiple of the width; if not, the length is rounded down.

Write mode
The write command specifies whether the data is numeric or string data. In the case of numeric data, the command
also implies the radix (i.e. word size) of the data. The available write commands are:
. wb
Data is written as bytes (8-bit)

ww
Data is written as words (16-bi).

o wd

Data is written as doublewords (32-bit).

Example applications for Windows and Linux Page 31
AD-UG-0004 Alpha Data Parallel Systems Ltd

ADMXRC Gen 3 SDK 1.4.0 User Guide
’ALF“‘ DATA (v1.5 - 24th August 2011)

wa

Data is written as quadwords (64-bit)

. ws

Data is supplied as one or more ASCIl strings (8-bit characters).

After the write command, an address must be supplied, which specifies where in VPD memory to begin writing data. An
optional length parameter, i bytes, can also be supplied. If omitted, the length is equal to the radix implied by the write
command. If present, the length parameter specifies how many bytes to write. The length should be an integer multiple
of the width; if not, the length is rounded down

The program obtains the values to be written in two ways: from any additional parameters on the command fine after
the length parameter, and then from the standard input stream (stdin). This works as follows:

1. Any remaining command line arguments, if present after the length parameter, are interpreted as data values.
to be written. Numeric values are assumed to be of the radix implied by the command parameter. As each
value it written to VPD memory, the address is incremented. If there are enough values passed on the
command line to satisfy the byte count, the program terminates.

2. Ifthere are insufficient data values passed on the command line, the program waits for values to be entered on
the standard input stream. Numeric values entered this way are also assumed to be of the radix implied by the
command. As each value it written to VPD memory, the address is incremented. When the entire byte count
that was specified in the length parameter has been satisfied or end-of-file is encountered, the program
terminates.

Example session
The following session was captured under Linux using an ADM-XRC-6TL. The base address 0x100000 is used
because that is the VPD-space address of the user-definable area of VPD memory in the ADM-XRC-6TL.

$./vpd rb 0x100000 0x60
Dump of VPD at 0x100000 + 96(0X60) bytes:
07 08

102 03 04 05 06 09 0a 0b Oc 0d Oe
0x00100000: £ FF FF fF ff FF FF FF Ff f
0x00100010: FF FF F f Ff ©f 7f 7f 7f 7 7f 7 f
0x00100020: £ Ff FF £f ©f ©f ff ff ff ff £f ff
TF FF F F FF ©F 7f 7f 7F 7 7f 7 11

£ FF FF £f Ff ©f ff ff ff ff ff f

F FF FF F FF 7 fF

T T
0 *hello world!®
12
3

e

0 oxassa

$./vpd 0 0x60
Dump of VPD at 0x100000 + 96(0X60) bytes:

0 01 02 03 04 05 06 07 08 09 Oa Ob Oc
0x00100000: ff ff ff ff ff ff ff ff 68 65 6c 6c 6T
0X00100010: 72 6c 64 21 68 65 6c 6c 6F 20 77 6f Ff Ff
0X00100020: ef be ad de ce fa fe ca 78 56 34 12 ff
0x00100030: ff 5a a5 5a a5 5a a5 5a a5 5a a5
0X00100040: Ff Ff ff Ff £ ff ff £ ff I I 1 1f 1T
0x00100050: Ff Ff Ff Ff ff ff ff f f f ff ff f ff

33323

L .
NOTE: the above sesssion assumes that VPD write protection has been disabled as described in the release notes for
the ADBS3 Driver for Linux or Windows (as appropriate)

Remarks

When entering data for fil or write commands, values are expressed in decimal by default. To express data as
hexadecimal, prefix it with ‘0 or use the +hex option.

Page 32 Example applications for Windows and Linux
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide.

(VL5 - 241h August 2011) @ALPHA DATA

In the current version of the VPD utiity, data is always read from and written to VPD memory in little-endian byte order.

Example applications for Windows and Linux Page 33
AD-UG-0004 Alpha Data Parallel Systems Ltd

ADMXRC Gen 3 SDK 1.4.0 User Guide
’ALF“‘ DATA (v1.5 - 24th August 2011)

4 Example applications for VxWorks

The example applications and utilties are described in the following subsections.

FLASH Utilty for programming FPGA bitstream (.BIT) files in user-programmable Flash
memory

INFO Utilty for displaying information about a reconfigurable computing device

[TesT Example demonstrating how to consume target FPGA interrupt notifications in an
application

MEMTESTH Example demonstrating host-driven memory test

MONITOR Utilty that displays sensor readings

SIMPLE Example demonstrating how to read and write registers in a target FPGA

. Utilty that allows the Vital Product Data of a reconfigurable computing device to

be read or written

Source code for the example VxWorks and Linux
the root of the SDK,

tions is provided in the directory, relative to

4.1 Building the example VxWorks applications in Windows

If using a Windows machine for VxWorks hosting and development, follow these steps:

1. Make a copy of the SDK according to the discussion in Section 2.4,

2. Start a VxWorks Development Shell via the shortcut on the Windows Start Menu. It is important to use this.
shortcut in order to obtain the correct environment for performing command-line builds using the Wind River
VxWorks toolchains.

3. Change directory to

$(ADUXRC3_SDK)/apps/vxworks

where S(ADMXRC3_SDK) is the root of the copy of the SDK that you have made.
4. Execute the following command, replacing <config> with the name of the configuration that is appropriate for

your target system:

make CONFIG=<config> clean all
For example, the Pentium 4 configuration for VxWorks 6.7 is p4-6.7, and the PowerPC 604 configuration for
VxWorks 6.7 is ppc604-6.7. The configuration that you use depends on the target system. Alpha Data supplies
several predefined configurations, but it is possible that none of these are exactly what is required for your
target system. Refer to Section 4.3 for a discussion of configurations and how to create a new configuration
‘The full path, by default, of the binary downloadable module is:

S(ADNXRC3_SDK)/app: ks/<confi ~out

However, the DEBUG and VSB options can modify this path as shown in Table 2.

4.2 Building the example VxWorks applications in Linux
TBA

4.3 MAKE options for the example VxWorks applications

Page 34 Example applications for VxWorks
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide.

(VL5 - 241h August 2011) @ALPHA DATA

‘The top-level Makefile for the VxWorks examples accepts a number of options which are passed on the MAKE
command line. These are:

« CONFIG=<configuration>
Specifies a predefined configuration defined by the file rules.<configuration>, located i the same folder as
the Makefile. This option affects the directory where the binary is placed; see Table 2 below for details
The rules file may contain any of the following options; for an example, see rules.p4-6.7.
. CPU=<cpu>
Specifies the CPU being targetted; for example PPC604 or PENTIUM4 (default). Must be appropriate for the
TARGET option.
+ DEBUG=<false|true>
Specifies a release (false) or debug (true, default) build. This option affects the directory where the binary is
placed; see Table 2 below for details.
. EXTRA_CCOPTS=<extra compiler options>
Specifies extra C compiler options.
. EXTRA_LDOPTS=<extra linker options>
Specifies extra linker options.
+ TARGET=<target spec>
Defines the target specification, which must be appropriate for the CPU option. Examples of valid target
specifications for the DIAB toolchain are -tPPC604FH:vxworks55 (PowerPC 604 VxWorks 5.5) and
tPENTIUMALH:vxworks67 (default, Pentium 4 VxWorks 6.7). Examples of valid target specifications for the
GNU toolchain are -mcpu=604 (PowerPC 604) and -mtune=pentiuma -march=pentiumd (Pentium 4).
+ TOOLCHAIN=<diablgnu>
Specifies the toolchain to be used to build the driver; legal values are diab (default) or gnu. If the gnu
toolchain is selected, the following additional options must be specified (which can be in the rules file specified
by the CONFIG option, for convenience):
cC=<compiler>
Specifies the C compiler; must be appropriate for the CPU and TARGET options. For example, ccppc
selects the PowerPC GNU compiler.
« LD=<linker>
Specifies the linker; must be appropriate for the CPU and TARGET options. For example, Idppc selects
the PowerPC GNU linker.

+ NM=<object dumper>
Specifies object dumper; must be appropriate for the CPU and TARGET options. For example, nmppc
selects the PowerPC GNU object dump uilty.

. VSB=<variant>
Specifies VxWorks source build (VSB) variant libraries, if required. If omitted, the normal libraries are used.
“The most common value for this option is smp. This option affects the directory where the binary is placed; see
Table 2 below for details.

When the CONFIG option is specified, the SDK's build system reads a rules file that contains values for the other
options. For example, the configuration ppc604-6.7 has a rules file rules.ppc604-6.7. This configuration targets a
PowerPC 604 CPU running VxWorks 6.7. and by way of ilustration, the rules file contains:

CPU=PPCEO4
ifeq (SCTOOLCHAIN) diab)
EXTRA_C!

TARGETo PPCaOARH vorkasT
else

ifeq (SCTOOLCHAIN) .gnu)
EXTRA_CCOPT call

Example applications for VxWorks Page 35
AD-UG-0004 Alpha Data Parallel Systems Ltd

ADMXRC Gen 3 SDK 1.4.0 User Guide
’ALF“‘ DATA (v1.5 - 24th August 2011)

Ni=nmppc
TARGET=-cpu=604

else
$(error “TOOLCHAIN $(TOOLCHAIN) not recognized.")
endif
endif

If no CONFIG option is specified, the default configuration is default. The rules.default file contains:
CPU=PENTIUMA
ifeq (SCTOOLCHAID dish)

NT IUMALH: vxworks67

ifeq (S(TOOLCHAIN) ,gnu)
CC=cepentium

Itis possible that none of the predefined configurations supplied by Alpha Data is appropriate for your hardware
platform. If that is the case, a new configuration can be created by using one of the existing rules files as a template
and modifying it appropriately.

Several options affect the location where the resulting binary is placed, assuming that a build is successful. The naming
conventions are as follows:

DEBUG option | VSB option Path to binary
false not defined | $(ADMXRC3_SDK] pps.out
true not defined | $(ADMXRC3_SDK)/appsivxworks/<config>/debug/admxrc3Apps.out
false defined | SADMXRC3_SDK)/appsiorks/<config>/release_<VSB value>/
admxrc3Apps.out
e defined | SVADMXRC3_SDK)/appsivxworks/<config>/debug_<VSB value>/
admxrc3Apps.out

Table 2: Naming conventions for VxWorks examples binary

For example, if DEBUG=true and VSB=smp, the path to the binary is

S(ADNXRC3_SDK)/apps/vxwiorks/<config>/debug_sip/admxrc3Apps. out

Page 36 Example applications vmVqurks

Alpha Data Parallel Systems Ltd UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide.
(VLS - 24th August 2011)

@ ALPHA DATA

4.4 FLASH utility (VxWorks)

WARNING: Incorrect use of the FLAG_FAILSAFE value (0x100) for the flags parameter may impact
fong-term reliabilty of a reconfigurable computing card. Please refer to Section 4.4.1 below for an
explanation of the failsafe bitstream mechanism and how it may be used.

Invocation in VxWorks shell

adnxrc3Fl.

adnxrc3Flash

where

index

flags

target-index

“filename”

<flags>,
<flags>

is normally the index of reconfigurable computing device (default 0).
However, this may be interpreted as a serial number instead of an index if
flags contains Ox1.

is the bitwise OR of zero or more of the following flags (default 0):
FLAG_BYSERIAL (0x1) => index is interpreted as a serial number rather
than a device index

FLAG_FORCE (0x10) => a program or verify command proceeds even if the
FPGAtype in the .BIT file device does not match the FPGA type in the
device

FLAG_FAILSAFE (0x100) => performs the operation on the the failsafe
image instead of the default image

is the index of a target FPGA (default 0).

is a string containing the name of a BIT file (program or verify commands
only).

The FLASH utiity requires one of the following commands to be passed s a string argument in the third parameter

chkblank command

chkblank

Verifies that an image is blank, i.e. all bytes are OxFF.

erase

Erases an image so that it becomes blank, i.e. all bytes are OxFF.

info

Displays information about the Flash memory.

program

Programs the specified bitstream (.BIT) file into an image so that the target FPGA s configured from the image

at power-on or reset.

verify
Verifies that an image contains the specified bitstream (.BIT) fle.

The chkblank command verifies that a target FPGA image is blank, i.e. all bytes are OxFF, but does not modify the
Flash memory bank. Following the command, an index of a target FPGA in the device must be specified. The index of
the target FPGA is normally zero but may be nonzero in models with multiple target FPGAS.

Example applications for VxWorks
AD-UG-00(

04

Page 37
Alpha Data Parallel Systems Ltd

ADM-XRC Gen 3 SDK 1.4.0 User Guide

@ALPHA DATA (V15 - 24th August 2011)

For example, to blank-check the default image for target FPGA 0 in the reconfigurable computing device whose index is
-> admxrc3Flash 0,0,"chkblank”,0

erase command

The erase command erases a target FPGA image so that it becomes blank, i.e. all bytes are OXFF. It automatically
performs a blank-check after erasing. Following the command, an index of a target FPGA in the device must be

specified. The index of the target FPGA is normally zero but may be nonzero in models with multiple target FPGAS.
For example, to erase the default image for target FPGA 0 in the reconfigurable computing device whose index is 0:

-> adnxrc3Flash 0,0,"erase",0

info command

The info command displays information about the Flash memory and then exits, without doing anything else. Following
the command, an index of a target FPGA in the device must be specified. The index of the target FPGA is normally zero
but may be nonzero in models with multiple target FPGAS.

program command

The program command programs a target FPGA image with the data in the specified bitstream (.BIT) file. Following
the command, an index of a target FPGA in the device and the name of a bitstream (.BIT) filename must be specified.
The index of the target FPGA is normally zero but may be nonzero in models with multiple target FPGAS.

If the device in the .BIT file does not match the target FPGA, this command fails with an error and does not program the
target FPGA image, unless the +force option is passed. Verification is automatically performed after programming.

For example, to program the default image for target FPGA 0, in the reconfigurable computing device whose index is 0,
with a bitstream file called my_design.bit

> adnxrcaFlash 0,0, progran*,0, host:/path/to/my_design.bit"

verify command

‘The verify command verifies that a target FPGA image contains the data in the specified bitstream (BIT) file, but does,
not modify the Flash memory bank. Following the command, an index of a target FPGA in the device and the name of a
bitstream (.BIT) filename must be specified. The index of the target FPGA is normally zero but may be nonzero in
models with multiple target FPGAs.

If the device in the .BIT file does not match the target FPGA, this command fails with an error unless the flags
parameter contains FLAG_FORCE (0x10). If discrepancies between the target FPGA image and the data in the .BIT
file are found, they are displayed (up t0 a certain number of erroneous bytes), followed by a failure message.

For example, to verify that the default image for target FPGA 0, in the reconfigurable computing device whose index is
0, contains the data in a bitstream file called my_design.bit:

-> adnxrc3Flash 0,0,"ver

.0, "host:/path/to/my_design.

4.4.1 Failsafe

stream mechanism (VxWorks)

Due to errata in certain Xilinx FPGA families, the following Gen 3 models have a "failsafe bitstrea
+ ADM-XRC-6TL

+ ADM-XRC-6T1

+ ADM-XRC-6TGE

+ ADM-XRC-6T-ADV8

mechanism:

Page 38 Example applications for VxWorks
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide
(VL5 - 24th August 2011) @ ALPHA DATA

In the above models, each target FPGA has two images: a default image, and a failsafe image. Alpha Data
factory-programs a known-good “null bitstream" into the failsafe image. When power is applied to a card, the firmware
on the card first looks for a valid bitstream in the default image. If no bitstream is found, the firmware uses the nul
bitstream in the failsafe image to configure the target FPGA. In this way, the firmware ensures that the target FPGA is
always configured with something when it is powered-on.

Because the purpose of the failsafe image is to protect the target FPGA from sub-micron effects that would otherwise
degrade the performance of the target FPGA over time, Alpha Data recommends that the failsafe image should never
be erased. If overwritien, a customer must ensure that the bitstream is valid, known-good and satisfies the
requirements for protecting the target FPGA from sub-micron effects.

Xilinx answer record 35055 elaborates on protecting Virtex-6 GTX transceivers from performance degradation over
time.

Example applications for VxWorks Page 39
AD-UG-0004 Alpha Data Parallel Systems Ltd.

http://www.xilinx.com/support/answers/35055.htm

ADM-XRC Gen 3 SDK 1.4.0 User Guide

@ALPHA DATA (V15 - 24th August 2011)

4.5 INFO utility (VXWorks)

Invocation in VxWorks shell

adnxrc3info <index>, <flags>

where

index specifies the index of the card to open (default 0).

is the bitwise OR of zero or more of the following flags (default 0):
fags FLAG_SHOWFLASHINFO (0x10) => show Flash bank information.

FLAG_SHOWMODULEINFO (0x20) => show I/O module information.

FLAG_SHOWSENSORINFO (0x40) => show sensor information.

Summary

Displays information about a reconfigurable computing device.

Description

The INFO utility demonstrates the use of most of the informational functions in the ADMXRC3 API. It uses

ADMXRC3_OpenEx to open a device in passive mode, meaning that an unprivileged user can successfully run it. The
output consists of several sections, the first of which is obtained using ADMXRC3_GetVersioninfo:

AP infornati
API library version 1.1.2
Driver version 112

The second section shows information obtained using ADMXRC3_GetCardinfoEx, and shows the information in the
ADMXRC3_CARD_INFOEX structure:

Card infornation
ADI-XRC-6TL

SEFEN nunber 106(0x6A)

Nunber of programmable clocks 1

Nunber of DMA channels

Number of target FPGAS

Nuriber of Tocal bus windows 4

Nunber of sensors 10

Nuriber of 170 nodule sites 1

Nunber of local bus windows 4

Nunber of mefory banks 4

Bank presence bitnap oxF

The third section uses the NumTargetFpga member of the ADMXRC3_CARD_INFOEX structure and
ADMXRC3_GetFpgalnfo o enumerate the target FPGAS in the device:
Target FPGA information
FPGA O XCOVIX3B5LFFI759-2C Stepping ES
The fourth section uses the NumMemoryBank member of the ADMXRC3_CARD_INFOEX structure and
ADMXRC3_GetBankinfo to enumerate the memory banks (non-Flash) in the device:

Memory bank information
Bank 0 SORAI, DOR3, 65536 killord x 32+0 bits
303.0 W

Comnoctivity nask 0

Bank 1 SoRm, DORS, 65556 ord x 32:0 bits
303.0'WHz - 633.3 iz
Connect

Bank 2 SORAY. DDRS, 65596 klwurd x 3240 bits
303.0'MHz - '533.3 M

Page 40 Example applications for VxWorks
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide
(VL5 - 24th August 2011) @ ALPHA DATA

Connectivity mask Ox1
Bank 3 SORAM, DDR3, 65536 kiWord x 32+0 bits
303.0 MHz - 533.3 WHz
Connectivity mask Ox1

‘The fourth section uses the NumWindow member of the ADMXRC3_CARD_INFOEX structure and
ADMXRC3_GetWindowinfo to enumerate the memory access windows in the device:

Local bus window information
Window 0 (Terget FPGA O pre Bus bese 0XFSB00000 size 0x400000
Local base Ox0 Size Oxdl
virtuel size 0xd00000
Window 1 (Target FPGA O non Bus base OxFB400000 Size 0x400000
Cocal base 0n0. aise oxi0000
Virtual size 0x400000
ndow 2 (ADM-XRC-6TL-speci Bus base OXFB2FFO00 size 0x1000
Local base 0x0 size 0x0
Virtual size 0x1000
Window 3 (ADB3 bridge regis Bus base OXFB2FEQ00 Size 0x1000
Local base 0x0 size 0x0
Virtual size 0x1000

The next section appears if the FLAG_SHOWFLASHINFO (0x10) flag is used. It uses the NumFlashBank member of
the ADMXRC3_CARD_INFOEX structure and ADMXRC3_GetFlashinfo to enumerate the Flash memory banks in the
device:

Flash bank infornation
Bank 0

Intel 28F256P30, 65536(0x10000)
Useable area 0x1200000-0x3FFFFFF
The next section appears if the FLAG_SHOWMODULEINFO (0x20) flag is used. It uses the NumModuleSite member
of the ADMXRC3_CARD_INFOEX structure and ADMXRC3_GetModulelnfo to enumerate the /0 module sites in the
device and show what is fitted, if anything

1/0 module information

Nodule 0 Not present
The final optional section appears if the FLAG_SHOWSENSORINFO (0x40) flag is used. It uses the NumSensor
member of the ADMXRC3_CARD_INFOEX structure and ADMXRC3_GetSensorinfo to enumerate the sensors in the
device:

sensor information

Sensor 0 1V supply rail
exponent 0, error 0.0

sensor 1 y ra
exponent 0, error 0.0
sensor 2 y rail
¥. double, exporent 0, error 0.0
Sensor 3 2/5v supply rail
V. double. exp rent 0, error 0.1
Sensor 4 313V supply r
V. double, Exmment 0, error 0.1
sensor 5
error 0.1
Sensor 6
. error 0.2
Sensor 7
V. double, exponent 0, error 0.1
sensor 8 L7 internal temperature
leg. C, double, exponent 0, error 3.0
sensor 9 Target FPGA terperature
deg. C, double, exponent 0, error 4.0
Example applications for VxWorks Page 41

AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADMXRC Gen 3 SDK 1.4.0 User Guide
’ALF“‘ DATA (v1.5 - 24th August 2011)

4.6 ITEST example (VxWorks)

Invocation in VxWorks shell

admxrc31Test dex>
where
index specifies the index of the card to open (default 0).
Summary
D of FPGA interrupt
Description

This example demonstrates how to consume FPGA interrupt notifications in an application. It uses the interrupt register
test block of the Uber example FPGA design, described in Section 5.5.4.4.2 as a means of generating FPGA interrupt
notifications, and starts a thread whose purpose is to wait for and acknowledge interrupts from the target FPGA.
When ITEST is started, the main thread first configures target FPGA 0 with the bitstream (bt file) for the Uber example
FPGA design. The main thread then launches an interrupt thread that waits for notifications, in a loop. The main thread
then proceeds to wait for input, also in a loop. At this point, the user may press RETURN to generate an interrupt, or
enter 'q’ to terminate the program. On termination, the program displays the number of FPGA interrupt notifications that
the interrupt thread consumed during execution.
Asample session looks like this:

Enter *q" to quit, or anyth-ng else to generate an interrupt:

Interrupt thread star

Enter "q* to quit, or anything else to generate an interrupt:

Enter

o to anything else to generate an interrupt:
Enter "q" to anything else to generate
Enter *q° to anything else to generate
Enter *q" to anything else to generate

q

Generated 5 interrupts

Interrupt thread saw 5 interrupt(s)
The blank lines in the above session are simply empty lines where the user has pressed return. As can be seen, each
of the 5 interrupts generated resuils in the interrupt thread consuming a notification.

Remarks

As noted in the ADMXRC3 AP Specification (see functions ADMXRC3_RegisterWin32Event,

ADMXRC: and ADMXRC3_¢ the ADMXRC3 API does not queue each type
of notification, Theremre this example works as expected as long as the frequency of target FPGA interrupt
notifications is not too fast for the interrupt thread. Since the rate of generation of notifications in this example is limited
the user's keyboard input rate, the interrupt thread should be able to keep up (as long as the machine is not heavily
Ioaded with other processes). Nevertheless, it is important to note that in this simple example, there is no mechanism
for throtting the rate of notifications so that notifications cannot be lost. In a real application, the preferred design
approaches are:

Page 42 Example applications for VxWorks

Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide
(VL5 - 24th August 2011) @ ALPHA DATA

1. Architect the FPGA design and host application so that they tolerate out-of-date notifications being missed. For
example, if the target FPGA generates an interrupt when data arrives via an /O interface, it does not matter if
the host application does not succeed in consuming every target FPGA interrupt notification, because the
notifications before the latest one are considered out-of-date. When the host application handies a notification,
it reads a register in the target FPGA o determine the amount of new data rather than using the number of
notifications consumed. What matters is that regardiess of how many times the target FPGA generates an
interrupt, the host application is guaranteed to eventually wake up and check for new data.

2. Use a fully handshaked system, where the host application must positively acknowledge a target FPGA
interrupt before the target FPGA generates a new interrupt.

In fact, the above two approaches are best used together, because minimizing the number of FPGA interrupts
minimizes unnecessary context switches in the operating system

Example applications for VxWorks
o

Page 43
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADMXRC Gen 3 SDK 1.4.0 User Guide
’ALF“‘ DATA (v1.5 - 24th August 2011)

4.7 MEMTESTH example (VxWorks)

Invocation in VxWorks shell

adnxrcaVenTestH <index>, <bankmask>, <bNoDma>, <numRep>, <maxError>

where
index specifies the index of the card to open (default 0).
bankmask is a bitmask specifying which banks to test (0 => all).

should be nonzero to use CPU-initiated data transfer instead of DMA data
bNoDma transfer during the test; this is relatively slow and may increase runtime to
minutes instead of seconds.

is the number of repetitions of the test to perform, minus 1 (0 => 1 repetition,

numRep -1=> for ever).

is the maximum number of data verification errors to display; note that
maxEror further errors are stil counted and a total is displayed at the end of the test
(0=> default of 20).

Summary
Performs a host-driven test of the memory banks on a reconfigurable computing card.
Description

The MEMTESTH example demonstrates the transfer of data between host memory and on-board memory devices (for
example, DDR3 SDRAM on the ADM-XRC-6T1), via the target FPGA. A number of test phases are performed, each
with a different data generation method, such as alternating an 55 / AA pattern, “own address" etc. In each phase, each
bank s tested by first filing the bank with data and then reading it back in order to verify that data transfers are
error-free.

This example makes use of the Uber example FPGA design. Assuming no errors are detected, running it produces
output of the form:

Bank 00: DOR-3 SORAN. 262144 (0x40000) KB
DDR-3 SDRAM, 262144 (0x40000) kiB

DDR-3 SORAM. 267144 (Od0000y Kib

: DDR-3 SORAW, 262144 (0x40000) KiB

Bank test mask is 0x000T

Perforning host-driven nenory test...

Phase 1 - OX55 patte

Phase 2 - OXAA

Phase 3 - own address pattern

Phase 4 - pseudorandon data

Neasuring throughput. . .

Throughput from host to memory is 439.7 NiB/s

Throughput fron menory to host is 1009.6

Page 44 Example applications for VxWorks
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide
(VL5 - 241h August 2011) @ALPHA DATA

4.8 MONITOR utility (VxWorks)

Invocation in VxWorks shell

adnxrcaVonitor <index>, <flags>, <period>, <number0fUpdates>

where
index specifies the index of the card to open (default 0).
fags is a bitwise OR of flags that modify the behavior of this utiiy (default 0);
o must be 0 as there are currently no flags defined.
period is the update period, in seconds.
numberOfUpdates specifes the number of updates to perform (defauit 0); a vale of zero
means "repeat for ever'
Summary

Displays readings from all sensors.

Description

The MONITOR utilty repeatedly displays sensor readings in the VxWorks shell at the interval specified by the period
parameter. The number of updates to perform before terminating is specified by the number of updates parameter. If
not specified, the default is 0, which means that the example runs for ever.

This utility makes use of the ADMXRC3_(and ADMXRC3_| functions from the ADMXRC3
API, and because it opens a device in passive mode using ADMXRC3_OpenEx, it can run alongside other
reconfigurable computing applications without disturbing them

The output looks like this:

Nodel : 257 (0x101) => ADM-XRC-6TL
Serial number: 101 (0x65
Number of sensors: 10
Sensor 0 1V supply : 0.987000 V
Sensor 1 1.5V supply 1.509186 V
Sensor 2 1.8V supply 12803102 V
Sensor 3 2.5V supply 2.508896 V/
Sensor 4 3.3V supply 30268082 V
Sensor 5 5V supply 5.017990 V
Sensor 6 XMC variable power rail: 12.000000 V
Sensor 7 XRM 170 voltage: 2.49571:
Sensor 8 Lw87 temperature: 49.000000 deg C
Sensor 9 Target FPGA temperature: 57.000000 deg C
Example applications for VxWorks Page 45
AD-UG-0004 Alpha Data Parallel Systems Ltd

ADMXRC Gen 3 SDK 1.4.0 User Guide
’ALF“‘ DATA (v1.5 - 24th August 2011)

4.9 SIMPLE example (VxWorks)

Invocation in VxWorks shell

adnxrc3sinple <index>, <flags>

where
index specifies the index of the card to open (default 0).
is the bitwise OR of zero or more of the following flags (default 0):
flags FLAG_USEUBER (0x10) => use UBER bitstream instead of SIMPLE
bitstream
Summary

Demonstrates access to target FPGA registers.

Description

The SIMPLE example application demonstrates accessing FPGA registers in its simplest form. It first configures target
FPGA 0 with the Simple example FPGA design, or the Uber example FPGA design if the flags parameter includes
FLAG_USEUBER (0x10). It then waits for input from the user. The user enters hexadecimal values (up to 32 bits in
length), and for each value:

1. The program writes the value to a register in the target FPGA,

2. The target FPGA nibble-reverses the value and makes the reversed value available to be read via a register.
Here, nibble-reversing means that the FPGA swaps bits 31:28 with 3:0, 27:24 with 7:4 etc.
3. The program reads back and displays the nibble-reversed value

The program terminates on CTRL-D (Linux) or CTRL-Z (Windows). A sample session looks like this:

Enter values for 1/0
(CTRL-D / CTRL-Z t0 exit)

1234abod
OUT = 0x1234abed, IN = Oxdcbad321
deadbeef
OUT = Oxdeadbeef, IN = Oxfeebdaed
cafeface

OUT = Oxcafeface,

= Oxecafefac

Page 46 Example applications for VxWorks
AD.

Alpha Data Parallel Systems Ltd -UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide
(VL5 - 241h August 2011) @ALPHA DATA

4.10 VPD utility (VXWorks)

Invocation in VxWorks shell

<address>, <n>,
<address>, <n>,
<address>, <n>,

<n>,
<address>, <n>,

<n>
<address>, <n>
<address>, <n>
<address>, <n>
<address>, <n>[, “num-arg"]

admxrcavpd <flags>,
<flags>, "

<address>, <n>[, "nun-arg"]
<address>. <n>[, "nun-arg”]
1 <address>, <n>[, "nun-arg"]
admxrc3Vpd dex>, <flags>, <address>, <n>[, “str-arg"]
where
index specifies the index of the card to open (default 0)

is the bitwise OR of zero or more of the following flags (default 0):
FLAG_BYSERIAL (0x1) => index is interpreted as a serial number rather
flags than a device index.
FLAG_HEX (0x10) => causes the utilty to interpret all numeric data values
as hexadecimal.

address is the address in VPD memory at which to begin reading or writing
n is the number of bytes to read or write.
num-arg" is a string containing a numeric data argument; required for the fb, fw, fd &
9 fq commands and optional for the wb, ww, wd & wq commands.
- is a string argument; required for the fs command and optional for the ws
swarg command.
Summary

Displays data read from VPD memory, or writes data to VPD memory.
Description

The VPD utilty operates in one of three modes:

Filling a region of VPD memory with a value or string; for this mode, use the fb, fw, fd, fq or fs commands.
Reading data from VPD memory and displaying it; for this mode, use the rb, rw, rd o rq commands.

Writing numeric or string data to a region of VPD memory; for this mode, use the wh, ww, wd, wg or ws
commands.

Fill mode

When fillng a region of VPD memory with data, the fill command specifies whether the data is numeric or string data. In

the case of numeric data, the command also implies the radix (i.e. word size) of the data. The available fill commands
are:

Example applications for VxWorks Page 47
AD-UG-0004 Alpha Data Parallel Systems Ltd

ADM-XRC Gen 3 SDK 1.4.0 User Guide

@ALPHA DATA (V15 - 24th August 2011)

©
Fill value is a byte (8-bit).
. fw
Fill value is a word (16-bit).
.M

Fill value is a doubleword (32-bif).

fq

Fill value is a quadword (64-bit).

fs

Fill value is an ASCII string (8-bit characters).

The next 3 arguments after the fil command must be:

(a) address - the byte address within VPD memory at which to begin filling

(b) n - byte count; the number of bytes of VPD memory to fill

(c) data or string - the numeric or string value to place in the specified region of VPD memory

If the command is s and the string value is shorter than the byte count n, the string is repeated untilthe byte count is
satisfied. If the string is longer than the byte count n, only the first n characters are used. If a string contains spaces, it
must be quoted on the command line so that it is not interpreted by the shell as two or more separate arguments,

For the numeric fil commands b, fw, fd and fa, the numeric value is repeated unti the byte count is satisfied.

Read mode

The read command implies the radix (i.e. word size) used for displaying the data:

Byte (8-bit) reads; data is displayed as bytes.

w
Word (16-bit) reads; data is displayed as words.

« o

Doubleword (32-bit) reads; data is displayed as doublewords,

q
Quadword (64-bit) reads; data is displayed as quadwords,

After the read command, an address must be supplied, which specifies where in VPD memory to begin reading. An
optional length parameter, in bytes, can also be supplied. If omitted, the length is equal to the radix implied by the read
command. If present, the length parameter specifies how many bytes to read and display. The length should be an
integer multiple of the width; if not, the length is rounded down.

Write mode
The write command specifies whether the data is numeric or string data. In the case of numeric data, the command
also implies the radix (i.e. word size) of the data. The available write commands are:
. wb
Data is written as bytes (8-bit)

ww
Data is written as words (16-bi).

o wd

Data is written as doublewords (32-bit).

Page 48 Example applications for VxWorks
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide
(VL5 - 241h August 2011) @ALPHA DATA

wa

Data is written as quadwords (64-bit)

. ws

Data is supplied as one or more ASCIl strings (8-bit characters).

After the write command, an address must be supplied, which specifies where in VPD memory to begin writing data. An
optional length parameter, i bytes, can also be supplied. If omitted, the length is equal to the radix implied by the write
command. If present, the length parameter specifies how many bytes to write. The length should be an integer multiple
of the width; if not, the length is rounded down

The program obtains the values to be written in two ways: from any additional parameters on the command fine after
the length parameter, and then from the standard input stream (stdin). This works as follows:

1. Any remaining command line arguments, if present aiter the length parameter, are interpreted as data values
to be written. Numeric values are assumed to be of the radix implied by the command parameter. As each
value it written to VPD memory, the address is incremented. If there are enough values passed on the
command line to satisfy the byte count, the program terminates.

2

If there are insufficient data values passed on the command line, the program waits for values to be entered on
the standard input stream. Numeric values entered this way are also assumed to be of the radix implied by the
command. As each value it written to VPD memory, the address is incremented. When the entire byte count
that was specified in the length parameter has been satisfied or end-of-file is encountered, the program
terminates.

Example session
The following session was captured using an ADM-XRC-6TL. The base address 0x100000 is used because that is the
VPD-space address of the user-definable area of VPD memory in the ADM-XRC-6TL.

> adnxrcavpd 0,0,"rb™,0x100000,0x60
Dump of VPD at 0xi00000 + 96(0x60) bytes:

00 01 02 03 04 05 06 07 08 09 0a Ob Oc 0d Oe
OX00100000: Ff £F £F 1 TF £ £F £7 1€ £1 €7 10 17 17 17
FF FF F f Ff ©f 7f 7f 7f 7 7f 7 f
£ Ff FF £f ©f ©f ff ff ff ff £f ff
TF FF F F FF ©F 7f 7f 7F 7 7f 7 11
£ FF FF £f Ff ©f ff ff ff ff ff f
FF FF F FF Ff 7f ff 7f 7f 7f 7f 7f

5", 0100008, 20, "hel 1o wo

.0x100020,12

0x100031,10, "Oxa55a"

> adnxrcavpd 0,0,"rb",0x100000,0x60
Dump of VPD at 0x100000 + 96(0x60) bytes:
00 01 02 03 04 05 06 07 08 09
0x00100000: ff ff ff ff ff ff ff Tf 68 65
0x00100010: 72 6c 64 21 68 65 6C 6C 6F 20
0X00100020: ef be ad de ce fa fe ca 78 56
0x00100030: ff 5a a5 5a a5 5a a5 5a a5 5a
0x00100040: Ff ff ff Ff ff ff ff £f £f T
F FF FF £ Ff £ £F fF

ob 0c 0d e OF

hello wo

i
ridinelio wo.
X4,

32B8IZP
-
3
2
3
2

NOTE: the above sesssion assumes that VPD write protection has been disabled as described in the release notes for
the ADB3 Driver for VxWorks.

Remarks

Example applications for VxWorks Page 49
AD-UG-0004 Alpha Data Parallel Systems Ltd

ADM-XRC Gen 3 SDK 1.4.0 User Guide

@ALPHA DATA (V15 - 24th August 2011)

When entering data for fil or write commands, values are expressed in decimal by defaut. To express data as
hexadecimal, prefix it with ‘0’ or use the FLAG_HEX (0x10) flag.

In the current version of the VPD utily, data is always read from and written to VPD memory in litle-endian byte order

Page 50 Example applications for VxWorks
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide.

(VL5 - 241h August 2011) @ALPHA DATA

5 Example HDL FPGA Designs
5.1 Introduction

Anumber of example FPGA designs are included with the SDK. The purpose of these is to demonstrate functionality
available on the Virtex-6 based ADM-XRC series of cards and also to serve as customisable starting points for
user-developed designs. A testbench and simulation/build scripts are also included with each example design.

The example applications use these example designs to demonstrate how software running on the host CPU can
interact with an FPGA design.

The table below lsts the example FPGA designs and their related applications:

Minimal design that of he ible registers. The
SIMPLE example application (Windows and Linux / VxWorks) uses this design.

D of h ible registers. The SIMPLE example
application (Windows and Linux / VxWorks) uses this design when the +uber option is
passed on the command line.

Uber Demonstrates generation of host interrupts by the target FPGA. The ITEST example
application (Windows and Linux / VxWorks) uses this design.

Demonstrates interfaces to on-board memory such as DDR3 SDRAM. The MEMTESTH
example application (Windows and Linux / VxWorks) uses this design.

simple

Table 3: Example HDL FPGA Designs
These example designs are located in the hdlivhdi/examples/ directory.

5.2 Design Simulation Using Modelsim

Testbench code and macro files compatible with Modelsim are provided for simulation of each example FPGA design.
For details specific to each example design, refer to its Design Simulation section.

| Note: VHDL source code is compiled for simulation using the 1993 standard.

Two types of simulation are currently available, termed "Full MPTL" and "OCP-only". They are selected by the
TARGET_USE constant in the package adb3_target_inc_pkg. There are several variants of this package, They are
listed in Table 97
5.2.1 Full MPTL Simulation (TARGET_USE = SIM_MPTL)
This simulates the actual MPTL interface core between the Bridge and Target FPGAS as follows:
+ OCP transactions are converted to MPTL data by the example design testbench MPTL interface.
« The example design testbench MPTL interface is connected to the example FPGA design MPTL interface.
+ The example FPGA design MPTL interface converts MPTL data back to OCP transactions.
HDL source files are used to simulate the example testbench and example FPGA designs. HDL netlists are used to
simulate the MPTL interface.
Advantages

+ Simulates the actual MPTL interface core.

Disadvantages

Example HDL FPGA Designs Page 51
AD-UG-0004 Alpha Data Parallel Systems Ltd

ADM-XRC Gen 3 SDK 1.4.0 User Guide

@ALPHA DATA (V15 - 24th August 2011)

« Requires fullinitialisation period before MPTL interface is available for OCP transactions.
+ Runs more slowly than OCP-only simulation.

In most cases this level of simulation detail is not required and the OCP-only simulation should be used.

5.2.2 OCP-Only Simulation (TARGET_USE = SIM_OCP)
This replaces the MPTL interface core between the Bridge and Target FPGAs with a direct OCP connection as follows:
« OCP transactions are transferred to a simulation version of the example design testbench MPTL interface.
. The example design testbench simulation MPTL interface is connected to the example FPGA design simulation
MPTL interface.
. The example FPGA design simulation MPTL interface transfers the OCP transactions.

HDL source files are used to simulate the example testbench and example FPGA designs. OCP-only simulation HDL
source files are used to simulate the MPTL interface.

Advantages

« Requires minimal initialisation period before MPTL interface is available for OCP transactions.

 Runs more quickly than full MPTL simulation.

Disadvantages

. Does not simulate the actual MPTL interface core.
In most cases this type of simulation should be used

5.3 Bitstream Build Using Xilinx ISE

Note: Xilin ISE versions 12.3 onwards is required by this version of the SDK. ISE version 13.2 onwards is
recommended,

Bitstreams for all supported combinations of example FPGA design, board, and device are supplied pre-built in the bit/
directory of the SDK. This directory is the HDL equivalent of the bin/ directory for the example C/C++ applications. The
source files required to re-build all bitstreams are supplied in the hd directory. Bitstream build in the Windows

environment uses the Microsoft Visual Studio NMAKE utility. Bitstream build in the Linux environment uses GNU Make.

5.3.1 Building All Example Bitstreams for Windows

An Makefile compatible with NMAKE is provided for building all bitstreams for all example FPGA designs in Windows. It
is located in the hdlivhdllexamples/ directory. As many bitstream files are generated, it may take from minutes to
hours to run to completion. To perform the build, start a shell and issue the following commands:

cd /d %ADMXRC3_SDK#\hdI\vhdI\examples

nmake all
o completely rebuild all example bitstreams, issue the commands:

cd /d %ADMXRC3_SDKW\hdI\vhdI\exanples
nnake clean al

To install the resulting bitstream files in the bit/ directory, start a shell and issue the following commands:

cd /d %ADNXRC3_SDK#\hdI\vhdI\exanples
nnake install

Note: The above commands build the bitstrea files, if necessary, before installing them

Page 52 Example HDL FPGA Designs
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide.

(VL5 - 241h August 2011) @ALPHA DATA

5.3.2 Building All Example Bitstreams for Linux

A Makefile compatible with GNU Make is provided for building all bitstreams for all example FPGA designs in Linux. It is
located in the hdl/vhdl/examples directory. As many bitstream files are generated, it may take from minutes to hours to
run to completion. To perform the build, start a shell and issue the following commands:

cd $ADMXRC3_SDK/hd1/vhdl/exanples
make all

To completely rebuild all example bitstreams, issue the commands:

cd $ADMXRC3_SDK/hd1/vhdl/exanples
make clean all

To install the resulting bitstream files in the bit/ directory, start a shell and issue the following commands:

cd $ADMXRC3_SDK/hd1/vhdl/exanples
make instal

Note: The above commands build the bitstream files, if necessary, before installing them
5.3.3 Building Specific Example/Board/Device Bitstreams

For each example FPGA design, a Makefile s provided for building all ts bitstreams, or a specific board/device
bitstream. For details specific to each example design, refer to its Design Synthesis and Bitstream Build section.

Example HDL FPGA Designs Page 53
AD-UG-0004 Alpha Data Parallel Systems Ltd

ADM-XRC Gen 3 SDK 1.4.0 User Guide

@ALPHA DATA (V15 - 24th August 2011)

5.4 Simple Example FPGA Design
5.4.1 Board Support

The Simple FPGA design is compatible with all Virtex-6 based boards.
5.4.2 Source Location

The Simple FPGA design is located in hdi/vhdl/examples/simple/. Source files common to all boards are located in
the hdlivhdi/examples/simple/common directory. These include the design and testbench top levels.

5.4.2.1 VHDL Source Files for Simulation

For a complete st of the source files used during simulation efer (0 the appropriate Modelsim macro fie located n the
board design directory; for example, 1.do for OCP-only
simulation of an ADM-XRC-6T1.

5.4.2.2 VHDL Source Files for Synthesis

For a complete st of the sourcefles used during synhesis, efe o the appropriate XST poject e ocated i the
board design directory; for example, prj for an
ADM-XRC-6TL

5.4.2.3 XST Files
XST Project files (.prj) are located in the board design directory; for example, hdlivhdliexamples/simple/admxrc6t1/
simple-admxrc6tl.prj for an ADM-XRC-6T1

XST Script files (.scr) are located in the board design directory; for example, hdlivhdllexamples/simple/admxrc6ty/
simple-admxrc6t1-6vix240t.scr for an ADM-XRC-6T1 fitted with a 6VLX240T device.

XST constraint fles (.xcf) are located in the board design directory: for example, hdiivhdi/examples/simple/
admxrc6tl/simple-admxrcétl.xcf for an ADM-XRC-6T1.

5.4.2.4 Implementation Constraint Files
Implementation constraint files (.ucf) are located in the board design directory; for example, hdlivhdi/examples/
simple/admxrcétl/simple-admxrcétl.ucf for the ADM-XRC-6T1.

5.4.3 Design Synthesis and Bitstream Build

A Makefile is provided for building the Simple design bitstreams (.bit files). Depending on the target passed to NMAKE
or GNU Make, for Windows and Linux hosts respectively, bitstreams can be builtfor a specific board-device
combination, or bitstreams can be built for all supported board-device combinations.

When a_bit file is buit, it is not used by the example unless itis copied into the bit/simple/
directory. This can be done manually, or by using the Makefile.

The Makefile can also be used to delete .bit files and intermediate files, so that the next time the design is built, it is
quaranteed to be built from VHDL sources as opposed to beginning at some intermediate step.

The Makefile for the Simple design has the following targets:

Page 54 Example HDL FPGA Designs
Alpha Data Parallel Systems Ltd UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide
(VL5 - 24th August 2011) arena 0aTa
Target Class | Effect
all Builds all .bit files for all supported board and device

build (Builds the bit file for the board specified by <model> with a device

bit_<model>_<device> specified by <devices.

Builds and installs all .bit files for all supported board and device

install - in the directory bit/simplel.
insta
Builds the _bit file for the board specified by <model> with a device
inst_<model>_<device> specified by <device> and copies it to the directory bit/simple/.
Deletes all it fles and intermediate build files for all supported
clean board and device combinations (but does not delete any files from
clean

Deletes the _bit file and intermediate build files for the board
clean_<model>_<device> specified by <model> with a device specified by <device> (but
does not delete any files from

Table 4: Simple Design Makefile Targets

Files that result from the build process, including .bit files, are placed in:

Filenames of any bitstreams built are thus of the form:

board>-<d bit.

When a target of class “clean” is executed, the build/<board>-<device> directory is deleted, but files in bit/simple/ are
unaffected

Note: Before a bitstream can be used by one of the example applications, it must be copied to bit/simple/
by executing a target of class ‘instal”, or by manually copying the .bit file

Some example make commands follow:

1

To perform a build of all Simple design bitstreams using Windows, start a shell and issue the following
commands:

cd /d %ADMXRC3_SDK#\hdI\vhdI\exanples\simple
nnake al

Similarly using Linux, start a shell and issue the following commands:
cd SADIXRC3_SDK/hd1/vhd1/exanples/sinple
make af
To perform a build and install the resulting bitstreams using Windows, start a shell and issue the following
commands:

cd /d SADNXRC3_SDKW\hdI\whdINexanples\simple
nnake instal

Similarly using Linux, start a shell and issue the following commands:
cd SADMXRC3_SDK/hd1/vhdl/exanples/sinple
make instal

To perform a build for an ADM-XRC-6T1 board fitted with an 6VLX240T device using Windows, start a shell

and issue the following commands:
cd /d %ADMXRC3_SDK#\hdI\vhdI\examples\simple
nnake bit_admxrc6tl_6vix240t

Similarly using Linux, start a shell and issue the following commands:
cd $ADMXRC3_SDK/hd1/vhd1/examples/simple

Example HDL FPGA Designs Page 55
AD-UG-0004 Alpha Data Parallel Systems Ltd

ADMXRC Gen 3 SDK 1.4.0 User Guide
’ALF“‘ DATA (v1.5 - 24th August 2011)

make bit_adnxrc6tl_6vIx240t
4. To perform a build and install for an ADM-XRC-6T1 board fitted with an 6VLX240T device using Windows, start
a shell and issue the following commands:
od /4 WAOIKGCS_SOKNNIT\hINexamples\sinple
nmake inst_admxrc6tl_6vIx24(
Similarly using Linux, start a shell and issue the following commands:

oo SADUXRC3_SDK/mdl/vhll/exenples/simple
:_adnxrc6tl_6vIx24(

5. Todelete all .bit files and intermediate build fles in Windows, start a shell and issue the following commands:
cd /d %ADXRC3_SDKSAhdI\vhdI\exanples\sinple
nmake clean
Similarly using Linux, start a shell and issue the following commands:
cd SADMXRC3_SDK/hd1/vhdl/exanples/sinple
make clean
6. Todelete the .bit file and intermediate build files for an ADM-XRC-6T1 board fitted with an 6VLX240T device
using Windows, start a shell and issue the following commands:
cd /d HADMXRC3_ SDKm\hdI\vhdl\examples\slmple
nnake clean_adixrc6tl_6vix2
Similarly using Linux, start a shell and issue the following commands:

cd $ADMXRC3_SDK/hd1/vhd1/exanples/simple
make clean_admxrc6tl_6vix240t

5.4.4 Design Description
The Simple example FPGA design demonstrates register access available in Gen 3 Alpha Data reconfigurable
computing hardware such as the ADM-XRC-6T1.

It exists in two variants, one using Alpha Data MPTL interface IP (PCle in bridge FPGA), the other using Alpha Data
PCle interface IP (PCle i target FPGA). Table 5 lists the available variants:

Model Interface | Filename relative to
ADM-XRC-6TL MPTL | simple_Lvhd
ADM-XRC-6T1 MPTL | simple_lL.vhd
ADM-XRC-6TGE MPTL | simple_Lvhd
ADM-XRC-6TADVS | PCle simple_|_pcie.vhd

Table 5: Available Variants of the Simple Example Design

The design consists of:

« Clock and Reset Generation,

« Target MPTL interface, using an instance of mptl_if_target_wrap or, target PCle interface, using an
instance of peie_if_target_wrap.

+ OCPto simple bus interface, using an instance of adb3_ocp_simple_bus_if.

« simple test registers implemented using VHDL processes.

Figure 8 below shows the main elements of the Simple design using MPTL interface IP.
Figure 9 below shows the main elements of the Simple design using PCle interface IP.

Page 56 Example HDL FPGA Designs
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide

(v1.5 - 24th August 2011) @ ALPHA DATA

simple_|
mpt_if_target_wrap
MPTL Bridge to Target ----- MPTL B2T
MPTL Target to Bridge - MPTL 2B
MPTL Sideband MPTL Sideband
bsocP

DMA OCP.

adb3_ocp_simple_bus_if

simple
Test

Registers.

MPTL clk ——»t

usr_clk
Reference clk ——»+

10 with VHDL record type defined in adb3_target_inc_pkg.
Record definitions depend on board type and use.

<—» Direct Slave OCP
<—» DMA OCP

Figure 8: Simple Design Block Diagram (MPTL)

Example HDL FPGA Designs Page 57
AD-UG-0004 Alpha Data Parallel Systems Ltd.

@ALPHA DATA

ADM-XRC Gen 3 SDK 1.4.0 User Guide

(VLS - 24th August 2011)

simple_|

peie_if_target_wrap

PCIE H2T
PCIE T2H

PCle Host to Target

PCle Target to Host

nteriopt
s ocp

DMA OCP.
adb3_ocp_simple_bus_if

simple
Test
Registers.

PCle clk ——b
usr_clk

Reference clk ——»+

Record definitions depend on board type and use.

<—» Direct Slave OCP
<—» DMA OCP

10 with VHDL record type defined in adb3_target_inc_pkg.
se.

Figure 9: Simple Design Block Diagram (PCle)

Example HDL FPGA Designs
AD-UG-0004

Page 58

Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.4.0 User Guide

(VL5 - 24th August 2011) @ ALPHA DATA

5.4.4.1 Clock and Reset Generation

OCP Clock
+ The Simple example design is driven by an OCP clock named usr_clk
+ Thisis a buffered version of the differential reference clock that is input via the top level ref_clk port.

+ The actual source of the clock in the hardware depends upon the board selected, and s defined in the
constraints file located i the board-specific design directory; for example, hdl/vhdi/examples/simple/
admxrc6ti/simple-admxrc6tl.ucf for an ADM-XRC-6T1.

Target MPTL Interface Clock

« The target MPTL interface requires a clock to be input via its mptl_clk port.

« This clock input s differential and is buffered within the MPTL interface block

+ The actual source of the clock in the hardware depends upon the board selected, and is defined in the
constraints file located in the board-specific design directory; for example, hdi/vhdl/examples/simple/
admxrc6tl/simple-admxrc6tl.uct for an ADM-XRC-6TL,

Target PCle Interface Clock

« The target PCle interface requires a clock to be input via its pcie_clk port.

« This clock input s differential and is buffered within the PCle interface block

« The actual source of the clock in the hardware depends upon the board selected, and is defined in the
constraints file located in the board-specific design directory; for example, hdi/vhdl/examples/simple/
admxrc6tl/simple-admxrc6t.ucf for an ADM-XRC-6TL

OCP Reset

« The Simple example design s reset by an OCP reset named usr_rst.
« The resetis active on power-on and is held high for 32 cycles of usr_clk.

5.4.4.2 Target MPTL Interface
The MPTL (Multiplexed Packet Transport Link) is the data channel which connects the Bridge and Target FPGAS.
This block wraps up the target MPTL interface core, instantiating an MPTL to OCP interface appropriate to the board in
use. The purpose of the block is to connect the MPTL to the Direct Slave and DMA OCP channels within the FPGA
design. Refer to the component mptl_if_target_wrap for details.

5.4.4.3 Target PCle Interface
The PCle (PCI express) link is the data channel which connects the host and the target FPGA.

This block wraps up the target PCle interface core, instantiating a PCle to OCP interface appropriate to the board in
use. The purpose of the block is to connect the PCle to the Direct Slave and DMA OCP channels within the FPGA
design. Refer to the component pcie_if_target_wrap for details.

5.4.4.4 OCP to Simple Bus Interface

An instance of adb3_ocp_simple_bus_if terminates the Direct Slave OCP channel with the Simple test registers,

driving a small bus whose signals are as follows:

1. la_q- The register address, derived from some low order bits of the Direct Slave OCP address. This is used to
select the correct register for writes, and to control a multiplexor that drives Id_o for reads.

Example HDL FPGA Designs Page 59
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.4.0 User Guide

’ALF“‘ DATA (v1.5 - 24th August 2011)
2. ds_write - Indicates that a write cycle is taking place.
3. Ibe_i - Byte write enables. High when ds_write is high and bytes are enabled for writing.
4. 1d_i - Write data bytes; qualified by Ibe_i bits.
B ds,read - Indicates that a read cycle is taking place. Valid data must be present on Id_o after read_latency

1d_o - Driven with read data by a multiplexor controlled by la_q. The registers of the FPGA design are inputs to
the multiplexor.

°

5.4.4.5 Simple Test Registers

Aset of VHDL processes uses the signals la_q, ds_write etc. described above to implement a single register. Although
there is a single register in this example, in principle as many registers can be created as are required.

5.4.4.5.1 Register Description

The Simple FPGA design implements registers in the Direct Slave OCP address space as follows:

[Name [Type [Address |
[oAt [rRw | oxooo000 |

Table 6: Simple Design Direct Slave Address Map

[Bits_ [mnemonic | Type | Function |
[310 [oata | Rw [indicates the nibble-reversed version of the last data writien |

Table 7: Simple Design, DATA Register (0x000000)

Note: there s no address decoding, so this register appears aliased everywhere in the Direct Slave OCP address

Page 60 Example HDL FPGA Designs
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide.
(VLS - 24th August 2011)

@ ALPHA DATA

5.4.5 Testbench Description

The simple example FPGA design testbench tests operation of the simple example FPGA design.

It exists in two variants, one using Alpha Data MPTL interface IP (PCle in bridge FPGA), the other using Alpha Data
PCle interface IP (PCle i target FPGA). Table 8 lists the available variants:

Model Interface | Filename relative to hdl/vhdliexamples/simple/common/
ADM-XRC-6TL MPTL | test_simple.vhd

ADM-XRC-6T1 MPTL | test_simple.vhd

ADM-XRC-6TGE MPTL | test_simple.vhd

ADM-XRC-6TADVS | PCle test_simple_pcie vhd

Table 8: Available Variants of the Simple Example Design Testbench

It consists of the following functions:

Clock generation for the testbench and the Unit Under Test (UUT),
‘The Unit Under Test (UUT), which s the one-and-only instance of the simple block.
Bridge MPTL interface block, using an instance of mptl_if_bridge_wrap or, host PCle interface block, using

aninstance of peie_if_host_wrap.

Direct Slave OCP channel probe, using an instance of adb3_ocp_transaction_probe.

Stimulus Generation and Verification.

Figure 10 shows the testbench and embedded simple FPGA design (MPTL)
Figure 11 shows the testbench and embedded simple FPGA design (PCle).

Example HDL FPGA Designs
AD-UG-0004

Alpha Data Parallel Systems Ltd

Page 61

ADM-XRC Gen 3 SDK 1.4.0 User Guide
@ ALPHA DATA (VL - 24th August 2011)

e

ot oidge i agorw

e /
N . —— e
Ll //» e
i s

RecordGeiionsdepen an bt e <— pwaoCP

Figure 10: Simple Design Testbench and Top Level Block Diagram (MPTL)

Page 62

Example HDL FPGA Designs
Alpha Data Parallel Systems Ltd. AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide
(VL5 - 24th August 2011)

@ALPHA DATA

e

T o
owocs

owsoc

oo ot

[20 0cpsimple s i

et s in
S

ey ——

19ih VHOL ecrdype et nadb.aget. ik <> Direct Slave OCP
ecord definiions depend on board type- < ow

Figure 11: Simple Design Testbench and Top Level Block Diagram (PCle)

Example HDL FPGA Designs
AD-UG-0004

Page 63
Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.4.0 User Guide

@ALPHA DATA (V15 - 24th August 2011)

5.4.5.1 Clock Generation
The testbench uses the test_board_clks block to implement this function.
Target Clocks

« ltgenerates the ref_clk, target_mptl_clk and target_pcie_clk clocks according to which board is selected.
These clocks drive the unit under test (simple).

Bridge MPTL Interface Clock

+ Itgenerates the bridge_mptl_clk clock according to which board is selected. This clock drives the mptl_clk
differential clock input on the bridge MPTL interface block

Bridge OCP Clock (MPTL)

« Itgenerates the bridge_ocp_clk clock according to which board is selected. This clock drives the ocp_clk_in
clock input on the bridge MPTL interface block.

+ This clock is only used during full MPTL simulation. Refer to bridge MPTL interface for details.

5.4.5.2 Bridge MPTL Interface

The MPTL (Multiplexed Packet Transport Link) is the data channel which connects the Bridge and Target FPGAS.

This block wraps up the bridge MPTL interface core, instantiating an OCP to MPTL interface appropriate to the board in

use. The purpose of the block is to connect the Direct Slave and DMA OCP channels within the FPGA testbench to the

MPTL. Refer to the component mptl_if_bridge_wrap for details.

ocP-only simulation

« The testbench Direct Slave and DMA OCP m2s signals are routed directly via the mptl_if_bridge_wrap
mptl_b2t signals to the mptl_if_target_wrap UUT Direct Slave and DMA OCP m2s signals.

« The UUT Direct Slave and DMA OCP s2m signals are routed directly via the mptl_if_target_wrap mpt_tzb
signals to the mptl_if_bridge_wrap testbench Direct Slave and DMA OCP s2m signals.

« Inother words, the stimulus is applied directly to the Target FPGA's OCP channels, and the response is
retured directly to the testbench's OCP channels.

+ The testbench OCP clock ocp_clk_out path is shown in Figure 10 as the route consisting of points 1, 2, 3 and
6

Full MPTL simulation

The testbench Direct Slave and DMA OCP m2s signals are input to the mptl_if_bridge_wrap.
« The UUT Direct Slave and DMA OCP m2s signals are output from the mptl_if_target_wrap.

Apart from the packetisation, multiplexing and demultiplexing that occurs in the MPTL interfaces (both Bridge
and Target), the arrangement is transparent. In other words, behaviour is as if the stimulus were applied
directly to the Target FPGA's OCP channels.

The testbench OCP clock ocp_clk_out path is shown in Figure 10 as the route consisting of points 4, 5 and 6.

The mptl_if_bridge_wrap output mpti_online indicates that the MPTL interface is active and stable. It is used by the
testbench to generate the mptl_online_long signal which it monitors. Simulation will be terminated with an error
message i it becomes inactive. This may occur if,for example, a protocol error arises on the MPTL signals during a full
MPTL simulation.

Page 64 Example HDL FPGA Designs
Alpha Data Parallel Systems Ltd. AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide.
(VLS - 24th August 2011)

@ ALPHA DATA

5.

5.

5.

5.

5.

5.

.4.5.3 Host PCle Interface

The PCle (PCI express) link is the data channel which connects the host and the target FPGA.

This block wraps up the host PCle interface core, instantiating an OCP to PCle interface appropriate to the board in

use. The purpose of the block s to connect the Direct Slave and DMA OCP channels within the FPGA testbench to the

PCle. Refer to the component mptl_if_bridge_wrap for details.

OCP-only simulation

« The testbench Direct Slave and DMA OCP m2s signals are routed directly via the pcie_if_host_wrap
peie_h2t signals to the pcie_if_target_wrap UUT Direct Slave and DMA OCP m2s signals.

« The UUT Direct Slave and DMA OCP s2m signals are routed directly via the pcie_if_target_wrap pcie_tzb
signals to the pcie_if_host_wrap testbench Direct Slave and DMA OCP s2m signals.

« Inother words, the stimulus is applied directly to the Target FPGA's OCP channels, and the response is
returned directly to the testbench's OCP channels.

« The testbench OCP clock ocp_clk_out path is shown in Figure 11 as the route consisting of points 1, 2, 3 and
1.

4.5.4 Direct Slave OCP Channel Probe

“This function monitors the Direct Slave OCP channel for addressing/transaction problems. It generates warnings/errors
if it detects an illegal OCP operation. A probe error will result in a 'FAILED' Simple simulation result. It uses the
component adb3_ocp_transaction_probe.

4.5.5 Stimulus Generation and Verification

This function consists of a set of processes that generate stimulus and verify the results of the simulation.

4.5.5.1 Direct Slave OCP Channel

The simple testbench provides OCP test stimulus to, and verifies OCP test results from, the UUT's OCP Direct Slave
channel.

Tests performed are detailed in the following subsections.

.4.5.5.1.1 Simple Test

This test exercises the Simple Test Registers as follows:

1. Writes the 32-bit value OXCAFEFACE to the DATA register.

2. Reads back the DATA register and compares it with the expected value OXECAFEFAC. If the expected and
actual values do not match, the test is considered a failure.

Test complete and pass/fail indications are returned using the simple_complete and simple_passed testbench

signals respectively.

Example results from this test are documented in direct slave OCP channel results.

4.6 Design Simulation

Modelsim macro files are located in each of the board-specific design directories. The macro file that should be used
depends upon the type of simulation required

« OCP-only: impl del>.do
« Full MPTL: del>-mptl.do
Example HDL FPGA Designs Page 65

AD-UG-0004 Alpha Data Parallel Systems Ltd

ADM-XRC Gen 3 SDK 1.4.0 User Guide
(VL5 - 24th August 2011)

@ALPHA DATA

where <model> corresponds to the board in use; for example admxrc6t1 for the ADM-XRC-6T1.
Modelsim simulation is initiated using the vsim command with the appropriate macro file; for example, to perform an
‘OCP-only Modelsim simulation in Windows for the ADM-XRC-6T1, start a shell and issue the following commands:

£4. /0 WADIDRCS_ SOKKAIl whdl\exanpleshsinple\admrostl
1. d

m -do "simple-adnxrcét:

In Linux, the commands are:
o4 SADIRC3 SO/ exanples/sinple/adnr st
ple-admxrc6tl . de
Note: The Modelsim macro files always delete any previously compiled data before compiling the Simple

design.

Expected simulation results are shown below,
5.4.6.1 Initialisation Results (MPTL)
Modelsim output during initialisation of simulation is of the form:
adn_xre_6t1
ole

“ Note: Board Type : adn>
0ps iteration: 0 Tnstance: /test s

»
Instance: /test_s

0ps teration: 0 Instance: /test s

5.4.6.2 Direct Slave OCP Channel Results

Modelsim output during simulation is of the form:
le DATA 4 bytes OXCAFEFACE with enable 0b1111 to byte address 0x000000
eration: 6 Instance: /test_sinple
i vtes OECNEHC fron byte adaress 0:000000
2 /test_siny

% lote: Wrote siny
& Tine: 1625

b

Hote: Read sinpl
& Tine: l6a7500 ps. Iteration:

** llote: Test Sirple conpleted: PASSED.

Time: 1687500 ps Iterati Instance: /test_sinple

5.4.6.3 Completion Results
Assuming that all tests passed, Modelsim transcript output on successful completion of simulation is of the form:
n st comploted: e,
Tteratio st simplo/test resulta p File: . /comon/test_sirple vhd

% Tine: 1687500 ps
areak in Process test.resulte.p at - Jcomon/test_simple
It Brek Tn Provees vove resuien p ok --/eomongtost_sirple.vhd 1ine 230

*= Failure: Test of d

¥ Sinutation areakpo
/sinple-adnXrc6tl. do PAUSED at I

Example HDL FPGA Designs
AD-UG-0004

Page 66
Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.4.0 User Guide.

(VL5 - 241h August 2011) @ALPHA DATA

5.5 Uber Example FPGA Design
5.5.1 Board Support

The Uber FPGA design is compatible with all Virtex-6 based boards.
5.5.2 Source Location

The Uber FPGA design is located in hdlivhdllexamples/uber/. Source files common to all boards are located in the
hdlivhdllexamples/uber/commont directory. These include the design and testbench top levels.

5.5.2.1 VHDL Source Files for Simulation

For a complete st of the source files used during simulation efer (0 the appropriate Modelsim macro fie located n the
board design directory; for example, 1.do for OCP-only simulation
of the ADM-XRC-6T1.

5.5.2.2 VHDL Source Files for Synthesis

For a complete st ofthe source fls used during synthesis, efe o the appropriate XST projec i located in the
board design directory; for example, 1-6v1x240. prj for an
ADM-XRC-6T1 fitted with a 6VLX240T device.

5.5.2.3 XST Files
XST Project files (.prj) are located in the board design directory; for example, hdiivhdl/examples/uber/admxrc6tl/
uber-admxrc6t1-6vIx240t.prj for an ADM-XRC-6T1 fitted with a 6VLX240T device.

XST Script files (scr) are located in the board design directory; for example, hdlivhdllexamples/uber/admxrc6ti/
uber-admxrc6t1-6vIx240t.scr for an ADM-XRC-6T1 fitted with a 6VLX240T device.

XST constraint fles (.xcf) are located in the board design directory: for example, hdiivhdi/examples/uber/admxrc6ty/
uber-admxrc6tl.xcf for an ADM-XRC-6T1.

5.5.2.4 Implementation Constraint Files
Implementation constraint files (.ucf) are located in the board design directory; for example, hdlivhdi/examples/uber/
admxrcétl/uber-admxrcétl-6vix240t.ucf for the ADM-XRC-6T1 with a 6VLX240T device.

5.5.3 Design Synthesis and Bitstream Build

A Makefile is provided for building the Uber design bitstreams (bt files). Depending on the target passed to NMAKE or
GNU Make, for Windows and Linux hosts respectively, bitstreams can be built for a specific board-device combination,
or bitstreams can be buit for all supported board-device combinations,

When a_bit file is buit, it is not used by the example unless itis copied into the bit/uber/
directory. This can be done manually, or by using the Makefile.

The Makefile can also be used to delete .bit files and intermediate files, so that the next time the design is built, it is
quaranteed to be built from VHDL sources as opposed to beginning at some intermediate step.

Example HDL FPGA Designs Page 67
AD-UG-0004 Alpha Data Parallel Systems Ltd

ADM-XRC Gen 3 SDK 1.4.0 User Guide

@ALPHA DATA (V15 - 24th August 2011)

Note: Before performing the first bitstream build of Uber, HDL files for the Xilinx DDR3 SDRAM Memory
Interface Generator (MIG) core must be generated using the script gen_mem_if.tcl. Refer to Xilinx DDR3
SDRAM MIG Core Generation for details.

Note: Changing the constant CHIPSCOPE_ON in hdl/vhdl/examples/uber/common/uber.vhd from false
10 true causes a ChipScope block to be included when building the Uber design. Before performing the first
bitstream build of Uber with CHIPSCOPE_ON set to true, the ChipScope ILA core chipscope_ila.ngc and
ICON core chipscope_icon.ngc must be generated using the script gen_chipscope.tcl. Refer (o Xilinx
ChipScope Core Generation (ICON/ILAY) for details.

The Makefile for the Uber design has the following targets:

Target Class | Effect
all Builds all .bit files for all supported board and device

build | Builds the .bit file for the board specified by <model> with a device

bit_<model>_<device> specified by <device.

Builds and installs all .bit files for all supported board and device

install combinations in the directory bit/uber.

install
Builds the .bit file for the board specified by <model> with a device

specified by <device> and copies it to the directory bit/uber.
Deletes all _bit files and intermediate build files for all supported
clean board and device combinations (but does not delete any files from
bit/uber).

Deletes the .bit file and intermediate build files for the board
clean_<model>_<device> specified by <model> with a device specified by <device> (but
does not delete any files from bit/uber).

inst_<model>_<device>

clean

Table 9: Uber Design Makefile Targets

Files that result from the build process, including .bit files, are placed in:

Filenames of any bitstreams built are thus of the form:

board>-<d it

When a target of class “clean” is executed, the build/<board>-<device> directory is deleted, but files in bit/uber/ are
unaffected

Note: Before a bitstream can be used by one of the example applications, it must be copied to bit/uber/ by
executing a target of class "install", or by manually copying the .bit file.

Some example make commands follow:

1. Toperform a build of all Uber design bitstreams using Windows, start a shell and issue the following
commands:

cd /d %ADMXRC3_SDKSAhdI\vhdI\exanples\uber
nnake al

Similarly using Linux, start a shell and issue the following commands:
cd SADIXRC3_SDK/hd1/vhd1/exanples/uber
make all

Page 68 Example HDL FPGA Designs
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide

(VL5 - 24th August 2011) @ ALPHA DATA

~

To perform a build and install the resulting bitstreams using Windows, start a shell and issue the following
commands:

cd /d %ADNX
nnake install

3_SDKi\hdI\hd I\exanples\uber

Similarly using Linux, start a shell and issue the following commands:

cd SADMXRC3_SDK/hd1/vhdl/exanples/uber
make install

©

To perform a build for an ADM-XRC-6T1 board fitted with an 6VLX240T device using Windows, start a shell
and issue the following commands:

o 70 WADWRCS_ SR\ whd T \examples\uber
nnake bit_admxrc6t:

Similarly using Linux, start a shell and issue the following commands:

d SADIIRE3_SDK/NI/uhdlfexamples/ uber

@ bit_admxrc6tl_6vIx2:
4. To perform a build and install for an ADM-XRC-6T1 board fitted with an 6VLX240T device using Windows, start

ashell and issue the following commands:

G £ ADNXRCS_SOKINAINVhd\exanples\uber

nmake inst_admxrc6tl_6vIx2401
Similarly using Linux, start a shell and issue the following commands:

o, SADUXRCS.SDK/d 1/ uhd1/examples/uber
‘t_adnxrc6tl_6vIx240t

5. Todelete all bit files and intermediate build files in Windows, start a shell and issue the following commands:
cd /d HADMXRC3_SDK¥\hdI\vhdlI\examples\uber
nnake clean
Similarly using Linux, start a shell and issue the following commands:
cd $ADMXRC3_SDK/hd1/vhd1/examples/uber
make clean
6. To delete the bit file and intermediate build files for an ADM-XRC-6T1 board fitted with an 6VLX240T device
using Windows, start a shell and issue the following commands:
cd /d %ADMXRC3_ SDK»ﬁ\hdl\vhﬂI\examples\uher
nnake clean_admxrc6tl_6vix2
Similarly using Linux, start a shell and issue the following commands:

cd $ADMXRC3_SDK/hd1/vhd1/exanples/uber
make clean_admxrc6tl_6vIx240t

5.5.3.1 Date/

e Package Generation

It XST is required to be run during bitstream build, the makefile will run the TCL script hdlivhdi/examples/uber/
gen_today_pkg.tcl to generate a file containing the today_pkg package. This package defines HDL constants
containing the SDK version and date/time at which the script was run. The name of the generated file depends upon
the board selected and is located in the board design directory; for example, hdl/vhdl/examples/uber/admxrc6t1/
today_pkg_admxre6tl_6vIx240t.vhd for the ADM-XRC-6T1 with a 6VLX240T device. Script output is of the form:

today_pko_admereetl_sin.vhd
This Tile was generated automatically by gen_today_pkg.tcl

o oL0s00 Gai/Min/ele)
vate: 0 (dd/mn/ YY)y
et oizeras. Cannrssy

Example HDL FPGA Designs Page 69
AD-UG-0004 Alpha Data Parallel Systems Ltd.

@ALPHA DATA

ADM-XRC Gen 3 SDK 1.4.0 User Guide
(V1.5 - 24th August 2011)

ary ieee;
use ieee.sto_ logic_1164

package today_pkg is

constant TODAYS_TINE :

end package today_pkg;

+ sta_togic

vector(31 dounto 0) :
vector (31 dounto 0) :
vector(31 dounto 0) ©

X"08102010°
"15264600"

Note: The makefile runs the TCL script using the Xilinx customized TCL distribution TCL shell xtclsh. The
path to this shell must be defined before initiating simulation.

5.5.4 Design Description

The Uber example FPGA design demonstrates functionality available in Gen 3 Alpha Data reconfigurable computing
hardware such as the ADM-XRC-6T1.

It exists in two variants, one using Alpha Data MPTL interface IP (PCle in bridge FPGA), the other using Alpha Data
PCle interface IP (PCle in target FPGA). Table 10 lists the available variants:

Model Interface | Filename relative to
ADM-XRC-6TL MPTL uber.vhd
ADM-XRC-6T1 MPTL uber.vhd
ADM-XRC-6TGE MPTL uber.vhd
ADM-XRC-6TADV8 | PCle uber_pcie.vhd

Table 10: Available Variants of the Uber Example Design

The design includes the following functional areas:

Clock and Reset Generation (blk_clocks).
Target MPTL interface, using an instance of mptl_if_target_wrap or, Target PCle interface, using an

instance of peie_if_target_wrap.
OCP Direct Slave block (blk_¢

rect_slave), which includes:

« Direct Slave address space splitter

« Direct Slave clock domain interface, between the pll_pri_clk domain and the relatively low frequency
pll_reg_clk domain

« Direct Slave register address space splitter

« Simple test register block (blk_ds_simple_test)

« Clock frequency measurement register block (blk_ds_clk_read)

« GPIO test register block (blk_ds_io_test)

« Interrupt test register block (blk_ds_int_test)

« Informational register block (blk_ds_info), including build datestamp and build timestamp
« On-board memory control and status register block (blk_ds_mem_reg)

« Direct Slave access to BRAM

« Direct Slave access to on-board memory

‘OCP switching block (blk_dma_switch)
BRAM block (blk_bram)
On-board memory interface block (blk_mem_if)

Page 70

Example HDL FPGA Designs
AD-UL

Alpha Data Parallel Systems Ltd 1G-0004.

ADM-XRC Gen 3 SDK 1.4.0 User Guide
(VL5 - 24th August 2011) @ ALPHA DATA

« On-board memory application block (blk_mem_app)
« Optional ChipScope connection block (blk_chipscope)

Figure 12 shows the main elements of the Uber design using MPTL interface IP.
Figure 13 shows the main elements of the Uber design using PCle interface IP.
Figure 14 shows the hierarchy of the Uber design using MPTL interface IP.
Figure 15 shows the hierarchy of the Uber design using PCle interface IP.

The Uber design includes the following packages:

« ADB3 OCP profile definition package (adb3_ocp)

. /ADBS3 target include package (adb3_target_inc_pkg)

« ADB3 target package (adb3_target_pkg)

« Design package (uber_pkg)

Figure 16 shows the design package dependencies.

Example HDL FPGA Designs Page 71
AD-UG-0004 Alpha Data Parallel Systems Ltd

@ALPHA DATA

ADM-XRC Gen 3 SDK 1.4.0 User Guide
(VLS - 24th August 2011)

o
it o, b et siave

WP Bidge o Targe war
WP Targt 1o Bidge b n —
e sissana - '
Beoc
> owaocele—

] e e |+
CEd o bram
e s
preq oS- JH WP
piLmam ok [
Pt e[L
Raternce cocks i e

WG ratence clocks ot '

oua0ce |4¢—)

oot s s Griearimersry ocP
"7 Record definitions depend on board type and ect Slave:

Figure 12: Uber Design Top Level Block Diagram (MPTL)

Page 72

Alpha Data Parallel Systems Ltd.

Example HDL FPGA Designs
AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide
(VL5 - 24th August 2011)

@ALPHA DATA

o

i argorw b et siave
b ost o Targer
poe TugestoHost n l—
R
psoce
> owaocele—
ek ok e [
e e
preq ek —f{oee
piLmam ok [
Pt e[L
Raternce cocks i e
WG ratence clocks ot
oua0ce |4¢—)
<+ On-hoard memory OCP.
10 with VHOL record type defned in adb3_target_inc_pkg
Ke¥" == Record defintons depend on board fype and use. pirect Save OGP

PR

Figure 13: Uber Design Top Level Block Diagram (PCle)

Example HDL FPGA Designs
AD-UG-0004

Alpha Data Parallel Systems Ltd.

Page 73

@ALPHA DATA

/ADM-XRC Gen 3 SDK 1.4.0 User Guide
(VLS - 24th August 2011)

Key:

]
(]

i T

[EE—

. ama_swicn

‘ [r—

s ramute
sk ram

[onboard memory 0GP ks

Diect tave OCP bocks [pha Dt WPTL mertace 1

O OGP bocks [oo Dot ML e cre

Figure 14: Uber Design Top Level Hierarchy (MPTL)

Page 74

Alpha Data Parallel Systems Ltd.

Example HDL FPGA Designs
AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide

(v1.5 - 24th August 2011) @ ALPHA DATA

[P—— ‘ ‘ [r— ‘ ‘ [E— ‘

Key:

[onboard memory 0GP ks

Bitstream buld (ngc core)

O omroce boss [pnnData et mertace core

e

Figure 15: Uber Design Top Level Hierarchy (PCle)

Example HDL FPGA Designs Page 75
AD-UG-0004 Alpha Data Parallel Systems Ltd.

@ALPHA DATA

ADM-XRC Gen 3 SDK 1.4.0 User Guide
(VL5 - 24th August 2011)

ADB3 target FPGA types package

adb3_target_types pkg

ADB3 target FPGA board packages (ADM-XRC-6T1)

Sz rargetinc b

adb3 targe t_inc_pkg
adb3_target_th_inc_pkg_
6tlvhd

ADB3 target FPGA packages

+| adb3_target_tb_pkg.vhd

adb3_target th_pkg adb3_target_pkg

/

—
Example design packages (Uber)(ADM-XRC-6T1)
uber_th_pkg uber_pkg
|
| uber_tb_pkg_6t1.vhd uber_pkg.vhd ‘
i I
T I

Example design (Uber)

Figure 16: Uber Design Package Dependencies

Page 76

Alpha Data Parallel Systems Ltd.

Example HDL FPGA Desig
Al

ns

0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide
(VL5 - 241h August 2011) @ALPHA DATA

5.5.4.1 Clock and Reset Generation
The clock and reset generation block is implemented by the bik_clks block which is board dependent
Table 11 lsts the available variants:

Model Filename relative to hdl/vhdi/examples/uber/
ADM-XRC-6TL _clks_6tl.vhd

ADM-XRC-6T1 admxrc6tL/blk_clks_6t1.vhd
ADM-XRC-6TGE admxrcétge/blk_clks_6tge.vhd
ADM-XRC-6TADVB | admxrcétadva/blk_clks_6tadv8.vhd

Table 11: Available Variants of blk_clks Block

blk_clks includes the following functional areas:
« Internal clock generation (MMCM)
Internal reset generation (MMCM)

+ MPTLinterface clock generation

« PCle interface clock generation

« Input clock buffering

« Input clock extraction (MGT sourced)

+ Output clock generation

5.5.4.1.1 Internal Clock Generation (MMCM)

This consists of an Xilinx MMCM block driven by the clks_in.ref_clk global clock input. It generates three output

clocks: pll_pri_clk, pll_reg_clk, and pll_mem_clk. Refer to Figure 17.

pll_ref_clk

« Thisis used as a reference clock by the design

« itis fixed at 200 MHz and used to measure the frequencies of the other clocks in the clock frequency
measurement section, as well as being the reference clock for the IODELAYCTRL instances used in the DDR3
SDRAM interfaces. The three clocks immediately below are derived from this clock.

+ The source of this clock is the clks_in.ref_clk global clock input

pll_pri_clk

« This clock is used as the primary OCP clock by the design.

« Itis derived from pll_ref_clk and set to 200 MHz. It drives much of the OCP logic in the Uber design, including
the DMA OCP section.

pll_reg_clk

« Thisis used as a low frequency clock by the design.
«Itis derived from pli_ref_clk and set to 80 MHz. It drives the low-frequency OCP Direct Slave register section.
« Its frequency need not be related to any of the other clocks.

pll_mem_clk

Example HDL FPGA Designs Page 77
AD-UG-0004 Alpha Data Parallel Systems Ltd

ADM-XRC Gen 3 SDK 1.4.0 User Guide

@ALPHA DATA (V15 - 24th August 2011)

« Thisis used as the clock for the DDR3 SDRAM memory interfaces in the design.
« Itis derived from pii_ref_clk and set to 400 MHz. It drives the on-board memory interface section.

5.5.4.1.2 Internal Reset Generation (MMCM)

An active high asynchronous user reset pll_rst is generated from the MMCM locked signal. Refer to Figure 17.

5.5.4.1.3 MPTL Interface Clock Generation

The target MPTL interface requires an unbuffered differential mptl_clk clock input. Its source is dependent on the
board selected. Refer to Figure 18.

5.5.4.1.4 PCle Interface Clock Generation

The target PCle interface requires an unbuffered differential pcie_clk clock input. Its source is dependent on the
board selected. Refer to Figure 18.

5.5.4.1.5 Input Clock Buffering
Clocks are input on the clks._in signal of type clks_in_t and are buffered. Clock support is dependent on the board
selected. Type clks_in_tis defined in the ADB3 target include package (adb3_target_inc_pkg).
Refer to Figure 18.

5.5.4.1.6 Input Clock Extraction (MGT Sourced)
MGT sourced clocks are input on the clks_mgt_in signal of type clks_mgt_in_t. MGT sourced clock support is
dependent on the board selected. Type clks_mgt_in_tis defined in the ADB3 target include package
(adb3_target_inc_pkg).
The MGT_CLKS_VALID constant defined in the ADB3 target include package (adb3_target_inc_pkg) controls
which MGT sourced clocks are extracted, converted to single-ended, and then buffered using a BUFG. The buffered
clocks are connected to the clk_vec signal. The connection order is defined by the clk_vec_t type in the uber_pkg
package.
Refer to Figure 18.

5.5.4.1.7 Output Clock Generation

Clocks are generated and output on the clks_out signal of type clks_out_t. Clock support is dependent on the board
selected. Type clks_out_tis defined in the ADB3 target include package (adb3_target_inc_pkg)

Refer to Figure 18.

Page 78 Example HDL FPGA Designs
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide.

(VL5 - 24th August 2011)

@ALPHA DATA

i ceneric toput values ctnc-em)

1834 Clock output sremercy P

VM BASE

VY

cuoutoe

urS ok

\

M

BURG otk

\

Figure 17: Uber Design Internal Clock Generation (MMCM)

Example HDL FPGA Designs

AD-UG-0004

Alpha Data Parallel Systems Ltd.

Page 79

@ALPHA DATA

ADM-XRC Gen 3 SDK 1.4.0 User Guide
(V1.5 - 24th August 2011)

ke M2 KO EL_ | mor ek buimTiz2 cuko nuny

ks mgtin mgt112_ckon

1BUFDS
ke MLT_CK05 GTXEL _ | mot ek bufMTi17_ctko nungy

ks ngin mgr17_cson ®

clks_mgL_in (ADM-XRC-6T1)

e vec bUgOIGTLLZ_CLKO_NUM)

e vee biIGTIAT_CLKO_NUM)

eksinikp

cknarm_gekmacp

ks nsem_gel mzen ——Cf

clks_in (ADM-XRC-6T1)

» v bfaicusToN Cixo_)

el vec byICUSTOM_CLILNUM)

e

PlLreg_ck

clks_out (ADM-XRC-6T1)

Q
0BUFDS)

eks_outxm_ ek c2m .

s outxm_ gt c2ma

clks_mgt_inmgt112_ ekl p

poe_ckp
clks_mgi_inmgr12_cktn poe_ckn
peie_clk (ADM-XRC-6T1)
clks_mgt_inmgri15_ckop ot el
cks_mgi_inmgii15_ckon otk

mptl_clk (ADM-XRC-6T1)

Figure 18: Uber Design Clock Buffering/Extraction

Page 80
Alpha Data Parallel Systems Ltd

Example HDL FPGA Designs
AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide

(VL5 - 24th August 2011) @ ALPHA DATA

5.5.4.2 Target MPTL Interface
The MPTL (Multiplexed Packet Transport Link) is the data channel which connects the Bridge and Target FPGAS.
This block wraps up the target MPTL interface core, instantiating an MPTL to OCP interface appropriate to the board in
use. The purpose of the block is to connect the MPTL to the Direct Slave and DMA OCP channels within the FPGA
design. Refer to the component mptl_if_target_wrap for details.
The Uber design output signal mptl_sb_t2b.mptl_target_configured_| indicates that the FPGA OCP based blocks
are ready to communicate with the bridge via the MPTL interface. This output is generated using the
mpti_if_target_wrap input ocp_ready. In the case of the Uber design, this ocp_ready input is driven by a signal
derived from the LOCKED flag of the design's main MMCM (i.e. the one generating pli_pri_clk etc.). This holds off
MPTL initialisation until after the MMCM is locked.
The reason for holding off MPTL nitialisation is to prevent a race condition that might otherwise occur between (a)
software attempting to read or write Target FPGA registers after configuration and (b) the main MMCM in the design
achieving lock. Holding off MPTL initalisation between the Bridge and Target until the design's main MMCM has
achieved lock causes a call to api macro ADMXRC3_ConfigureFromFile to wait until MPTL communication has been
completed, thus guaranteeing that the Target FPGA is in the proper state for software on the host to communicate with
it

Note: The Direct Slave and DMA address spaces supported by the Bridge FPGA are smaller than the full
AADB3 OCP address space. For the board in use, they are indicated by the DS_ADDR_WIDTH and
DMA_ADDR_WIDTH constants respectively, which are defined in the adb3_target_inc_pkg package.

5.5.4.3 Target PCle Interface

The PCle (PCI express) link is the data channel which connects the host and the target FPGA.
This block wraps up the target PCle interface core, instantiating a PCle to OCP interface appropriate to the board in
use. The purpose of the block is to connect the PCle to the Direct Slave and DMA OCP channels within the FPGA
design. Refer to the component pcie_if_target_wrap for detals.

Note: The Direct Slave and DMA address spaces supported by the PCle interface IP are smaller than the.
full ADB3 OCP address space. For the board in use, they are indicated by the DS_ADDR_WIDTH and
DMA_ADDR_WIDTH constants respectively, which are defined in the adb3_target_inc_pkg package.

5.5.4.4 OCP Direct Slave Block

This block is by (_direct_slave.vhd, and connects the Direct Slave
OCP channel to various register blocks and a couple of memory access windows via OCP address space spliters.
Most of the logic in this block is in the relatively low frequency (80 MHz) pli_reg_clk domain. Therefore, a secondary
function of this block is to connect the high speed pll_pri_clk domain to the pll_reg_clk domain. The main elements

« Direct Slave address space splitter

« Direct Slave clock domain interface, between the pll_pri_clk domain and the relatively low frequency
pll_reg_clk domain

« Direct Slave register address space splitter

« Simple test register block (blk_ds_simple_test)

« Clock frequency measurement register block (blk_ds_clk_read)

« Interrupt test register block (blk_ds_int_test)

« Informational register block (blk_ds._info), including build datestamp and build timestamp

« GPIO test register block (blk_ds_io_test)

Example HDL FPGA Designs Page 81
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.4.0 User Guide

@ALPHA DATA (V15 - 24th August 2011)

+ On-board memory control and status register block (blk_ds_mem_reg)
- Direct Slave access to BRAM
« Direct Slave access to on-board memory

Ablock diagram of the OCP Direct Slave block is shown in Figure 19

Page 82 Example HDL FPGA Designs
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide
(v1.5 - 24th August 2011) @ ALPHA DATA

ik ds_simpie o5t

a3 ocp_spi b b ocp_cross ch dom s ocp_spit b
bl g e read

"

e [
- -
g o
s oty _-: =
SR
i o men 9

b g it

"

b direct save

Figure 19: Uber Direct Slave Block Diagram

Example HDL FPGA Designs Page 83

AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.4.0 User Guide

@ALPHA DATA (V15 - 24th August 2011)

5.5.4.4.1 Direct Slave Address Space Splitter
An instance of the ADB3 OCP component adb3_ocp_split_nb splits the Direct Slave OCP channel into multiple
secondary OCP channels, which are then routed to their appropriate blocks.
The split is defined by the Direct Slave address space ranges contained in the DS_ADDR_RANGE_TABLE constant in
the uber_pkg package. It consists of {base address, mask} pairs for each address range that the splitter recognises.
For each range, the lower address is identified by (base address), and the upper address is identified by (base address

Table Table 12 below shows the information in DS_ADDR_RANGE_TABLE and which functional area each index
corresponds to:

Index Address Range Function

0 0x000000-0x0003FF | Direct Slave access to registers

1 0x0B0000-OXOFFFFF | Direct Slave access to BRAM

2 0x200000-0x3FFFFF_| Direct Slave access to on-board memory

Table 12: Uber Design Direct Slave Address Space

Note: Reads of undefined areas of the address space return data consisting of OXDEADCODE. Writes to
undefined areas have no effect.

5.5.4.4.2 Direct Slave Register Address Space

The secondary OCP port 0 from the Direct Slave address space splitter is used to access direct slave register blocks
in the pil_reg_clk clock domain. It is routed to the clock domain interface for clock domain transfer.

Note: Some registers in the relatively slow pll_reg_clk clock domain affect the operation of higher speed
sections of the example FPGA design. To avoid out of sequence events, it is recommended that registers
are read after they are written, before starting high speed events. An example of this is the DS_BANK/
DS_PAGE registers which control on-board memory access.

5.5.4.4.2.1 Direct Slave Clock Domain Interface

This interfaces the Direct Slave register OCP channel in the higher speed clock domain (pll_pri_clk) to the lower
speed register clock domain (pll_reg_clk). It uses an instance of the ADB3 OCP component
adb3_ocp_cross_clk_dom.

5.5.4.4.2.2 Direct Slave Register Address Space Splitter

An instance of the ADB3 OCP component adb3_ocp_split_b splits the Direct Slave register OCP channel into multiple
secondary OCP channels, which are then routed to their appropriate blocks.

The splitis defined by the Direct Slave register address space ranges contained in the DS_REG_RANGE_TABLE
constant in the uber_pkg package. It consists of {base address, mask} pairs for each address range that the splitter
recognises. For each range, the lower address is identified by (base address), and the upper address is identified by
(base address + mask).

The DS_REG_RANGE_TABLE constant in the uber_pkg package uses the function adb3_ocp_base from the
adb3_ocp_comp package to extend the base address with '0's to width ADB3_OCP_ADDR_WIDTH

Page 84 Example HDL FPGA Designs
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide.

(VL5 - 241h August 2011) @ALPHA DATA

In each mask value, a 1 bit causes the corresponding bit of the incoming OCP address to be ignored when the spliitter
determines which address range, if any, the incoming OCP address hits. The DS_REG_RANGE_TABLE constant in

the uber_pkg package uses the function adb3_ocp_mask from the adb3_ocp_comp package to extend the mask
address with '1's to width ADB3_OCP_ADDR_WIDTH, as these bits will never be anything but zero in incoming OCP
addresses

The following example illustrates how an address is determined to hit a given address range.
First, we note that address range 1 has the following base and mask information as defined in
DS_REG_RANGE_TABLE:

Address range 1 base = adb3_ocp_base(X"0000C0",DS_ADDR_WIDTH) = 0x00000000_000000CO

Address range 1 mask = adb3_ocp_mask(X'00003F",DS_ADDR_WIDTH) = OXFFFFFFFF_FFCO003F

So, the address bits used in comparison = 0x00000000_003FFFCO.

When an incoming OCP address must be decoded, decoding is performed as follows for address range 1
Incoming OCP address (for example) = 0x00000000_000000D0

Masked incoming OCP address = 0x00000000_000000CO

So, the address hits address range 1, as masked incoming OCP address = address range 1 base.

Table Table 13 below shows the information in DS_REG_RANGE_TABLE and which functional area each index
corresponds to:

Index Address Range Function
o 0x000000-0x00003F | Simple test registers
0x000040-0x00007F | Clock frequency measurement registers.
(0x0000C0-0x0000FF | Interrupt test registers

7F registers
0x000200-0x00027F | GPIO test registers
0x000300-0x0003FF | On-board memory control/status registers

alaleln

Table 13: Uber Design Direct Slave Register Address Space

Note: Reads of undefined areas of the address space retur data consisting of OXDEADCODE. Writes to
undefined areas have no effect

5.5.4.4.2.3 Simple Test Register Block
5.5.4.4.2.3.1 Description

The Simple Test Register block contains a register that returs the nibble-reversed value of anything written to it Itis

by _ds_simple_test.vhd. It consists of an instance of the ADB3
OCP component adb3_ocp_simple_bus_if connected to secondary port 0 of the Direct Slave register address
space splitter, and a set of VHDL processes that implement the nibble-reversal register.

The adb3_ocp_simple_bus_if instance drives a simple parallel bus with the following signals:

1. ds_a- The register address, derived from some low order bits of the Direct Slave OCP address. This is used to
select the correct register for writes, and to control a multiplexor that drives Id_o for reads.

2. ds_w- Indicates that a write cycle is taking place.

3. ds_we - Byte wiite enables. High when ds_w is high and bytes are enabled for writing.

4. ds_d - Write data bytes; qualified by ds_we bits.

Example HDL FPGA Designs Page 85
AD-UG-0004 Alpha Data Parallel Systems Ltd

ADMXRC Gen 3 SDK 1.4.0 User Guide
’ALF“‘ DATA (v1.5 - 24th August 2011)

ds_r - Indicates that a read cycle is taking place. Valid data must be present on ds_q after read_latency

cycles.
ds_q - Driven with read data by a multiplexor controlled by ds_a. The registers of the FPGA design are inputs

to the multplexor.

5.5.4.4.2.3.2 Register Description
Aset of VHDL processes in uses the signals ds_a, ds_we etc. described above to implement a single register.
Although there s a single register in this example, in principle as many registers can be created as are required. The
registers appear in the Direct Slave OCP address space as follows:

[Name [Address
0x000000

[ara

Table 14: Simple Test Register Block Address Map

[“Bits [mnemonic | Type [Function |
310 | DATA RW_| Retuns the nibble-reversed version of the last data written.

Table 15: Simple Test Register Block, DATA Register (0x000000)

5.5.4.4.2.4 Clock Frequency Measurement Register Block
5.5.4.4.2.4.1 Description

The clock frequency measurement register block is implemented by the bik_ds_clk_read block which is board

dependent
Table 16 lsts the available variants:
Model Filename relative to
ADM-XRC-6TL admxre6tilblk_ds_clk_read_6tl.vhd
ADM-XRC-6T1 admxre6tu/blk_ds_clk_read_6t1vhd
ADM-XRC-6TGE admxrestgelblk_ds_clk_read_6tge.vhd
ADM-XRC-6TADVS | admxrcétadv/blk_ds_clk_read_6tadv8.vhd

Table 16: Available Variants of blk_ds_clk_read Block

The blk_ds_clk_read block performs the following functions:
« Measurement of frequencies of internally generated (MMCM) clocks.
Measurement of frequencies of externally sourced clocks (board dependent).

It consists of an instance of adb3_ocp_simple_bus_if connected to secondary port 1 of the Direct Slave register
address space splitter, multiple instances of the clock frequency measurement block (blk_clock_freq), and a set of
processes that implement the registers

Clock frequency measurement components (blk_clock_freq) are instantiated for the main OCP clocks in the design,
enabling them to be measured:

Page 86 Example HDL FPGA Designs
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide.

(VL5 - 241h August 2011) @ALPHA DATA

Clock smp_clk_div_stages
pil_ref_clk 2 (0-400 MHz)
pll_pri_clk 2 (0-400 MH2)
pll_reg_clk 2 (0-400 MHz)
pll_mem_clk 3 (0800 MHz)

Table 17: Internally Generated Clock Frequency Measurement

Clock frequency measurement components blk_clock_freq are also instantiated for each board-dependent clock in
the design, enabling them to be measured. For example, in the ADM-XRC-6T1:

Clock smp_clk_div_stages
Iclk 3 (0-800 MHz)
xrm_clkin 4 (0-1600 MHz)
MGT clocks 2 (0-400 MHz)

Table 18: Externally Sourced Clock Frequency Measurement (ADM-XRC-6T1)

Within this block, a function conv_ref_clk_tcval returns the clock frequency measurement period, and hence the
measurement resolution, as a function of the TARGET_USE constant from the package adb3_target_inc_pkg. The
REF_CLK_TCVAL constant defines the measurement period in pil_ref_clk cycles as follows:

OCP-only simlation (TARGET_USE = SIM_OCP)

« Period = (REF_CLK_FREQ_HZ/1000000) ref_clk cycles = 1yis.
+ Resolution = IMHz.

Full MPTL simlation (TARGET_USE = SIM_MPTL)

+ Period = (REF_CLK_FREQ_HZ/1000000) ref_clk cycles
. Resolution = IMHz,

1ps.

Synthesis (TARGET_USE = SYN_NGC)

« Period = (REF_CLK_FREQ_H) ref_clk cycles = 1s.
+ Resolution = 1Hz.

If the clocking infrastructure of the Uber design as described in Clock and Reset Generation is modified to change the
frequencies of pll_pri_clk and/or pil_ref_clk, the values mapped to the smp_clk_div_stages generics may need to
be changed to ensure that the relationship defined in Clock Frequency Measurement Block Constraints still holds
for every blk_clock_freq instance.

5.5.4.4.2.4.2 Register Description

As in the simple test register block, an instance of adb3_ocp_simple_bus_if together with some VHDL processes
implement the registers that control clock frequency measurement. These registers appear in the Direct Slave OCP.
address space as follows:

Example HDL FPGA Designs Page 87
AD-UG-0004 Alpha Data Parallel Systems Ltd

@ALPHA DATA

ADM-XRC Gen 3 SDK 1.4.0 User Guide

(V1.5 - 24th August 2011)

Name Address|
SEL 0x000040
CTRLISTAT 0x000044
FREQ 0x000048

Table 19: Clock Frequency Measurement Register Block Address Map

Bits | Mnemonic Type | Function
31:5 (Reserved)
40 | SEL_CLK M | Selects which clock's measured frequency and flags are available in

the FREQ and STAT registers, respectively.
00000 => pll_reg_clk (Internal clock)(0)

> pll_mem_clk (internal clock)(3)
Unused (4)
Unused (5)
00110 => Custom Clock 0 (External clock)(06)
00111 => Custom Clock 1 (External clock)(07)

01101 => Custom Clock 7 (External clock)(13)
01110 => mgt110_clk0 (External MGT clock)(14)
01111 => mgt110_clk1 (External MGT clock)(15)
10000 => mgti11_clk0 (External MGT clock)(16)
10001 => mgt111_clkl (External MGT clock)(17)
10010 => mgti12_clko (External MGT clock)(18)
10011 => mgt112_clk1 (External MGT clock)(19)
10100 => mgt113_clko (External MGT clock)(20)
10101 => mgt113_clk1 (External MGT clock)(21)
10110 => mgt114_clko (External MGT clock)(22)
10111 => mgt114_clk1 (External MGT clock)(23)
11000 => mgt115_clk0 (External MGT clock)(24)
11001 => mgt115_clk1 (External MGT clock)(25)
11010 => mgt116_clkO (External MGT clock)(26)

11101 => mgt117_ck1 (External MGT clock)(29)
11100 => mgt118_clkO (External MGT clock)(30)
11100 => mgt118_clk1 (External MGT clock)(31)

Table 20: Clock Frequency Measurement Register Block, SEL Register (0x000040)

Page 88

Alpha Data Parallel Systems Ltd

Example HDL FPGA Designs
AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide
(VL5 - 241h August 2011) @ALPHA DATA

Bits_| Mnemonic Type | Function

31 [CLR_UPDATE | R/ | Write: controls frequency measurement updated flags:
wic |1= C\ear an measurement updated flags.

0=No

Read ndicates seleced frequency measurement update status:

1 = Measurement updated

0= Measurement not updated.

30 | cLk_vaLD RO | Indicates selected board clock valid status:

1= Clock valid on this board

0 = Clock not valid on this board.

29 [CLK_LRUNNING [RO | Indicates selected clock running status:

1= Clock running

0= Clock not running.

28:0 (Reserved)

Table 21: Clock Frequency Measurement Register Block, CTRL/STAT Register (0x000044)

Bits_| Mnemonic | Type | Function |

310 | FREQ | RO [indicates selected clock frequency measurement in Hz |

Table 22: Clock Frequency Measurement Register Block, FREQ Register (0x000048)

5.5.4.4.2,5 Interrupt Test Register Block
5.5.4.4.2,5.1 Description

The interrupt test register block is by _ds_int_testvhd and
performs the following functions:

+ Control of interrupt request generation using finti_I (MPTL) and interrupt (PCle) outputs.

It consists of an instance of adb3_ocp_simple_bus_if connected to secondary port 3 of the Direct Slave register
address space splitter, and a set of VHDL processes that implement the registers and interrupt generation.

5.5.4.4.2.5.2 Register Description

Asin the simple test register block, an instance of adb3_ocp_simple_bus_if together with some VHDL processes
implement a set of registers for generating interrupts on the host. These registers appear in the Direct Slave OCP
address space as follows:

Name Address

SET 0x0000CO
CLEAR/STAT 0x0000C4
MASK 0x0000C8
ARM 0x0000CC
COUNT 0x0000D0

Table 23: Interrupt Test Register Block Address Map

Example HDL FPGA Designs Page 89
AD-UG-0004 Alpha Data Parallel Systems Ltd

@ALPHA DATA

ADM-XRC Gen 3 SDK 1.4.0 User Guide
(V1.5 - 24th August 2011)

Bits | Mnemonic Type | Function
31:0 | SET W1S | Write: writing a 1 to a particular bit sets the corresponding bit in the
STAT register.
Read: retuns undefined data.
Table 24: Interrupt Test Register Block, SET Register (0x0000C0)
Bits | Mnemonic Type | Function
310 | CLEARISTAT R/ | The interrupt outputs are asserted whenever at least one bit in the
WIC | STAT register is 1 and not masked by the MASK register.
Wiite: writing a 1 to a particular bt clears the corresponding bit in
the STAT register.
Read: returns the current value of the STAT register.
Table 25: Interrupt Test Register Block, CLEAR/STAT Register (0x0000C4)
Bits_| Mnemonic Type | Function
310 | MASK M | Controls/indicates the masking (1) or enabling (0) of individual bits
in the STAT register. When a bit is 0, the corresponding bit in the
STAT register is unmasked (i.. allowed to assert the interrupt
output).
Table 26: Interrupt Test Register Block, MASK Register (0x0000C8)
[Bits_[mnemonic [Type [Function |
310 | ARM WO | Awrite to this register will force the FPGA interrupt outputs to their
inactive state for one cycle of pll_reg_clk.
Table 27: Interrupt Test Register Block, ARM Register (0x0000CC)
Bits_| Mnemonic Type | Function
31:0 | COUNT RW | Write: if the STAT register is zero, then the COUNT register is set to

the value written. If the STAT register is non-zero, writes to the
COUNT register have no effect

Read: indicates the number of clock cycles that have elapsed while
the STAT register is non-zero.

Table 28: Interrupt Test Register Block, COUNT Register (0x0000D0)

Since the COUNT register increments s long as at least one interrupt is active in the STAT register, the COUNT
register can be used by host software to measure the time taken to respond to and clear an interrupt.

5.5.4.4.2.6 Informational Register Block
5.5.4.4.2.6.1 Description

The

register block is
registers that indicate the following:

by _ds_info.vhd and contains

« The date and time at which design synthesis started.
. The status of Direct Slave OCP address splitter.

+ The base address and size of the BRAM access window.

« The base address and size of the on-board memory access window.

Page 90

Alpha Data Parallel Systems Ltd

Example HDL FPGA Desi
AD-UG-0004

ans

ADM-XRC Gen 3 SDK 1.4.0 User Guide.

(VLS - 24th August 2011)

@ ALPHA DATA

+ The number of banks of on-board memory.
+ The version number of the SDK.

It consists of an instance of adb3_ocp_simple_bus_if connected to secondary port 5 of the Direct Slave register
address space splitter, and a set of VHDL processes that implement the registers

5.5.4.4.2.6.2 Register Description

As in the simple test register block, an instance of adb3_ocp_simple_bus_if together with some VHDL processes

implement the informational registers. These registers appear in the Direct Slave OCP address space s follows:

Name Address|

DATE 0x000140
TIME 0x000144
SPLIT 0x000148
BRAM_BASE 0x00014C
BRAM_MASK 0x000150
MEM_BASE 0x000154
MEM_MASK 0x000158
MEM_BANKS 0x00015C
SDK_VER| 0x000160

Table 29: Informational Register Block Address Map

Bits

Mnemonic

Type [Function

31:0

DATE

RO | Indicates date of build (DD/MM/YYYY) in BCD format where:

DD = Day of month

MM = Month of year

YYYY = Year.

This information is obtained from the TODAYS_DATE constant in
the today_pkg package (generated prior to synthesis).

Table 30 Informational Register Block, DATE Register (0x000140)

Bits

Mnemonic

Type | Function

310

TIME

RO | Indicates time of build (HH/MM/SS/LL) in BCD format where:

HH = Hour of day
MM = Minute of hour

S Second of minute

lisecond of second,

This information is obtained from the TODAYS_TIME constant in
the today_pkg package (generated prior to synthesis).

Table 31: Informational Register Block, TIME Register (0x000144)

Example HDL FPGA Designs

AD-UG-0004

Alpha Data Parallel Systems Ltd

Page 91

@ALPHA DATA

ADM-XRC Gen 3 SDK 1.4.0 User Guide
(V1.5 - 24th August 2011)

Bits_| Mnemonic Type | Function
318 (Reserved).
70 | spuT RO | Indicates multiple split ports active error count
Table 32: Informational Register Block, SPLIT Register (0x000148)
Bits | Mnemonic Type | Function
31:0 | BRAM_BASE RO | Indicates the base address of the BRAM access window in the
Direct Slave OCP address space.
This information is obtained from the BRAM_ADDR_BASE
constant in the package uber.
Table 33: Informational Register Block, BRAM_BASE Register (0x00014C)
Bits_| Mnemonic Type | Function
31:0 | BRAM_MASK | RO | Indicates the address mask of the BRAM access window in the
Direct Slave OCP address space.
‘This information is obtained from the BRAM_ADDR_MASK
constant in the package uber.
Table 34: Informational Register Block, BRAM_MASK Register (0x000150)
Bits | Mnemonic Type | Function
31:0 | MEM_BASE RO | Indicates the base address of the on-board memory access
window in the Direct Slave OCP address space
This information is obtained from the RAM_WIN_ADDR_BASE
constant in the package uber.
Table 35: Informational Register Block, MEM_BASE Register (0x000154)
Bits | Mnemonic Type | Function
31:0 | MEM_MASK RO | Indicates the address mask of the on-board memory access
window in the Direct Slave OCP address space.
This information is obtained from the RAM_WIN_ADDR_MASK
constant in the package uber.
Table 36: Informational Register Block, MEM_MASK Register (0x000158)
Bits_| Mnemonic Type | Function
31:4 (Reserved).
30 |MEM_BANKS | RO | Indicates number of on-board memory bank interfaces present in

the FPGA example design
This information is obtained from the MEM_BANKS constant in the

adb3_target_inc_pkg package.

Table 37: Informational Register Block, MEM_BANKS Register (0x00015C)

Page 92

Alpha Data Parallel Systems Ltd

Example HDL FPGA Desi
AD-UG-0004

ans

ADM-XRC Gen 3 SDK 1.4.0 User Guide
(VL5 - 241h August 2011) @ALPHA DATA

Bits | Mnemonic Type | Function
31:24 (Reserved).
230 | SDK_VER RO | Indicates SDK version (AA/BB/CC) in BCD format where:

AA Major revision number

‘This information is. oblamed from the SDK_VERSION constant in
the today_pkg package.

Table 38: Informational Register Block, SDK_VER Register (0x000160)

5.5.4.4.2.7 GPIO Test Register Block
5.5.4.4.2.7.1 Description

The GPIO test register block is implemented by the bik_ds_io_test block which is board dependent.
Table 39 lists the available variants:

Model Filename relative to
ADM-XRC-6TL admxro6tiblk_ds_io_test_6t.vhd
ADM-XRC-6T1 admxrc6tL/blk_ds_io_test_6tLvhd
ADM-XRC-6TGE _ds_io_test_6ige.vhd
ADM-XRC-6TADV8 | admxrcétadva/blk_ds_io_test_6tadv8.vhd

Table 39:

wailable Variants of bik_ds_io_test Component

The bik_ds_io_test block performs the following functions:
« Control of XRM GPIO bi-directional interface in example design (i present)

« Control of Pna GPIO bi-directional interface in example design (if present)

« Control of P GPIO bi-directional interface in example design (if present)

It consists of an instance of adb3_ocp_simple_bus_if connected to secondary port 2 of the Direct Slave register

address space splitter, and a set of processes that implement the registers that drive and return the logic levels on
the GPIO pins.

Note: This block implements a general scheme for driving/accepting data on the GPIO interfaces using
registers connected to the Direct Slave OCP channel. This scheme is known colloguially as "bit-banging",
and is not suitable for high speed communication, as the block contains no logic for sequencing signals as
required by a typical communications protocol. The user is encouraged to implement an /O interface
scheme appropriate to their own application.

5.5.4.4.2.7.2 Register Description

As in the simple test register block, an instance of adb3_ocp_simple_bus_if together with some VHDL processes
implement the registers for the GPIO pins. These registers appear in the Direct Slave OCP address space as follows:

Example HDL FPGA Designs Page 93
AD-UG-0004 Alpha Data Parallel Systems Ltd

@ALPHA DATA

ADM-XRC Gen 3 SDK 1.4.0 User Gui

ide

(V1.5 - 24th August 2011)

Name Address

XRM_GPIO_DA_DATAO 0x000200
XRM_GPIO_DA_DATAI 0x000204
XRM_GPIO_DA_TRI 0x000208
XRM_GPIO_DB_DATAO 0x00020C
XRM_GPIO_DB_DATAI 0x000210
XRM_GPIO_DB_TRI 0x000214
XRM_GPIO_DC_DATAQ 0x000218
XRM_GPIO_DC_DATAI 0x00021C
XRM_GPIO_DC_TRI 0x000220
XRM_GPIO_DD_DATAQ 0x000224
XRM_GPIO_DD_DATAI 0x000228
XRM_GPIO_DD_TRI 0x00022C
XRM_GPIO_CS_DATAO 0x000230
XRM_GPIO_CS_DATAI 0x000234
XRM_GPIO_CS_TRI 0x000238
PN4_GPIO_P_DATAO 0x00023C
PN4_GPIO_P_DATAI 0x000240
PN4_GPIO_P_TRI 0x000244
PN4_GPIO_N_DATAQ 0x000248
PN4_GPIO_N_DATAI 0x00024C
PN4_GPIO_N_TRI 0x000250
PN6_GPIO_MS_DATAO 0x000254
PN6_GPIO_MS_DATAI 0x000258
PN6_GPIO_MS_TRI 0x00025C
PN6_GPIO_LS_DATAO 0x000260
PN6_GPIO_LS_DATAI 0x000264
PN6_GPIO_LS_TRI 0x000268

Table 40: GPIO Test Register Block Address Map

Bits | Mnemonic Type | Function
31:16 | DA_P_OUT M | Controlsfindicates logic levels driven on da_p(15:0) XRM GPIO pins.
150 | DA_N_OUT e logic levels driven on da_n(15:0) XRM GPIO pins.
Table 41: GPIO Test Register Block, XRM_GPIO_DA_DATAO Register (0x000200)
Bits | Mnemonic Type | Function
31:16 | DAP_IN RO | Indicates actual logic levels on da_p(15:0) XRM GPIO pins.
150 | DANIN RO _ | Indicates actual logic levels on da_n(15:0) XRM GPIO pins.
Table 42: GPIO Test Register Block, XRM_GPIO_DA_DATAI Register (0x000204)
Page 94 ans

Example HDL FPGA Desi
Alpha Data Parallel Systems Ltd AD.

-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide.
(VLS - 24th August 2011)

@ ALPHA DATA

Bits | Mnemonic Type | Function
31:16 | DA_P_TRI M| Contols/indicates tistate enables for the da_p(15:0) XRM GPIO pins. f a
bitis 1, the pin is tristated (high-
150 | DA_N_TRI M | Controlsiindicates tristate enables for the da n(15 0) XRM GPIO pins. If a
bitis 1, the pin s tristated (h
Table 43: GPIO Test Register Block, XRM_GPIO_DA_TRI Register (0x000208)
Bits | Mnemonic Type | Function
31:16 | DB_P_OUT M | Controlsfindicates logic levels driven on db_p(15:0) XRM GPIO pins.
150 | DB_N_OUT R logic levels driven on db_n(15:0) XRM GPIO pins.
Table 44: GPIO Test Register Block, XRM_GPIO_DB_DATAO Register (0x00020C)
Bits | Mnemonic Type | Function
31:16 | DB_P_IN RO | Indicates actual logic levels on db_p(15:0) XRM GPIO pins.
150 | DB_N_IN RO | Indicates actual logic levels on db_n(15:0) XRM GPIO pins.
Table 45: GPIO Test Register Block, XRM_GPIO_DB_DATAI Register (0x000210)
Bits | Mnemonic Type | Function
31:16 | DB_P_TRI M | Contols/indicates tistate enables for db_p(15:0) XRM GPIO pins. If a bi
is 1, the pin s tristated (h
150 | DB_N_TRI M | Controlsfindicates tistate enables for db_n(15:0) XRM GPIO pins. If a bi
is 1, the pin is tristated (h
Table 46: GPIO Test Register Block, XRM_GPIO_DB_TRI Register (0x000214)
Bits | Mnemonic Type | Function
31:16 | DC_P_OUT P logic levels driven on dc_p(15:0) XRM GPIO pins.
150 | DC_N_OUT M | Controlsfindicates logic levels driven on dc_n(15:0) XRM GPIO pins.
Table 47: GPIO Test Register Block, XRM_GPIO_DC_DATAO Register (0x000218)
Bits | Mnemonic Type | Function
31:16 | DC_P_IN RO _| Indicates actual logic levels on dc_p(15:0) XRM GPIO pins.
150 | DC_N_IN RO _| Indicates actual logic levels on dc_n(15:0) XRM GPIO pins.
Table 48: GPIO Test Register Block, XRM_GPIO_DC_DATAI Register (0x00021C)
Bits | Mnemonic Type | Function
31:16 | DC_P_TRI M| Contolsiindicates tstate enables for dc_p(15:0) XRM GPIO pins. Ifa bit
is 1, the pin is tristated (high
150 | DC_N_TRI M | Controls/indicates tristate enables for dc_n(15:0) XRM GPIO pins. If a bit
is 1, the pin s tristated (high

Table 49: GPIO Test Register Block, XRM_GPIO_DC_TRI Register (0x000220)

Example HDL FPGA Designs

AD-UG-0004

Alpha Data Parallel Systems Ltd

Page 95

ADM-XRC Gen 3 SDK 1.4.0 User Guide
OaLena DATA (1.5 - 24th August 2011)
Bits_| Mnemonic Type | Function
31:16 | DD_P_OUT P logic levels driven on dd_p(15:0) XRM GPIO pins.
150 | DD_N_ouT M| Controlsfindicates logic levels driven on dd_n(15:0) XRM GPIO pins.
Table 50: GPIO Test Register Block, XRM_GPIO_DD_DATAO Register (0x000224)
Bits | Mnemonic Type [Function
31:16 | DD_P_IN RO | Indicates actual logic levels on dd_p(15:0) XRM GPIO pins.
150 | DD_N_IN RO | Indicates actual logic levels on dd_n(15:0) XRM GPIO pins.
Table 51: GPIO Test Register Block, XRM_GPIO_DD_DATAI Register (0x000228)
Bits_| Mnemonic Type | Function
31:16 | DD_P_TRI M | Controls/indicates tristate enables for dd_p(15:0) XRM GPIO pins. If a bit
is 1, the pin is tristated (high
150 | DD_N_TRI M | Controls/indicates tristate enables for dd_n(15:0) XRM GPIO pins. If a bit
is 1, the pinis ristated (high
Table 52: GPIO Test Register Block, XRM_GPIO_DD_TRI Register (0x00022C)
Bits | Mnemonic Type | Function
3118 (Reserved)
17 |[pbccpout| M |c logic level driven on dd_cc_p XRM GPIO pin.
16 | DD_CC N OUT| M | Controlsfindicates logic level driven on dd_cc_n XRM GPIO pin.
15 |pc_ccPOUT| M | Controlsfindicates logic level driven on dc_cc_p XRM GPIO pin.
14 [pc_cc N out| M | Contralslindicates logic level driven on dc_cc_n XRM GPIO pin.
13 [pBCccPoOUT| M |c logic level driven on db_cc_p XRM GPIO pin.
12 |DB.CCN.OUT| M | Controlsiindicates logic level driven on db_cc_n XRM GPIO pin.
1 [paccpour| M |c logic level driven on da_cc_p XRM GPIO pin
10 [pAccNouT| M |c logic level driven on da_cc_n XRM GPIO pin.
96 | sp_out M | Controlsfindicates logic levels driven on sd(3:0) XRM GPIO pins.
54| sc_out HE logic levels driven on sc(1:0) XRM GPIO pins.
32 [sB_ouT TR logic levels driven on sb(1:0) XRM GPIO pins.
10 |saout M [Controlsfindicates logic levels driven on sa(L:0) XRM GPIO pins.
Table 53: GPIO Test Register Block, XRM_GPIO_CS_DATAO Register (0x000230)
Page 96 ans

Example HDL FPGA Desi
Alpha Data Parallel Systems Ltd AD.

-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide.
(VLS - 24th August 2011)

@ ALPHA DATA

Bits | Mnemonic Type | Function
3118 (Reserved)
17| pD_CC_P_IN RO | Indicates actual logic level on dd_cc_p XRM GPIO pin.
16 | DD_CC_N_IN RO _| Indicates actual logic level on dd_cc_n XRM GPIO pin.
15 |bc_cc PN RO | Indicates actual logic level on dc_cc_p XRM GPIO pin.
14 | DC_CC N_IN RO | Indicates actual logic level on dc_cc_n XRM GPIO pin
13 |DB_CC_P_IN RO | Indicates actual logic level on db_cc_p XRM GPIO pin.
12 | DB_CC_N_IN RO | Indicates actual logic level on db_cc_n XRM GPIO pin.
11 |DACCPIN RO | Indicates actual logic level on da_cc_p XRM GPIO pin
10 | DA_CC_N_IN RO _| Indicates actual logic level on da_cc_n XRM GPIO pin.
9:6 | SD_IN RO | Indicates actual logic levels on sd(3:0) XRM GPIO pins.
54 | SCIN RO | Indicates actual logic levels on sc(1:0) XRM GPIO pins.
32 |sBIN RO | Indicates actual logic levels on sb(1:0) XRM GPIO pins.
10 [sAN RO_| Indicates actual logic levels on sa(1:0) XRM GPIO pins.
Table 54: GPIO Test Register Block, XRM_GPIO_CS_DATAI Register (0x000234)
Bits | Mnemonic Type | Function
3118 (Reserved)
17 |[ppcc P TR | M Cun(m\s/lnd\ca\es tristate enable for dd_cc_p XRM GPIO pin. If a bitis 1,
pin s tristated (high-impet
16 [DD_CCNTRI | M Con(ru\s/lnmcates mstate enable for dd_cc_n XRM GPIO pin. f abitis 1,
tristated (hi
15 [pcccP TR | M cemro\s/mmca«es mstate enable for dc_cc_p XRM GPIO pin. fabitis 1,
the tristated (i
14 [DC_CCNTRI | M | Conuolsindicates tistate enable for dc_co_n XRM GPIO pin. fabitis 1
the pin s tristated (h
13 [DB.CCPTRI | M | Conuolsindicates tistate enable for db_co_p XRM GPIO pin. If abits 1,
the pin s tristated (h
12 [DBCCNTRI | M Comvo\s/md\ca\es tristate enable fov db_cc_n XRM GPIO pin. If a bitis 1,
pin is tristated (high-imped:
u [paccP TR [M Comru\sllnd\cates tristate enable for da_cc. -p XRM GPIO pin. If a bitis 1,
pin is tristated (high-imped:
10 [DACCNTRI | M Cuntro\s/md\cates tristate enable for da_cc_n XRM GPIO pin. If a bt is 1,
pin is tristated (high
9:6 | SD_TRI M | Controls/indicates tristate enables for sd(3:0) XRM GPIO pins. If a bitis 1,
the pin s tristated (high
54 | SC_TRI M| Contols/indicates tistate enables for sc(1:0) XRM GPIO pins. f a bitis 1,
the pin s tristated (high
32 | SB_TRI M conums/mmca\es wistate enables for sb(1:0) XRM GPIO pins. If a bt s 1,
pin s tristated (high
10 | SA_TRI M Cun(vo\s/lndma\es tristate enables for sa(1:0) XRM GPIO pins. If a bitis 1,
pin is tristated (high-imped:

Table 55: GPIO Test Register Block, XRM_GPIO_CS_TRI Register (0x000238)

Example HDL FPGA Designs

AD-UG-0004

Alpha Data Parallel Systems Ltd

Page 97

ADMXRC Gen 3 SDK 1.4.0 User Guide
’ALPN‘ DATA (v1.5 - 24th August 2011)

Bits | Mnemonic Type | Function

31:0 | P_DATAO M | Controlsiindicates logic levels driven on gpio_p(PN4_GPIO_WIDTH:1)
Pnd GPIO pins. If PN4_GPIO_WIDTH < 32, the to
32-PN4_GPIO_WIDTH bits of this register are unused.

The constant PN4_GPIO_WIDTH is defined in package
adb3_target_inc_pkg

Table 56: GPIO Test Register Block, PN4_GPIO_P_DATAO Register (0x00023C)

Bits | Mnemonic Type | Function
310 | P_DATAI RO | Indicates actual logic levels on gpio_p(PN4_GPIO_WIDTH:1) Pnd GPIO
pins. If PN4_GPIO_WIDTH < 32, the top 32-PN4_GPIO_WIDTH bits of
this register are unused.

The constant PN4_GPIO_WIDTH is defined in package
adb3_target_inc_pkg

Table 57: GPIO Test Register Block, PN4_GPIO_P_DATAI Register (0x000240)

Bits_| Mnemonic Type | Function
31:.0 [P_TRI M Controls/indicates tristate enables for gpio_p(PN4_GPIO_WIDTH:1) Pn4
GPIO pins. If PN4_GPIO_WIDTH < 32, the top 32-PN4_GPIO_WIDTH bits
of this register are unused.

Ifabitis 1, the pin s tristated (high-imped
The constant PN4_GPIO_WIDTH is defined in package
adb3_target_inc_pkg.

Table 58: GPIO Test Register Block, PN4_GPIO_P_TRI Register (0x000244)

Bits | Mnemonic Type | Function

31:0 | N_DATAO M | Controlsiindicates logic levels driven on gpio_n(PN4_GPIO_WIDTH:1)
Pnd GPIO pins. If PN4_GPIO_WIDTH < 32, the top
32-PN4_GPIO_WIDTH bits of this register are unused.

The constant PN4_GPIO_WIDTH is defined in package
adb3_target_inc_pkg.

Table 59: GPIO Test Register Block, PN4_GPIO_N_DATAO Register (0x000248)

Bits | Mnemonic Type | Function

31:0 | N_DATAI RO | Indicates actual logic levels on gpio_n(PN4_GPIO_WIDTH:1) Pnd GPIO
pins. If PN4_GPIO_WIDTH < 32, the top 32-PN4_GPIO_WIDTH bits of
this register are unused.

The constant PN4_GPIO_WIDTH is defined in package
adb3_target_inc_pkg.

Table 60: GPIO Test Register Block, PN4_GPIO_N_DATAI Register (0x00024C)

Page 98 Example HDL FPGA Designs
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide.

(VL5 - 241h August 2011) @ALPHA DATA

Bits | Mnemonic Type | Function

310 | N_TRI M | Controlsfindicates tristate enables for gpio_n(PN4_GPIO_WIDTH:1) Pnd
GPIO pins. If PN4_GPIO_WIDTH < 32, the top 32-PN4_GPIO_WIDTH bits
of this register are unused.

Ifabitis 1, the pin is tristated (high-imped:

The constant PN4_GPIO_WIDTH is defined in package
adb3_target_inc_pkg.

Table 61: GPIO Test Register Block, PN4_GPIO_N_TRI Register (0x000250)

Bits_| Mnemonic Type | Function

310 | MS_DATAO M | single Ended Interface

1f PN6_GPIO_WIDTH < 32, this register is ignored.

1f PN6_GPIO_WIDTH > 32, this register controls/indicates logic levels
driven on the gpio(PN6_GPIO_WIDTH:33) PN6 GPIO
PN6_GPIO_WIDTH < 62, the top 64-PN6_GPIO_WIDTH bits of this.
register are unused

Double Ended Interface
Controls/indicates logic levels driven on gpio_j p(PN6 GPIO_WIDTH-1:0)
Pn6 GPIO pins. If PN6_GPIO_WIDTH < 32, the

32-PN6_GPIO_WIDTH bits of this register are "nued

The constant PN6_GPIO_WIDTH s defined in package
adb3_target_inc_pkg

Table 62: GPIO Test Register Block, PN6_GPIO_MS_DATAO Register (0x000254)

Bits | Mnemonic Type | Function
310 | MS_DATAI RO | Single Ended Interface

If PN6_GPIO_WIDTH < 32, this register is ignored

1f PN6_GPIO_WIDTH > 32, this register indicates the actual logic levels on
the gpio(PN6_GPIO_WIDTH:33) PN6 GPIO pins. If PN6_GPIO_WIDTH <
64, the top 64-PN6_GPIO_WIDTH bits of this register are unused.

Double Ended Interface
Indicates actual logic levels on gpio_p(PN6_GPIO_WIDTH-1:0) Pné GPIO
pins. If PN6_GPIO_WIDTH < 32, the top 32-PN6_GPIO_WIDTH bits of
this register are unused.

The constant PN6_GPIO_WIDTH is defined in package
adb3_target_inc_pkg

Table 63: GPIO Test Register Block, PN6_GPIO_MS_DATAI Register (0x000258)

Example HDL FPGA Designs Page 99
AD-UG-0004 Alpha Data Parallel Systems Ltd

ADM-XRC Gen 3 SDK 1.4.0 User Guide

@ALPHA DATA (V15 - 24th August 2011)

Bits | Mnemonic Type | Function

310 | MS_TRI M | single Ended Interface

If PN6_GPIO_WIDTH < 32, this register is ignored.
1f PN6_GPIO_WIDTH > 32, this register controls/indicates the tristate
enables for the gpio(PN6_GPIO_WIDTH:33) Pn6 GPIO pins. If
PN6_GPIO_WIDTH < 64, the top 64-PN6_GPIO_WIDTH bits of this.
register are unused

Double Ended Interface
Controlsfindicates tristate enables for gpio_p(PN6_GPIO_WIDTH:1) Pné
GPIO pins. If PN6_GPIO_WIDTH < 32, the top 32-PN6_GPIO_WIDTH bits
of this register are unused.

It abitis 1, the corresponding pin is tristated (high-impedance).
The constant PN6_GPIO_WIDTH is defined in package
adb3_target_inc_pkg

Table 64: GPIO Test Register Block, PN6_GPIO_MS_TRI Register (0x00025C)

Bits_| Mnemonic Type | Function
310 | LS_DATAO M | single Ended Interface

1f PN6_GPIO_WIDTH 2 32, this register controls/indicates logic levels
driven on the gpio(32:1) Pné GPIO pins.

1f PN6_GPIO_WIDTH < 32, this register controls/indicates logic levels
driven on the gpio(PN6_GPIO_WIDTH:1) Pn6 GPIO pins, and the top
32-PN6_GPIO_WIDTH bits of this register are unused.

Double Ended Interface
Controls/indicates logic levels driven on gpio_n(PN6_GPIO_WIDTH:1)
Pn6 GPIO pins. If PN6_GPIO_WIDTH is < 32, the top
32-PN6_GPIO_WIDTH bits of this register are unused

The constant PN6_GPIO_WIDTH is defined in package
adb3_target_inc_pkg

Table 65: GPIO Test Register Block, PN6_GPIO_LS_DATAO Register (0x000260)

Bits | Mnemonic Type | Function

31:0 | LS_DATAI RO | Single Ended Interface

If PN6_GPIO_WIDTH > 32, this register indicates the actual logic levels on
the gpio(32:1) Pn6 GPIO pins

1 PN6_GPIO_WIDTH < 32, this register indicates the actual logic levels on
the gpio(PN6_GPIO_WIDTH:1) Pn6 GPIO pins, and the top
32-PN6_GPIO_WIDTH bits of this register are unused.

Double Ended Interface

Indicates actual logic levels on gpio_n(PN6_GPIO_WIDTH:1) Pné GPIO
pins. If PN6_GPIO_WIDTH < 32, the top 32-PN6_GPIO_WIDTH bits of
this register are unused.

The constant PN6_GPIO_WIDTH is defined in package
adb3_target_inc_pkg

Table 66: GPIO Test Register Block, PN6_GPIO_LS_DATAI Register (0x000264)

Page 100 Example HDL FPGA Designs
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide.
(VLS - 24th August 2011)

@ ALPHA DATA

Bits

Mnemonic

Type

Function

310

LS_TRI

Single Ended Interface

If PN6_GPIO_WIDTH 2 32, this register controlsfindicates the tristate
enables for the gpio(32:1) Pn6 GPIO pins

1f PN6_GPIO_WIDTH < 32, this register controls/indicates the tristate
enables of the gpio(PN6_GPIO_WIDTH:1) Pné GPIO pins, and the top
32-PN6_GPIO_WIDTH bits of this register are unused.

Double Ended Interface

Controlsfindicates tristate enables for gpio_n(PN6_GPIO_WIDTH:1) Pné
GPIO pins. If PN6_GPIO_WIDTH < 32, the top 32-PN6_GPIO_WIDTH bits
of this register are unused.

It abitis 1, the corresponding pin is tristated (high-impedance).
The constant PN6_GPIO_WIDTH is defined in package
adb3_target_inc_pkg

Table 67: GPIO Test Register Block, PN6_GPIO_LS_TRI Register (0x000268)

5.5.4.4.2.8 On-Board Memory Register Block
5.5.4.4.2.8.1 Description

The on-board Memory register block is in _ds_mem_reg.vhd and

contains the following register groups:

« Control of paging for the Direct Slave on-board memory access window via the DS_BANK and DS_PAGE
registers.

+ Status of the on-board memory interfaces.

« Control and status of the on-board memory application block (FPGA-driven on-board memory test)

It consists of an instance of adb3_ocp_simple_bus_if connected to secondary port 4 of the Direct Slave register
address space splitter, and a set of VHDL processes that implement the memory control and status registers.

5.5.4.4.2.8.2 Register Description

As in the simple test register block, an instance of adb3_ocp_simple_bus_if together with some VHDL processes
implement the memory control and status registers. These registers appear in the Direct Slave OCP address space as

follows:

Name Address|
DS_BANK 0x000300
DS_PAGE 0x000304
BANKO_CTRL 0x000320
BANK1_CTRL 0x000340
BANKO_OFFSET 0x000324
BANK1_OFFSET 0x000344
BANKO_LENGTH 0x000328
BANK1_LENGTH 0x000348

Table 68: On-Board Memory Register Block Address Map (continued on next page)

Example HDL FPGA Designs
AD-UG-0004

Page 101
Alpha Data Parallel Systems Ltd

ADM-XRC Gen 3 SDK 1.4.0 User Guide

OaLena DATA (V1.5 - 24th August 2011)
Name Address|
BANKO_INFO 0x00032C
BANK1_INFO 0x00034C
BANKO_STAT 0x000330
BANK1_STAT 0x000350
BANKO_APP_ERR_ADDR 0x000334
BANK1_APP_ERR_ADDR 0x000354
BANKO_MUX_ERR 0x000338
BANK1_MUX_ERR 0x000358
BANKO_IF_ERR 0x00033C
BANK1_IF_ERR 0x00035C

Table 68: On-Board Memory Register Block Address Map

Bits | Mnemonic Type | Function

31:0 | DS_BANK M | Controls which on-board memory bank is accessed via the
Direct Slave OCP address window.

The number of bits of this field that are actually used is
controlled by the BANK_ADDR_WIDTH constant defined in
blk_direct_slave. Bits 31:BANK_ADDR_WIDTH are
ignored

Refer to Direct Slave On-Board Memory Access Window
for an explanation of how this register affects access to
on-board memory.

Table 69: On-Board Memory Register Block, DS_BANK Register (0x000300)

Bits | Mnemonic Type | Function

31:0 | DS_PAGE M | Controls which page of the on-board memory bank selected
by the DS_BANK register is accessed via the Direct Slave
OCP address window.

‘The number of bits of this field that are actually used is
controlled by the PAGE_ADDR_WIDTH constant defined in
blk_direct_slave. Bits 31:PAGE_ADDR_WIDTH are
ignored

Refer to Direct Slave On-Board Memory Access Window
for an explanation of how this register affects access to
on-board memory.

Table 70: On-Board Memory Register Block, DS_PAGE Register (0x000304)

Page 102 Example HDL FPGA Designs
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide.
(VLS - 24th August 2011)

@ ALPHA DATA

Bits | Mnemonic Type | Function
319 (Reserved)
8 START_TEST WO | On-board memory application control:
Write 1 to initiate the FPGA-driven on-board memory test for
bank x; has no effect unless
BANKx_STAT.MEM_APP_DONE is 1.
7.0 (Reserved)

Table 71: On-Board Memory Register Block, BANKx_CTRL Register (0x000320, 0x000340, ..)

Bits | Mnemonic Type | Function
31:0 | MEM_APP_OFFSET M | on-board memory application control
Determines the starting address (16-byte addressing) for
the FPGA-driven on-board memory test for bank x
Table 72: On-Board Memory Register Block, BANKx_OFFSET Register (0x000324, 0x000344, ...)
Bits | Mnemonic Type | Function
310 | MEM_APP_LENGTH M | on-board memory application control

Determines the number of 16-byte words that are tested by
the FPGA-driven on-board memory test for bank x.

Table 73: On-Board Memory Register

Block, BANKx_LENGTH Register (0x000328, 0x000348, ...)

Bits

Mnemonic

Type

Function

31:28

DS_BANK_WIDTH

RO

Indicates the width in bits of the Direct Slave on-board
Memory bank select register. The value of this register is
determined by the constant BANK_ADDR_WIDTH. This is
defined in blk_direct_slave.

27:24

DS_PAGE_WIDTH

Indicates the width in bits of the Direct Slave on-board
Memory page select register. The value of this register is
determined by the constant PAGE_ADDR_WIDTH. This is
defined in bik_direct_slave.

23:16

DATA_BYTES

Indicates the number of ytes in the o-board Memory bk
x OCP data

APP_ADDR_WIDTH

Indicates the width in bits of the on-board memory bank x
address space using 16-byte addressing. The value of this
register is determined using the constant
MEM_BYTE_ADDR_WIDTH_ARRAY-4. This is defined in
the package adb3_target_inc_pkg.

BYTE_ADDR_WIDTH

Indicates the width in bits of the on-board memory bank x
address space using byte addressing. The value of this
register is determined using the constant

ME! 'YTE_ADDR_WIDTH_ARRAY. This is defined in the

package adb3_target_inc_pkg.

Table 74: On-Board Memory Register Block, BANKx_INFO Register (0x00032C, 0x00034C, ...)

Example HDL FPGA Designs
AD-UG-0004

Alpha Data Parallel Systems Ltd

Page 103

ADM-XRC Gen 3 SDK 1.4.0 User Guide

@ALPHA DATA (V15 - 24th August 2011)

Bits_| Mnemonic Type | Function
31:28 | BANK_NUMBER RO | The number of the bank this register applies to.
27:24 (Reserved)

23 | MEM_APP_ERR RO | On-board memory application status:

1=> An error occurred during the last FPGA-driven test of
memory bank x; valid if and only if MEM_APP_DONE is 1.
22:20 | MEM_APP_ERR_PH RO | On-board memory application status:

Indicates at which phase the last FPGA-driven test of
memory bank x failed; valid if and only if both
MEM_APP_DONE and MEM_APP_ERR are 1.

19:17 (Reserved)
16 | MEM_APP_DONE RO | On-board memory application status:
1 => The FPGA-driven test of memory bank x is idle/done.
15:12 (Reserved)
118 | MEM_IF_ERR RO | On-board memory interface bank x initialisation error status:

Bit (3): Reset (active high).

Bit (2:1): Read leveling error.

Bit (0): Write leveling error.

74 (Reserved)

30 | MEM_IF_STAT RO | On-board memory interface bank x initialisation status:
Bit (3): Init complete.

Bit (2:1): Read leveling complete.

Bit (0): Write leveling complete.

Table 75: On-Board Memory Register Block, BANKx_STAT Register (0x000330, 0x000350, ...)

Bits_| Mnemonic Type | Function
31:25 (Reserved)

24:0 | MEM_APP_ERR_ADDR | RO | On-board memory application status:
Returns the address (16-byte addressing) of the first error
detected in the last FPGA-driven test of memory bank x;
valid if and only if both BANKx_STAT.MEM_APP_DONE
and BANKx_STAT.MEM_APP_ERR are 1.

Table 76: On-Board Memory Register Block, BANKx_APP_ERR_ADDR Register (0x000334, 0x000354, ...)

[Bits_] Mnemonic Type | Function |

31:0 | MUX_ERR RO | OCP switching bank x adb3_ocp_mux_nb block error
status. Refer to ADB3 OCP for a description.

Table 77: On-Board Memory Register Block, BANKx_MUX_ERR Register (0x000338, 0000358, ...)

Bits | Mnemonic Type | Function

310 | MEM_IF_ERR RO | On-board memory interface bank x
adb3_ocp_ocp2ddr3_nb block error status. Refer to ADB3
OCP for a description.

Table 78: On-Board Memory Register Block, BANKx_IF_ERR Register (0x00033C, 0x00035C.

Page 104 Example HDL FPGA Designs
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide
(VL5 - 241h August 2011) @ALPHA DATA

5.5.4.4.3 Direct Slave BRAM Address Space
5.5.4.4.3.1 Description

The secondary OCP port 1 from the Direct Slave address space splitter is used to access the BRAM block. It is
routed to the OCP switching block,

5.5.4.4.3.2 Direct Slave BRAM Access Window

As the BRAM requires an address space of 0.5 MiB, this can be accommodated within the Direct Slave OCP channel
address space of 4 MiB.

The BRAM access window appears in the Direct Slave OCP address space as follows:

[vame [Address
| BRAM access window | ox080000-0x0FFFFF |

Table 79: Direct Slave BRAM Access Window

5.5.4.4.4 Direct Slave On-Board Memory Address Space
.5.4.4.4.1 Description

3

The secondary OCP port 2 from the Direct Slave address space splitter is used to access the on-board memory
interfaces. It routed to the OCP switching block.
5.5.4.4.4.2 Direct Slave On-Board Memory Access Window

As the Direct Slave OCP channel has a useable address space of 4 Mi, this is not sufficient to access all on-board
memory. The 2 MiB address window is used and augmented by the DS_BANK and DS_PAGE registers in order to
access all on-board memory.

The on-board memory access window appears in the Direct Slave OCP address space as follows:

[Name [Address
[on-Board memory access window | ox200000-0x3FFFFF |

Table 80: Direct Slave On-Board Memory Access Window

The conversion from Direct Slave OCP addresses to augmented OCP memory addresses works as follows:

Augrented 0cP merory address [20:0] = Direct Slave OCP address [20:0

Augrented 0CP merory address [DVA_ADDR_WIDTH-BANK_ADDR_JIDTH-1:21] = DS_PAGE

Augnented 0CP nenory address [DHA_ADDR. JTH-BANK_ADDR_WIDTH] = DS_BANK
Augnented 0CP menory address [63:DiiA_ADt

wior =

where DMA_ADDR_WIDTH is defined in adb3_target_inc_pkg and BANK_ADDR_WIDTH is defined in
blk_direct_slave.

For example, for the ADM-XRC-6T1, this yields:

Augnented 0CP menory address [20: ave 0cP address [20:0]
Augnented 0CP meory address [35-21] = DS_PAGE [14:0]

Augnented 0CP menory address [38:36] = DS BANK [2:0]

Aimenied ook nenory sdorens Toscas) -

This produces augmented OCP addresses which are compatible with the memory address decoding scheme defined in
Table 81.

Example HDL FPGA Designs

Page 105
AD-UG-0004 Alpha Data Parallel Systems Ltd

ADM-XRC Gen 3 SDK 1.4.0 User Guide

@ALPHA DATA (V15 - 24th August 2011)

5.5.4.5 OCP Switching Block

This block is by _dma_switch.vhd and its purpose is to connect
together the various OCP channels in the Uber design in a useful way. A block diagram of the OCP switching block is
shown in Figure 20.

Page 106 Example HDL FPGA Designs
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide

(VL5 - 24th August 2011)

@ALPHA DATA

a3, 0cp mux.0b

a3, ocp_spitab acey
oo
owsocer e
ownocz

03, ocp muc o>

(O]

Memapp 0ce1

a3 ocp .0

1—. acen

ER
ik e
ok e —— —o

@

Figure 20: Uber OCP Switching Block

Example HDL FPGA Designs

AD-UG-000:

4

Alpha Data Parallel Systems Ltd.

Page 107

ADM-XRC Gen 3 SDK 1.4.0 User Guide

@ALPHA DATA (V15 - 24th August 2011)

The OCP switching block makes connections between the various OCP channels in the design as follows:
+ Direct Slave on-board memory access OCP channel <=> On-board memory bank interface OCP channels
. Direct Slave BRAM access OCP channel <=> BRAM interface OCP channel

+ Memory application <=> On-board memory bank interface OCP channels

+ DMAOCP channel 0 <=> BRAM block OCP channel

. DMA OCP channel 0 <=> On-board memory bank interface OCP channels

+ Other DMA OCP channels <=> BRAM block OCP channel

5.5.4.5.1 Direct Slave On-Board Memory OCP Address Space Splitter Block

Referring to item 1 in Figure 20, this instance of adb3_ocp_split_nb splits the Direct Slave on-board memory OCP
channel into multiple secondary OCP channels, according to the address map in Table 81 below.

Index | Block Type Address Range
0 [on-board memory bank 0 | Memory | 0 AFFFFFFFFF
1 On-board memory bank 1 | Memory
2 | on-board memory bank 2 | Memory
3 On-board memory bank 3 | Memory 0x4000000000-0x4FFFFFFFFF
4 On-board memory bank 4 | Memory
5 | on-board memory bank 5 | Memory
6 On-board memory bank 6 | Memory 0x7000000000-0x7FFFFFFFFF

Table 81: Uber Design Direct Slave On-Board Memory Address Map

The number of secondary OCP channels is defined by the constant DMA_RAM_RANGE_TABLE in the uber_pkg
package. The range of this constant is controlled by the MEM_BANKS constant defined in the adb3_target_inc_pkg
package

Note: Reads of undefined areas of the address space return data consisting of OXDEADCODE. Writes to
undefined areas have no effect.

5.5.4.5.2 BRAM OCP Multiplexor Block

Referring to item 2 in Figure 20, this instance of adb3_ocp_mux_nb muliplexes all OCP channels which require to be
connected to the BRAM block:

. Direct Slave BRAM OCP channel (Direct Slave BRAM Address Space)

+ DMAOCP channel 0 (DMA channel O spliiter secondary OCP channel 0)

. Remaining DMA OCP channels

5.5.4.5.3 DMA Channel 0 OCP Address Space Splitter Block

Referring to item 3 in Figure 20, this instance of adb3_ocp_split_nb splits DMA OCP channel 0 into multiple
secondary OCP channels according to the address map in Table 82

Page 108 Example HDL FPGA Designs
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide.

(VL5 - 241h August 2011) @ALPHA DATA

Index_| Block Type Address Range
0 BRAM Memory

On-board memory bank 0 | Memory | 0 1FFFFFFFFF
2 On-board memory bank 1| Memory
3 On-board memory bank 2| Memory
4 On-board memory bank 3 | Memory | 0x4000000000-Ox4FFFFFFFFF
5 On-board memory bank 4_| Memory
6 On-board memory bank 5| Memory
7 On-board memory bank 6 | Memory | 0x7000000000-Ox7FFFFFFFFF

Table 82: Uber Design DMA Channel 0 Address Map

The number of secondary OCP channels is defined by the constant DMA_ADDR_RANGE_TABLE in the uber_pkg
package. The range of this constant is controlled by the MEM_BANKS constant defined in the adb3_target_inc_pkg
package.

Note: Reads of undefined areas of the address space retur data consisting of OXDEADCODE. Writes to
undefined areas have no effect.

5.5.4.5.4 On-Board Memory Bank OCP Multiplexors

Items 4,5, 6 and 7 in Figure 20 are instances of adb3_ocp_mux_nb whose purpose is to enable multiple OCP
channels to access the the on-board memory banks:

« Direct Slave on-board memory OCP channel (On-Board Memory splitter secondary OCP channels 0 to 3

« On-board memory application OCP channels (On-Board Memory Application Block)

. DMA OCP channel 0 (DMA channel 0 splitter secondary OCP channels 1 to 4)

5.5.4.6 BRAM Block

This block is _bram.vhd and contains a RAM composed of
BIockRAM primitives. The lolluwlng agents can read and write BRAM via the OCP switching block:

- The Direct Slave OCP channel, via the BRAM access window.
. DMA channel 0, using the BRAM address range in Table 82
« Any other DMA channel, where the BRAM block is aliased throughout the entire OCP address space.

Figure 21 shows the BRAM block and its associated part of the OCP switching block.

Example HDL FPGA Designs Page 109
AD-UG-0004 Alpha Data Parallel Systems Ltd

ADMXRC Gen 3 SDK 1.4.0 User Guide
’ALF“‘ DATA (V1.5 - 24th August 2011)

[M-
003 [or own ocro rav
— oo [er o ocrorav

a3 ocp mux o> a3 cp simple bus 1>

sram_singe wap

—————— [™

ownocez

ol amaswicn bl bram

Figure 21: Uber BRAM Block Diagram

Page 110 Example HDL FPGA Designs
AD-UG-0004

Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.4.0 User Guide.

(VL5 - 241h August 2011) @ALPHA DATA

An instance of adb3_ocp_simple_bus_if_nb is used, together with BlockRAM primitives, to implement this block

Awrapper for a Virtex-6 BlockRAM called bram_single_wrap, by
bram_single_wrap.vhd is instantiated multiple times to create a 512 KiB RAM.

The address to bram_single_wrap is replicated and re-timed to improve timing

5.5.4.7 On-Board Memory Interface Block

The on-board memory interface block is implemented by the bik_mem_if block which is board dependent.
Table 83 lists the available variants:

Model Filename relative to

ADM-XRC-6TL _mem_if_6tl.vhd
ADM-XRC-6T1 admxre6ti/blk_mem_if_6t1.vhd
ADM-XRC-6TGE admxre6tge/blk_mem_if_6tge.vhd
ADM-XRC-6TADVS _mem_if_6tadv8.vhd

Table 83: Available Variants of bik_mem_if Block

The blk_mem_if block instantiates a memory interface for each bank of on-board memory. The following agents can
read and write on-board memory banks via the OCP switching block:

« Direct Slave OCP channel, via the on-board memory access window.

« DMAchannel 0, using the appropriate address range in Table 82.

+ On-board memory application block.

The number of memory interface banks is defined by the MEM_BANKS constant in the adb3_target_i
package.

c_pkg

The number of DDR3 SDRAM interfaces is defined by the DDR3_BANKS constant in the adb3_target_inc_pkg
package.
For boards which are fitted only with DDR3 SDRAM, for example the ADM-XRC-6T1, DDR3_BANKS is equal to
MEM_BANKS. This arrangement is subject to change, should support for models with on-board memory other than
DDR3 SDRAM be added to the SDK,

Figure 22 shows the on-board memory interface block and its associated part of the OCP switching block

Example HDL FPGA Designs Page 111
AD-UG-0004 Alpha Data Parallel Systems Ltd

@ALPHA DATA

ADM-XRC Gen 3 SDK 1.4.0 User Guide
(VLS - 24th August 2011)

osmanoce <

o3 0cp_soi_nb

13.0cp_mur 1t

3. ocp_ocp20r3.1.

Memapp 0ce1

oorzfe— e fe | o]
— oo ey
153 ocp mu 0

ooRa G core

195 ocp ocozaars o

o

T=—

1A ADOR_FANGE TABLE
ik dma_swien

a3 it ook

w153 0cp_ocoraars o

a3 it ook

e 1

P
ot

e ¢

Figure 22: Uber Memory Interface Block Diagram

Page 112

Alpha Data Parallel Systems Ltd.

Example HDL FPGA Designs
AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide

(VL5 - 24th August 2011) @ ALPHA DATA

For each bank of DDR3 SDRAM, this block instantiates a ddr3_if_bank component. In addition, this block contains
Togic common to all banks of DDR3 SDRAM such as reset logic and an IDELAYCTRL instance.

For each bank of DDR3 SDRAM running at 400MHz = 800MT/s, and 32-bits wide, the theoretical maximum transfer
rate is B0OMT/s x 4 = 3.2GBs. The actual transfer rate will be affected by DDRS housekeeping and the efficiency of the
Xilinx DDR3 MIG controller.

The status of the memory interfaces, which indicates whether or not training and initialisation was successful for each
bank, can be determined via the BANKx_STAT registers in the on-board memory register block.

5.5.4.8 On-Board Memory Application Block

This block is by _mem_app.vhd and is intended to contain code
that performs some useful function on the on-board memory banks.

In the Uber design as supplied by Alpha Data, the memory application is an FPGA-driven memory test. Therefore, it
instantiates one memory test block per bank of on-board memory, allowing some or all of the on-board memory banks
to be simultaneously tested. The advantage of the FPGA-driven memory test, over a host-driven memory test where
test data is generated and verified on the host and transferred via the Bridge, is that the FPGA-driven memory test is
faster and able to stress-test the memory subsystem by operating all banks simultaneously.

The memory test block is by _apps/blk_mem_testvhd.

Note: As this block has access to all banks of on-board memory, it is suitable for prototyping processing
algorithms that operate on large amounts of data. Users are therefore encouraged to replace the logic in
this block with their own application.

5.5.4.9 ChipScope Connection Block (optional)

This block optionally instantiates logic that enables several ADB3 OCP channels to be monitored using Xilinx
ChipScope. When the CHIPSCOPE_ON constant in hdl/vhdl/examples/uber/uber.vhd is true, ChipScope logic is
instantiated. Refer to blk_chipscope for a functional description.

Note: Before performing the first bitstream build of Uber with CHIPSCOPE_ON set to true, the ChipScope
ILA core chipscope_ila.ngc and ICON core chipscope_icon.ngc must be generated using the script
gen_chipscope.tcl. Refer to Xilinx ChipScope Core Generation (ICON/ILA) for details.

5.5.4.10 Design Package (uber_pkg)

The package uber_pkg defines types, constants, and functions which are used by the Uber example FPGA design.

Defininitions are as follows:

Direct slave interface memory map constants

« Memory map sections base address constants (type adb3_ocp_addr_s).

« Memory map sections mask address constants (type adb3_ocp_addr_s).

* Memory map sections range constants (type adb3_ocp_addr_range_t).

« Memory map address range table constant DS_ADDR_RANGE_TABLE (type
adb3_ocp_addr_range._table_t)).

« Register memory map sections base address constants (type adb3_ocp_addr_s).

+ Register memory map sections mask address constants (type adb3_ocp_addr_s).

« Register memory map sections range constants (type adb3_ocp_addr_range._t).

« Direct slave memory map address range table constant DS_REG_RANGE_TABLE (type
adb3_ocp_addr_range_table_t)

Example HDL FPGA Designs Page 113
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADMXRC Gen 3 SDK 1.4.0 User Guide
’ALF“‘ DATA (v1.5 - 24th August 2011)

+ Register memory map sections register offsets (type natural).
« Register memory map sections register addresses (type adb3_ocp_addr_s).

DMA interface memory map constants

« Memory map sections base address constants (type adb3_ocp_addr_s)

«+ Memory map sections mask address constants (type adb3_ocp_addr_s).

« Memory map sections range constants (type adb3_ocp_addr_range_t)

« Full memory map address range table constant DMA_FULL_RANGE_TABLE (type
adb3_ocp_addr_range_table._t)

« Active memory map address range table constant DMA_ADDR_RANGE_TABLE (type
adb3_ocp_addr_range._table_t)

« On-board RAM memory map address range table constant DMA_RAM_RANGE_TABLE (type
adb3_ocp_addr_range._table._t)

Clock frequency measurement types

+ clk_vec_sel_t. Type definition for clock select index vector.

. clk_vec_range_t. Type definition for clock select index number.

+ mgt_clk_pin_t. Type definition for all MGT double ended clock inputs.

+ mgt_clk_buf_t. Type definition for all MGT single ended buffered clock inputs.

« clk_vec_t. Type definition for all internal clocks/external clock inputs.

« clk_vec_stat_t. Type definition for measurement status for all internal clocks/external clock inputs.

+ clk_vec_freq_t. Type definition for measurement frequency for all internal clocks/external clock inputs.

Clock frequency measurement constants

« Assignment of an index vector (type clk_vec_sel_t) to all internal/external clocks
« Assignment of an index number (type clk_vec_range_t) to all internalexternal clocks.

Memory interface array types

+ mem_if_stat_array_t. Amay of all memory interface bank status vectors.

« mem_if_err_array_t. Array of all memory interface bank error vectors.

+ mem_if_rdy_array_t Aray of all memory interface bank ready signals.

+ mem_if_debug_array_t. Array of all memory interface bank debug vectors.

Memory application array types

« mem_app_go_array_t. Array of all memory application bank go signals.

« mem_app_offset_array_t. Array of all memory application bank test offset vectors.

« mem_app_length_array_t. Array of all memory application bank test length vectors.

« mem_app_done_array_t. Array of all memory application bank done signals

« mem_app_err_array_t. Array of all memory application bank error signals.

« mem_app_err_ph_array_t Array of all memory application bank error phase vectors.

« mem_app_err_addr_array_t. Array of all memory application bank error address vectors

Component definitions

Page 114 Example HDL FPGA Designs
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide.

(VLS - 24th August 2011)

@ ALPHA DATA

blk_clocks
blk_direct_slave
blk_ds_simple_test
blk_ds_clk_read
blk_ds_io_test
blk_ds_int_test
blk_ds_mem_reg
blk_ds_info
blk_dma_switch
blk_bram
blk_mem_if
blk_mem_app
blk_chipscope
blk_clock_freq

Example HDL FPGA Designs
AD-UG-0004

Alpha Data Parallel Systems Ltd

Page 115

@ALPHA DATA

ADM-XRC Gen 3 SDK 1.4.0 User Guide
(V1.5 - 24th August 2011)

5.5.5 Testbench Description

The uber example FPGA design testbench tests operation of the uber example FPGA design.

It exists in two variants, one using Alpha Data MPTL interface IP (PCle in bridge FPGA), the other using Alpha Data
PCle interface IP (PCle in target FPGA). Table 84 lists the available variants:

Model Interface | Filename relative to hdlivhdl/examples/simple/common/
ADM-XRC-6TL MPTL | test_ubervhd

ADM-XRC-6T1 MPTL | test_ubervhd

ADM-XRC-6TGE MPTL | test_ubervhd

ADM-XRC-6TADV8 | PCle test_uber_pcie.vhd

Table 84: Available Variants of the Uber Example Design Testbench

It consists of the following functions:

. Clock generation and test for the testbench and the Unit Under Test (UUT).

« The Unit Under Test (UUT), which is the one and only instance of the top-level uber block.

« Bridge MPTL interface, using an instance of mptl_if_bridge_wrap or, host PCle interface, using an
instance of peie_if_host_wrap.

« OCP channel probes, using instances of adb3_ocp_transaction_probe.

+ Stimulus generation and verification.

+ On-board memory simulation models.

Figure 23 shows the testbench and main elements of the uber FPGA design using MPTL interface IP.
Figure 24 shows the testbench and main elements of the uber FPGA design using PCle interface IP.
Figure 25 shows the hierarchy of the uber testbench using MPTL interface IP.

Figure 26 shows the hierarchy of the uber testbench using PCle interface IP.

The testbench includes the following packages:

« ADB3 OCP profile definition package (adb3_ocp)

+ ADB3 OCP testbench package (adb3_ocp_tb_pkg)

+ ADBS target types definition package (adb3_target_types_pkg)

« ADB3 target include package (adb3_target_inc_pkg)

+ ADB3 target testbench include package (adb3_target_tb_inc_pkg)

+ ADBS target testbench package (adb3_target_tb_pkg)

« Testbench package (uber_tb_pkg)

Figure 16 shows the design package dependencies.

Page 116 Example HDL FPGA Desi
Alpha Data Parallel Systems Ltd AD-UL

ans

1G-0004.

ADM-XRC Gen 3 SDK 1.4.0 User Guide

(VL5 - 24th August 2011)

@ALPHA DATA

s

e
est e e ot oidge o st b arect save

s e St i
s
e e e [T -
ouocefe—
k0

e
.ok [e ex oce
e mon ek e ex

P ek

a3
|

ama_como
e puss

testuber_probes G L bl mom_sop.
S o
arger k. o
et mpa_ ek
gt ok
T ol ama_switen bl men it

o] ek vt pass

DsBRa oce [

19ih VHOL ecrdype et nadb_aget. ik <—» DiteciSiave OCP < On-board memary OCP

Ke¥* == Racord defntions cepend on board type. <~ omaOCP +—> Direct Master OCP

Figure 23: Uber Design Testbench and Top Level Block Diagram (MPTL)

Example HDL FPGA Designs

AD-UG-0004

Alpha Data Parallel Systems Ltd.

Page 117

@ALPHA DATA

ADM-XRC Gen 3 SDK 1.4.0 User Guide
(VLS - 24th August 2011)

s
e
est e e pee it host wrap I b arect save
v gt T
st ube FEVTT >
25 owoce|e—
oo ot
et b ama. Crides
T ot o s i ol bram
=L e =
comp - —fofoee
g e mon ek
testuber_probes G bl mom_sop.
S
e I
gt ook
Corka ol ama_switen bl men it
o] ek vt pass i v men.i
RRERARS Lestuvermem
« 19ih VHOL ecrdype et nadb_aget. ik <—» DiteciSiave OCP < On-board memary OCP
‘©: =" Record defntions cepend on board type.

<~ omaOCP +—> Direct Master OCP

Figure 24: Uber Design Testbench and Top Level Block Diagram (PCle)

Page 118

Example HDL FPGA Designs
Alpha Data Parallel Systems Ltd. AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide
(v1.5 - 24th August 2011) @ ALPHA DATA

[E—
oo chs

5

Uber example design and testbench

Directslave (DS) OCP test <Boad MPTL rerce= e |

<Bosta PTL e

Direct master (OM) OCP fest
Direct memory access (DMA) OCP test

Alpha Data MPTL nterace 1P

Alpha Data MPTL interace core

OCP wansacion checking VHDL netist

EoooooEO?

On-board memory models

Figure 25: Uber Design Testbench Hierarchy (MPTL)

Example HDL FPGA Designs Page 119
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.4.0 User Guide

@ALPHA DATA (V15 - 24th August 2011)

[E—
oo chs

‘ Jr— ‘

I

'OCP only simulation
Uber example design and testbench

P —
Directsave (D) OCP test FEE
Direct master (OM) OCP fest

Bitstream buld (ngc core)

Direct memory access (DMA) OCP test
Alpha Data PCle interace IP
Alpha Data PCle interface core

OCP wansacion checking

EoooooEO?

On-board memory models

Figure 26: Uber Design Testbench Hierarchy (PCle)

Page 120 Example HDL FPGA Designs
Alpha Data Parallel Systems Ltd. AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide

(VL5 - 24th August 2011) @ ALPHA DATA

5.5.5.1 Clock Generation and Test
The testbench uses the test_board_clks block to implement this function.
Target Clocks

+ ltgenerates the clks_in and clks_mgt_in clocks according to which board is selected. These clocks drive the
unit under test (uber).

« clks_inis asignal of record type clks_in_t that drives the UUT's top-level clks._in port, and is a bundle of all
of the non-MGT-related clock inputs. Itis generated in a board-specific way, depending on the package
adb3_target_inc_pkg. Among others, it contains the 200 MHz reference clock from which the main clocks in
Uber are derived using its Clock and Reset Generation block

+ clks_mgt_inis a signal of record type clks. _t that drives the UUT's top-level clks_magt_in port, and is

abundle of all of the MGT-related clock mpuls Itis generated in a board-specific way, depending on the

package adb3_target_inc_pkg.

Ittests the cliks_out clock frequency according to which board is selected. These clocks are generated by the

unit under test (uber). The test result is indicated by the clks_out_pass output.

Bridge MPTL Interface Clock

« ltgenerates the bridge_mptl_clk clock according to which board is selected. This clock drives the mptl_clk
differential clock input on the bridge MPTL interface block.

Bridge OCP Clock (MPTL)

+ Itgenerates the bridge_ocp_clk clock according to which board is selected. This clock drives the ocp_clk_in
clock input on the bridge MPTL interface block.

« This clock is only used during full MPTL simulation. Refer to bridge MPTL interface for details.

5.5.5.2 Bridge MPTL Interface
The MPTL (Multiplexed Packet Transport Link) is the data channel which connects the Bridge and Target FPGASs.
This block wraps up the bridge MPTL interface core, instantiating an OCP to MPTL interface appropriate to the board in
use. The purpose of the block is to connect the Direct Slave and DMA OCP channels within the FPGA testbench to the
MPTL. Refer to the component mptl_if_bridge_wrap for details.
OCP-only simulation
« The testbench Direct Slave and DMA OCP m2s signals are routed directly via the mptl_if_bridge_wrap
mptl_b2t signals to the mptl_if_target_wrap UUT Direct Slave and DMA OCP m2s signals.
+ The UUT Direct Slave and DMA OCP s2m signals are routed directly via the mptl_if_target_wrap mpt_t2b
signals to the mptl_if_bridge_wrap testbench Direct Slave and DMA OCP s2m signals.
« Inother words, the stimulus is applied directly to the Target FPGA's OCP channels, and the response is
returned directly to the testbench's OCP channels.
The testbench OCP clock ocp_clk_out path is shown in Figure 23 as the route consisting of points 1, 2, 3, 4

Full MPTL simulation

‘The testbench Direct Slave and DMA OCP m2s signals are input to the mptl_if_bridge_wrap.
+ The UUT Direct Slave and DMA OCP m2s signals are output from the mptl_if_target_wrap.

Example HDL FPGA Designs Page 121
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.4.0 User Guide

@ALPHA DATA (V15 - 24th August 2011)

« Apart from the packetisation, multiplexing and demultiplexing that occurs in the MPTL interfaces (both Bridge
and Target), the arrangement is transparent. In other words, behaviour is as if the stimulus were applied
directly to the Target FPGA's OCP channels.

+ The testbench OCP clock ocp_clk_out path is shown in Figure 23 as the route consisting of points 5, 6 and 7.

The mptl_if_bridge_wrap output mpti_online indicates that the MPTL interface is active and stable. It is used by the
testbench to generate the mptl_online_long signal which it monitors. Simulation will be terminated with an error
message if it becomes inactive. This may occur if,for example, a protocol error arises on the MPTL signals during a full
MPTL simulation.

The mptl_if_bridge_wrap output dma_abort indicates the status of the UUT's dma_abort signal.

5.5.5.3 Host PCle Interface

The PCle (PCI express) link is the data channel which connects the host and the target FPGA.

This block wraps up the host PCle interface core, instantiating an OCP to PCle interface appropriate to the board in

use. The purpose of the block s to connect the Direct Slave and DMA OCP channels within the FPGA testbench to the

PCle. Refer to the component mptl_if_bridge_wrap for detals.

OCP-only simulation

« The testbench Direct Slave and DMA OCP m2s signals are routed directly via the pcie_if_host_wrap
peie_h2t signals to the pcie_if_target_wrap UUT Direct Slave and DMA OCP m2s signals.

« The UUT Direct Slave and DMA OCP s2m signals are routed directly via the pcie_if_target_wrap pcie_t2b
signals to the pcie_if_host_wrap testbench Direct Slave and DMA OCP s2m signals.

« Inother words, the stimulus is applied directly to the Target FPGA's OCP channels, and the response is
returned directly to the testbench's OCP channels.

« The testbench OCP clock ocp_clk_out path is shown in Figure 24 as the route consisting of points 1, 2, 3, 4
and 5

The pcie_if_host_wrap output dma_abort indicates the status of the UUT's dma_abort signal.
5.5.5.4 OCP Channel Probes
“This function monitors the Direct Slave and DMA OCP channels for addressing/transaction problems. It generates

warningsferrors f it detects an illegal OCP operation. A probe eror will result in a 'FAILED" Uber simulation result. It
uses the component adb3_ocp_transaction_probe.

5.5.5.5 Stimulus Generation and Verification
This function consists of a set of processes that generate stimulus and verify the results of the simulation via the
mptl_if_bridge_wrap instance,

5.5.5.5.1 Non-OCP Functions
The top level of the testbench verifies a few features of the UUT (the Uber design) that cannot be tested by application
of OCP stimulus. These tests are explained in the next few subsections.

5.5.5.5.1.1 Clock Output Test

Note: all filenames mentioned in this section are relative to the path hdl/vhdl/examples/uber/common/.

The process clk_out_p continually monitors the clks_out_pass output from the test_board_clks block. This block
measures the frequencies of the bundle of clocks clks_out driven by the UUT and compares them with expected
frequencies defined by CLKS_OUT_FREQ in the uber_th_pkg package.

Page 122 Example HDL FPGA Designs
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide

(VL5 - 24th August 2011) @ ALPHA DATA

Test complete and passfail indications are returned using the top_comp.clk_out_complete and
top_pass.clk_out_passed signals respectively.

Results from this test are only reported on failure.

5.5.5.5.1.2 MPTL GPIO Bus Test (MPTL)

Note: all filenames mentioned in this section are relative to the path hdlivhdllexamples/uber/common.

The process mptl_gpio_p verifies that the general purpose I/O (GPIO) pins between the Bridge and Target FPGAS
behave as expected. The UUT (top-level of uber) loops back these GPIO pins so that whatever value is driven into the
top-level port gpio_b2t in uber.vhd is driven out of the gpio_t2b port.

The testbench drives the constant value X"FLD0" onto the gpio_b2t port of the UUT, so the process mptl_gpio_p
verifies that the UUT drives the same value out of ts gpio_t2b port

Test complete and pass/fail indications are retumned using the top_comp.mpt_gpio_complete and
top_pass.mptl_gpio_passed signals respectively.

Example results from this test are documented in MPTL GPIO bus test results.

5.5.5.5.1.3 DMA Abort Bus Test

Note: all filenames mentioned in this section are relative to the path hdlivhdlfexamples/uber/common.

The process dma_abort_p verifies that the Target FPGA never attempts to abort a DMA transfer. If any bit of the signal
dma_abort driven by the mptl_if_bridge_wraplpcie_if_host_wrap is asserted, it indicates that the UUT is attempting
10 abort a DMA transfer. This should never happen by design. The process therefore verifies that allbits of the
dma_abort signal are always zero.

Test complete and pass/fail indications are retured using the top_comp.dma_abort_complete and
top_pass.dma_abort_passed signals respectively.

Resuls from this test are only reported on failure.

5.5.5.5.2 Direct Slave OCP Channel

Note: all filenames mentioned in this section are relative to the path hdlivhdllexamples/uber/common.

An instance of the test_uber_ds component, implemented in test_uber_ds.vhd, provides test stimulus to and verifies
test results from the UUT's OCP Direct Slave channel.

test_uber_ds uses the adb3_ocp_sim_write_reg32 and adb3_ocp_sim_read_reg32 procedures to perform 32-bit
register writes and reads using ADB3 OCP. These procedures are defined in the ADB3 OCP testbench package
(adb3_ocp_tb_pkg). The adb3_ocp_sim_read_reg32 procedure is blocking, so all OCP response data must be
retured before it completes.

Note: 32-bit Register addresses used by the testbench are byte addresses which should be 4-byte aligned.
ADB3 OCP protocol addresses are also byte addresses, but as the data is 128-bits wide, they are 16-byte
aligned.

test_uber_ds performs several tests, which are detailed in the following subsections.

5.5.5.5.2.1 Simple Test
This test exercises the Simple Test Register Block as follows:
1. Writes the 32-bit value OXCAFEFACE to the DATA register.

2. Reads back the DATA register and compares it with the expected value OXECAFEFAC. If the expected and
actual values do not match, the test is considered a failure.

Example HDL FPGA Designs Page 123
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.4.0 User Guide

@ALPHA DATA (V15 - 24th August 2011)

Test complete and passfail indications are returned using the ds_comp.simple_complete and
ds_pass.simple_passed signals respectively.

Example results from this test are documented in simple test results.

5.5.5.5.2.2 Clock Frequency Measurement Test
This test exercises the Clock Frequency Measurement Register Block as follows:
1. Clears the "measurement valid" flags for all clocks whose frequencies can be measured, by writing
0xB0000000 to the CTRLISTAT register.
2. Selects pll_reg_clk by writing O (corresponding to PLL_REG_CLK_SEL) to the SEL register.
3. Waits for a measurement to be completed, by polling until bit 31 of the CTRL/STAT register is 1.
4. Reads the FREQ register and compares it with the expected frequency for pli_reg_clk of 80 MHz

The test then performs similar steps for pll_pri_clk, which is the main OCP clock in Uber:

5. Selects pll_pri_clk by writing 1 (corresponding to PLL_PRI_CLK_SEL) to the SEL register.

6. Waits for a measurement to be completed, by polling until bit 31 of the CTRL/STAT register is 1.
7. Reads the FREQ register and compares it with the expected frequency for pll_pri_clk of 200 MHz.

The test then performs similar steps for TEST_MGT_CLK, which is defined in the package uber_tb_pkg)
8. Selects the TEST_MGT_CLK clock by writing TEST_MGT_CLK_SEL to the SEL register.
9. Waits for a measurement to be completed, by polling until bit 31 of the CTRL/STAT register.

10. Reads the FREQ register (see Table 22) and compares it with the expected frequency
TEST_MGT_CLK_FREQ.

Lastly, the test checks the frequency of the TEST_CUS_CLK clock, which is defined in the package uber_tb_pkg:
11, Selects the TEST_CUS_CLK clock by writing TEST_CUS_CLK_SEL to the SEL register.
12. Waits for a measurement to be completed, by polling until bit 31 of the CTRLISTAT register.

13. Reads the FREQ register (see Table 22) and compares it with the expected frequency
TEST_CUS_CLK_FREQ.

Note: When measured frequencies are compared with expected frequencies, they are permitted a small margin of error,
since they are subject to quantization error due to the small number of reference clock cycles over which the
measurement is performed (so that the simulation does not take excessive real time to complete). If the expected and
actual values do not match to within the error margin, the test is considered a failure.

Test complete and pass/fail indications are returned using the ds_comp.clock_complete and ds_pass.clock_passed
signals respectively.

Example results from this test are in clock frequency test results.

5.56.5.5.2.3 XRM GPIO Test

This test exercises with the XRM-related registers of the GPIO Test Register Block. This test section is enabled by the

XRM_GPIO_WIDTH constant defined in the package adb3_target_inc_pkg. The test procedure is as follows:

1. Writes the 32-bit value 0x76543210 to the XRM_GPIO_DD_DATAO register. This sets the value to be driven
onto the dd_p(15:0) and dd_n(15:0) XRM GPIO pins, but at this point these pins are still ristated
(high-impedance).

2. Wiites the 32-bit value 0x00000000 to the XRM_GPIO_DD_TRI register. This allows the value written in the
previous step to be driven onto the dd_p(15:0) and dd_n(15:0) XRM GPIO pins.

Page 124 Example HDL FPGA Designs
Alpha Data Parallel Systems Ltd. AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide
(VL5 - 24th August 2011)

@ALPHA DATA

Reads the XRM_GPIO_DD_DATAI register, to get the actual logic levels on the dd_p(15:0) and dd_n(15:0)
XRM GPIO pins. It then compares the actual value with the expected value of 0x76543210. If the expected and
actual values do not match, the test is considered a failure.

Writes the 32-bit value OXFFFFFFFF to the XRM_GPIO_DD_TRI register in order to stop driving the dd_p
(15:0) and dd_n(15:0) XRM GPIO pins.

Section complete and pass/fail indications are returned using the ds_comp.frontio_complete and
is_pass.frontio_passed signals respectively.

Example results from this test are documented in XRM GPIO test results.

5.5.5.5.2.4 Pn4/Pné GPIO Test

This test exercises with the Pnd-related and Pn6-related registers of the GPIO Test Register Block. This test section is
enabled by the PN4_GPIO_WIDTH and PN6_GPIO_WIDTH constants defined in the package adb3_target_inc_pkg,
First, the Pnd-related registers are exercised as follows:

1

Writes the 32-bit values 0XAABBCCDD and 0x55443322 to the PN4_GPIO_P_DATAO and
PN4_GPIO_N_DATAO registers, respectively. This sets the values to be driven onto the gpio_p and gpio_n
Pnd GPIO pins, but at this point these pins are stil ristated (high-impedance).

Writes the 32-bit value 0x00000000 to both the PN4_GPIO_P_TRI and PN4_GPIO_N_TRI registers. This
allows the values written i the previous step to be driven onto the gpio_p and gpio_n Pn4 GPIO pins.
Reads the PN4_GPIO_P_DATAI and PN4_GPIO_N_DATAI registers, to get the actual logic levels on the
gpio_p and gpio_n Pnd GPIO pins. It then compares the actual values with the expected values of
OXAABBCCDD and 0x55443322 respectively. If the expected and actual values do not match, the test is
considered a failure.

Note: If the constant PN4_GPIO_WIDTH from the package adb3_target_inc_pkg is less than 32, the top
32-PN4_GPIO_WIDTH bits of each value are not used in the comparison.

Writes the 32-bit value OxFFFFFFFF to both the PN4_GPIO_P_TRI and PN4_GPIO_N_TRI registers in order
o stop driving gpio_p and gpio_n Pn4 GPIO pins.

The second part exercises with the Pn6-related registers of the GPIO Test Register Block as follows:

5.

Writes the 32-bit values 0xAAAABBBB and 0xCCCCDDDD to the PN6_GPIO_MS_DATAO and
PN6_GPIO_LS_DATAO registers, respectively. This sets the values to be driven onto the Pné GPIO pins, but
atthis point these pins are still tristated (high-impedance).

Writes the 32-bit value 0x00000000 to both the PN6_GPIO_MS_TRI and PN6_GPIO_LS_TRI registers. This
allows the values written in the previous step to be driven onto the Pné GPIO pins.

Reads the PN6_GPIO_MS_DATAI and PN6_GPIO_LS_DATAI registers, to get the actual logic levels on the
Pn6 GPIO pins. It then compares the actual values with the expected values of OXAAAABBBB and
OXCCCCDDDD respectively. If the expected and actual values do not match, the test s considered a failure.
Note: Depending on the constant PN6_GPIO_WIDTH from the package adb3_target_inc_pkg some of the
bits of the actual and expected values may be unused in the comparison. For example, if PN6_GPIO_WIDTH
is 46, the top 18 bits of the value read from PN6_GPIO_MS_DATAI are unused.

Writes the 32-bit value OXFFFFFFFF to both the PNG_GPIO_MS_TRI and PN6_GPIO_LS_TRI registers in
order to stop driving the Pn6 GPIO pins.

Section complete and passffail indications are returned using the ds_comp.reario_complete and
ds_pass.reario_passed signals respectively.

Example results from this test are documented in Pn4/Pn6 GPIO test results,

Example HDL FPGA Designs Page 125

AD-UG-0004

Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.4.0 User Guide

@ALPHA DATA (V15 - 24th August 2011)

5.56.56.5.2.5 Interrupt Test
This test exercises the Interrupt Test Register Block. The DO_INTERRUPT_NUM constant is defined in
test_uber_ds.vhd. Test operation can be expressed in pseudocode as the following algorithm:
1. Unmask all interrupts by writing 0 to the MASK register.

2. Read back the MASK register and verify that it has the expected value of 0. If the expected and actual values
do not match, the test is considered a failure.

3. Wiite the value OXFFFFFFF to the COUNT register.
4. Verify that the COUNT register has the expected value OXFFFFFFF.
5. For nin 0 to DO_INTERRUPT_NUM-1 do

a. Generate interrupt n, by writing the value 2% to the SET register.

b, Wait for the interrupt signal linti_I (MPTL)/interrupt (PCle) to be asserted. This is a falling-edge sensitive
signal in the testbench that is driven low by the top-level port of the UUT whenever at least one interrupt is
active in the CLEAR/STAT register and also unmasked by the MASK register.

c. Sample the CLEAR/STAT register to determine which interrupt bit/bits is/are active.

d. Clear the active interrupt(s) by writing the sampled value back to the CLEAR/STAT register

€. Force the linti_I (MPTL)interrupt (PCle) signal high (deasserted) for a clock cycle by writing a dummy
value to the ARM register.

6. enddo
7. Verify that the CLEARISTAT register now has a value of 0, since all interrupts should have been cleared. If the

value is non-zero, the test is considered a failure.

Steps c.d, and e model what an interrupt service routine (ISR) in a device driver might do. Step e is not strictly
necessary in this case, because this test exercises only one interrupt source ata time, but it is included to model what
an ISR would do. In a real application, multiple interrupt sources might become active at any time, including during the
time taken for an ISR to service an interrupt. Forcing linti_I (MPTL)/interrupt (PCle) high for one cycle ensures that the
newly active interrupt source results in another falling edge.

Test complete and pass/fail indications are retured using the ds_comp.int_complete and ds_pass.int_passed
signals respectively.

Example results from this test are documented in Interrupt test results,

5.5.5.5.2.6 Informational Register Test

This test verifies that the Informational Register Block returns the expected values when read:

1. Reads the DATE register and verifies that it is equal to the constant TODAYS_DATE from the autogenerated
package today_pkg. If not, the test is considered a failure.

2. Reads the TIME register and verifies that it is equal to the constant TODAYS_TIME from the autogenerated
package today_pkg. If not, the test is considered a failure,

3. Reads the BRAM_BASE register and verifies that it is equal to the constant BRAM_ADDR_BASE from the
package uber. If not, the test is considered a failure.

4. Reads the BRAM_MASK register and verifies that it is equal to the constant BRAM_ADDR_MASK from the
package uber. If not, the test is considered a failure.

5. Reads the MEM_BASE register and verifies that it is equal to the constant RAM_WIN_ADDR_BASE from the
package uber. If not, the test is considered a failure.

6. Reads the MEM_MASK register and verifies that it is equal to the constant RAM_WIN_ADDR_MASK from the
package uber. If not, the test is considered a failure.

Page 126 Example HDL FPGA Designs
Alpha Data Parallel Systems Ltd. AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide
(VL5 - 24th August 2011)

@ALPHA DATA

Reads the MEM_BANKS register and verifies that it is equal to the constant MEM_BANKS from the package
adb3_target_inc_pkg. If not, the test is considered a failure.

Reads the SDK_VER register and verifies that it is equal to the constant SDK_VERSION from the
autogenerated package today_pkg. If not, the test is considered a failure.

Test complete and pass/fail indications are retumned using the ds_comp.info_complete and ds_pass.info_passed
signals respectively.

Example results from this test are documented in informational register test results,

5.5.5.5.2.7 BRAM Test

This section exercises the BRAM Block by writing various values to it and reading them back. In the following test
cases, if the actual value read back is not equal to the expected value, the test s considered a failure:

1,

@

Writes the 32-bit word 0x2389EF45 to the lowest address in the BRAM Block. This address is the value of the
constant BRAM_ADDR_BASE in the uber_pkg package. This value is then read back and compared with the
expected value (the same data that was written).

Writes 16 bytes consisting of the 32-bit words { OXEF123456, ... etc. ..., 0x56789ABC } to the lowest address in
the BRAM Block, i.e. BRAM_ADDR_BASE. This value is then read back and compared with the expected
value (the same data that was written).

Writes 32 bytes consisting of the 32-bit words { OXABCDEF12, .. etc. ..., OXFEDCBA9S } to the lowest address
in the BRAM Block, i.e. BRAM_ADDR_BASE. This value is then read back and compared with the expected
value (the same data that was written).

Writes the 32-bit word 0x369CF258 to an address that is 4 bytes below the lowest address in the BRAM Block,
i.e. BRAM_ADDR_BASE-4. This value is then read back and compared with the expected value, which is
OXDEADCODE (since the address used does not belong to any Direct Slave address range decoded by the
Uber design). This verifies that the lower address boundary of the BRAM Block is as expected.

Writes the 32-bit word 0x258BE147 to an address that is just above the highest address in the BRAM Block,
i.e. BRAM_ADDR_BASE+BRAM_ADDR_MASK-+1. This value is then read back and compared with the
expected value, which is OXDEADCODE (since the address used does not belong to any Direct Slave address
range decoded by the Uber design). This verifies that the upper address boundary of the BRAM Block is as
expected.

Writes 32 bytes consisting of the 32-bit words { OXABCDEF12, ... etc. ..., OXFEDCBAY8 } to an address that is
just above the highest address in the BRAM Block, i.e. BRAM_ADDR_BASE+BRAM_ADDR_MASK+1. This
value is then read back and compared with the expected value, which is 8 32-bit words of OXDEADCODE
(since the address used does not belong to any Direct Slave address range decoded by the Uber design). This
Verifies that the upper address boundary of the BRAM Block is as expected.

Writes the 32-bit word 0x147ADO36 to an address that is 4 bytes below the highest address in the BRAM
Block, i.e. BRAM_ADDR_BASE+BRAM_ADDR_MASK-3. This value is then read back and compared with
the expected value (the same data that was witten).

Test complete and pass/fail indications are returned using the ds_comp.bram_complete and ds_pass.bram_passed
signals respectively.

Example results from this test are documented in BRAM test results.

5.5.5.5.2.8 On-Board Memory Test

This test exercises several subsystems of the Uber design, including Direct Slave on-board memory access, the
memory application and on-board memory. To exercise the on-board memory bank OCP multiplexors, the test
programs the memory application to perform a short test of memory bank 1, while the test itself concurrently reads.
and writes memory locations in a different region of bank 1

Example HDL FPGA Designs Page 127

AD-UG-0004

Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.4.0 User Guide

@ALPHA DATA (V15 - 24th August 2011)

This test section is enabled by the DO_RAM_TEST constant defined in the package uber_tb_pkg.
The FPGA-driven memory test is enabled by the DO_INT_RAM_TEST constant defined in the package uber_tb_pkg
This applies to steps marked with **

The steps performed by this test can be expressed in pseudocode as the following algorithm:

1. Pollthe BANK1_STAT register unti it indicates (via bit 3) that initialisation of memory bank 1 is complete.

2. Display the value of the BANK1_STAT register on the simulator console.

3. * Setthe BANK1_OFFSET register to 0xOOFFFEFF, which is the value of the constant RAM_TEST_START in
test_uber_ds.vhd. This is the address in bank 1 (as a 16-byte word index) at which the FPGA-driven memory
test will begin testing.

* Display the value of the BANK1_OFFSET register on the simulator console.

* Set the BANK1_LENGTH register to 0x0000FF, which s the value of the constant RAM_TEST_LEN in
test_uber_ds.vhd. This is the number of 16-byte words, beginning at the BANK1_OFFSET address in bank 1,
that the FPGA-driven memory test willtest during each phase, minus 1. The value 0x0000FF therefore results
in 256 16-byte words being tested.

* Display the value of the BANK1_LENGTH register on the simulator console.

** Wite 0x00000100 to the BANK1_CTRL, which initiates the FPGA-driven memory test for bank 1.

Set the memory access window for accessing memory bank 1, by writing 1 to the DS_BANK register.
Display the value of the DS_BANK register on the simulator console.

10. Set the memory access window for accessing the bottom 2 MiB page of memory bank 1, by writing 0 to the
DS_PAGE register.

Display the value of the DS_PAGE register on the simulator console.

Write the 32-bit word 0x349AF0S6 to the botiom of the memory access window (the constant
RAM_WIN_ADDR_BASE in the uber_pkg package)

13. Read back the value just written, and compare it to the expected value of 0x349AF0S6. If the expected and
actual values are not equal, the test is considered a failure.

Set the memory access window for accessing page 127, by writing 0x0000007F to the DS_PAGE register.
0x0000007F is the value of the constant DS_WIN_RAM_PAGE_TOP in test_uber_ds.vhd.

Display the value of the DS_PAGE register on the simulator console.

Write the 32-bit word 0x47ADO369 to the top of the memory access window (RAM_WIN_ADDR_BASE+
RAM_WIN_ADDR_MASK-3).

17. Read back the value just written, and compare it to the expected value of 0x47ADO0369. If the expected and
actual values are not equal, the test is considered a failure.

Set the memory access window for accessing the bottom 2 MiB page, by writing 0 to the DS_PAGE register.
Display the value of the DS_PAGE register on the simulator console.

Write 96 bytes consisting of the 32-bit words { 0x12345678, ... etc. ..., 0x4321FEDC } to the bottom of the.
memory access window (RAM_WIN_ADDR_BASE). This is the case of an even-length burst (6 16-byte
words) at an even address (bit 4 of the OCP address is 0).

Read back the data just written, and compare it to the expected value (the same data that was written). If the
expected and actual values are not equal, the test is considered a failure.

Write 80 bytes consisting of the 32-bit words { 0x456789AB, .. etc. ..., 0xF1234567 } to the bottom of the
memory access window (RAM_WIN_ADDR_BASE). This is the case of an odd-length burst (5 16-byte
words) at an even address (bit 4 of the OCP address is 0).

Read back the data just written, and compare it to the expected value (the same data that was written). If the
expected and actual values are not equal, the test is considered a failure.

EIFS

oo o

e
B E

3

R
55

NoE e
R

5

N
R

N
8

Page 128 Example HDL FPGA Designs
Alpha Data Parallel Systems Ltd. AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide
(VL5 - 24th August 2011) @ ALPHA DATA

24. Wiite 32 bytes consisting of the 32-bit words { 0x789ABCDE, .. etc. ..., OXLFEDCBAS } to 16 bytes above the

bottom of the memory access window (RAM_WIN_ADDR_BASE+16). This is the case of an even-length

burst (2 16-byte words) at an odd address (bit 4 of the OCP address is 1).

Read back the data just written, and compare it to the expected value (the same data that was written). If the

expected and actual values are not equal, the test is considered a failure.

Write 64 bytes consisting of the 32-bit words { 0XB9ABCDEF, ... etc. ..., OXEDCBAJ87 } to 16 bytes above the

bottom of the memory access window (RAM_WIN_ADDR_BASE+16). This is the case of an even-length

burst (4 16-byte words) at an odd address (bit 4 of the OCP address is 1).

27. Read back the data just written, and compare it to the expected value (the same data that was written). I the

expected and actual values are not equal, the test is considered a failure.

Write 80 bytes consisting of the 32-bit words { OXABCDEF12, .. etc. ..., 0X6789ABCD } to 16 bytes above the

bottom of the memory access window (RAM_WIN_ADDR_BASE+16). This is the case of an odd-length

burst (5 16-byte words) at an odd address (bit 4 of the OCP address is 1).

Read back the data just written, and compare it to the expected value (the same data that was written). Ifthe

expected and actual values are not equal, the test is considered a failure.

Write the 32-bit word 0x45000000 to the bottom of the memory access window with byte enables 1000. This

exercises writing data on byte lane 3 (only) of the memory bank.

Write the 32-bit word 0x00AB000O to the bottom of the memory access window with byte enables 0100, This

exercises writing data on byte lane 2 (only) of the memory bank.

Write the 32-bit word 0x00000100 to the bottom of the memory access window with byte enables 0010. This

exercises writing data on byte lane 1 (only) of the memory bank.

33. Write the 32-bit word 0x00000067 to the bottom of the memory access window with byte enables 0001. This
exercises writing data on byte lane 0 (only) of the memory bank.

34. Read back the 32-bit word just written, and compare it to the expected value of 0x45ABO167. If the expected

and actual values are not equal, the test is considered a failure.

* Poll the BANK1_STAT register until it indicates (via bit 16) that the FPGA-driven memory test of bank 1 is

complete. f the last value read from BANK1_STAT indicates (via bit 23) that the FPGA-driven memory test

encountered an error, the test is considered a failure.

N
k]

»
3

N
8

N
3

@
8

8

@
8

@©
8

Test complete and pass/fail indications are returned using the ds_comp.ram_complete and ds_pass.ram_passed
signals respectively.

Example results from this test are documented in on-board memory test results.

5.5.5.5.3 DMA OCP Channels

Note: all filenames mentioned in this section are relative to the path hdlivhdi/examples/uber/common.

An instance of the test_uber_dma component, implemented in test_uber_dma_1ch_nb.vhd, provides test stimulus to
and verifies test results from the UUT's DMA OCP channels. The stimulus is actually applied in the form of OCP
commands and data to the Bridge MPTL interface, but apart from the packetisation, multiplexing and demultiplexing
that occurs in the MPTL interfaces (both Bridge and Target), the arrangement is transparent. In other words, it behaves
as if the stimulus were applied directly to the Target FPGA's DMA OCP channels.

test_uber_dma uses the adb3_ocp_sim_write, adb3_ocp_sim_read_cmd and adb3_ocp_sim_read_resp
procedures to perform DMA writes and reads using ADB3 OCP. These procedures are defined in the ADB3 OCP
testbench package (adb3_ocp_tb_pkg). The adb3_ocp_sim_read_cmd procedure is non-blocking, so it does not
wait for all OCP response data to be returned before it completes.

Example HDL FPGA Designs Page 129
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.4.0 User Guide
@ ALPHA DATA (V1.5 - 24th August 201)

Note: DMA addresses used by the testbench are byte addresses which should be 16-byte aligned. ADB3
OCP protocol addresses are also byte addresses which are 16-byte aligned

In this testbench, DMA channel 0 (the value of the constant DMA_SINGLE_CHANNEL in the package uber_tb_pkg) is
tested. Changing this constant is not recommended as in the Uber design, only DMA channel 0 has access to both the
BRAM Block and the On-Board Memory Interface Block.

The DMA write and read addresses (16-byte aligned) are controlled by the DMA_ADDR_WR and DMA_ADDR_RD
constants defined in the package uber_tb_pkg. The DMA size (multiple of 16-bytes) is controlled by the DMA_SIZE
constant also defined in the package uber_tb_pkg.

The entity test_uber_dma contains two processes that (i) generate OCP commands & OCP write data, and (i) accept
OCP responses (read data). The following subsections describe these processes.

5.5.5.5.3.1 DMA OCP Command and Write Data Process
The process dma_channel_cmd_p in test_uber_dma_1lch_nb.vhd exercises DMA_SINGLE_CHANNEL in the UUT
as described by the following pseudocode:
1. Setaddress := DMA_ADDR_WR, remaining := DMA_SIZE, tag := 0, index := 0
2. while remaining != 0 do
min(remaining, 128)
+ Generate 'chunk’ bytes of data consisting of 32-bit words equal to (OXBEEF0000 + index), incrementing
‘index’ by one with each 32-bit word generated
. Issue an OCP write command on DMA_SINGLE_CHANNEL with ‘address' as the address, 'tag’ as the
tag, and length equal to ‘chunk', using the data from step 4. Wait until the command has been accepted
and all of the data for the command has been transferred (adb3_ocp_sim_write)
« Setremaining ddress + chunk, tag
3. end while
4. Setaddress := DMA_ADDR_RD, remaining := DMA_SIZE, tag := 0
5. while remaining != 0 do
+ Setchunk := min(remaining, 128)
. Issue an OCP read command on DMA_SINGLE_CHANNEL with ‘address' as the address, 'tag' as the
tag, and length equal to ‘chunk'. Wait until the command has been accepted (adb3_ocp_sim_read_cmd)
« Setremaining := remaining - chunk, address := address + chunk, tag := tag + 1
6. end while

« Setchunk

emaining - chunk, address

tag + 1

The values of DMA_ADDR_WR and DMA_ADDR_RD correspond to byte offset 0x0200 into on-board memory bank 1.

Test complete and pass/fail indications for steps 1 to 3 are retumned using the dma_comp.dma_write_cmd_complete
and dma_pass.dma_write_cmd_passed signals respectively. Test complete and pass/fail indications for steps 4 to 6
are retumed using the dma_comp.dma_read_cmd_complete and dma_pass.dma_read_cmd_passed signals
respectively.

Example results from this test are documented in DMA OCP channels results.

5.5.5.5.3.2 DMA OCP Response Process

The process dma_channel_resp_p in test_uber_dma_lch_nb.vhd exercises DMA_SINGLE_CHANNEL in the UUT
as described by the following pseudocode:

1. Setremaining := DMA_SIZE, index := 0, expected_tag :
2. while remaining = 0 do

Page 130 Example HDL FPGA Designs
Alpha Data Parallel Systems Ltd. AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide. O ALpua oATA

(VLS - 24th August 2011)

« Setchunk = min(remaining, 128)
« Wait for ‘chunk’ bytes of response data to be received from DMA_SINGLE_CHANNEL
(adb3_ocp_sim_read_resp)

« Verify that the received data, considered as 32-bit words, equals the incrementing pattern OXBEEF0000 +
index, where index is incremented by 1 with each word checked. If a received 32-bit word does not equal

the expected patiern, the test is considered a failure

it does not, the test is considered a failure
+ Setremaining := remaining - chunk, expected_tag := expected_tag + 1
3. end while
Test complete and pass/fail indications are returned using the dma_comp.dma_read_resp_complete and
dma_pass.dma_read_resp_passed signals respectively.
Example results from this test are documented in DMA OCP channels results.

5.5.5.6 On-Board Memory Simulation Models
The on-board memory model block is implemented by the test_uber_mem block which is board dependent.

Table 85 lists the available variants:

Model Filename relative to
ADM-XRC-6TL t_uber_mem_6tl.vhd
ADM-XRC-6T1 admxrc6ti/test_uber_mem_6t1.vhd
ADM-XRC-6TGE admxrcbtgeftest_uber_mem_6tge.vhd
ADM-XRC-6TADVB | admxrc6tadv/test_uber_mem_6tadvs.vhd

Table 85: Available Variants of test_uber_mem Component

‘The testbench instantiates a simulation model for each memory device in each bank of on-board memory.
Table 86 lists the available variants:

[Model [Filename relative to _th/ |
| DR SDRAM | ddr3_sdram/ddr3_sdram.vhd |

Table 86: Available Variants of On-Board Memory Models

Refer to DDR3 SDRAM Memory Model for ts functional description.

The DDR3 SDRAM part to be simulated is defined by selecting either DDR3_1G_PART, DDR3_2G_PART, or

Verify that the received OCP response tag for each 16-byte OCP word received equals 'expected_tag'. If

DDR3_4G_PART for the value of the build option m OPTION_M constant in the adb3_target_tb_inc_pkg package.

Note: The default size of the DDR3 SDRAM on-board memory part used for simulation is 1Gib. The user

should verify that this matches the size of the memory parts on the Alpha Data board in use and selected by

the package adb3_target_inc_pkg.

55.5.7 Testbench Package (uber_tb_pkg)

The package uber_tb_pkg defines types, constants, and functions which are used by the Uber example FPGA

testbench. Table 87 lists the available variants:

Example HDL FPGA Designs
AD-UG-0004 Alpha Data Parallel Systems Ltd

Page 131

ADMXRC Gen 3 SDK 1.4.0 User Guide
’ALF“‘ DATA (v1.5 - 24th August 2011)

Model Filename relative to

ADM-XRC-6TL admxrcstiuber_th_pkg_6tl.vhd
ADM-XRC-6T1 admxre6t/uber_tb_pkg_6t1.vhd
ADM-XRC-6TGE admxrcétge/uber_tb_pkg_6tge.vhd
ADM-XRC-6TADV8 | admxrcétadvs/uber_th_pkg_6tadvs.vhd

Table 87: Available Variants of uber_tb_pkg Package

Defininitions are as follows:
General test constants

« MPTL_GPIO. The value used for the MPTL GPIO loopback test on this board

DS clock test constants

+ CLK_TEST_DIFF. The acceptable difference for clock frequency measurement results on this board.

+ PLL_PRI_CLK_FREQ. The pll_pri_clk expected clock frequency measurement result on this board.

+ PLL_REG_CLK_FREQ. The pll_reg_clk expected clock frequency measurement result on this board.

+ PLL_MEM_CLK_FREQ. The pll_mem_clk expected clock frequency measurement result on this board.
+ PLL_REF_CLK_FREQ. The pli_ref_clk expected clock frequency measurement result on this board.

+ CLKS_OUT_FREQ. Defines clks_out output clocks expected frequencies (MHz).

+ BRIDGE_LCLK_FREQ. Defines frequency (Hz) of Iclk (generated by bridge).

+ TARGET_LCLK_PER. Defines period of Iclk (generated by bridge).

+ TEST_MGT_CLK_SEL. The TEST_MGT_CLK clock frequency measurement clock select index.

+ TEST_CUS_CLK_SEL. The TEST_CUS_CLK clock frequency measurement clock select index.

+ TEST_MGT_CLK_FREQ. The TEST_MGT_CLK expected clock frequency measurement result (MHz) on this
board (ounded),

« TEST_CUS_CLK_FREQ. The TEST_CUS_CLK expected clock frequency measurement result (MHz) on this
board (rounded).

DS GPIO test constants

+ PN4_DATA. Data used during Pnd test on this board.
+ PN6_DATA. Data used during Pn6 test on this board.

DS on-board RAM test constants

+ DS_RAM_TEST_BANK. On-board memory bank used during direct slave test.

+ DS_WIN_RAM_PAGES. Number of direct slave window pages in bank of on-board memory.

+ DS_WIN_RAM_BANK. 32-bit register value containing DS_RAM_TEST_BANK.

+ DS_WIN_RAM_PAGE_BOT. 32-bit register value containing direct slave window page 0.

+ DS_WIN_RAM_PAGE_TOP. 32-bit register value containing direct slave window page
DS_WIN_RAM_PAGES-1.

DS internal on-board RAM test constants

+ INT_RAM_TEST_BANK. On-board memory bank used during internal memory test.
« INT_RAM_TEST_LENGTH. Length of phase of internal memory test (16-byte words).

Page 132 Example HDL FPGA Designs
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide
(VL5 - 24th August 2011) @ ALPHA DATA

+ INT_RAM_TEST_LEN. 32-bit register value containing INT_RAM_TEST_LENGTH.
« INT_RAM_TEST_TOP. Top address of internal memory test (16-byte words).
« INT_RAM_TEST_START. Start address of internal memory test (16-byte words).

DS interrupt test constants and variables

+ MASK_EN_ALL. 32-bit register value containing interrupt mask register enable all.
« int_edge. Shared variable which indicates detection of active edge on linti_I (MPTL) or interrupt (PCle).

DS test control constants

+ DO_RAM_TEST. Perform direct slave test of on-board memory.

+ DO_INT_RAM_TEST. Perform interal test of on-board memory.

+ DO_CLOCK_TEST. Perform direct slave clock frequency measurement test.
+ DO_INTERRUPT_NUM. Set length of direct slave interrupt test.

DMA test constants

+ DMA_WRITE_CHANNEL. The DMA channel used by writes (Host to FPGA) during 2 channel DMA test.

+ DMA_READ_CHANNEL. The DMA channel used by reads (FPGA to Host) during 2 channel DMA test

+ DMA_SINGLE_CHANNEL. The DMA channel used by writes and reads during 1 channel DMA test.

+ DMA_ADDR_WR. The start address used by writes (Host to FPGA) during DMA test.

+ DMA_ADDR_RD. The start address used by reads (FPGA to Host) during DMA test.

+ DMA_SIZE. The size of the DMA transfer in bytes (multiple of 16 bytes).

+ DMA_BL_WRITE. The OCP burst length used by writes (Host to FPGA) during DMA test (16-byte aligned).
+ DMA_BL_READ. The OCP burst length used by reads (FPGA to Host) during DMA test (16-byte aligned).

Test status types

« top_comp_t. Arecord type containing non-OCP test completion elements.

+ ds_comp_t Arecord type containing direct slave OCP test completion elements.
+ dma_comp_t Arecord type containing DMA OCP test completion elements.

« top_pass_t. Arecord type containing non-OCP test pass elements.

+ ds_pass_t Arecord type containing direct slave OCP test pass elements.

+ dma_pass_t. Arecord type containing DMA OCP test pass elements

Component definitions
+ test_uber_ds

+ test_uber_dma

« test_uber_probes
+ test_uber_mem

5.5.6 Design Simulation

Modelsim macro files are located in each of the target FPGA example design directories. The macro file that should be
used depends upon the type of simulation required:

« ocp-only: del>.do

Example HDL FPGA Designs Page 133
AD-UG-0004 Alpha Data Parallel Systems Ltd

ADM-XRC Gen 3 SDK 1.4.0 User Guide
@ ALPHA DATA (V15 - 24th August 2011)

© FulMPTL: d

ptl.do

where <model> corresponds to the board in use; for example admxrc6t1 for the ADM-XRC-6T1.
Modelsim simulation is initiated using the vsim command with the appropriate macro file; for example, to perform an
OCP-only Modelsim simulation in Windows for the ADM-XRC-6T1, start a shell and issue the following commands:

cd_/d %ADNXRC3_SDK¥AhdI\vhd\exanples\uber\admxrc6tl
vsim ~do “uber-admxrc6t1. do"

In Linux, the commands are:

cd SADIRC3_SDK/hd1/vhdl /exanples/uber/admxrootl
Vvsim -do “uber-adTxrc6tl.do"

Note: Before performing the first simulation of the Uber design, HDL files for the Xilinx Memory Interface
Generator (MIG) DDR3 SDRAM interface must be generated using the script gen_mem_if.tcl. Refer to
Xilinx DDR3 SDRAM MIG Core Generation for details.

Note: The value of the DDR3_BANK_ROW_WIDTH constant determines the maximum size of DDR3 SDRAM parts
supported by the target FPGA design. Currently, valid vaues are 13 for 1Gib parts only, 14 for 1Gib/2Gib parts, or 15 for
1Gib/2Gib/4Gib parts. The simulation model for the appropriate memory part will also need to be selected in the
example design testbench. This is achieved by selecting either DDR3_1G_PART, DDR3_2G_PART, or
DDR3_4G_PART for the value of the build option m OPTION_M constant in the adb3_target_tb_inc_pkg

Note: The user should verify that the value of the DDR3_BANK_ROW_WIDTH (default = 14) an

d
OPTION_M (default = 1 Gib constants are appropriate for the size of the memory parts on the Alpha Data
board in use.

Note: The Modelsim macro files always delete any previously compiled data before compiling the Uber
design.

5.5.6.1 Date/Time Package Generation

Before compiling the Uber example design HDL and initiating simulation, the macro file runs a TCL script
gen_today_pkg.tcl to generate a file containing the today_pkg package. This package contains HDL constant
definitions containing the SDK version and dateftime at which the script was run. The file generated is dependent on
the board selected and is located in the board design directory; for example, hdlivhdi/examples/uber/admxrcétl/
today_pkg_admxrc6tl_sim.vhd for the ADM-XRC-6TL. Transcript output is of the form:

kg_adm hd
TiS Tt s generated autonatically by gen_todey._oko.tct

- SDK: 01.04.00 (Maj/Min/eld)
Date: 08/10/2010 (dd/mn/YYYY)
Tine: 15:26:46 (HH/AVSS)

Tibrary ieee;
e icee.sta logic_1164.a11;
package today_pkg is
constant SDK_VERSION ©
nstant TODAYS_DATE :
Constant TODAYS_TINE

vector(31 dounto 0) :
vector(31 domnto 0) :
vector(31 downto 0)

X"00010400°
X"08102010°

ol

end package today_pko:

Page 134

Example HDL FPGA Designs
Al

Alpha Data Parallel Systems Ltd. -UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide
(VL5 - 24th August 2011)

@ALPHA DATA

Note: The macro file runs the TCL script using the Xilinx customized TCL distribution TCL shell xtclsh. The

path to this shell must be defined before initiating simulation.

5.5.6.2 Initialisation Results

Modelsim transcript output during initialisation of the simulation is of the form described in the following subsections.

5.5.6.2.1 DDR3 SDRAM MIG Core MMCM Status

Each instantiation of the DDR3 SDRAM MIG core produces a summary of its MMCM clocking parameters:

iR Write Clocks WCHADY Paraneters essstussiis
cLc

0000001000

CLKOUT2_PERICD 490

5.5.6.2.2 Testbench Status (MPTL)

The testbench produces a summary of the board and simulation type, and then waits for the MPTL interface to

complete its initialisation:

Soard Tye ¢ ain et
0,fz feration: 0 instance: /test ser

0 instance: /test_uber

tance: /test_uber

5.5.6.2.3 DDR3 SDRAM Initialisation

Each instantiated DDR3 SDRAM MIG core produces a truncated initialisation sequence during simulation. This is
detected by the DDR3 SDRAM models and warnings are issued by each instantiated part:

** arning: DDR3 SORAN Init FSW (3) © Deviation fron recommended initialisation sequence:

violation of 200us delay before RESET L de-assertion
Time: 971771500 fs Iteration: 4 Instance: /test_uber/ddr3 nodel
.7 Yarning: TORS SORA Inkt P (4) < Deviation fran recomendad

0/ddr3_sdran_bank
sation sequence:

zaclon conpleta st $063.017 s

i completed at 22183.0;

0 Stage 1 completed at 30975.0

o CLAGI car Compteted at 43513.017 s
Stage 2 conpleted at 50638.017 ns

PHY_INIT: Phase Detector Initial Cal corpleted at 55616.017 ns

5.5.6.3 Non-OCP Functions Results
5.5.6.3.1 MPTL GPIO Bus Test Results (MPTL)

Modelsim transcript output during simulation is of the form:

** llote: Test nptl_gpio conpleted: PASSED.

Example HDL FPGA Designs

AD-UG-0004 Alpha Data Parallel Systems Ltd.

Page 135

ADM-XRC Gen 3 SDK 1.4.0 User Guide
@ ALPHA DATA (V15 - 24th August 2011)

Tine: 3028750 ps Iteration: 13 Instance: /test_uber

5.5.6.4 Direct Slave OCP Channel Results
5.5.6.4.1 Simple Test Results
Modelsim transcript output during simulation is of the form:
£ ot ot lopte IOATA ¢ byt GCATFACE nih enable KL to bt adires 03000
203 peration” 3" nstnco: /tcst er/tes

Read FOATA 4 bytes OECAFEFAC fron byto adiress nxnmunﬂ
D250 pe iteration, 13 inatance: /ceet. dberyteot. dher

: Test simple corpleted: PAss:
2351250 ps Iteration

0.
Instance: /test_uber/test_uber_ds_i

5.5.6.4.2 Clock Frequency Measurement Test Results

Modelsim transcript output during simulation is of the form:

** Note: Wrote Cl CTRL 4 byt 0x0000000 with cnablls GBILLL to byte address 0x000044

2550 ns Iteration: 13 notancer 7teet uber/tost oo

: Urote PLLLFES CLKSEL 4 bytes 0XOOO00000 uith enabllo OBLILL to byt address 0x000040
tion: 13 Instance: /test_uber/test_t

PLLREG.CLICFRED 4 bytes 0x00000050 fran byt mms oroooots

Instance: /test_uber/test_u

2 22 Wiz
: 13 Instance: /test_uber/test_uber_ds.

s
3607500 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i
- Wirote PLL_PRI_CLK_SEL 4 bytes 0x00000001 with enable 0b1111 to byte address 0x000040
© 3615 ns teration: 13 Instance: /test_uber/test_uber
307500 ps iteration: 13 Instance: /test_uber/test_uber_ds_i

ected freq = 200 Wz =2 liz
4507500 pr_isatlon: 13 Instance: feeet her/tor uber o |

Wiz

7500 b5 Hteration 13 Instance: /test_uber/test._uber_ds_
¢ Wrote TESTUGT_CLISEL 4 bytes GX00000014 with enable ODLLL €0 byte adiress 0X000040
o tance: /test_uber/test_uber_ds_
CFREQ 4 ytes 0x00000078 fron byte address oroooots

13 Instance: /test_uber/test_uber
" Erpected froq - 250 W 22 e
: 5007500 psteration: 13 Instance: /test_uber/test_uber_ds

252 Wiz
5007500 pe Iteration 13 Instance: /test_uber/test_uber_ds_i
- rote TEST CUS CLK SEL 4 bytes 0X00000005 with enable 001111 10 byte address 0:000040
5015 ns_Iteration: 13 Instance: /test uber/test_uber ds

oo TEST G5 CLKFREG 4 bytes 01000002A0.from by adess 0000048

5707500 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i

iz

7500 ps Iteration: 13 Instance: /test_uber/test_uber_ds.
req = 664 Wi

7500 ps Iteration: 13 Instance: /test_uber/test_uber_ds_

e: Test Clock Read corpleted: PASSED.
: 5707500 ps Iteration: 13 Instance: /test_uber/test_uber_ds_|

Results will be board dependent. Results are shown for ADM-XRC-6TL,

5.5.6.4.3 XRM GPIO Test Results

Modelsim transcript output during simulation is of the form:

rote A_GP10.0D DATAD 4 bytes OCTGS43210 with eneble ObLLL to byte address 0x00022¢

5508750 ps_Iteration: 13 nce: /test_uber/test_uber.

 rote TR0_GPIO. 0D Th1 4 nytes x00000000 wieh enante unnn 0 byte address 0x00022¢
5

602625 r_ds
Wrats SAncGPI0.0D ThI 4 nytes IXEEEEFLFE with snabte OhiiTs o byte address OOO0ZZC

Page 136 Example HDL FPGA Designs
Alpha Data Parallel Systems Ltd. AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide
(VL5 - 24th August 2011)

@ALPHA DATA

¥

2" tote: Test Front
&

Time: 6033750 ps Iteration: 13 Instance: /test_uber/test_uber_ds_

10 conpleted: PASSED.
033750 ps Iteration: 13 Instance: /test_uber/test_uber_ds_

Results will be board dependent. Results are shown for ADM-XRC-6T1,

5.5.6.4.4 Pn4/Pn6 GPIO Test Results

Modelsim transcript output during simulation is of the form:

/= Note: Wirote PNA_GPIO_P DATAO 4 bytes OxMBSCEDD with cnable ObL1L1 o byte address 0000230

o enste GhitiT & byte address 0x000244

Instance: /test_ber/test_uber_ds.

bytes 0x00000000 rable Bo1111 <0 byte address 0000250
Instance: /test_L uher/(est uber

adiress 02000240

b1111 to byte address 0x000250

6918750 ps Iteration: 13 Instance: /test_uber/test_uber_ds_

rote H_GPIO_US DATAD 4 bytes OGAMASBAD with endbll ODLLLL to byte sddress 0x000254
6928750 ps _Iteration:

Wirote PNG_GPIO_LS DATAC
: 8370 i iesration:

omm o byte address 0x000260

cen 000000000 ¥ith enante OOLITA T byte address 0x00025C

 Gais0 b ITeration: 15 nstancer /test sher/test uber s

c: Wirote PN6_GPIO_LS TRI 4 bytes 0x00000000 with enable Ob1111 to byte address 01000268
695875

* Wrote PNG_GPIO_IS TRI 4 bytes OXFFFFFFFF with enable (nmm 0 byte address 0300025
7858750 ps Iteration: 13 Instance: /test_uber/test L

Urote G- GPIO.LS Thi 4 bytes OXFFFFFFET with enable ObLILi o byte address 0A000268

7868750 ps Iteration: 13 Instance: /test uber/test uber_ds_i

Test Rear 10 conpleted: PASSED.
: 7668750 ps Iteration: 13 Instance: /test_uber/test_uber_ds |

Results will be board dependent. Results are shown for ADM-XRC-6T1.

5.5.6.4.5 Interrupt Test Results (MPTL)

Modelsim transcript output during simulation is of the form:

1

1

1

=+ Note: Wrote Interrupt NASK 4 bytes 0X00000000 with enable Ob1111 to byte address OX0000CS
u

8173750 ps IMeration: 13 Instance: /test_uber/test_ul
Rest Interrupt WASK 4 bytes 0XGO00000 fran byte address Dxobeoca
o1 teratior ance: /test_uber/test_uber_

8496750 ps Iteration: 13 Instance: /test_uber/test_uber_ds
Fiexs Interrupt COUNT 4 bytes GRFFFFEFFE Tram byte address 0600000
8816250 ps Iteration: 13 Instance: /test_uber/test_uber_ds_
errupt i Detacted fatting eage on 1
[Bosoren s reeration: 15 Instanca: tese.u
o5 neorripk Handher. Creared ingorropt(ey. macked STAT = 0100000001
9208750 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i

Interrupt Nonitor: Detected f:
9883780 ps.Iterationt 18 Tnstance: /Rest sber
: Intorrupt andior: Cleared Interrapt (o). saoked STAT = 0x00000002
9923750 ps IMeration: 13 Instance: /tést_uber/test_uber_ds_i

odge on tint

Interrupt Nonitor: Detected falling e nt,
Zas5rsh b toration: 13 Instine: gecon.uber
Interrupt. Handler: Cleared interrupt(s), masked STAT = 0x80000000

Example HDL FPGA Designs
AD-UG-0004

Alpha Data Parallel Systems Ltd.

Page 137

@ALPHA DATA

ADM-XRC Gen 3 SDK 1.4.0 User Guide
(VL5 - 24th August 2011)

Tine: 28673750 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i

4 btes 0x00000000 fran byte sdress 0x0000cs
tance: /test_uber/test_uber_ds.

2" Note: nead Intorrupt STAT
20066250 ps - Iteratior

** Note: Test Interrupt cotpleted: PASSED.
Tine: 29066250 ps Iteration: 13 Instanc

/test_uber/test_uber_ds.

5.5.6.4.6 Informational Register Test Results

Modelsim transcript output during simulation is of the form

1+ tote: Resn Info OATE 4 bytes OXOSGRZOLL fron byte address 0KO00L40
Instance: /test_uber/test

5.5.6.4.7 BRAM Test Results

Modelsim transcript output during simulation is of the form:

32382500 ps _Iteration
I eadInfo TIVE & bytes 011631100 fron byte address 0R001AE

32697500 ps_Iteration: 13 Instance: /test uber/test_uber_ds i
- Info E 4 bytes 0<00080000 fron byte address 0x00014C

33007500 ps Iteration: 13 Instance: /test_uber/test_uber_ds.

o Info BRAV WASK 4 bytes OXOOOTFFFF fron byte address 0x000150

" 33320500 ps Iteration: 13 Instance: /test uber/te:

I Read Info RAM BASE 4 bytes 000200000 fron byte address 0x000154

" 33632500 ps Iteration: 13 Instance: /test_uber/test L

e Read_Info RAU WASK 4 bytes OXOOLFFFFF fron idress 0000158

" 47500 ps Iteration: 13 Instance: /test_uber/test_u

e Read Info RAN INFO 4 bytes 0XXX0O00A fron byte address X0001SC

" 24257500 ps_Iteration: 13 I /test_uber/test_uber_ds_i
" Read Info SOK VERSION 4 bytes 0x00010400 fron byte address 0x000160
" © 30572500 ps Iteration: 13 Instance: /test_uber/test_uber_ds_

% Note: Test Info completed: PASS

Siaroso pe. Meration: 15 Instance: /test uber/test uber_ds i

™ Note: Hrote BN A base 4 bytes OKZ3B0EFSS with enable Gb1111 €0 byte adaress Ox0B0000

¥ - voter
Tine: 30876250 ps Iteration: 13 Instance: /test_uber/test_uber_ds.

4 =+ Note: Wrote BRAV Addr base 16 bytes
sich enable 0 o byte address 0080000

Tine: 30883750 ps Iteration: 13 Instance: /test uber/test uber ds
e 16 bytes OHSToOMBLOET 25156 BRRBCOET 123156

¥ - vota: Reaa S e
fron byte address 0x080000
Tine: 0 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i

- Urote BRAN Addr b
enable 0D11111111111111111111111111111111 to byte address 0x080000

Tine: 127750 pe toration: 13 Instarce: /it uber/test b e
Note: Read BRAN Addr base 32 bytes

adiress 00000
Tine: 31671250 ps Iteration: 13 Instance: /test_uber/test_uber_ds

Tine: 31023750 ps Iterat uber/test_

Time: 32151250 ps Iteration: 13 Instance: /test_uber/test_uber c

Tine: 31678750 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i
Note: Read 00 Addr based 4 bytes OOEASCODE fron byte.agdress OXOTEFFC
Tine: 31016250 ps Iteration: 13 Instance: /test_uber/test_uber_ds

e topst 4 bytos DXOEADCOS fron byte adoroes nxmnunn

Note: ot 0OR Adir bese-4 4 bytes GXISCEZSR with enable ODLLL €0 byte adiress OXOTFFEC

ddr tope3 4 bytes OCSSBELRT with enable Q6111 Lo byte adiress 0100000

** Note: Wrote 0OR Addr topi1 32
enable 0D11111111111111111111111111111111 to byte address 0x100000
Tine: 2163750 pa Itaration: 13 Instane: /test. uber/test uber_dn

top+ 32 byt
From byt adress 0100000
Tine: 32416250 ps Iteration: 13 Instance: /test_uber/test_uber_ds i

"
o, mines 52455750 po Herakion 15 Instancer /test uber/tost
"

Instance: /test_uber/test_uber.

** Note: Read BOAU dar 1op 4 bytes OXLTADO36 from byte address oquFFFc
Tine _ds.

101250 s Iteration:

Test BRAN completed:

"
o tote:
"

Pass
Tine: 32301250 pe. Nerationt 19 Instance: /test_uber/test. uber.ds_i

o SR AGdr top 4 bytes OX147A0036 With enablle OBILLL to byte address OAOFFFFC

Page 138
Alpha Data Parallel Systems Ltd.

Example HDL FPGA Designs
AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide

w15~

24th August 2011)

@ALPHA DATA

5.5.6.4.8 On-Board Memory Test Results

Modelsim transcript output during simulation is of the form

** Note: Waiting for on-board AU bank 1 to initialise...
ime: 35777500 ps Iteration: 13 Instance: /test_uber/test_uber_ds |
- on-board R sed
56562500 ps Instance: /test_uber/test_uber_ds.
** Note: Read fAY Bank 1nfo feg 4 bytes OXGFLOLEIC fron byte adiress 0X0OG34C
S8897500 pe teratlon: 13 ' Instance: /test uber/test
- Rovo: Wrota RAY Bank orfeet ep 4 byees OOFEFERT
58005 no Ieeration: 15 Instance: /test uber/test ber

ble unnn 0 byte address 0000344

Tine: 60522500 ps Iteration: 13 Instance: /test_uber/test_uber_ds

7 tota: Wroto FAN Yin ALdr base 4 bytes OXASAFOSS With enable OBLLLL to byte address 0x200000
" /test_uber/test_uber_ds

- o' ndiress 01200000

% Tine: 61917500 ps Iterati Instance: /test_uber/test_uber_ds i

** Note: Wrote RAN DS Page Reg Addr 4 bytes OXDOOODOTF with enable 0b1111 to byte address 0x000304
~ o /test_uber/test_uber_ds_i

** Note: Read RA DS Page Reg Addr 4 bytes 0xOD0007F from byte address 0x000304

Tine: 13 Instance: /test_uber/test_uber_ds,

I 7 4 bytes OUTADOSED with enable ObLIIL o byte address OXUFFFEC

er_¢

i vie sgaress mssr:pc

& Time: 63147500 ps Iteration: 13 Instance: /test uber/test uber

" Note: liroto A 05 Page fleg Addr 4 bytos 0X0O000000 with enablle OBITLL to byt address 0X000H04
4 Tine: 63155 ns Iteration: 13 Instance: /test_uber/test_uber_s,

** Note: Read RAN DS Page Reg Addr 4 bytes 0x00000000 from byte mmss 0x000304

" 2 63532500 ps Iteration: 13 Instance: /test_uber/test_uber c

e Wrote RAN Win Addr base 96 bytes

with enable

€0 byte address 0x200000
Tine: 63565 ns Iteration: 14 Instancs
Read RAU Win Addr base 96 bytes

Jtest_uber/test_uber_ds_i

% lote:

fron byte address 0x200000
Tine: 64537500 ps Iteration: 14 Instance: /test_uber/test_uber_ds.

4+ Note: Wrote RA Win Addr base 80 bytes

456789ABCDEF 123456789ABCDEF 12345
be 0b:

000
s 1o Iieration: 14 instance: /test_wber/test_er_ds i
Read RA Win Addr base 80 byte:

SETIRMCDEE L3I 12345
from byta adress o200

0'oe. teeration:
=% Note: Wrote RA Win Addr base 32 bytes

14 Instance: /test_uber/test_uber_ds,

Example HDL FPGA Designs

AD-UG-0004

Alpha Data Parallel Systems Ltd.

Page 139

ADM-XRC Gen 3 SDK 1.4.0 User Guide
@ ALPHA DATA (V15 - 24th August 2011)

h enable 0b11111111111111111111111111111111
0 byte address 0x200010

& Tine: 65, Iteration: 14 Instance: /test_uber/test_uber_ds_i
=+ Note: Read RAU Win Addr base 32 bytes

fron byte address 0x200010
o Tine: 0 ps teration:

Wrote RAN Win Addr base 64 bytes

14 Instance: /test_uber/test_uber_ds_i

= tote:

with enable
to byte address 0x200010

. Thve: sese0 ne Vteration: 14 Instance: /test_uber/test_uher_da_i
== Note: Read RAM in Addr base 64 byt

fron byte address 0x200010
Tine: 67547500 ps Iteration: 14 Instance: /test_uber/test_uber_ds_i

4 =+ Note: Wrote RA Win Addr base 80 bytes

ABCDEF123456789ABCDEF 12345678948

enable
o byte address 0x200010
Tine: 67675 ns Iteration: 14 Instance: /test_uber/test_uber_ds i
=+ Note: Read RAN Win Addr base 80 bytes

ABCDEF123456789ABCDEF 12345678948
fron byte. 0010
Tine: 68162500 ps Iteration: 14 Instance: /test_uber/test_uber_ds.

= Note: Wrote Rl Win Addr base 4 bytes OX4S000000 with enable OB1000 o byte address 0200000
<13 Instance: /test_uber/tes

ese 4 bytas 0KG0AB00B0 witn enable anoi0 to byte address 0x200000
13 nce: /test_uber/test_uber_ds.

" = 4 hyten. 010000130 wieh enante. OB10 €o byte address 0<200000
13 Instance: /test_ut er_ds_i

" 4 bytes 0x00000067 with enable 0bODOL to byte address 0x200000
" ition: 13 Instance: /test_uber/test_uber_ds_i

" ddr base 4 bytes Ox45AB0167 fron byte address 0x200000

% Tine: 68757500 ps Iteration: 13 Instance t_uber/test_uber_¢

=+ Note: Waiting for internal test of on-board RAM bank 1 to complete.

% Tine: 68757500 ps Iteration: 13 Instance: /test uber/test_uber ds i

** Note: Read RAU Bank Stat Reg 4 bytes OXLOUXOXF fron byte address 0000350

eeration: 13 Instance: /testuber/test_uber_te

Internal test of on-board RAN bank 1 c

% Tine: 60047500 s 1teration: 13 Instance: /est uber/test_uber_ds

** Note: Test RAM conpleted: PASSED.

Tine: 80347500 ps Iteration: 13 Instance: /test_uber/test_uber_ds i

5.5.6.5 DMA OCP Channels Results

Modelsim transcript output during simulation is of the form:

+ DA read response data process started
2028750 ps Iteration: 14 Instance: /test_uber/test_uber_dra_i
DA write process started (Sase address = 0x2000007F00)
2028750 ps Iteration: 14 Instance: /test_uber/test_uber_dra_i
ess completed

13 Instance: /test_uber/test_uber_dua

tion’ 13 Instance: /test_uber/test uber_dna_i

r roag camand process started (Base sdress = OCZOOOOTFO0)

: 63493750 ps Iteration: 13 Instance: /test_uber/test_uber_dne
i read comand process cnmvlet o0

+ 63576250 ps It 13 Instance: /test_uber/test_uber_dna_i
 read response data pracess conplet

G7a56350 pe.” tearation: 13 ovance: Fiest_uber/test_ubor_da

4032 bytes transferred with O data error(s

67456250 ps Iteration: 13 Instance: /test_uber/test uber_dna_i

Page 140 Example HDL FPGA Designs
Alpha Data Parallel Systems Ltd. AD-UG-0004

@ALPHA DATA

ADM-XRC Gen 3 SDK 1.4.0 User Guide
(VL5 - 24th August 2011)

Instance: /test_uber/test_uber_dna.

** Note: Test DUA coy

phsst
© 7 inel Sresezsd o reeration: 13

5.5.6.6 Completion Results
Assuming that all tests passed, Modelsim transcript output on successful completion of simulation is of the form:
Icommonstest_uber..vhd

7 Falture: Test o deslgn UBER comploted: PASSED
e Jeast_uber/test rosults p Fite:

Tine: 82126250 ps Iteration:
1 Break in Procoes. test_resulte D at - Jeomon/test sber-vid 1
¥ Simulation breakpolnt: Sreak Tn Process test. resuita.p at . Jcomon/test._uber.vhd Hine 407
WACRO _/uber-adnxrcstl.do PAUSED at line

Page 141

Example HDL FPGA Designs
-UG-0004 Alpha Data Parallel Systems Ltd.

e

ADM-XRC Gen 3 SDK 1.4.0 User Guide

HA DATA (1.5 - 24th August 2011)

6 Common HDL Components

The ADM-XRC Gen 3 SDK provides a number of HDL components that are used in the example FPGA designs and
testbenches. These components may also be used in customer FPGA designs. This section provides details of their
interfaces and structure.

The components are divided into groups as follows:

ADB3 OCP

ADB3 Target

ADB3 Probe

Memory Interface

Memory Application

Memory Model

Clock Frequency Measurement
ChipScope

Page 142

Common HDL Components
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide.

(VL5 - 241h August 2011) @ALPHA DATA

6.1 ADB3 OCP
The ADB3 OCP group is located in hdi/vhdl/common/adb3_ocp and contains the following elements:
« ADB3 OCP Profile Definition Package (adb3_ocp)
+ ADB3 OCP Component Declaration Package (adb3_ocp_comp)
+ ADB3 OCP Components
+ ADB3 OCP Testbench Package (adb3_ocp_tb_pkg)

6.1.1 ADB3 OCP Profile Definition Package (adb3_ocp)
The package adb3_ocp defines constants and types which relate to the ADB3 OCP profile. This OCP profile is used for
many of the reuseable VHDL modules in this SDK, and to connect together the various blocks in the example FPGA
designs.
Two main types are defined:
Burst capable data flow from OCP Master to OCP Slave (M2S)
« Command Cmd of type ocp_CmdT (idle, Write, Read, Write Non Post)
+ Command Start Address Addr of type std_logic_vector with width ADB3_OCP_ADDR_WIDTH = 64.
+ Command Burst Length BurstLength of type std_logic_vector with width ADB3_OCP_BURST_WIDTH = 12.
« Command Tag Tag of type std_logic_vector with width ADB3_OCP_TAG_WIDTH = 8.
+ Data Data of type std_logic_vector with width ADB3_OCP_DATA_WIDTH = 128.
« Data Byte Enable DataByteEn of type std_logic_vector with width ADB3_OCP_BE_WIDTH = 16.
+ Data Valid DataValid of type std_logic.
+ Response Accept RespAccept of type std_logic.

Burst capable data flow from OCP Slave to OCP Master (S2M)

« Command Accept CmdAccept of type std_logic.

+ DataAccept DataAccept of type std_logic.

*+ Response Data Data of type std_logic_vector with width ADB3_OCP_DATA_WIDTH = 128,
+ Response Type Resp of type ocp_RespT (None, Valid, Failed, Error)

+ Response Tag Tag of type std_logic_vector with width ADB3_OCP_TAG_WIDTH = 8.

Refer to ADB3 OCP Protocol Reference for a description of ADB3 OCP protocol transactions.

Common HDL Components Page 143
AD-UG-0004 Alpha Data Parallel Systems Ltd

ADM-XRC Gen 3 SDK 1.4.0 User Guide

@ALPHA DATA (V15 - 24th August 2011)

6.1.2 ADB3 OCP Component Declaration Package (adb3_ocp_comp)

The package adb3_ocp_comp defines functions and components which use the ADB3 OCP profile.

Function Definitions

« adb3_ocp_base. Extend (with '0's) a base address vector of width w to an ADB3 OCP base address vector of
width ADB3_OCP_ADDR_WIDTH.

+ adb3_ocp_mask. Extend (with 'I's) a mask address vector of width w to an ADB3 OCP mask address vector
of width ADB3_OCP_ADDR_WIDTH,

« adb3_ocp_off. Convert an integer address offset to an ADB3 OCP address vector of width
ADB3_OCP_ADDR_WIDTH.

« adb3_ocp_mask_width. Return the integer width of an ADB3 OCP mask address vector.

Components that require the data for the current OCP command to be fully read or written before the next OCP
command is accepted are categorised as ‘blocking’. Blocking components have a lower data throughput, but require
less FPGA resources. An example of their use would be register access. Blocking components in the ADB3 OCP group
are as follows:

Blocking Component Definitions.

« adb3_ocp_mux_b

« adb3_ocp_simple_bus_if

« adb3_ocp_split_b

Components that can accept further OCP commands before the data for the current OCP command has been fully read
or written are categorised as ‘non-blocking'. Non-blocking components have a higher data throughput, but require more
FPGA resources. An example of their use would be DMA. Non-blocking components in the ADB3 OCP group are as
follows:

Non-Blocking Component Definitions

« adb3_ocp_cross_clk_dom

+ adb3_ocp_mux_nb

« adb3_ocp_ocp2ddr3_nb

« adb3_ocp_retime_nb

« adb3_ocp_simple_bus_if_nb

« adb3_ocp_split_nb

Page 144 Common HDL Components
Alpha Data Parallel Systems Ltd. AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide

(VL5 - 24th August 2011)

@ALPHA DATA

6.1.3 ADB3 OCP Components
6.1.3.1 adb3_ocp_cross_clk_dom
6.1.3.1.1 Introduction

This is a non-blocking component in the ADB3 OCP group. Its function is to connect a single primary ADB3 OCP

channel in the primary clock domain to a single secondary ADB3 OCP channel in the secondary clock domain

Dependencies

+ The command path is independent from the write data path. Data acceptance does not block command

acceptance.

+ The command path is independent from the read response path. Response acceptance does not block

‘command acceptance.
+ ADB3 OCP Profile Definition Package (adb3_ocp)

6.1.3.1.2 Interface

The adb3_ocp_cross_clk_dom component interface is shown in Figure 27 below and described in Table 88.

adb3_ocp_cross_clk_dom

Figure 27: adb3_ocp_cross_clk_dom Component Interface

Signal Type [Description
OCP Primary Port
slave_rst Input__| OCP Primary (slave) port asynchronous reset
slave_clk Input OCP Primary (slave) port clock.
slave_m2s Input | OCP Primary (slave) port M2S connection.
slave_s2m Output | OCP Primary (slave) port S2M connection.
OCP Secondary Port
‘master_rst Input | OCP Secondary (master) port asynchronous reset.
master_clk Input__| OCP Secondary (master) port clock
master_m2s Output_| OCP Secondary (master) port M2S connection
master_s2m Input | OCP Secondary (master) port S2M connection.

Table 88: adb3_ocp_cross_clk_dom Component Interface

6.1.3.1.3 Description

The adb3_ocp_cross_clk_dom component block diagram is shown in Figure 28 below.

Common HDL Components
AD-UG-0004

Alpha Data Parallel Systems Ltd.

Page 145

ADM-XRC Gen 3 SDK 1.4.0 User Guide

@ALPHA DATA (V15 - 24th August 2011)

i o o G
slaves_m2s ato master_m2s.
(cma. Tog Ak . o,
o SsLongi)
L macier s2m
s som |
Eminceem)
CnaFo
Command pan
a0
Smvemzs master_m2s
e e Gaiet)
G P
© 9 (DataAceept)
savesom | |, master mas
(vanceem) sl
Dura 0
ocp.sam
osAccom)
wite i pan
a0
save_s2m masers2m
e o)
Siove e masar 32
(esceen)
siveszm |, mester mas
(Resp) (RespAccept)
Resn FFD.
save ok o
Read esponse pan
Figure 28: adb3_ocp_cross_clk_dom Block Diagram
Page 146 Common HDL Components
Alpha Data Parallel Systems Lid, AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide
(VL5 - 24th August 2011)

@ALPHA DATA

The component consists of three instances of the Asychronous FIFO block afifo. One for command signals, one for
data signals, and the third for response signals as follows:

6.1.3.1.3.1 Command Path

This consists of the Cmd, Tag, BurstLength, and Addr elements of the slave_m2s/master_m2s signals, and the

CmdAccept element of the slave_s2m/master_s2m signals,

Command FIFO

+ The slave_m2s port command elements are interfaced to the master_m2s port command elements via the
ccommand FIFO.

« The slave_s2m port CmdAccept element is generated from the command FIFO full flag.

+ The command FIFO write advance is generated from the slave_m2s port Cmd element and the command
FIFO ful flag.

« The command FIFO read advance is generated from the master_s2m port CmdAccept element and the
command FIFO empty flag.

6.1.3.1.3.2 Write Data Path

This consists of the DataValid, DataByteEn, and Data elements of the slave_m2s/master_ma2s signals, and the

DataAccept element of the slave_s2m/master_s2m signals

Write Data FIFO

« slave_m2s port write data elements are interfaced to the master_m2s port write data elements via the write
data FIFO.

+ The slave_s2m port DataAccept element is generated from the data FIFO full flag

« The write data FIFO write advance is generated from the slave_m?2s port DataValid element and the write

data FIFO fullflag.

The write data FIFO read advance is generated from the master_s2m port DataAccept element and the write

data FIFO empty flag.

6.1.3.1.3.3 Read Response Path

This consists of the Resp, Tag, and Data elements of the master_s2mislave_s2m signals, and the RespAccept

element of the master_m2s/slave_mz2s signals.

Read Response FIFO

« master_s2m port read response elements are interfaced to the slave_s2m port read response elements via
the read response FIFO.

« The master_m2s port RespAccept element is generated from the read response FIFO full flag

« The read response FIFO write advance is generated from the master_s2m port Resp element and the read
response FIFO full flag.

« The read response FIFO read advance is generated from the slave_m2s port RespAccept element and the
read response FIFO empty flag.

Common HDL Components Page 147

AD-UG-0004 Alpha Data Parallel Systems Ltd

ADM-XRC Gen 3 SDK 1.4.0 User Guide
@ ALPHA DATA (V1.5 - 24th August 201)

6.1.3.2 adb3_ocp_mux_b
6.1.3.2.1 Introduction

This is a blocking component in the ADB3 OCP group. lts function is to multiplex multiple primary ADB3 OCP channels
onto a single secondary ADB3 OCP channel. The multiplex is controlled by round-robin arbitration of OCP commands.

6.1.3.2.2 Interface
The adb3_ocp_mux_b component interface is shown in Figure 29 below and described in Table 89.

adb3_ocp_mux_b

Figure 29: adb3_ocp_mux_b Component Interface

Signal Type | Description
mux_inputs Generic | Number of primary OCP channels to be multiplexed.
ocp_rst Input | ocp reset.
ocp_clk Input | OCP clock.

OCP Primary Ports
slaves_m2s Input | OCP Primary (slave) ports M2S connection.
slaves_s2m Output | OCP Primary (slave) ports S2M connection.

OCP Secondary Port
master_m2s. Output | OCP Secondary (master) port M2S connection.
master_s2m Input__| OCP Secondary (master) port S2M connection.

Table 89: adb3_ocp_mux_b Component Interface

6.1.3.2.3 Description
8D

Page 148 Common HDL Components
Alpha Data Parallel Systems Ltd. AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide

(VL5 - 24th August 2011) @ ALPHA DATA

6.1.3.3 adb3_ocp_mux_nb

6.1.3.3.1 Introduction
This is a non-blocking component in the ADB3 OCP group. Its function is to multiplex multiple primary ADB3 OCP
channels onto a single secondary ADB3 OCP channel. The multiplex is controlled by round-robin arbitration of OCP
commands.
Dependencies

+ The command path is independent from the write data path. Data acceptance does not block command
acceptance.

+ The command path is independent from the read response path. Response acceptance does not block
command acceptance.

« Transactions on multiple primary ADB3 OCP channels may be accepted simultaneously.
« ADB3 OCP Profile Definition Package (adb3_ocp)

6.1.3.3.2 Interface

The adb3_ocp_mux_nb component interface is shown in Figure 30 below and described in Table 90.

adb3_ocp_mux_nb

Figure 30: adb3_ocp_mux_nb Component Interface

Signal Type | Description
mux_inputs Generic | Number of primary OCP channels to be multiplexed.
ocp_rst Input | ocp reset.
ocp_ck Input__| OCP clock.

OCP Primary Ports
slaves_m2s Input | OCP Primary (slave) ports M2S connection.
slaves_s2m Output | OCP Primary (slave) ports S2M connection.

OCP Secondary Port
master_m2s. Output | OCP Secondary (master) port M2S connection.
master_s2m Input__| OCP Secondary (master) port S2M connection.

Table 90: adb3_ocp_mux_nb Component Interface

6.1.3.3.3 Description

The adb3_ocp_mux_nb component block diagram is shown in Figure 31 below.

Common HDL Components Page 149
AD-UG-0004 Alpha Data Parallel Systems Ltd.

@ALPHA DATA

ADM-XRC Gen 3 SDK 1.4.0 User Guide

(V15 - 24th August 2011)

sinves_m2s(0)
(cma. Tag. e, —|
Burst o)

sives s2m@)
Cmirccem) <

stves_mas(n)
(cma, Tag. Addr, —|
Burst o)

staves._samin)
(Cminccep

Ty

a8b3_ocp_mux_ob_fio

Stave FIF0

adb3_ocp. mux_nb_fio

Siave FIFO Command patn

b3_ocp_mue_nb_f0

Master FF0

siaves_m2s(0)

(oatn. Daspetn) —|

Siaves_m2s0) |
Gatmvai)

siaves_s2m0)
(aiaaccep

stves_mas(n)

(atn. Daayoen) —|
saves_mas(n)

Catwvaie)

slves_s2m(n)
(Daianccep

a0v3_ocp_mux_ob_tio

ab3_ocp_mux_ob_tito

Stave FIFO Wit Cma FIFO

a3 ocp_mux_nb_fio

Fsu

53 ocp_muc_nb_fto

mastor_nzs

Stove FIFO wte data pth

Master FFO

[mastor_som
(atanicost)

master_m2s

[avai)

siaves_s2m0)

oaa, Tag) |
siaves n250)

Respacoen)

siaves_s2m) __|
(Reso)

stves_s2m(n)

i, Tag)

staves_mas(n) |
(Respiccen)

1

sives_s2m(n)
esn)

a3 ocp_mux_ob_tifo adb3_ocp. mux_nb_fio

Stave FIFO

a8b3_ocp_mux_ob_tio

Siave FIF0 Read response pain

Fsu

Read Resp Fsb

a083_ocp_mue_nb_fto

master_m2s
(RespAccest)

Master FF0

Figure 31: adb3_ocp_mux_nb Block Di

iagram

Page 150

Alpha Data Parallel Systems Ltd.

Common HDL Components
D-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide

(VL5 - 24th August 2011) @ ALPHA DATA

6.1.3.3.3.1 Command Path

This consists of the Cmd, Tag, BurstLength, and Addr elements of the slaves_m2s/master_m2s signals, and the

CmdAccept element of the slaves_s2m/master_s2m signals.

Slave Command FIFOs

« The slaves_m2s ports command elements are interfaced to the slave command mux inputs via the slave
ccommand FIFOs.

+ The slaves_s2m ports CmdAccept elements are generated from the slave command FIFOs ot full lags.

+ The slave command FIFOs write advances are generated from the slaves_mz2s ports Cmd elements and the
slave command FIFOs not full lags.

+ The slave command FIFOs read advances are generated from the slave command select and the master,
write, and read command FIFO not fullflags.

Priority Selector
« Priority is assigned on a round-robin basis.
« The slave command select is generated from the highest priority non-empty slave command FIFO.

Slave Command Mux

+ The slave command mux select is generated from the slave command select.
+ The slave command mux routes the selected slave command FIFO to the master command FIFO.

Master Command FIFO

« The slave command mux output is interfaced to the master_m2s port command elements via the master
command FIFO.

« The master command FIFO write advance is generated from the slave command select and the master, write,
and read command FIFO not full flags

« The master command FIFO read advance is generated from the master_s2m port CmdAccept element and
the master command FIFO not emply flag

Write Command FIFO
+ The slave command select and s\ave command FIFO output BurstLength element are interfaced to the write
data FSM via the write command FIFO.

+ The write command FIFO write advance is generated from the master command FIFO write advance and
master command FIFO Cmd element.

« The write command FIFO read advance is generated from the write data FSM,

Read Command FIFO
+ The slave command select and slave command FIFO output BurstLength element are interfaced to the read
data FSM via the read command FIFO.

+ The read command FIFO write advance is generated from the master command FIFO write advance and
master command FIFO Cmd element.

+ The read command FIFO read advance is generated from the read data FSM

6.1.3.3.3.2 Write Data Path

Common HDL Components Page 151
AD-UG-0004 Alpha Data Parallel Systems Ltd

ADM-XRC Gen 3 SDK 1.4.0 User Guide

@ALPHA DATA (V15 - 24th August 2011)

This consists of the DataValid, DataByteEn, and Data elements of the slaves_m2s/master_m2s signals, and the

DataAccept element of the slaves_s2m/master_s2m signals.

Slave Write Data FIFOs

« The slaves_m2s ports write data elements are interfaced to the slave write data mux inputs via the slave write
data FIFOs.

+ The slaves_s2m ports DataAccept elements are generated from the slave write data FIFOS not fullflags.

« The slave write data FIFOs write advances are generated from the slaves_m2s ports Datavalid elements and
the slave write data FIFOs not full flags.

. The slave write data FIFOs read advances are generated from the write data select, the slave write data FIFOs
not empty flags, and the master write data FIFO not full flag

Slave Write Data Mux

+ The slave write data mux select is generated from the write data select.
+ The slave write data mux routes the selected slave write data FIFO to the master write data FIFO.

Master Write Data FIFO

+ The slave write data mux output is interfaced to the master_m2s port write data elements via the master write
data FIFO.

« The master write data FIFO write advance is generated from the write data select, the slave write data FIFO
not empty flags, and the master write data FIFO not fullflag

+ The master write data FIFO read advance is generated from the master_s2m port DataAccept element and
the master write data FIFO not empty flag.

Write Data FSM

+ Counts write data bursts for current entry in the write command FIFO.

+ The write data select is generated from the FSM state and write command FIFO output.
+ The write command FIFO read advance is generated from the FSM state.

6.1.3.3.3.3 Read Response Path

This consists of the Resp, Tag, and Data elements of the master_s2m/slaves_s2m signals, and the RespAccept

element of the master_m2s/slaves_m2s signals.

Master Read Response FIFO

« The master_s2m port read response elements are interfaced to the slave read response FIFOs via the master
read response FIFO.

« The master read response FIFO write advance is generated from the master_s2m port Resp element and the
master read response FIFO not full flag.

. The master read response FIFO read advance is generated from the read response select, slave read
response FIFOs not full flags, and the master read response FIFO not empty flag.

Slave Read Response FIFOs

+ The master read response FIFO is interfaced to the slaves_s2m ports read response elements via the slave
read response FIFO:

Page 152 Common HDL Components
Alpha Data Parallel Systems Ltd. AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide.

(VL5 - 241h August 2011) @ALPHA DATA

« The slave read response FIFOs write advances are generated from the read response select, the slave read
response FIFOs not fullflags, and the master read response FIFO not full flag.

« The slave read response FIFOs read advances are generated from the slaves_m2s ports RespAccept
elements and the slave read response FIFOs not empty flags.

Read Response FSM

« Counts read response bursts for current entry in the read command FIFO.
+ The read response select is generated from the FSM state and read command FIFO output.
« Theread command FIFO read advance is generated from the FSM state.

Common HDL Components Page 153
AD-UG-0004 Alpha Data Parallel Systems Ltd

ADM-XRC Gen 3 SDK 1.4.0 User Guide
@ ALPHA DATA (V15 - 24th August 2011)

6.1.3.4 adb3_ocp_ocp2ddr3_nb
6.1.3.4.1 Introduction

This is a non-blocking component in the ADB3 OCP group. Its function is to interface a single ADB3 OCP channel to
the Xilinx DDR3 SDRAM MIG core user interface.

Dependencies
+ The command path is independent from the write data path. Data acceptance does not block command
acceptance.

« The command path is independent from the read response path. Response acceptance does not block
command acceptance.

+ Transaction response order always matches transaction command acceptance order.

+ ADB3 OCP Profile Definition Package (adb3_ocp)

6.1.3.4.2 Interface

The adb3_ocp_ocp2ddr3_nb component interface is shown in Figure 32 below and described in Table 91.

adb3_ocp_ocp2ddr3_nb

Figure 32: adb3_ocp_ocp2ddr3_nb Component Interface

signal Type | Description
app_row_width | Generic | Width of the row part of the app_addr output.
app_col_width | Generic | Width of the col part of the app_addr output.
app_bank_width | Generic | Width of the bank part of the app_addr output.
app_addr_widih_| Generic | Width of the app_addr output (4-byte address).

OCP Interface
ocp_rst Input__| OCP asynchronous reset.
ocp_ck Input__| OCP clock.

Table 91: adb3_ocp_ocp2ddr3_nb Component Interface (continued on next page)

Page 154 Common HDL Components
Alpha Data Parallel Systems Ltd. AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide.

(VLS - 24th August 2011)

@ ALPHA DATA

Signal Type | Description
ocp_m2s Input | OCP M2S connection.
ocp_s2m Output | OCP $2M connection,

DDR3 SDRAM MIG Core User Interface
mig_rst Input | User interface reset.
mig_clk Input_| User interface clock
phy_init_done | Input | User interface phy calibration complete.
app_rdy Input_| User interface command ready.
app_wdf_rdy | Input | User interface write data ready.
app_rd_data Input | User interface read command data.
app_rd_data_valid | Input__| User interface read command data valid.
app_en Output | User interface command enable.
app_cmd Output | User interface command.
app_addr Output | User interface command address (4-byte address).
app_sz Output | User interface command on the fly BLB/BC4 select.
app_wdf_wren Output | User interface write command data enable
app_wdf_data__ | Output | User interface write command data.
app_wdf_mask | Output | User interface write command data mask (active low)
app_wdf_end | Output | User interface write command data end

Table 91: adb3_ocp_ocp2ddr3_nb Component Interface

6.1.3.4.3 Description

The adb3_ocp_ocp2ddr3_nb component block diagram is shown in Figure 33 below.

Common HDL Components
AD-UG-0004

Alpha Data Parallel Systems Ltd

Page 155

@ ALPHA DATA

ADM-XRC Gen 3 SDK 1.4.0 User Guide

(VL5 - 24th August 2011)

03 oep_ocpadia b

e pty_int_done.
1 aw_en
ema
aito Fsm b3_ocp_newfio [
ocp m2s > app_ator
(cma. Tag. Addr. —| ™
Burst o) e ooy
ocp_s2m
(cmanceepy
Siave FIF0. Command Transiaian Waster FIFO
Command patn
> app._wt_uren,
ot st
sito adu3_ocp_new_fio [e
ocp_m2s [app_wet_mask
Gnata e aom vt oy
ocp_som
(oataAceep
Stave FIF0 Waster FIFO
wite data
sito db3_ocp_new_fifo
GEE RBT FIFO
aito
ocp_sam
(oaa, 2o cta
oo pgrp——
ocp_s2m
e
Siave 170,
Read response patn

Figure 33: adb3_ocp_ocp2ddr3_nb Block Diagram

Page 156

Alpha Data Parallel Systems Ltd.

Common HDL Components
AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide

(VL5 - 24th August 2011) @ ALPHA DATA

6.1.3.4.3.1 Command Path

This consists of the Cmd, Tag, BurstLength, and Addr elements of the ocp_m?2s signal, and the app_rdy, app_en,

app_cmd, app_addr, and app_sz MIG core user interface signals.

Slave Command FIFO

« The ocp_m2s port command elements in the ocp_clk domain are interfaced to the command translation FSM
in the mig_clk domain via the slave command FIFO.

+ The ocp_s2m port CmdAccept element s generated from the slave command FIFO ot full flag.

« The slave command FIFO write advance is generated from the ocp_m2s port Cmd element and the slave
command FIFO not fullfiag.

« The slave command FIFO read advance is generated from the slave command FIFO not empty, and the FSM
burst start output n_mex_bstart.

Command Translation FSM

« This block operates in the mig_clk domain

« Slave command FIFO data is converted into MIG core user interface commands which are then written to the
master command FIFO.

« The FSM output n_mcx_bstart is used to generate the slave command FIFO read advance.

« The FSM output mex_mst_wr is used to generate the master command FIFO write advance.

+ The FSM outputs n_mex_mst_wr, and n_mex_cmd_wr are used to generate the slave write data FIFO read
advance and the master write data FIFO write advance.

Master Command FIFO

+ The command translation FSM i interfaced to the MIG core user interface command signals via the master
ccommand FIFO.

« The master command FIFO write advance is generated from the FSM master write output mcx_mst_wr.

+ The master command FIFO read advance is generated from the master command FIFO not empty, read burst
tracker and read full tracker FIFOs not full, and the MIG core user interface ready signals.

+ The MIG app_addr input is produced by reordering the address component of the master command FIFO read
data from logical (Row/Bank/Col) to MIG (Bank/Row/Col). This ensures that the MIG core is compatible with
DDR3 SDRAM devices with differing Row sizes.

Read Burst Tracking FIFO

« The master command FIFO outputs app_cmd_bl8 and app_cmd_tag are written to the read burst tracking
FIFO on every MIG core user interface read command.

« The read burst tracking FIFO output rbt_q_tag is used as the tag value for OCP read response written into the
slave read response FIFO.

« The read burst tracking FIFO output rbt_q_bl8 is compared with the number of OCP response data words and
this is used to generate rbt_bl_comp signal.

- The read burst tracking FIFO write advance is generated from the master command FIFO read advance and
the master command FIFO output app_cmd_rd.

« The read burst tracking FIFO read advance is generated from the read burst tracking FIFO not empty, the
rbt_bl_comp signal, and the slave read response FIFO write advance.

Read Full Tracking FIFO

Common HDL Components Page 157
AD-UG-0004 Alpha Data Parallel Systems Ltd

e

ADM-XRC Gen 3 SDK 1.4.0 User Guide

HA DATA (1.5 - 24th August 2011)

‘The master command FIFO output app_cmd_bl8 is written to the read fulltracking FIFO on every MIG core
user interface read command.

The read full tracking FIFO output rft_q_bI8 is compared with the number of OCP response data words and
this is used to generate rft_bl_comp signal

The read full tracking FIFO write advance is generated from the master command FIFO read advance and the
master command FIFO output app_cmd_rd.

‘The read full tracking FIFO read advance is generated from the read full tracking FIFO not empty, the
rft_bl_comp signal, and the slave read response FIFO read advance.

6.1.3.4.3.2 Write Data Path

This consists of the DataValid, DataByteEn, and Data elements of the ocp_m2s signal, and the app_wdf_rdy,
p_wdf_wren, app_wdf_data, app_wdf_mask, and app_wdf_end MIG core user interface signals.

Slave Write Data FIFO

‘The ocp_m2s port write data elements in the ocp_clk domain are interfaced to the master write data FIFO in
the mig_clk domain via the slave write data FIFO

The ocp_s2m port DataAccept element is generated from the slave write data FIFO not fullfiag.

The slave write data FIFO write advance is generated from the ocp_m?2s port DataValid element and the slave
write data FIFO not full flag.

The slave write data FIFO read advance is generated from the slave write data FIFO not empty, and the FSM
master write and write command outputs n_mex_mst_wr and n_mcx_cmd_wr.

Master Write Data FIFO

The slave write data FIFO is interfaced to the MIG core user interface write data signals via the master write
data FIFO.

The master write data FIFO write advance is generated from the FSM master write and write command outputs
n_mex_mst_wr and n_mcx_cmd_wr.

The master write data FIFO read advance is generated from the master write data FIFO not empty, the
app_cmd_wr signal, read burst tracker and read full tracker FIFOs not full, and the MIG core user interface
ready signals.

6.1.3.4.3.3 Read Response Path

This consists of the Resp, Tag, and Data elements of the ocp_s2m signal, and the app_rd_data, and

app_

rd_data_valid MIG core user interface signals.

Slave Read Response FIFO

The MIG core user interface read data signals in the mig_clk domain are interfaced to the ocp_s2m port read
response elements in the ocp_clk domain via the slave read response FIFO.

The ocp_s2m port Resp element is generated from the slave read response FIFO not empty.

‘The slave read response FIFO write advance is generated from the MIG core user interface read data signal
app_rd_data_valid. Valid data must always be accepted.

The slave read response FIFO read advance is generated from the slave read response FIFO not empty, and
the ocp_m2s port RespAccept element.

Page 158

Common HDL Components
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide

(VL5 - 24th August 2011) @ ALPHA DATA

6.1.3.5 adb3_ocp_retime_nb
6.1.3.5.1 Introduction

This is a non-blocking component in the ADB3 OCP group. Its function is to re-time a single primary ADB3 OCP
channel, producing a single secondary ADB3 OCP channel

Dependencies

+ The command path is independent from the write data path. Data acceptance does not block command
acceptance.

« The command path is independent from the read response path. Response acceptance does not block
command acceptance.

+ ADB3 OCP Profile Definition Package (adb3_ocp)

6.1.3.5.2 Interface
The adb3_ocp_retime_nb component interface is shown in Figure 34 below and described in Table 92.

adb3_ocp_retime_nb

Figure 34: adb3_ocp_retime_nb Component Interface

Signal Type | Description
ocp_rst Input | ocP reset.
ocp_ck Input__| OCP clock.
OCP Primary Port
slave_m2s Input | OCP Primary (slave) port M2S connection.
slave_s2m Output | OCP Primary (slave) port S2M connection.
OCP Secondary Port
master_m2s. Output | OCP Secondary (master) port M2S connection.
master_s2m Input__| OCP Secondary (master) port S2M connection.

Table 92: adb3_ocp_retime_nb Component Interface

6.1.3.5.3 Description

The adb3_ocp_retime_nb component block diagram is shown in Figure 35 below.

Common HDL Components Page 159
AD-UG-0004 Alpha Data Parallel Systems Ltd.

@ALPHA DATA

ADM-X

RC Gen 3 SDK 1.4.0 User Guide
(VL5 - 24th August 2011)

siaves_m2s
(cmo. Tag A _|
Burst i)

siaves_som

(cmaaceep

b3 oep setime b

a3 ocp_site_ret

Command patn

master_m2s
(G, g, nde,
T Busiengn)

master_som
=

T (Cmnce

stave_mas
(oai, DaaByteEn —|
aiavaid)

stave_som
warccen) <

ocp_som
(DataAceep)

a3 ocp st ret

wie Oata

wite data

siave_s2m

©a, Tag. Fosp) <

stave mas _|
(Resphccep)

a3 ocp st rer

Resa s

Read response patn

| mastor_som
ata. Tag, Ress)

mastor_nzs

[esphccesn)

Figure 35: adb3_ocp_retime_nb Block Diagram

Page 160

Alpha Data Parallel Systems Ltd.

Common HDL Components
AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide
(VL5 - 241h August 2011) @ALPHA DATA

6.1.3.5.3.1 Command Path
This consists of the Cmd, Tag, BurstLength, and Addr elements of the slave_m2s/master_m2s signals, and the
CmdAccept element of the slave_s2m/master_s2m signals.
+ The slave_m2s port command elements are interfaced to the master_m2s port command elements via the
command adb3_ocp_srl16_ret component.
« The command adb3_ocp_srl16_ret slave valid is generated from the slave_q port Cmd element.
+ The command adb3_ocp_srl16_ret master valid is generated from the master_m2s port Cmd element

6.1.3.5.3.2 Write Data Path

This consists of the DataValid, DataByteEn, and Data elements of the slave_m2s/master_m2s signals, and the
DataAccept element of the slave_s2m/master_s2m signals.

« slave_m2s port write data elements are interfaced to the master_m2s port write data elements via the write
data adb3_ocp_srl16_ret component.

« The write data adb3_ocp_srl16_ret slave valid is generated from the slave_q port DataValid element

« The write data adb3_ocp_srl16_ret master valid is generated from the master_m2s port DataValid element.

6.1.3.5.3.3 Read Response Path

This consists of the Resp, Tag, and Data elements of the master_s2m/slave_s2m signals, and the RespAccept

element of the master_m2s/slave_m2s signals.

+ master_s2m port read response elements are interfaced to the slave_s2m port read response elements via
the read response adb3_ocp_srl16_ret component

« The read response adb3_ocp_srl16_ret slave valid is generated from the slave_q port Resp element.

+ The read response adb3_ocp_srl16_ret master valid is generated from the slave_s2m port Resp element

6.1.3.5.3.4 SRL16E Retime Block (adb3_ocp_srl16_ret)

The adb3_ocp_sr116_ret component block diagram is shown in Figure 36 below.

Common HDL Components Page 161
AD-UG-0004 Alpha Data Parallel Systems Ltd

ADM-XRC Gen 3 SDK 1.4.0 User Guide

@ALPHA DATA (V15 - 24th August 2011)

save

slave_acoent

L maste_sccont

Combinatana ogie e vaka

e ce

a3 ocp st re1

Figure 36: adb3_ocp_srl16_ret Block Diagram

The component has two modes of operation, shift, and hold. SRL16E shifting is controlled by srl_ce. FDCE shifting is
controlled by fdce_ce.

Shift Mode

« Slave data slave_d is shifted through SR(0) and mux d(0) to master data master_d.
« SRLIGE Shifting continues until the FDCE is not able to accept valid data (fdce_ce='

and slave_valid="1")

Hold Mode

+ SRLIGE holds slave data in SR(0) and SR(1). SR(1) is selected by mux srl_sel
+ SRLIGE retums to shifting when the the FDCE is enabled (fdce_ce="1). SR(0) is selected by mux srl_sel

Page 162 Common HDL Components
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide
(VL5 - 24th August 2011) @ ALPHA DATA

6.1.3.6 adb3_ocp_simple_bus_if
6.1.3.6.1 Introduction

This is a blocking component in the ADB3 OCP group. Its function is to convert a single ADB3 OCP channel to a simple
parallel interface.

6.1.3.6.2 Interface

The adb3_ocp_simple_bus_if component interface is shown in Figure 37 below and described in Table 93.

adb3_ocp_simple_bus_if

Figure 37: adb3_ocp_simple_bus_if Component Interface

Signal Type [Description

addr_width Generic | Width of the a address output (byte address).

data_width Generic | Width of the d/q data inputoutput.

read_latency | Generic | Number of cycles delay before g data input is available:
OCP Interface

ocp_rst Input | OCP asynchronous reset.

ocp_clk Input_| OCP clock

ocp_m2s Input | OCP M2S connection.

ocp_s2m Output_| OCP S2M connection.

Simple Bus Interface
d Output_| Write data of width data_width.
q Input_| Read data of width data_width.
a
W

Output | Write/Read address (byte address) of width addr_width
Output_| Write enable.

r Output_| Read enable.
we Output_ | Write data byte enable of width data_width/s.

Table 93: adb3_ocp_simple_bus._if Component Interface

6.1.3.6.3 Description
8D

Common HDL Components Page 163
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.4.0 User Guide
@ ALPHA DATA (V15 - 24th August 2011)

6.1.3.6.3.1 Example Waveforms

In the following example, we are performing 2 OCP writes with burst length of 1, to a 32-bit simple bus. OCP data
consists of 16 bytes, and so this results in 4 writes to the simple bus, each of 4 bytes. Each simple bus write is
indicated by the w signal. The simple bus 4-byte write data on d is enabled by the 4-bit we bus. OCP addresses are
always 16-byte aligned. The 32-bit simple bus write address a Is nibble will therefore always sequence through values
0x0, 0x4, 0x8, OXC.

aepaic LS

I

A

I

I

Simple Bus

we Y 0x0__Y(0x0 J[oxF)(0x0 J(0x0 J__ %0 __)0x0 J0x0 Jox2 {00
Figure 38: OCP Writes (Burst Length = 1) To 32-bit Simple Bus

The first OCP write is 32-bits to a byte address starting at 16-byte offset = Oxd.

The second OCP wite is 8-bits to a byte address starting at 16-byte offset = 0x9.

In the following example, we are performing 1 OCP read with burst length of 1, from a 32-bit simple bus with
read_latency of 1. OCP responses consists of 16 bytes, and so this results in 4 reads from the simple bus, each of 4
bytes. Each simple bus read is indicated by the r signal. The simple bus 4-byte read data on q is expected 1 cycle after
ris valid (read_latency = 1). OCP addresses are always 16-byte aligned. The 32-bit simple bus read address a Is nibble
will therefore always sequence through values 00, 0x4, 0x8, OxC.

My ata auiatiaVa

I

I

I

Simple Bus.
.
, B L

we 0x0

Figure 39: OCP Read From 32-bit Simple Bus (Read Latency = 1)

The OCP read is 128-bits from a byte address starting at 16-byte offset = 0x0.

Page 164 Common HDL Components
Alpha Data Parallel Systems Ltd. AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide
(VL5 - 24th August 2011) @ ALPHA DATA

In the following example, we are performing 2 OCP writes with burst length of 1, to a 128-bit simple bus. OCP data
consists of 16 bytes, and so this results in 1 write to the simple bus of 16 bytes. Each simple bus write is indicated by
the w signal. The simple bus 16-byte write data on d is enabled by the 16-bit we bus. OCP addresses are always
16-byte aligned. The 128-bit simple bus write address a Is nibble will therefore always have value 0x0,

In the following example, we are performing 2 OCP reads with burst length of 1, from a 128-bit simple bus with
read_latency of 1. OCP responses consists of 16 bytes, and so this results in 1 read from the simple bus of 16 bytes.
Each simple bus read is indicated by the r signal. The simple bus 16-byte read data on q is expected 1 cycle after r is
valid (read_latency = 1). OCP addresses are always 16-byte aligned. The 128-bit simple bus read address a Is nibble
will therefore always have value 0x0.

ocp_cik | L(_ L

AN

I

I

I

Simple Bus

X000
Figure 40: OCP Writes/Reads (Burst Length = 1) To/From 128-bit Simple Bus

The first OCP write is 32-bits to a byte address starting at 16-byte offset = 0x4.

The second OCP write is 8-bits to a byte address starting at 16-byte offset = 0x9.

The first OCP read s 128-bits from a byte address starting at 16-byte offset = 0x0.
The second OCP read is 128-bits from a byte address starting at 16-byte offset = 0x0.

Common HDL Components Page 165
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.4.0 User Guide

@ALPHA DATA (V15 - 24th August 2011)

6.1.3.7 adb3_ocp_simple_bus.
6.1.3.7.1 Introduction

This is a non-blocking component in the ADB3 OCP group. Its function s to convert a single ADB3 OCP channel to a

simple parallel interface.

Dependencies

+ The command path is independent from the write data path. Data acceptance does not block command
acceptance.

« The command path is independent from the read response path. Response acceptance does not block
command acceptance.

+ Transaction response order always matches transaction command acceptance order.

+ ADB3 OCP Profile Definition Package (adb3_ocp)

6.1.3.7.2 Interface

The adb3_ocp_simple_bus_if_nb component interface is shown in Figure 41 below and described in Table 94.

adb3_ocp_simple_bus_if_nb

Figure 41: adb3_ocp_simple_bus_if_nb Component Interface

Page 166 Common HDL Components
Alpha Data Parallel Systems Ltd. AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide.
(VLS - 24th August 2011)

@ ALPHA DATA

signal Type | Description
addr_width Generic | Width of the a address output (byte address).
data_width Generic | Width of the diq data inputioutput.
read_latency | Generic | Number of cycles delay before g data input is available.
OCP Interface
ocp_rst Input__| OCP asynchronous reset.
ocp_clk Input__| OCP clock.
ocp_m2s Input | OCP M2S connection.
ocp_s2m Output | OCP S2M connection.
Simple Bus Interface
d Output | Write data of width data_width.
a Input__| Read data of width data_width.
a Output_ | write/Read address (byte address) of width addr_width
w Output | Write enable.
r Output | Read enable.
we Output | Write data byte enable of width data_widths.

Table 94: adb3_ocp_simple_bus_if_nb Component Interface

6.1.3.7.3 Description

The adb3_ocp_simple_bus_if_nb component block diagram is shown in Figure 42 below.

Common HDL Components

AD-UG-0004

Alpha Data Parallel Systems Ltd

Page 167

@ ALPHA DATA

ADM-XRC Gen 3 SDK 1.4.0 User Guide

(VL5 - 24th August 2011)

b3 oep simple bus

Command
ads_ocp_bus_itfto ‘Wi Conversion
ocp_mas
(Cme, Tag, A, —
Bursitengin)
ocp_szm
(cmanceepy <
Siave FIFO Command Transiation
Command path
a3 ocp_bus i
ocp_mas
(Data, DwaBeEn) —|
aaval)
ocp_som
(DataAccep)
Slave FIFO
wie data pan
ads_ocp._bus_itfto

ocp_s2m

Trag

RBT FIFO

a3 ocp_bus_t

espanse
wih Conversion

ocp sam
ocpmzs |
(Respacoenn)

ocp_s2m
e

Siave FIF0.
Read response patn

Figure 42: adb3_ocp_simple_bus_if_nb Block Diagram

Common HDL Components
AD-UG-0004

Page 168

Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.4.0 User Guide

(VL5 - 24th August 2011) @ ALPHA DATA

6.1.3.7.3.1 Command Path
This consists of the Cmd, Tag, BurstLength, and Addr elements of the ocp_m?2s signal, and the a, w, and r simple
bus interface signals.
Slave Command FIFO

+ The ocp_m2s port command elements are interfaced to the command translation FSM via the slave command
FIFO

« The ocp_s2m port CmdAccept element is generated from the slave command FIFO not full flag.

« The slave command FIFO write advance is generated from the ocp_m2s port Cmd element and the slave
command FIFO not fullflag.

« The slave command FIFO read advance is generated from the slave command FIFO not empty, and the FSM
burst start output n_mex_bstart.

Command Translation FSM

+ Slave commandiwrite data FIFO data s converted into ADB3 OCP data width simple bus interface commands.
which are then written to the command conversion function.

+ The FSM will pause if the slave write data FIFO data is not valid, or mst_cmd_busy is active during an OCP
write command.

+ The FSM will pause if the read burst tracking FIFO is full, or mst_cmd_busy is active during an OCP read
command.

« The FSM burst start output n_mcx_bstart is used to generate the slave command FIFO read advance.

« The FSM master write and write command outputs n_mex_mst_wr, and n_mex_cmd_wr are used to
generate the slave write data FIFO read advance.

Command Conversion

+ ADB3 OCP data width simple bus interface commands are converted into data_width data width simple bus
interface commands by the command conversion function.

+ The signal mst_cmd_busy is used to pause the command translation FSM while command conversion is
ongoing.

Read Burst Tracking FIFO

+ The command translation FSM output n_mcx_tag is written to the read burst tracking FIFO on every ADB3
OCP data width simple bus interface read comman

« The read burst tracking FIFO output rbt_q_tag is used as the tag value for OCP read response data

+ The read burst tracking FIFO write advance is generated from the command translation FSM outputs
n_mex_mst_wr and n_mex_emd_rd.

+ The read burst tracking FIFO read advance is generated from the read burst tracking FIFO not empty, and the
slave read response FIFO write advance.

6.1.3.7.3.2 Write Data Path

This consists of the DataValid, DataByteEn, and Data elements of the ocp_m2s signal, and the d, and we simple bus
interface signals.

Slave Write Data FIFO

Common HDL Components Page 169
AD-UG-0004 Alpha Data Parallel Systems Ltd

ADM-XRC Gen 3 SDK 1.4.0 User Guide

@ALPHA DATA (V15 - 24th August 2011)

« The ocp_m2s port write data elements are interfaced to the command translation FSM via the slave write data
FIFO.

« The ocp_s2m port DataAccept element is generated from the slave write data FIFO not full flag.

« The slave write data FIFO write advance is generated from the ocp_m2s port DataValid element and the slave
write data FIFO not full flag.

+ The slave write data FIFO read advance is generated from the slave write data FIFO not empty, and the
command translation FSM master write and write command outputs n_mcx_mst_wr and n_mex_cmd_wr.

6.1.3.7.3.3 Read Response Path

This consists of the Resp, Tag, and Data elements of the ocp_s2m signal, and the q simple bus interface signal.

Slave Read Response FIFO

« The ADB3 OCP width simple bus interface read data is interfaced to the ocp_s2m port read response
elements via the slave read response FIFO.

« The ocp_s2m port Resp element is generated from the slave read response FIFO not empty.

« The slave read response FIFO write advance is generaled from the response conversion slv_resp_val
response valid signal. Valid data must always be accepted.

+ The slave read response FIFO read advance is generated from the slave read response FIFO not empty, and
the ocp_m2s port RespAccept element.

Response Conversion

+ data_width data width simple bus interface commands are converted into ADB3 OCP data width simple bus
interface commands by the response conversion function.
+ The signal slv_resp_val is used to generate the slave read response FIFO write advance.

6.1.3.7.3.4 Example Waveforms

In the following example, we are performing 2 OCP writes with burst length of 1, to a 32-bit simple bus. OCP data
consists of 16 bytes, and so this results in 4 writes to the simple bus, each of 4 bytes. Each simple bus write is
indicated by the w signal. The simple bus 4-byte write data on d is enabled by the 4-bit we bus. OCP addresses are
always 16-byte aligned. The 32-bit simple bus write address a Is nibble will therefore always sequence through values
0x0, 0x4, 0x8, OXC.

ocp_ck [AVAWAWAWRAWAWE e
Simple Bus
d 8 28 3 8 28 3
a 7 ToYoeia
w
'
B U0 06 C3 0 SEOE 9 00 G2 B3
Figure 43: OCP Writes (Burst Length = 1) To 32-bit Simple Bus
Page 170 Common HDL Components

Alpha Data Parallel Systems Ltd. AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide
(VL5 - 24th August 2011) @ ALPHA DATA

The first OCP write is 32-bits to a byte address starting at 16-byte offset = 0x4.

The second OCP write s 8-bits to a byte address starting at 16-byte offset = 0x9.

In the following example, we are performing 2 OCP reads with burst length of 1, from a 32-bit simple bus with
read_latency of 1. OCP responses consists of 16 bytes, and so this resuls in 4 reads from the simple bus, each of 4
bytes. Each simple bus read is indicated by the r signal. The simple bus 4-byte read data on q s expected 1 cycle after
ris valid (read_latency = 1). OCP addresses are always 16-byte aligned. The 32-bit simple bus read address a s nibble
will therefore always sequence through values 0x0, x4, 0x8, OXC.

ecpok [\ .
Sinple Bus

Figure 44: OCP Read From 32-bit Simple Bus (Read Latency = 1)

The OCP read is 128-bits from a byte address starting at 16-byte offset = 0x0.

In the following example, we are performing 2 OCP writes with burst length of 1, to a 128-bit simple bus. OCP data
consists of 16 bytes, and so this results in 1 write to the simple bus of 16 bytes. Each simple bus write is indicated by
the w signal. The simple bus 16-byte write data on d is enabled by the 16-bit we bus. OCP addresses are always
16-byte aligned. The 128-bit simple bus write address a s nibble will therefore always have value 0x0.

In the following example, we are performing 2 OCP reads with burst length of 1, from a 128-bit simple bus with
read_latency of 1. OCP responses consists of 16 bytes, and so this results in 1 read from the simple bus of 16 bytes.
Each simple bus read is indicated by the r signal. The simple bus 16-byte read data on q is expected 1 cycle after r is
valid (read_latency = 1). OCP addresses are always 16-byte aligned. The 128-bit simple bus read address a Is nibble
will therefore always have value 0xO0.

ecpok [\
Simple Bus
d
[l
a 000 ox10 000 ox10
. = =
we Y 0X000(P 0x0000 <0201 X000
Figure 45: OCP Writes/Reads (Burst Length = 1) To/From 128-bit Simple Bus
Common HDL Components Page 171

AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.4.0 User Guide

@ALPHA DATA (V15 - 24th August 2011)

The first OCP wite is 32-bits to a byte address starting at 16-byte offset = Oxd.
The second OCP write is 8-bits to a byte address starting at 16-byte offset = 0x9.

The first OCP read is 128-bits from a byte address starting at 16-byte offset = 0x0.
The second OCP read is 128-bits from a byte address starting at 16-byte offset = 0x0.

Page 172 Common HDL Components
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide

(VL5 - 24th August 2011) @ ALPHA DATA

6.1.3.8 adb3_ocp_split_b

6.1.3.8.1 Introduction
This is a blocking component in the ADB3 OCP group. lts function is to de-multiplex a single primary ADB3 OCP
channel into multiple secondary ADB3 OCP channels. The de-multiplex is controlled by the primary channel command
address.

6.1.3.8.2 Interface
The adb3_ocp_split_b component interface is shown in Figure 46 below and described in Table 95.

adb3_ocp_split_b

Figure 46: adb3_ocp_split_b Component Interface

signal Type | Description
addr_range_table | Generic | Table defining the address ranges to be used to control the split operation.
ocp_rst Input | ocp reset.
ocp_clk Input__| OCP port clock.
OCP Primary Port
slave_mz2s Input_| OCP Primary (slave) port M2S connection.
slave_s2m Output_| OCP Primary (slave) port S2M connection.

OCP Secondary Ports
masters_ m2s | Output | OCP Secondary (master) ports M2S connection.

masters_s2m__| Input__| OCP Secondary (master) ports S2M connection.

Table 95: adb3_ocp_split_b Component Interface

6.1.3.8.3 Description
8D

Common HDL Components Page 173
AD-UG-0004 Alpha Data Parallel Systems Ltd.

@ALPHA DATA

ADM-XRC Gen 3 SDK 1.4.0 User Guide
(VL5 - 24th August 2011)

6.1.3.9 adb3_ocp_split_nb
6.1.3.9.1 Introduction

This is a non-blocking component in the ADB3 OCP group. Its function s to de-multiplex a single primary ADB3 OCP
channel into multiple secondary ADB3 OCP channels. The de-multiplex is controlled by the primary channel command

address.

Dependencies

+ The command path is independent from the write data path. Data acceptance does not block command

acceptance.

+ The command path is independent from the read response path. Response acceptance does not block

command acceptar

nce.

« Transactions on multiple secondary ADB3 OCP channels may be initiated simultaneously.
+ Transaction response order always matches transaction command acceptance order.
. 'ADB3 OCP Profile Definition Package (adb3_ocp)

6.1.3.9.2 Interface

The adb3_ocp_split_nb component interface is shown in Figure 47 below and described in Table 96,

adb3_ocp_split_nb

Figure 47: adb3_ocp_split_nb Component Interface

Signal Type | Description
addr_range_table | Generic | Table defining the address ranges to be used to control the split operation.
error_data Generic | OCP Response Data to be returned if address is out of range.
ocp_rst Input | ocp reset.
ocp_ck Input__| OCP port clock

OCP Primary Port
slave_m2s Input | OCP Primary (slave) port M2S connection.
slave_s2m Output | OCP Primary (slave) port S2M connection.

OCP Secondary Ports
masters_m2s. Output | OCP Secondary (master) ports M2S connection.
masters_s2m | Input__| OCP Secondary (master) ports S2M connection.

Table 96: adb3_ocp_split_nb Component Interface

6.1.3.9.3 Description

Page 174

Common HDL Components

Alpha Data Parallel Systems Ltd.

AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide

(VL5 - 24th August 2011)

@ ALPHA DATA

The adb3_ocp_split_nb component block diagram is shown in Figure 48 below.

siave_mas
(cmo. Tag.Adar —|
Burst i)

stave_som
(cmanceep

53 ocp_spi_n

adb3_ocp_spiiLnb 10

aster R0

a3 ocp_mux_nb_fio 53 ocp_spinb_f0

Command patn Master FFO

masters_nzs0)

et nzse)

Fsm db3_ocp_spi_nb_ o adb3_ocp_spli_nb_ft0

“Wnite Data Pt
Vinte G FF0 Master FFO
ab3_ocp_spli_nb_tio d83_ocp_spiiLnb_f0
ocp_m2s
ocp m2s _|
aavai)
siave som |
(atahceop
Stave FIFO wirte dasa pan Master FF0
Fom db3_ocp_spinb,_fto mox d53_ocp_spinb_f0
Road Resp Fol

(Respiceen) |
stave_szm
Resp) <

mstrs nzs)

masters_ m2s(0)
atavai)

|, mastors_ masto)
aravai)

Read Cmd FIFO Master FFO

a0b3_ocp_mux_ob_tio ad03_ocp_spli_nb_t0

masters_s2m()

masters_s2m(o)

aa, 29
mastars <2m(s)
=

|, mastors_mas(o)
Respaccesn)

Siave FIFO Read response patn Master FFO

Figure 48: adb3_ocp_split_nb Block Diagram

Common HDL Components
AD-UG-0004

Alpha Data Parallel Systems Ltd.

Page 175

ADM-XRC Gen 3 SDK 1.4.0 User Guide
@ ALPHA DATA (V1.5 - 24th August 201)

6.1.3.9.3.1 Command Path
This consists of the Cmd, Tag, BurstLength, and Addr elements of the slaves_m2s/master_m2s signals, and the
CmdAccept element of the slaves_s2m/master_s2m signals.
Slave Command FIFO

« The slave_m2s port command elements are interfaced to the master command FIFOs via the slave command
FIFO

+ The slave_s2m port CmdAccept element is generated from the slave command FIFO not ful flag.

« The slave command FIFO write advance is generated from the slave_m2s port Cmd element and the slave
command FIFO not fullfiag.

« The slave command FIFO read advance is generated from the slave command FIFO not empty, slave
command select, and the master, write, and read command FIFO not full lags.

Address Selector

+ The slave command select is generated by comparison of the slave command FIFO Addr element with the
address ranges in the addr_range_table generic.

Master Command FIFOs

«+ The slave command FIFO is interfaced to the masters_m?2s ports command elements via the master
command FIFOs,

« The master command FIFOs write advances are generated from the slave command FIFO not empty, slave
command select, and the master, write, and read command FIFO not full flags.

« The master command FIFOs read advances are generated from the master_s2m port CmdAccept element
and the master command FIFOs not empty flags.

Write Command FIFO

« The slave command select and slave command FIFO output BurstLength element are interfaced to the write
data FSM via the write command FIFO.

+ The write command FIFO write advance is generated from the slave command FIFO write advance and slave
command FIFO Cmd element

. The write command FIFO read advance is generated from the write data FSM.

Read Command FIFO

+ The slave command select and slave command FIFO output BurstLength and Tag elements are interfaced to
the read data FSM via the read command FIFO.

+ The read command FIFO write advance is generated from the slave command FIFO write advance and slave
command FIFO Cmd element.

+ The read command FIFO read advance is generated from the read data FSM

6.1.3.9.3.2 Write Data Path

This consists of the DataValid, DataByteEn, and Data elements of the slaves_m2s/master_m2s signals, and the
DataAccept element of the slaves_s2m/master_s2m signals.

Slave Write Data FIFO

Page 176 Common HDL Components
Alpha Data Parallel Systems Ltd. AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide

(VL5 - 24th August 2011) @ ALPHA DATA

« The slave_m2s port write data elements are interfaced to the master write data FIFOs via the slave write data
FIFO.

« The slave_s2m port DataAccept element is generated from the slave write data FIFO not full flag.

« The slave write data FIFO write advance is generated from the slave_m2s port DataValid element and the
slave write data FIFO not fullflag

+ The slave write data FIFO read advance is generated from the write data select, the slave write data FIFO not
empty flag, and the master write data FIFOs not full flags.

Master Write Data FIFOs

« The slave write data FIFO is interfaced to the masters_m2s ports write data elements via the master write
data FIFOs.

« The master write data FIFOs write advances are generated from the write data select, the slave write data
FIFO not empty flag, and the master write data FIFOS not full flags.

« The master write data FIFOs read advances are generated from the masters_s2m ports DataAccept
elements and the master write data FIFOs not empty flags.

Write Data FSM

+ Counts write data bursts for current entry in the write command FIFO.
+ The write data select is generated from the FSM state and write command FIFO output.
« The write command FIFO read advance is generated from the FSM state.

6.1.3.9.3.3 Read Response Path

This consists of the Resp, Tag, and Data elements of the master_s2m/slaves_s2m signals, and the RespAccept

element of the master_m2s/slaves_mz2s signals.

Master Read Response FIFOs

+ The masters_s2m ports read response elements are interfaced to the slave read response mux inputs via the
master read response FIFOS.

+ The masters_s2m ports CmdAccept elements are generated from the master read response FIFOs not full
flags

« The master read response FIFOs write advances are generated from the masters_s2m ports Resp elements
and the master read response FIFOs ot full lags.

« The master read response FIFOs read advances are generated from the read response select, slave read
response FIFO not fullflag, and the master read response FIFOs not empty flags.

Master Read Response Mux
+ The master read response mux select is generated from the master read response select

+ The master read response mux routes the selected master read response FIFO to the slave read response
FIFO.

Slave Read Response FIFO

« The master read response mux is interfaced to the slave_s2m port read response elements via the slave read
response FIFO.

+ The slave read response FIFO write advance is generated from the read response select, the slave read
response FIFO not full flag, and the master read response FIFOs not empty flags.

Common HDL Components Page 177
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADMXRC Gen 3 SDK 1.4.0 User Guide
’ALF“‘ DATA (v1.5 - 24th August 2011)

+ The slave read response FIFO read advance is generated from the slave_m2s port RespAccept element and
the slave read response FIFO not empty flag.

Read Response FSM
« Counts read response bursts for current entry in the read command FIFO.

« Theread response select is generated from the FSM state and read command FIFO output.
+ The read command FIFO read advance is generated from the FSM state.

Page 178 Common HDL Components
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide
(VL5 - 241h August 2011) @ALPHA DATA

6.1.4 ADB3 OCP Testbench Package (adb3_ocp_tb_pkg)

The package adb3_ocp_tb_pkg defines functions and procedures relating to the ADB3 OCP profile which are used in
target example FPGA testbenches.

Type Definitions
« byte_t. Abyte datatype

« byte_vector_t. Variable width array of byte_t data bytes.

+ byte_enable_t. Variable width array of std_logic data byte enables.

Function Definitions
« conv_byte_vector. Convert type std_logic_vector to type byte_vector_t

+ conv_byte_enable. Convert type std_logic_vector to type byte_enable_t

« conv_vector. Convert type byte_vector_tto type std_logic_vector

« conv_string_hex. Convert types byte_vector_t/std_logic_vector (o type string
+ conv_string. Convert types byte_enable_t'std_logic_vector to type string

Procedure Definitions

« adb3_ocp_sim_read_reg32. ADB3 OCP read procedure reading 4-byte data using adb3_ocp_sim_read.
Procedure is blocking and will not complete until all ADB3 OCP response data has been returned. Address
input s byte aligned and is converted to a 16-byte aligned ADB3 OCP read command address. 4-byte data
from the correct offset is returned from the ADB3 OCP 16-byte response data.

« adb3_ocp_sim_read. ADB3 OCP read procedure. Procedure is blocking and will not complete until all ADB3
OCP response data has been returned. Address input is 16-byte aligned and is used as the first ADB3 OCP
read command address. Read data is returned from the ADB3 OCP response data.

« adb3_ocp_sim_read_cmd. ADB3 OCP read command procedure. Procedure is non-blocking and will
complete after all ADB3 OCP read commands have been issued. Address input is 16-byte aligned and is used
as the first ADB3 OCP read command address.

« adb3_ocp_sim_read_resp. ADB3 OCP read response procedure. Read data is returned from the ADB3 OCP.
response data.

« adb3_ocp_sim_write_reg32. ADB3 OCP write procedure writing 4-byte data using adb3_ocp_sim_write.
Data input s 4-bytes, Byte enable input is 4 bits. Address input is byte aligned and is converted to a 16-byte
aligned ADB3 OCP write command address. The 4-byte data with the correct offset will be inserted in the ADB3
OCP 16-byte write data. The 4-bit byte enables with the correct offset will be inserted in the ADB3 OCP 16-bit
byte enables.

« adb3_ocp_sim_write. ADB3 OCP write procedure. Data input is n-bytes, Byte enable input is n bits. Address
input s 16-byte aligned and is used as the ADB3 OCP write command address. The n-byte data is used as
ADB3 OCP 16-byte write data. The n-bit byte enables is used as ADB3 OCP 16-bit byte enables.

« adb3_ocp_sim_wait_cycles. Clock cycle wait procedure.

Common HDL Components Page 179

AD-UG-0004 Alpha Data Parallel Systems Ltd

ADM-XRC Gen 3 SDK 1.4.0 User Guide

@ALPHA DATA (V15 - 24th August 2011)

6.2 ADB3 Target
The ADBS3 target group s located in hdlivhdi/common/adb3_target/ and contains the following elements:
« ADB3 Target Types Definition Package (adb3_target_types_pkg)
« ADB3 Target Include Package (adb3_target_inc_pkg)
+ ADB3 Target Package (adb3_target_pkg)
+ ADB3 Target Components
+ ADB3 Target Testbench Include Package (adb3_target_tb_inc_pkg)
+ ADB3 Target Testbench Package (adb3_target_th_pkg)
+ ADB3 Target Testbench Components

6.2.1 ADB3 Target Types Defini

The adb3_target_types_pkg package defines types and constants which are used by the ADB3 target include
packages

ion Package (adb3_target_types_pkg)

Type Definitions

« target_use_t. An enumerated type containing an element for each end use supported by the SDK. Valid end
uses are currently: SIM_OCP for OCP-only simulation; SIM_MPTL for Full MPTL simulation; and SYN_NGC
for synthesis.

Maximum Value Constant Definitions

+ MAX_DS_CHANNELS. Direct slave OCP channels

+ MAX_DMA_CHANNELS. DMA OCP channels.

+ MAX_DM_CHANNELS. Direct master OCP channels.

+ MAX_MEM_BANKS. On-board memory interfaces.

+ MAX_MPTL_SER_WIDTH. Width of MPTL serial data interfaces.
+ MAX_PCIE_SER_WIDTH. Width of PCle serial data interfaces.

+ MAX_GPIO_FR_WIDTH. Width of the XMC front GPIO interface.
+ MAX_GPIO_SE_WIDTH. Width of single ended GPIO interfaces.
+ MAX_GPIO_DE_WIDTH. Width of double ended GPIO interfaces.

Page 180 Common HDL Components
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide.

(VLS - 24th August 2011)

@ ALPHA DATA

6.2.2 ADB3 Target Include Package (adb3_target_inc_pkg)

The adb3_target_inc_pkg package defines constants and types which characterise the target example FPGA design
on the board selected. This includes whether synthesis or simulation is being performed. This enables a simulation to

perform "lightweight" versions of certain lengthy initialisation sequences. Without these aids, rapid development of code
would be unfeasible due to the length of real time required for simulations.

The adb3_target_inc_pkg package exists in several variants, one for each supported combination of board and
usage. Table 97 lists the available variants:

Model TARGET_USE | Filename relative to hdivhdlicommon/adb3_target/

SIM_MPTL | admxrcétl/adb3_target_inc_pkg_sim_mptl_6tl.vhd
ADM-XRC-6TL SIM_OCP | admxre6tl/adb3_target_inc_pkg_sim_ocp_6tl.vhd

SYN_NGC | admxrcétl/adb3_target_ inc_pkg_syn_ngc_6tlvhd

SIM_MPTL | admxrcéti/adb3_target_inc_pkg_sim_mptl_6tL.vhd
ADM-XRC-6T1 SIM_OCP | admxreéti/adb3_target_inc_pkg_sim_ocp_6tL.vhd

SYN_NGC | admxrcti/adb3_target_inc_pkg_syn_ngc_6tLvhd

SIM_MPTL _target_inc_pkg_sim_mptl_6tge.vhd
ADM-XRC-6TGE SIM_OCP | admxreétge/adb3_target_inc_pkg_sim_ocp_6tge.vhd

SYN_NGC | admxrcétge/adb3_target_inc_pkg_syn_ngc_6tge.vhd
AomxRC.STADVE | SM-0CP _target_inc_pkg_sim_ocp_6tadvs_pcie.vhd

SYN_NGC | admxrctadvs/adb3_target_inc_pkg_syn_ngc_6tadvs_pcie.vhd

Table 97: Available Variants of the adb3_target_inc_pkg Package

The following definitions are available in this package:

General Definitions

for OCP-only simulation

Clock Definitions

this board.

MGT118 CIk(1:0),

. MGT110 Clk(1:

std_logic_dbl_t. Type defining a general-purpose differential std_logic signal.

clks_in_t. Record defining target FPGA clock inputs on this board.
MGT_CLKS_VALID Vector defining target FPGA MGT clock inputs which require to be buffered. Clock order is
0).

clks_mgt_in_t. Record defining target FPGA MGT clock inputs on this board.
clks_out_t. Record defining target FPGA clock outputs on this board.

GPIO Definitions

XRM_GPIO_WIDTH. Indicates width of XRM GPIO interface on this board.
PN4_GPIO_WIDTH. Indicates width of Pna GPIO interface on this board.
PN6_GPIO_WIDTH. Indicates width of Pné GPIO interface on this board.
xrm_gpio_t. Record defining target FPGA XRM GPIO interface on this board.

TARGET_USE. Defines the end use according to the target_use_t enumerated type; for example, SIM_OCP

REF_CLK_FREQ_HZ. The frequency in Hz of the reference clock input used by the target FPGA design on

Common HDL Components
AD-UG-0004

Alpha Data Parallel Systems Ltd

Page 181

@ALPHA DATA

ADM-XRC Gen 3 SDK 1.4.0 User Guide
(V1.5 - 24th August 2011)

pn4_gpio_t. Record defining target FPGA Pnd GPIO interface on this board.
pn6_gpio_t. Record defining target FPGA Pé GPIO interface on this board.
gpio_inout_t. Record defining target FPGA GPIO interface on this board.

On-Board Memory Interface Definitions

DDR3_BANKS. Indicates the number of target FPGA DDR3 SDRAM bank interfaces on this board.
DDR3_BANK_ROW_WIDTH?. Indicates the maximum width of the target FPGA DDR3 SDRAM row address
interface on this board.

DDR3_BANK_DATA_WIDTH. Indicates the width of the target FPGA DDR3 SDRAM data interface on this
board

DDR3_BYTE_ADDR_WIDTH. Indicates the maximum width of the target FPGA DDR3 SDRAM byte address
interface on this board.

ddr3_addr_out_t. Record defining target FPGA DDR3 SDRAM bank address interface on this board.
ddr3_ctrl_out_t. Record defining target FPGA DDR3 SDRAM bank control interface on this board.
ddr3_data_inout_t. Record defining target FPGA DDR3 SDRAM bank data interface on this board.
ddr3_clk_out_t. Record defining target FPGA DDR3 SDRAM bank clock interface on this board.
ddr3_addr_out_array_t. Array defining target FPGA DDR3 SDRAM address interface on this board
ddr3_ctrl_out_array_t. Array defining target FPGA DDR3 SDRAM control interface on this board.
ddr3_data_inout_array_t. Array defining target FPGA DDR3 SDRAM data interface on this board.
ddr3_clk_out_array_t. Array defining target FPGA DDR3 SDRAM clock interface on this board
MEM_BANKS. Indicates the number of target FPGA on-board memory interfaces on this board.
DDR3_BANKO. Indicates the bank number of the first target FPGA DDR3 SDRAM bank interface on this
board.

mem_byte_addr_width_array_t. Array defining target FPGA on-board memory bank address widths on this
board.

MEM_BYTE_ADDR_WIDTH_ARRAY. Indicates the address width of each bank of on-board memory on this
board

mem_addr_out_t. Record defining target FPGA address interface on this board.

mem_ctrl_out_t. Record defining target FPGA control interface on this board.

mem_data_inout_t. Record defining target FPGA data interface on this board.
mem_clk_out_t. Record defining target FPGA clock interface on this board.

*Note: The value of the DDR3_BANK_ROW_WIDTH constant determines the maximum size of DDR3 SDRAM parts
supported by the target FPGA design. Currently, valid vaues are 13 for 1Gib parts only, 14 for 1Gib/2Gib parts, or 15 for
1Gib/2Gib/4Gib parts. The simulation model for the appropriate memory part will also need to be selected in the.
example design testbench. This is achieved by selecting either DDR3_1G_PART, DDR3_2G_PART, or
DDR3_4G_PART for the value of the build option m OPTION_M constant in the adb3_target_tb_inc_pkg

Note: The user should verify that the value of the DDR3_BANK_ROW_WIDTH (default = 14) and
OPTION_M (default = 1 Gib constants are appropriate for the size of the memory parts on the Alpha Data
board in use.

OCP Interface Definitions

DS_CHANNELS. Indicates the number of direct slave OCP channels on this board.
DMA_CHANNELS. Indicates the number of dma OCP channels on this board.
DM_CHANNELS. Indicates the number of direct master OCP channels on this board,

Page 182

Common HDL Components
Alpha Data Parallel Systems Ltd. AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide

(VL5 - 24th August 2011) @ ALPHA DATA

+ DS_ADDR_WIDTH. Indicates the address space size for a direct slave OCP channel on this board.
+ DMA_ADDR_WIDTH. Indicates the address space size for a dma OCP channel on this board.
+ DM_ADDR_WIDTH. Indicates the address space size for a direct master OCP channel on this board.

MPTL Interface Definitions

+ MPTL_SER_WIDTH. Indicates the width of the MPTL serial data interface that exists on this board.

« mptl_t2b_t Type defining the MPTL interface signals between the target and bridge FPGASs. Definition
depends on board and end use.

« mpti_b2t_t. Type defining the MPTL interface signals between the bridge and target FPGAS. Definition
depends on board and end use.

+ mptl_sb_b2t_t.Type defining the MPTL sideband interface signals from the bridge to the target. Definition
depends on board and end use.

« mptl_sb_t2b_t. Type defining the MPTL sideband interface signals from the target to the bridge. Definition
depends on board and end use.

PCle Interface Definitions

« PCIE_SER_WIDTH. Indicates the width of the PCle serial data interface that exists on this board.

« pcie_tzh_t Type defining the PCle interface signals between the target FPGA and host. Definition depends on
board and end use.

« peie_h2t_t Type defining the PCle interface signals between the host and target FPGA. Definition depends on
board and end use

Custom Interface Definitions

+ adb3_model_in_t. Type defining the adb3 model interface input signals. Definition depends on board and end

+ adb3_model_out_t. Type defining the adb3 model interface output signals. Definition depends on board and
end use.

+ adb3_model_inout_t. Type defining the adb3 model interface bi-directional signals. Definition depends on
board and end use.

+ custom_in_t. Type defining the custom interface input signals. Definition depends on board and end use.

+ custom_out_t. Type defining the custom interface output signals. Definition depends on board and end use.

+ custom_inout_t. Type defining the custom interface bi-directional signals. Definition depends on board and
end use

Common HDL Components Page 183
AD-UG-0004 Alpha Data Parallel Systems Ltd

@ALPHA DATA

ADM-XRC Gen 3 SDK 1.4.0 User Guide
(V1.5 - 24th August 2011)

6.2.3 ADB3 Target Package (adb3_target_pkg)

The package adb3_target_pkg defines functions and components which relate to target example FPGAS.

The adb3_target_pkg package exists in two variants, one for MPTL interface IP, the other for PCle interface IP. Table

98 lists the available variants:

Interface Filename relative to hdiivhdlicommon/adb3_target/
MPTL adb3_target_pkg.vhd
PCle adb3_target_pkg_pcie.vhd

Table 98: Available Variants of the adb3_target_pkg Package

Function Definitions (MPTL)

- make_defined. Return the input vector with any bits that are not ‘0" or ‘1’ set to ‘0.
+ make_defined_s2m. Return record of type adb3_ocp_s2mT with Data and Tag values modified using

make_defined function.

Component Definitions (MPTL)

+ mptl_if_target_wrap

Component Definitions (PCle)

« pcie_if_target_wrap

Page 184

Alpha Data Parallel Systems Ltd

Common HDL Components
AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide.

(VL5 - 241h August 2011) @ALPHA DATA

6.2.4 ADB3 Target Components
6.2.4.1 Target MPTL Interface Wrapper (mptl_if_target_wrap)
6.2.4.1.1 Introduction

This is a component in the ADB3_Target group. It is used by the example FPGA designs as the target FPGA end of the
MPTL interface.

Dependencies

« ADB3 OCP Profile Definition Package (adb3_ocp)

+ ADB3 Target Types Definition Package (adb3_target_types_pkg)
« ADBS Target Include Package (adb3_target_inc_pkg)

« ADB3 Target Package (adb3_target_pkg)

6.2.4.1.2 Interface
The mptl_if_target_wrap component interface is shown in Figure 49 below and described in Table 99.

mpti_if_target_wrap

—{ mptl_b2t mptl_clk k—
— mptl_t2b ocp_ready f—
—{ mptl_sb_b2t gpio_b2t —>
<—{ mptl_sb_t2b gpio_t2b k—
ocp_clk k—

direct_slave_m2s —»
direct_slave_s2m k—
dma_channels_m2s (=
dma_channels_s2m =

dma_abort k—

Figure 49: mptl_if_target_wrap Component Interface

Common HDL Components Page 185
AD-UG-0004 Alpha Data Parallel Systems Ltd

ADM-XRC Gen 3 SDK 1.4.0 User Guide

@ALPHA DATA (V15 - 24th August 2011)

Signal Type | Description
OCP Interface
ocp_clk Input_| OCP clock (from target FPGA).
direct_slave_m2s | Output | Direct slave OCP channel master (from bridge via MPTL interface).
direct_slave_s2m | Input | Direct slave OCP channel slave (o bridge via MPTL interface)

dma_channels_m2s | Output | DMA OCP channels master (from bridge via MPTL interface),
dma_channels_s2m | Input | DMA OCP channels slave (to bridge via MPTL interface).

dma_abort Input | DMA abort request (from target)

MPTL Interface
mptl_t2b Output | MPTL serial interface signals (to bridge).
mptl_bat input_| MPTL serial interface signals (from bridge).
mptl_clk Input_| MPTL clock (from target).
ocp_ready Input | OCP channels ready (from target)
mptl_sb_t2b Output | MPTL interface sideband signals (to bridge).
mptl_sb_b2t Input_| MPTL interface sideband signals (from bridge).
gpio_b2t Output | General purpose ifo (from bridge via MPTL interface)
gpio_t2b input_| General purpose ifo (to bridge via MPTL interface).

Table 99: mptl_if_target_wrap Component Interface

6.2.4.1.3 Description

The type of Target MPTL interface that is instantiated depends upon which variant of the adb3_target_inc_pkg is in
use, through the TARGET_USE constant.

The MPTL interface signals mpti_t2b and mpti_b2t connect the bridge and target MPTL interfaces. They are of types
mpti_t2b_timpti_b2t_t which are defined in the adb3_target_inc_pkg package. During OCP-only simulation, these
signals transfer OCP transactions directly between the bridge and target MPTL interfaces. During full MPTL simulation
and synthesis, these signals transfer MPTL serial data between the bridge and target MPTL interfaces.

The MPTL interface sideband signals mptl_sb_t2b and mptl_sh_b2t connect the bridge and target MPTL interface
blocks. They are of types mptl_sb_t2b_timptl_sb_b2t_t which are also defined in the adb3_target_inc_pkg package.
These signals transfer MPTL sideband information directly between the bridge and target MPTL interfaces,

6.2.4.1.3.1 OCP-Only Simulation

During OCP-only simulation (selected by TARGET_USE = SIM_OCP), a simulation only version of the
mptl_if_target_wrap component is instantiated. Table 100 lists the available variants:

Model Filename relative to _target/

ADM-XRC-6TL | admxrct/mpti_target/mptl_if_target_wrap_sim_6tl.vhd
ADM-XRC-6TL | admxrc6tl/mpti_target/mptl_if_target_wrap_sim_6t1.vhd
ADM-XRC-6TGE | admxrc6tge/mptl_targetimptl_if_target_wrap_sim_6tge.vhd

Table 100: Available Variants of Simulation Only Version of mptl_if_target_wrap Component

Clock Generation

Page 186 Common HDL Components
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide
(VL5 - 241h August 2011) @ALPHA DATA

During OCP-only simulation, the bridge MPTL interface OCP clock must be the same as the target MPTL
interface OCP clock. This is accomplished by connecting the target clock to the bridge clock via the
mptl_t2b.target_ocp_clk signal

The ocp_clk input drives the mptl_t2b.target_ocp_clk signal.

Initialisation

At power-up, an online delay counter produces the mptl_sb_t2b.mptl_target_gtp_online_{l output using the
mptl_sb_b2t.mptl_bridge_gtp_online_l input.

‘The mptl_sb_t2b.mptl_target_configured_I output is generated using the OCP channels ready ocp_ready
input.

MPTL Interface

‘The direct slave OCP channel master output direct_slave_m2s is driven by the mptl_b2t.direct_slave_m2s
input from the bridge MPTL interface. The mptl_t2b.direct_slave_s2m output to the bridge MPTL interface is
driven by the direct slave OCP channel slave input direct_slave_s2m.

The DMA OCP channels master output dma_channels_m2s is driven by the mptl_b2t.dma_channels_m2s
input from the bridge MPTL interface. The mptl_t2b.dma_channels_s2m output to the bridge MPTL interface
is driven by the DMA OCP channels slave input dma_channels_s2m.

‘The general purpose i/o bus gpio_t2b input drives the mpti_t2b.gpio_t2b output to the bridge MPTL interface.
‘The mpt_b2t.gpio_b2t input from the bridge MPTL interface drives the general purpose ifo bus output
gpio_b2t.

DMA Abort

On the ADM-XRC-6TL board, the inverted dma_abort input from the target FPGA drives the DMA abort
request output mptl_sb_t2b.mptl_dma_abort_|

On all other boards, the dma_abort input from the target FPGA drives the DMA abort request output
mptl_t2b.dma_abort.

6.2.4.1.3.2 Full MPTL Simulation and Synthesis

During full MPTL simulation (selected by TARGET_USE = SIM_MPTL) and synthesis (selected by TARGET_USE =
SYN_NGC), the mptl_if_target_wrap component is instantiated. Table 101 lsts the available variants:

Model Filename relative to hdiivhdlicommon/adb3_target/
ADM-XRC-6TL |_targetmptl_if_target_wrap_6tl.vhd
ADM-XRC-6T1 | admxrc6tL/mptl_targetmptl_if_target_wrap_6tL.vhd
ADM-XRC-6TGE | admxrc6tge/mpti_targetmptl_if_target_wrap_6tge.vhd

Table 101: Available Variants of mpti_if_target_wrap Component

6.2.4.1.3.2.1 Full MPTL simulation

During full MPTL simulation, the mpti_if_target_wrap component instantiates the MPTL interface HDL netlist
appropriate to the board in use. Table 102 lists the available variants:

Common HDL Components Page 187

AD-UG-0004

Alpha Data Parallel Systems Ltd

ADMXRC Gen 3 SDK 1.4.0 User Guide
’ALF“‘ DATA (v1.5 - 24th August 2011)

Model Filename relative to _target/

ADM-XRC-6TL | admxrcGtlimptl_targetimptl_if_target_netist_wrap_6tl.vhd
ADM-XRC-6T1 admxrc6tl/mptl_target/mptl_if_target_netlist_wrap_6t1.vhd

ADM-XRC-6TGE | admxrc6tge/mptl_targetmptl_if_target_netlist_wrap_6tge.vhd

Table 102: Available Variants of Target MPTL Interface Netlist

The mpti_if_target_wrap component direct slave OCP channel input (direct_slave_s2m) and DMA OCP channels
inputs (dma_channels_s2m) are processed by the make_defined_s2m function to ensure that they only contain ‘0" or
1" data. Other data values may cause the simulation of the MPTL interface to fail.

The remainder of the mptl_if_target_wrap component signals are connected to their equivalents on the MPTL
interface HDL netlist.

6.2.4.1.3.2.2 Synthesis

During synthesis, the mpt_if_target_wrap component instantiates the MPTL interface core (.ngc) appropriate to the
board in use. Table 103 lists the available variants:

Model Filename relative to hdiivhdlicommon/adb3_target/
ADM-XRC-6TL _interface_target_6tl.ngc
ADVIXRC-6T1_| admarc6tu/mpt_targeUmpti128_interface_target_6iLngo

ADM-XRC-6TGE | admxrc6tge/mpti_targetmpt128_interface_target_6t1.ngc

Table 103: Available Variants of MPTL Interface Core

The remainder of the mptl_if_target_wrap component signals are connected to their equivalents on the MPTL
interface core.

Page 188 Common HDL Components
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide
(VL5 - 241h August 2011) @ALPHA DATA

6.2.4.2 Target PCle Interface Wrapper (pcie_if_target_wrap)
6.2.4.2.1 Introduction

This is a component in the ADB3_Target group. It is used by the example FPGA designs as the target FPGA end of the
PCle interface.

Dependencies

« ADB3 OCP Profile Definition Package (adb3_ocp)
+ ADB3 Target Include Package (adb3_target_inc_pkg)

6.2.4.2.2 Interface
The pcie_if_target_wrap component interface is shown in Figure 50 below and described in Table 104,

peie_if_target_wrap

— pcie_h2t peie_rst_| k—
<—{ pcie_t2h pie_clk k—
— model_in

<—{ model_out

<—{ model_inout ref_clk —

ocp_clk k—

direct_slave_m2s [—»

direct_slave_s2m k—

dma_channels_m2s =

dma_channels_s2m =

dma_abort k—

interrupt k—

Figure 50: pcie_if_target_wrap Component Interface

Signal Type | Description
OCP Interface

ocp_clk Input | OCP clock (from target FPGA).

direct_slave_m2s | Output | Direct slave OCP channel master (from bridge via MPTL interface).

direct_slave_s2m | Input_| Direct slave OCP channel slave (to bridge via MPTL interface).

dma_channels_m2s_| Output | DMA OCP channels master (from bridge via MPTL interface),

dma_channels_s2m | Input | DMA OCP channels slave (to bridge via MPTL interface).

dma_abort Input | DMA abort request (from target).
interrupt Input | Interrupt request (from target).

Table 104: pcie_if_target_wrap Component Interface (continued on next page)

Common HDL Components Page 189

AD-UG-0004 Alpha Data Parallel Systems Ltd

ADM-XRC Gen 3 SDK 1.4.0 User Guide

’ALF“‘ DATA (v1.5 - 24th August 2011)

signal Type | Description

PCle Interface
pcie_tzh Output | PCle serial interface signals (to host).
pcie_hat input_| PCle serial interface signals (from host).
pie_ck input_| PCle clock (from target).
pcie_rst_| input_| PCle reset (from target)

Model Interface
ref_clk input_| Model interface clock (from target).
model_in Input_| Model interface signals (from board)
model_out Output | Model interface signals (to board).
model_inout Output | Model interface signals (from/to board)

Table 104: pcie_if_target_wrap Component Interface

6.2.4.2.3 Description

The type of Target PCle interface that is instantiated depends upon which variant of the adb3_target_inc_pkg s in
use, through the TARGET_USE constant.

The PCle interface signals pcie_t2h and peie_h2t connect the host and target PCle interface. They are of types
pcie_t2h_tipcie_h2t_t which are defined in the adb3_target_inc_pkg package. During OCP-only simulation, these
signals transfer OCP transactions directly between the host and target PCle interface. During synthesis, these signals,
transfer PCle serial data between the host and target PCle interface.

The Model interface signals model _in, model_out and model_inout connect the board and target PCle interface.
They are of types model_in_t/model_out_model_inout_t which are also defined in the adb3_target_inc_pkg
package. These signals implement board specific interfaces on boards without a bridge FPGA.

6.2.4.2.3.1 OCP-Only Simulation

During OCP-only simulation (selected by TARGET_USE = SIM_OCP), a simulation only version of the
pcie_if_target_wrap component is instantiated. Table 105 lists the available variants:

[Modet [Filename relative to }_target/ |
| ADM-XRC-6TADVS | admxrcétadve/peie_targetipcie_if_target_wrap_sim_6tadv.vhd |

Table 105: Available Variants of Simulation Only Version of pcie_if_target_wrap Component

Clock Generation

« During OCP-only simulation, the host OCP clock must be the same as the target PCle interface OCP clock
“This is accomplished by connecting the target clock to the host clock via the peie_t2h.target_ocp_clk signal

« The ocp_clk input drives the pcie_t2h.target_ocp_clk signal

PCle Interface

« The direct slave OCP channel master output direct_slave_m2s is driven by the pcie_h2t.direct_slave_m2s,
input from the host PCle interface. The pcie_tzh.direct_slave_s2m output to the host PCle interface is driven
by the direct slave OCP channel slave input direct_slave_s2m.

Page 190 Common HDL Components
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide
(VL5 - 241h August 2011) @ALPHA DATA

+ The DMA OCP channels master output dma_channels_m2s is driven by the pcie_h2t.dma_channels_m2s
input from the host PCle interface. The pcie_t2h.dma_channels_s2m output to the host PCle interface is
driven by the DMA OCP channels slave input dma_channels_s2m

DMA Abort
+ The dma_abort input from the target FPGA drives the DMA abort request output pcie_t2h.dma_abort.
Interrupt

« Theinterrupt input from the target FPGA drives the interrupt request output peie_t2h.interrupt.

6.2.4.2.3.2 Synthesis

During synthesis (selected by TARGET_USE = SYN_NGC), the pcie_if_target_wrap component is instantiated. Table
106 lists the available variants:

[Modet [Filename relative to _target/ |
| ADM-XRC-6TADVS | admxrcétadve/peie_targetipcie_if_target_wrap_6tadv.vhd |

Table 106: Available Variants of pcie_if_target_wrap Component

During synthesis, the pcie_if_target_wrap component instantiates the PCle interface core (.ngc) appropriate to the
board in use. Table 107 lists the available variants:

[Model [Filename relative to _target/ |
[/ADM-XRC-6TADVE | admurcetadveipcie_targetiadmxrcétadve_pcie_x4.ngc |

Table 107: Available Variants of PCle Interface Core

The remainder of the peie_if_target_wrap component signals are connected to their equivalents on the PCle interface
core.

Common HDL Components Page 191
AD-UG-0004 Alpha Data Parallel Systems Ltd

ADM-XRC Gen 3 SDK 1.4.0 User Guide

@ALPHA DATA (V15 - 24th August 2011)

6.2.5 ADB3 Target Testbench Include Package (adb3_target_tb_inc_pkg)

The adb3_target_tb_inc_pkg package defines constants and types which characterise the board selected. The.
package exists in several variants, one for each supported board. Table 108 lists the available variants:

Model Filename relative to _target/
ADM-XRC-6TL admxro6tiiadb3_target_th_inc_pkg_6t.vhd
ADM-XRC-6T1 admxre6tl/adb3_target_tb_inc_pkg_6t1.vhd
ADM-XRC-6TGE admxrcétge/adb3_target_tb_inc_pkg_6tge.vhd
ADM-XRC-6TADV8 | admxrcétadvs/adb3_target_th_inc_pkg_6tadv8.vhd

Table 108: Available Variants of the adb3_target_tb_inc_pkg Package

The following definitions are available in this package:
General Definitions

« BOARD_TYPE. Defines a string containing the board name.

« clks_out_exp_t. Record defining expected frequencies of target FPGA clock outputs on this board.
+ DDR3_1G_PART. Defines DDR3 SDRAM 1Gib part i relevant on this board.

+ DDR3_2G_PART. Defines DDR3 SDRAM 2Gib part i relevant on this board.

+ DDR3_4G_PART. Defines DDR3 SDRAM 4Gib part if relevant on this board.

Build Options

+ OPTION_M. Defines DDR3 SDRAM part option if relevant on this board.
+ OPTION_P. Defines Pna connector fit option if relevant on this board.

+ OPTION_E. Defines ethemet link fit option if relevant on this board.

+ OPTION_G. Defines Pn6 clock option if relevant on this board.

Clock Generation

+ Defines board clock period/frequency constants for this board. There are used by the test_board_clks block to
generate board clocks.

On-Board Memory

+ BOARD_DDR3_PART. Part number of DDR3 SDRAM component selected for simulation (OPTION_M)
+ BOARD_DDR3_BANK_ROW_WIDTH. Row address width of DDR3 SDRAM component selected for

simulation.

+ BOARD_DDR3_BANK_COL_WIDTH. Column address width of DDR3 SDRAM component selected for
simulation.

+ BOARD_DDR3_BANK_BNK_WIDTH. Bank address width of DDR3 SDRAM component selected for
simulation.

+ BOARD_DDR3_BYTE_ADDR_WIDTH. Byte address width of DDR3 SDRAM component selected for
simulation.

+ BOARD_MEM_BYTE_ADDR_WIDTH_ARRAY. Byte address width of banks of on-board memory present on
this board.

Page 192 ‘Common HDL Components

Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide.
(VLS - 24th August 2011)

@ ALPHA DATA

6.2.6 ADB3 Target Testbench Package (adb3_target_tb_pkg)

The package adb3_target_tb_pkg defines components which relate to target example FPGA testbenches.

The adb3_target_tb_pkg package exists in two variants, one for MPTL interface IP, the other for PCle interface IP.
Table 109 lists the available variants:

Interface Filename relative to hdiivhdlicommon/adb3_target/
MPTL adb3_target_th_pkg.vhd
PCle adb3_target_th_pkg_pcie.vhd

Table 109: Available Variants of the adb3_target_tb_pkg Package

Component Definitions (MPTL)

mptl_if_bridge_wrap
test_board_clks

Component Definitions (PCle)

pcie_if_host_wrap
test_board_clks

Common HDL Components
AD-UG-0004

Alpha Data Parallel Systems Ltd

Page 193

@ALPHA DATA

ADM-XRC Gen 3 SDK 1.4.0 User Guide
(V1.5 - 24th August 2011)

6.2.7 ADB3 Target Testbench Components
6.2.7.1 Bridge MPTL Interface Wrapper (mptl_i
6.2.7.1.1 Introduction

F_bridge_wrap)

This is a component in the ADB3_Target group. It is used by the example FPGA testbenches as the bridge FPGA end

of the MPTL interface.

Dependencies

« ADB3 OCP Profile Definition Package (adb3_ocp)

. 'ADBS3 Target Types Definition Package (adb3_target_types_pkg)
« ADBS Target Include Package (adb3_target_inc_pkg)

« ADB3 Target Testbench Package (adb3_target_th_pkg)

6.2.7.1.2 Interface

The mptl_if_bridge_wrap component interface is shown in Figure 51 below and described in Table 110.

mptl_if_bridge_wrap

—{ mptl_clk mptl_b2t —>
< mpt_online mptl_t2b k—
—{ gpio_b2t mptl_sb_b2t —>
<— gpio_t2b mpt_sb_t2b k—
—{ ocp_clk_in

—) direct_slave_m2s

< direct_slave_s2m

—p{ dma_channels_m2s

€~ dma_channels_s2m

4= direct_master_m2s

= direct_master_s2m

<— dma_abort

4— ocp_clk_out

Figure 51: mptl_if_bridge_wrap Component Interface

Page 194
Alpha Data Parallel Systems Ltd

Common HDL Components
AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide.

(VL5 - 241h August 2011) @ALPHA DATA

Signal Type | Description

OCP Interface
ocp_clk_in Input | Independent OCP clock source (from testbench)
direct_slave_m2s | Input | Direct slave OCP channel master (to target via MPTL interface),
direct_slave_s2m | Output | Direct slave OCP channel slave (from target via MPTL interface.

dma_channels_m2s | Input | DMA OCP channels master (to target via MPTL interface).
dma_channels_s2m | Output | DMA OCP channels slave (from target via MPTL interface)

direct_masters_m2s | Output | Direct mater OCP channels master (from target via MPTL interface).

direct_masters_s2m_| Input_| Direct master OCP channels slave (to target via MPTL interface).

dma_abort Output | DMA abort request (o testbench)
ocp_clk_out Output | OCP clock (to testbench).

MPTL Interface
mptl_t2b input_| MPTL interface signals (from target).
mpti_bat Output | MPTL interface signals (to target).
mptl_clk Input_| MPTL interface clock (from testbench)
mptl_online Output | MPTL interface s online (to testbench).
mptl_sb_t2b input_| MPTL interface sideband signals (from target).
mptl_sb_b2t Output | MPTL interface sideband signals (to target).
gpio_b2t Input_| General purpose ifo (to target via MPTL interface)
gpio_t2b Output | General purpose ifo (from target via MPTL interface)

Table 110: mptl_if_bridge_wrap Component Interface

6.2.7.1.3 Description

The type of Bridge MPTL interface that is instantiated depends upon which variant of the adb3_target_inc_pkg is in
use, through the TARGET_USE constant.

The MPTL interface signals mpti_t2b and mpti_b2t connect the bridge and target MPTL interface blocks. They are of
types mptl_t2b_tmpt_b2t_t which are defined in the adb3_target_inc_pkg package. During OCP-only simulation,
these signals transfer OCP transactions directly between the bridge and target MPTL interface blocks. During full MPTL
simulation and synthesis, these signals transfer MPTL data between the bridge and target MPTL interface blocks.

The MPTL interface sideband signals mptl_sb_t2b and mptl_sb_b2t connect the bridge and target MPTL interface
blocks. They are of types mptl_sb_t2b_timpti_sb_b2t_t which are also defined in the adb3__target_inc_pkg package.
These signals transfer MPTL sideband information directly between the bridge and target MPTL interface blocks

6.2.7.1.3.1 OCP-Only Simulation

During OCP-only simulation (selected by TARGET_USE = SIM_OCP), a simulation only version of the
mptl_if_bridge_wrap component is instantiated. Table 111 lists the available variants:

Common HDL Components Page 195
AD-UG-0004 Alpha Data Parallel Systems Ltd

ADM-XRC Gen 3 SDK 1.4.0 User Guide

@ALPHA DATA (V15 - 24th August 2011)

Model Filename relative to _target/
ADM-XRC-6TL admxrc6t/mptl_bridge/mptl_if_bridge_wrap_sim_6tl.vhd
ADM-XRC-6T1 admxrc6tl/mptl_bridge/mptl_if_bridge_wrap_sim_6t1.vhd
ADM-XRC-6TGE admxrcétge/mptl_bridge/mptl_if_bridge_wrap_sim_6tge.vhd

Table 111: Available Variants of Simulation Only Version of mptl_if_bridge_wrap Component

Clock Generation

« During OCP-only simulation, the bridge MPTL interface OCP clock must be the same as the target MPTL
interface OCP clock. This is accomplished by connecting the target clock to the bridge clock via the
mptl_t2b target_ocp_clk signal.

. The ocp_clk_in input is unused.

« The ocp_clk_out output is driven by mptl_t2b.target_ocp_clk

Initialisation

« Atpower-up, an online delay counter produces the mptl_sb_b2t.mptl_bridge_gtp_online_I output.
« The mptl_online output s produced from the mptl_sb_b2t.mptl_bridge_gtp_online_l,
mpti_sb_t2b.mptl_target_configured_I, and mptl_sb_t2b.mptl_target_gtp_online_I signals.

MPTL Interface

« The direct slave OCP channel master input direct_slave_m?2s drives the mptl_b2t.direct_slave_m2s output
to the target MPTL interface. The mptl_t2b direct_slave_s2m input from the target MPTL interface drives the
direct slave OCP channel slave output direct_slave_s2m.

« The DMA OCP channels master input dma_channels_m2s drives the mptl_b2t.dma_channels_m2s output
to the target MPTL interface. The mptl_t2b.dma_channels_s2m input from the target MPTL interface drives
the DMA OCP channels slave output dma_channels_s2m.

« The direct master OCP channels slave input direct_masters_s2m drives the mptl_b2t direct_masters_s2m
output to the target MPTL interface. The mptl_t2b direct_masters_m2s input from the target MPTL interface
drives the direct master OCP channels master output direct_masters_m2s,

« The general purpose ifo bus gpio_b2t input drives the mptl_b2t.gpio_b2t output to the target MPTL interface.
The mpti_t2b.gpio_t2b input from the target MPTL interface drives the general purpose ifo bus output
gpio_tzb.

DMA Abort

+ Onthe ADM-XRC-6TL board, the inverted mpti_sb_t2b.mptl_dma_abort_l input from the target MPTL.
interface drives the DMA abort request output dma_abort.
« Onall other boards, the mptl_t2b.dma_abort input drives the DMA abort request output dma_abort.

6.2.7.1.3.2 Full MPTL Simulation

During full MPTL simulation (selected by TARGET_USE = SIM_MPTL), the mptl_if_bridge_wrap component is
instantiated. Table 112 lists the available variants:

Page 196 Common HDL Components
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide.

(VL5 - 241h August 2011) @ALPHA DATA

Model Filename relative to _target/
ADM-XRC-6TL admxrc6t/mptl_bridge/mptl_if_bridge_wrap_6tl.vhd
ADM-XRC-6T1 admxrc6tl/mptl_bridge/mptl_if_bridge_wrap_6t1.vhd
ADM-XRC-6TGE admxrcétge/mptl_bridge/mptl_if_bridge_wrap_6tge.vhd

Table 112: Available Variants of mptl_if_bridge_wrap Component

During full MPTL simulation, the mpt_i
appropriate to the board in use. Table

bridge_wrap component instantiates the MPTL interface HDL netlist
3 lists the available variants:

Model Filename relative to hdlvhdiicommon/adb3_target/
ADM-XRC-6TL |_bridge/mptl_if_bridge_netlist_wrap_6tl.vhd
ADM-XRC-6T1 admxrc6tl/mptl_bridge/mptl_if_bridge_netlist_wrap_6t1.vhd
ADM-XRC-6TGE admxrcétge/mptl_bridge/mptl_if_bridge_netlist_wrap_6tge.vhd

Table 113: Available Variants of Bridge MPTL Interface Netlist

Clock Generation

+ During full MPTL simulation, the bridge MPTL interface OCP clock may be independent of the target MPTL
interface OCP clock.

« The ocp_clk_in input provides the independent OCP clock generated by the testbench

« The ocp_clk_out outputis driven by the ocp_clk_in signal.

OCP Interface

The mptl_if_bridge_wrap component direct master OCP channel inputs (direct_master_s2m) are processed
by the make_defined_s2m function to ensure that they only contain ‘0" or ‘1" data. Other data values may
cause the simulation of the MPTL interface to fail.

The remainder of the mptl_if_bridge_wrap component signals are connected to their equivalents on the MPTL
interface HDL netlist.

Common HDL Components Page 197
AD-UG-0004 Alpha Data Parallel Systems Ltd

ADMXRC Gen 3 SDK 1.4.0 User Guide
’ALF“‘ DATA (v1.5 - 24th August 2011)

6.2.7.2 Host PCle Interface Wrapper (pcie_if_host_wrap)
6.2.7.2.1 Introduction

This is a component in the ADB3_Target group. It is used by the example FPGA testbenches as the host end of the
PCle interface.

Dependencies

« ADB3 OCP Profile Definition Package (adb3_ocp)
+ ADB3 Target Include Package (adb3_target_inc_pkg)

6.2.7.2.2 Interface
The pcie_if_host_wrap component interface is shown in Figure 52 below and described in Table 114.

peie_if_host_wrap

peie_h2t |—
peie_t2h k—

— direct_slave_m2s
< direct_slave_s2m
—3| dma_channels_m2s
€ dma_channels_s2m
4— direct_master_m2s
—} direct_master_s2m
<—{ dma_abort

«— interrupt

< ocp_clk_out

Figure 52: pcie_if_host_wrap Component Interface

Common HDL Components

Page 198
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide.

(VL5 - 24th August 2011) arena 0aTa
Signal Type | Description
OCP Interface
direct_slave_m2s | Input | Direct slave OCP channel master (to target via PCle interface)
direct_slave_s2m | Output | Direct slave OCP channel slave (from target via PCle interface.

dma_channels_m2s | Input | DMA OCP channels master (o target via PCle interface).

dma_channels_s2m | Output | DMA OCP channels slave (from target via PCle interface).

direct_masters_m2s | Output | Direct mater OCP channels master (from target via PCle interface)
direct_masters_s2m | Input | Direct master OCP channels slave (to target via PCle interface).

dma_abort Output | DMA abort request (to testbench)
interrupt Output | Interrupt request (1o testbench)
ocp_clk_out Output | OCP clock (to testbench).

PCle Interface
peie_t2n input_| PCle serial interface signals (from target).
pie_h2t Output | PCle serial interface signals (to target).

Table 114: peie_if_host_wrap Component Interface

6.2.7.2.3 Description
The type of host PCle interface that is instantiated depends upon which variant of the adb3_target_inc_pkg is in use,
through the TARGET_USE constant.
The PCle interface signals pcie_t2h and peie_h2t connect the host and target PCle interfaces. They are of types
pcie_t2h_tpcie_h2t_t which are defined in the adb3_target_inc_pkg package. During OCP-only simulation, these

signals transfer OCP transactions directly between the host and target PCle interfaces. During synthesis, these signals
transfer PCle serial data between the host and target PCle interface.

6.2.7.2.3.1 OCP-Only Simulation

During OCP-only simulation (selected by TARGET_USE = SIM_OCP), a simulation only version of the
peie_if_host_wrap component s instantiated. Table 115 lists the available variants:

[Model [Filename relative to _target/ |

| ADM-XRC-6TADVE | admurcetadveipcie_hostipcie_if_host_wrap_sim_6tadv8.vhd |

Table 115: Available Variants of Simulation Only Version of pcie_if_host_wrap Component

Clock Generation

« During OCP-only simulation, the host OCP clock must be the same as the target PCle interface OCP clock
This is accomplished by connecting the target clock to the host clock via the pcie_t2h.target_ocp_clk signal.

+ The ocp_clk_out output is driven by pcie_t2h.target_ocp_clk.

PCle Interface
+ The direct slave OCP channel master input direct_slave_m2s drives the peie_b2t.direct_slave_m2s output

to the target PCle interface. The peie_t2h.direct_slave_s2m input from the target PCle interface drives the
direct slave OCP channel slave output direct_slave_s2m.

Common HDL Components

Page 199
AD-UG-0004 Alpha Data Parallel Systems Ltd

ADM-XRC Gen 3 SDK 1.4.0 User Guide

@ALPHA DATA (V15 - 24th August 2011)

+ The DMA OCP channels master input dma_channels_m2s drives the peie_b2t.dma_channels_m2s output
1o the target PCle interface. The pcie_tzh.dma_channels_s2m input from the target PCle interface drives the
DMA OCP channels slave output dma_channels_s2m.

« The direct master OCP channels slave input direct_masters_s2m drives the pcie_b2t.direct_masters_s2m
output to the target PCle interface. The pcie_t2h.direct_masters_m2s input from the target PCle interface
drives the direct master OCP channels master output direct_masters_m2s,

« The general purpose i/o bus gpio_b2t input drives the peie_b2t.gpio_b2t output to the target PCle interface.
The peie_t2h.gpio_t2b input from the target PCle interface drives the general purpose ifo bus output
gpio_t2b.

DMA Abort

« The pcie_tzh.dma_abort input from the target PCle interface drives the DMA abort request output
dma_abort

Interrupt

« The pcie_tzh.interrupt input from the target PCle interface drives the interrupt request output interrupt.

Page 200 Common HDL Components
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide
(VL5 - 24th August 2011)

@ALPHA DATA

6.2.7.3 Board Clock Generation and Test (test_board_clks)
6.2.7.3.1 Introduction

This is a component in the ADB3_Target group. It is used by the example FPGA testbenches for board clock

generation and test
Dependencies

« ADBS Target Include Package (adb3_target_inc_pkg)
+ ADB3 Target Testbench Include Package (adb3_target_th_inc_pkg)

6.2.7.3.2 Interface

The test_board_clks component interface is shown in Figure 53 below and described in Table 116.

test_board_clks

Figure 53: test_board_clks Component Interface

Common HDL Components
AD-UG-0004 Alpha Data Parallel Systems Ltd.

Page 201

@ALPHA DATA

ADM-XRC Gen 3 SDK 1.4.0 User Guide
(V1.5 - 24th August 2011)

Signal Type | Description

Generics
clks_out_freq Generic | Target clks_out expected frequencies.

Target Interface
target_clks_in Output | Target clks_in (o target)
target_clks_mgt_in | Output | Target clks_mgt in (to target)
target_clks_out Input_| Target clks_out (from target).
clks_out_pass. Output | Target clks_out test result (to testbench).
target_ref_clk Output | Target reference clock (to target).
target_mptl_clk Output | Target MPTL clock (to target)
target_pcie_ck Output | Target PCle clock (to target).

Bridge Interface
bridge_lclk_freq input_| Bridge Iclk frequency (real) (from testbench)
bridge_ocp_clk Output | Bridge OCP clock (to testbench).
bridge_mptl_clk Output | Bridge MPTL clock (to testbench)

Table 116: test_board_clks Component Interface

6.2.7.3.3 Description

This component is used by example target FPGA testbenches for the following functions

Generation of target FPGA clock inputs clks_in and clks_mgt_in from clocks present on the board in use.

Test of target FPGA clock outputs clks_out using generic input clks_out_freq for the board in use.

Generation of target FPGA reference, MPTL and PCle clock inputs for the board in use. These are used by
designs that do not use clks_in and clks_mgt_in s their clock sources.
Generation of Bridge (testbench) OCP clock for the board in use.
Generation of Bridge (testbench) MPTL clock for the board in use.

Table 117 lists the available variants:

Model Filename relative to _target/
ADM-XRC-6TL admxrc6tlimptl_bridgeftest_board_clks_6tl.vhd
ADM-XRC-6T1 admxrc6tl/mptl_bridge/test_board_clks_6t1.vhd

ADM-XRC-6TGE

admxre6tge/mptl_bridgeftest_board_clks_6tge.vhd

ADM-XRC-6TADVS

admxrc6tadve/peie_hosttest_board_clks_6tadve.vhd

Table 117: Available Variants of test_board_clks Component

Page 202

Alpha Data Parallel Systems Ltd

Common HDL Components
AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide.

(VL5 - 241h August 2011) @ALPHA DATA

6.3 ADB3 Probe

The ADB3 Probe group is located in the hdlivhdlicommon/adb3_probe/ directory and contains the following elements:
+ ADBS Probe Package (adb3_probe_pkg)
. 'ADB3 Probe Components

6.3.1 ADB3 Probe Package (adb3_probe_pkg)

The package adb3_probe_pkg defines constants and types which are used by the ADB3 probe components.
Definitions are as follows:

« adb3_ocp_probe_status_r. A record type containing probe status elements.
+ ADB3_OCP_PROBE_STATUS_OK. A constant for probe status with no errors.
« adb3_ocp_transaction_probe component definition.

6.3.2 ADB3 Probe Components
6.3.2.1 adb3_ocp_transaction_probe
6.3.2.1.1 Introduction

This is a component in the ADB3 probe group. s function is to monitor an OCP channel and produce warnings/errors if
specific conditions occur. It is used by target example FPGA testbenches.

Dependencies

« ADB3 OCP Profile Definition Package (adb3_ocp)
+ ADBS Probe Package (adb3_probe_pkg)
6.3.2.1.2 Interface
The adb3_ocp_transaction_probe component interface is shown in Figure 54 below and described in Table 118.

adb3_ocp_transaction_probe

— ocp_clk
—{ ocp_mzs
—{ ocp_s2m status [—>

Figure 54: adb3_ocp_transaction_probe Component Interface

Common HDL Components Page 203
AD-UG-0004 Alpha Data Parallel Systems Ltd

@ALPHA DATA

ADM-XRC Gen 3 SDK 1.4.0 User Guide

(V1.5 - 24th August 2011)

Signal Type | Description

Generics

enable_logging | Generic | Enable use of log file for info/warnings/errors.

sel_int_log_file | Generic | Select between internal name and external name for log file.

int_log_filename | Generic | Intenal filename for log file f selected and enabled.

addr_align_bits | Generic | Set number of unused address LSBs for checking.

addr_width_max | Generic | Set maximum address width for checking.

data_burst_max_| Generic | Set maximum burst length for checking

enable_tag_check | Generic | Enable checking of OCP_CMD_READ tag with read data tag.

OCP Port
ocp_clk Input__| OCP clock.
ocp_m2s Input__| OCP port M2S monitor connection.
ocp_s2m Input__| OCP port S2M monitor connection.
Status
status Output | Probe status.

Table 118: adb3_ocp_transaction_probe Component Interface

6.3.2.1.3 Description
This component checks for the following conditions:
« Read data with incorrect tag for active read command (enable_tag_check generic).
+ Read data for read command which has completed.
+ Wiite data for write command which has completed.
« Wiite data with invalid (all zero) DataByteEn value.
+ Invalid command detection.
+ Invalid address alignment detection (addr_align_bits generic).
« Invalid address detection (addr_width_max generic).
« Invalid burst length detection (data_burst_max generic)
+ Invalid response detection.

The above conditions are flagged using the status output of type adb3_ocp_probe_status _r.

Page 204 Common HDL Components

Alpha Data Parallel Systems Ltd

AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide
(VL5 - 241h August 2011) @ALPHA DATA

6.4 Memory Interface

The memory interface group is located in the hdl/vhdi/common/men_if/ directory and contains the following
elements:

« Memory Interface Package (mem_if_pkg)

« Memory Interface Components

« Xilinx DDR3 SDRAM MIG Cores

6.4.1 Memory Interface Package (mem_if_pkg)

The package mem_i
components.

pkg defines types, constants, and functions which are used by the memory interface

Definitions are as follows:

DDR3 SDRAM bank physical interface types

+ ddr3_addr_out_t. A record type containing address elements (outputs).
. ddr3_ctrl_out_t. A record type containing control elements (outputs).

+ ddr3_data_inout_t.Arecord type containing data elements (bi-dir).

+ ddr3_clk_out_t. Arecord type containing clock elements (outputs),

Memory interface functions

« conv_sim_bypass_init_cal. Returns the value of sim_bypass._init_cal that is appropriate for the
TARGET_USE value in the variant of the adb3_target_inc_pkg that has been selected.

« conv_sim_init_option. Returns the value of sim_init_option that is appropriate for the TARGET_USE value
in the variant of the adb3_target_inc_pkg that has been selected.

« conv_sim_cal_option. Retuns the value of sim_cal_option that is appropriate for the TARGET_USE value
in the variant of the adb3_target_inc_pkg that has been selected.

« conv_t_rfc_option. Returns the value of t_rfc that is appropriate for the DDR3_BANK_ROW_WIDTH value in
the variant of the adb3_target_inc_pkg that has been selected.

2

IG DDR3 SDRAM core types

+ mig_clocks_t Arecord type containing clock speed bin generic elements.

« mig_clocks_common_t. A record type containing clock common generic elements.

« mig_common_t. A record type containing bank common generic elements.

+ mig_dgs_col0_4_t Arecord type containing 4 DQS groups in column 0 generic elements.

« mig_dgs_col2_4_t. Arecord type containing 4 DQS groups in column 2 generic elements.

« mig_dgs_col01_2_t. Arecord type containing 2 DQS groups in columns 0 and 1 generic elements.

MIG DDR3 SDRAM core constants

+ MIG_CLOCKS_800. Constant of type mig_clocks._t defining clock DDR3-800 speed bin generics.

+ MIG_CLOCKS_COMMON. Constant of type mig_clocks_common_t defining clock common generics.
« MIG_COMMON. Constant of type mig_common_t defining bank common generics.

+ MIG_DQS_COLO_4. Constant of type mig_dqs_col0_4_t defining DQS groups common generics.

+ MIG_DQS_COL2_4. Constant of type mig_dqs_col2_4_t defining DQS groups common generics.

+ MIG_DQS_COLO01_2. Constant of type mig_dqs_col01_2_t defining DQS groups common generics.

Component definitions

Common HDL Components Page 205
AD-UG-0004 Alpha Data Parallel Systems Ltd

ADM-XRC Gen 3 SDK 1.4.0 User Guide

@ALPHA DATA (V15 - 24th August 2011)

+ ddr3_if_bank

6.4.2 Xilinx DDR3 SDRAM MIG Cores

These cores are used by DDR3 SDRAM on-board memory interface components. Different core versions are
supported by different versions of the Xilinx ISE tools as follows:

[MiG version [ISE Versions
[mic 36 [1SE 12.3 onwards. |

Table 119: MIG vs ISE Version Compatibility

Each supported board may use a different version of Xilinx DDR3 SDRAM MIG core. Table 120 lists the versions
currently used:

Model MIG DDR3 SDRAM Core Version
ADM-XRC-6TL 3.6
ADM-XRC-6T1 36
ADM-XRC-6TGE 36
ADM-XRC-6TADVB | 3.6

Table 120: Versions of DDR3 SDRAM MIG Core in Use

6.4.2.1 Xilinx DDR3 SDRAM MIG Core Generation
Prior to the initial simulation or bitstream build of a design using a Xilinx DDR3 SDRAM MIG core, its HDL files will need
to be generated using the gen_mem_if.tc! script. Examples are as follows:
To generate MIG HDL files for ADM-XRC-6T1 boards using Windows, start a shell and issue the following commands:

cd /d %ADMXRC3_SDK#\hdI\vhdI\common\men_i f\ddr3_sdran
xtclsh gen_men_if.tcl admxro6tl

To generate MIG HDL files for ADM-XRC-6T1 boards using Linux, start a shell and issue the following commands:

cd $ADMXRC3_SDK/hd1/vhd1/common/men
xtclsh ./gen_mem_if.tcl admxrc6tl

/ddr3_sdran

Xilinx documentation s included with the generated Xilinx DDR3 SDRAM MIG core. For example, after generation of
the MIG core for ADM-XRC-6T1 boards, its can be found in _if/ddr3_sdram/
admxrc6tl/mig_tempimig_v3_6/docs/.

Similarly its VHDL source files can be found in _ifiddr_ rtiimig_v3_6/.

Note: The TCL script is run sing the Xilinx customized TCL distribution TCL shell xtclsh. The path to this
shell must be defined for sucessful script execution,

Page 206 Common HDL Components
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide

(VL5 - 24th August 2011) @ ALPHA DATA

6.4.3 Memory Interface Components
6.4.3.1 DDR3 SDRAM Memory Interface Bank (ddr3_if_bank)
6.4.3.1.1 Introduction
This is a component in the memory interface group. Its function is as follows:
. Conversion of single bank OCP channel transactions to DDR3 SDRAM MIG user interface transactions.
. Instantiation of a single bank Xilinx DDR3 SDRAM MIG core.
Dependencies

+ ADB3 OCP Profile Definition Package (adb3_ocp)
« ADB3 OCP Component Declaration Package (adb3_ocp_comp)
« ADBS Target Include Package (adb3_target_inc_pkg)

« Memory Interface Package (mem_if_pkg)

6.4.3.1.2 Interface

‘The ddr3_if_bank component interface is shown in Figure 55 below and described in Table 121.

ddr3_if_bank

Figure 55: ddr3_if_bank Component Interface

Common HDL Components Page 207
AD-UG-0004 Alpha Data Parallel Systems Ltd.

@ALPHA DATA

ADM-XRC

Gen 3 SDK 1.4.0 User Guide
(V1.5 - 24th August 2011)

signal Type | Description
bank Generic | Bank select.
OCP Port
ocp_rst Input__| OCP asynchronous reset..
ocp_ck Input__| OCP clock.
ocp_m2s Input | OCP port M2S connection.
ocp_s2m Output_| OCP port S2M connection
DDR3 SDRAM MIG Core Bank Control/Status
ddr3_rst Input__| MIG core asynchronous reset.
ddr3_clk Input__| MIG core clock.
ddr3_ref_clk Input__| MIG core reference clock
ddr3_iodelay_ctrl_rdy | Input | MIG core IO delay ready.
ddr3_if_rdy Output | MIG core ready.
ddr3_if_stat Output | MIG core statws.
ddr3_if_err Output | MIG core error.
DDR3 SDRAM Bank Physical Interface
ddr3_addr_out Output | Bank address.
ddr3_ctrl_out Output | Bank control.
ddr3_data_inout Bi-dir | Bank data.
ddr3_clk_out Output | Bank clocks.

Table 121: ddr3_if_bank Component Interface

6.4.3.1.3 Description

This component converts single bank OCP channel transactions to DDR3 SDRAM MIG core user interface transactions

and instantiates a single bank Xilinx DDR3 SDRAM MIG core.

The ddr3_if_bank component instantiated is board dependent. Table 122 lists the available variants:

Model Filename relative to _if/ddr3_sdram/
ADM-XRC-6TL admxre6ti/ddr3_if_bank_6tl.vhd

ADM-XRC-6T1 admxro6t1/ddr3_if_bank_6tL.vhd

ADM-XRC-6TGE admxre6tge/ddr3_if_bank_6tge vhd

ADM-XRC-6TADVS | admxrc6tadv/ddr3_if_bank_6tadve.vhd

Table 122: Available Variants of ddr3_if_bank Component

Itincludes the following components:

+ adb3_ocp_ocp2ddr3_nb
. Xilinx DDR3 SDRAM MIG core

6.4.3.1.3.1 adb3_ocp_ocp2ddr3_nb

Page 208
Alpha Data Parallel Systems Ltd

Common HDL Components
AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide.

(VL5 - 241h August 2011) @ALPHA DATA

This component converts ADB3 OCP transactions to DDR3 SDRAM MIG core user interface transactions. It is
implemented using the ADB3 OCP component adb3_ocp_ocp2ddr3_nb.

6.4.3.1.3.2 Xilinx DDR3 SDRAM MIG Core
This component instantiates a single bank Xilinx DDR3 SDRAM MIG core which has been generated using the Xilinx
Core Generator MIG tool. Refer to Xilinx DDR3 SDRAM MIG Core Generation for details of the generation procedure.

‘The component instantiated depends on the bank selected by the bank generic. For example, on the ADM-XRC-6T1
board, c0_memc_ui_top.vhd located in _iffddr3._ rtlimig_v3_6/ip_top! is
used when bank = 0.

Common HDL Components Page 209
AD-UG-0004 Alpha Data Parallel Systems Ltd

ADM-XRC Gen 3 SDK 1.4.0 User Guide
@ ALPHA DATA (V1.5 - 24th August 201)

6.5 Memory Application

‘The memory application group is located in the hdl/vhdl/common/mem_apps/ directory and contains the following
elements:

« Memory Application Components

6.5.1 Memory Application Components
6.5.1.1 Memory Test Block (blk_mem_test)
6.5.1.1.1 Introduction

This is a component in the memory application group. lts function is to generate test stimulus, and analyse test
responses on a single ADB3 OCP channel.

Dependencies
+ ADB3 OCP Profile Definition Package (adb3_ocp)

6.5.1.1.2 Interface
The blk_mem_test component interface is shown in Figure 56 below and described in Table 123.

bik_mem_test

Figure 56: blk_mem_test Component Interface

Signal Type [Description

a_width Generic | Number of logical address bits in memory port.
d_width Generic | Number of logical bits in a memory port word.

rd_width Generic | Number of physical data pins on memory bank.
tag_base Generic | Tag base value.

tag_incr Generic | Tag value increment.

tag_mask Generic | Tag check mask bits

Table 123: blk_mem_test Component Interface (continued on next page)

Page 210 Common HDL Components
Alpha Data Parallel Systems Ltd. AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide.
(VLS - 24th August 2011)

@ ALPHA DATA

signal Type | Description
OCP Port
ocp_rst Input | OCP asynchronous reset.
ocp_clk Input__| OCP clock.
ocp_m2s Input__| OCP port M2S connection.
ocp_s2m Input__| OCP port $2M connection.
Memory Test Control/Status
90 Input_ | Initiate test.
offset Input_| Test start (16-byte words).
length Input_| Test length-1 (16-byte words).
done Input_| Test finishedlidle.
error Input_| Error has occurred (qualified by done).
eaddr Input_| First error address (16-byte by done and error).
ephase Input_| First error phase (qualified by done and error).

6.5.1.1.3 Description

TBD

Table 123: blk_mem_test Component Interface

Common HDL Components

AD-UG-0004

Alpha Data Parallel Systems Ltd

Page 211

ADM-XRC Gen 3 SDK 1.4.0 User Guide

@ALPHA DATA (V15 - 24th August 2011)

6.6 Memory Model
The Memory model group is located in the hdl/vhdl/common/mem_tb/ directory and contains the following elements:
. DDR3 SDRAM Memory Model

6.6.1 DDR3 SDRAM Memory Model
The DDR3 SDRAM Memory model is located in the hdl/ivhdl/common/mem_tb/ddr3_sdram/ directory and contains
the following elements:
+ DDR3 SDRAM Model Package (ddr3_sdram_pkg)
- DDR3 SDRAM Model Components

6.6.1.1 DDR3 SDRAM Model Package (ddr3_sdram_pkg)
The package ddr3_sdram_pkg defines types, constants, and components which are used by the DDR3 SDRAM
model.
Definitions are as follows:
DDR3 SDRAM part types
+ part_size_t. Record type for different part sizes.
« speed_grade_cl_cwi_t. Array type for timing parameters which vary with speed grade, CL, and CWL.
+ speed_grade_t. Record type for timing parameters which vary with speed grad.
+ part_t Record type for overall part used by generic model.

Supported part_size_t constants

+ MB8_X_B8_X_D16. 8Mb Array x 8 banks x 16 data bits = 1Gib part.

+ M16_X_BB_X_D16. 16Mb Array x 8 banks x 16 data bits = 2Gib part.
+ M32_X_BB_X_D16. 32Mb Array x 8 banks x 16 data bits = 4Gib part.

Supported speed_grade_cl_cwl_t constants

+ MT413_15E_CL_CWL_MIN. Micron MT41JxMx_1SE (minimum values)

+ MT413_15E_CL_CWL_MAX. Micron MT41JxMx_1SE (maximum values).

+ MT41J_187E_CL_CWL_MIN. Micron MT41JxMx_187E (minimum values).
+ MT413_187E_CL_CWL_MAX. Micron MT41JxMx_187E (maximum values)
+ MT413_25E_CL_CWL_MIN. Micron MT41JxMx_25E (minimum values).

+ MT413_25E_CL_CWL_MAX. Micron MT41JxMx_25E (maximum values).

Supported speed_grade_t constants

+ MT41J_15E. Micron MT41JxMx_15E.
+ MT41J_187E. Micron MT41)xMx_187E.
+ MT41J_25E. Micron MT41JxMx_25E.

Supported part_t constants
+ MT41J64M16_15E. Micron MT41J64M16_1SE (1Gib par).

Page 212 Common HDL Components
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide.

(VL5 - 241h August 2011) @ALPHA DATA

+ MT41J64M16_187E. Micron MT41364M16_187E (1Gib part)
+ MT41J128M16_1SE. Micron MT41J128M16_15E (2Gib part).
+ MT413128M16_187E. Micron MT41J128M16_187E (2Gib part)
+ MT413256M16_15E. Micron MT413256M16_15E (4Gib part)
+ MT413256M16_187E. Micron MT41J256M16_187E (4Gib par).

Component definitions

+ ddr3_sdram

Common HDL Components Page 213
AD-UG-0004 Alpha Data Parallel Systems Ltd

ADM-XRC Gen 3 SDK 1.4.0 User Guide
@ ALPHA DATA (V1.5 - 24th August 201)

6.6.1.2 DDR3 SDRAM Model Components
6.6.1.2.1 DDR3 SDRAM Model (ddr3_sdram)
6.6.1.2.1.1 Introduction

This is a component in the memory model group. Its function is to provide a generic simulation model which may be
customised to represent specific DDR3 SDRAM parts.

Dependencies

+ DDR3 SDRAM Model Package (ddr3_sdram_pkg)

6.6.1.2.1.2 Interface
The ddr3_sdram component interface is shown in Figure 57 below and described in Table 124,

ddr3_sdram

Figure 57: ddr3_sdram Component Interface

signal Type | Description

message_level | Generic | Select message reporting level.

part Generic | Select component part

short_init_dly | Generic | Select shortened initialisation sequence.
Control/Data

ckrck_| Input_| Clock

reset_| Input_| Reset (active low).

cke Input_| Clock enable.

cs| Input_| Chip select (active low).

ras_| Input_| Row access strobe (active low).

cas_| Input | Column active strobe (active low).

Table 124: ddr3_sdram Component Interface (continued on next page)

Page 214 Common HDL Components
Alpha Data Parallel Systems Ltd. AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide.

(VL5 - 241h August 2011) @ALPHA DATA

Signal Type | Description
we_| Input_| Write enable (active low).
odt Input__| On-die termination.
dm Input | Input data mask.
ba Input_| Bank address.
a Input | Address.
dq Bi-dir | Data.
das+das_| Bi-dir | Data strobe (differential).
Init/Log files
init_start Input | Load data initialisation file.
init_filename Input_| Initialisation file name (default “init.txt").
log_start Input_| Save data log file
log_filename Input | Log file name (default "log.txt")

Table 124: ddr3_sdram Component Interface

6.6.1.2.1.3 Description
TBD

6.6.1.2.1.3.1 Message Reporting
The generic message_level controls the type of ‘note’ level messages reported by the model. ‘warning’,‘error’, and
“failure" level messages are always reported. Options are as follows:
+ 0-No additional messages.
+ 1-Wiite additional messages only.
« 2-Read additional messages only.
+ 3-Info additional messages only.
+ 4-wiite and read additional messages.
. 5 - Write and info additional messages.
+ 6~ Read and info additional messages.
+ 7-Wiite and read and info additional messages.

6.6.1.2.1.3.2 Part Selection
The generic part selects the DDR3 SDRAM part to be simulated by the model.

6.6.1.2.1.3.3 Initialisation Delay Selection

The generic short_init_dly controls the DDR3 SDRAM nitialisation sequence. The length of this sequence may be
reduced during simulation by setting this generic to ‘true’

6.6.1.2.1.3.4 Memory Contents Initalisation

Loading of data from an init file to the model s initiated by an event occuring on the init_start input signal which results
in it being ‘true,

Common HDL Components Page 215
AD-UG-0004 Alpha Data Parallel Systems Ltd

@ALPHA DATA

ADM-XRC Gen 3 SDK 1.4.0 User Guide

(VL5 - 24th August 2011)

The it fle name is specified by the init_filename input signal, and should be located in the same directory as the
modelsim macro file in use.

The format of each line in the init file should be as follows:

+ Start BANK (decimal 0-7).

+ Start ROW (decimal 0..8191 1Gib,
+ Start COL (decimal 0-1023)

+ Start data BYTE (decimal 0-1)

+ Data Bytes from starting byte.

An example init file is shown below:

o
0155
000
0x00
000
000
o7
009
oxo

0x00 0
16 0400 0x17 0x00

ox00
ox00
ox00
ox38

ox00
ox04
oxoc

000
0100
0100
0100
0100

x5
000

00U 0x55

005
000
05
o0ap

ol

u
ox07

0x00
000
0x00
000

xan
ox00
0x00

0..16383 2Gib, 0..32767 4Gib).

0x06 0X00 0x03 0X00 0x08 000 0x09 0X00 OXDA 0X00 0x07
OXDE 0X00 0x0B 0x00 x10 0x00 OX1L 0X00 OX12 0X00 OXOF
0x16 0x00 0x13 0X00 Ox18 000 0X19 0x00 OXLA 0X00 OX17
OXIE 0x00 0x15 0X00 0x20 0x00 OX2L 0X00 022 0X00 OXIF

0X08 0X00 0x05 0X00 OX0A 0x00 DX0B 0X0 OXOC 0X00 0x09

oxa0

0x18 0x00 Ox15 0x00

ox19

OXIE 0x00 OXIF 0x0D 0x20 0x00 OXID 0x00 022 0X00 0x23 0XDD <24 0X00 Ox21

oxae

6.6.1.2.1.3.5 Memory Contents Logging

Saving of data to a log file from the model is initiated by an event occuring on the log_start input signal which results in

it being ‘true’. Only memory data that has been modified is output to the log file.

The log file name is specified by the log_filename input signal, and will be located in the same directory as the
modelsim macro file in use.

The format of each line in the log file is as follows:
« Start BANK (decimal 0-7).

+ Start ROW (decimal 0.8191 1Gib,
+ Start COL (decimal 0-1023).

« Start data BYTE (decimal 0-1).

+ Data Bytes from starting byte

An example log file is shown below:

0..16383 2Gib, 0..32767 4Gib).

0 5 5120 0x04 0<00 0x05 OXOD 0x06 OXDO 0X03 0X00 OXOB 0x00 009 0X00 OXDA OXDO 0X07 000
0 5 520 0 OXOC <00 0XOD OX0D OxOE OXDO OXOB 0X0D OXLO 0x00 OL1 0X00 Ox12 0X0O OXOF 0x00
0 4104 512 0 008 0x00 0x09 0x0D 0x0A 00O 0xO7 0x00 OXOC 0x00 OOD 0x00 OXOE 0X0O X0B 000
0 4104 520 0 010 0x00 Ox11 0x0D Ox12 00O OXOF 0x00 OxL4 0x00 OXIS 0x00 Ox16 0X00 Ox13 000
2 1 5110 0xU0 0x00 000 0xOU x5
2 1 5141 055 0x04 0x00 0x05 0x00 006 0x00 0x03 Ox00 0x08 00O 0x09 0x00 OXOA 0X00 007
2 1 522 1000 OX0C 0x00 OXOD 0x00 OXOE 0x00 0x0B 0x00 0x10 000 Ox11 0x00 012 0X00 OXOF
2 1 5461 0x00
2 11023 0 0x77 077
2 2 000x9 09
2 2 5110 0XUD Ox66 OxES OXOU OxAA
2 2 514 1 OXA Ox06 0x00 OXO7 0x00 OXDB 0X00 0x05 OX0O 0x0A OXDO 0X0B 0x00 OXOC 0X00 0X09
2 2 522 1000 OXOE 0x00 OXOF 0x00 OX10 0X00 0XOD OX0O Ox12 00O 0X13 0X0O OX14 0X00 OX11
2 2 5461 0x00
2 21023 0 0xe8 Oxe8
5 5 00 002 0X00 0x03 OXOD 0x04 OXDO OXOL 0X0D OXOG 0x00 OXO7 0X00 OXDB OXDO 0x0S 000
5 5 80 0x0A 0X00 0XOB OXOD OXOC OXDO 0X09 0x00 OXOE 0x00 OXOF 0X00 0x10 OXDO 0x0D 000
6 5 768 0 0x02 0X00 0x03 OXOD 0x04 OXDO OXOL 0X0 OXOG 0x00 OXO7 0X00 OXDE OXDO 0x05 000
Page 216

Alpha Data Parallel Systems Ltd.

Common HDL Components
AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide

(VL5 - 24th August 2011) @ ALPHA DATA

5 776 0 0X0A 0X00 0x0B 000 OXOC 0x00 OX09 0x00 OXOE 0X00 0XOF 0x00 Ox10 0xDO 0XOD 0¥00
5 512 0 0x02 0X00 0x03 0x00 Ox04 0x00 OXD1 0x00 0xD6 OX00 0X07 000 Ox0B 0xDO 0X05 0x00
7 5 520 0 00A 0x00 0x0B 0X0D OX0C OXDO 0x09 0x00 OXOE 0x00 OXOF 0x00 0x10 0X00 0X0D 000

Common HDL Components Page 217
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.4.0 User Guide
@ ALPHA DATA (V15 - 24th August 2011)

6.7 Clock Frequency Measurement

The clock frequency measurement group is located in the hdl/vhdl/examples/uber/commony directory and contains
the following elements:

« Clock Frequency Measurement Components

6.7.1 Clock Frequency Measurement Components
6.7.1.1 Clock Frequency Measurement Block (blk_clock_freq)
6.7.1.1.1 Introduction

This is a component i the clock frequency measurement group. Its function is to count the number of edges present on
asample clock in a measurement period.

Dependencies

+ None

6.7.1.1.2 Interface
The blk_clock_freq component interface is shown in Figure 58 below and described in Table 125.

blk_clock_freq

Figure 58: blk_clock_freq Component Interface

Page 218 Common HDL Components
Alpha Data Parallel Systems Ltd. AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide.

(VLS - 24th August 2011)

@ ALPHA DATA

signal Type | Description
ref_clk_toval Generic | Measurement period in ref_clk cycles.
smp_clk_div_stages | Generic | Number of ripple-divide stages for smp_clk.
Reset/Clocks
st Input_| Asynchronous reset
ref_clk Input | Reference clock
smp_clk input__| Sample clock (to be measured)
Read Clock Domain
read_clk Input__| Read clock
do Input | Start a measurement.
count Output | Number of smp_clk cycles counted (qualified by valid)
running Output | smp_clk is running (qualified by valid).
valid Output | count and running are valid,
done Output | Measurement completed (Active for 1 cycle).
idle Output | Measurement not in progress.

Table 125: bik_clock_freq Component Interface

6.7.1.1.3 Description

TBD

6.7.1.1.3.1 Clock Frequency Measurement Block Constraints

This block works by prescaling the clock whose frequency is being measured (input via the smp_clk port) by a power
of 2, sampling it, and counting rising edges during a certain number of ref_clk cycles. Thus, in order to prevent
incorrect measurements resulting from aliasing of the sampled clock, the following relationship must hold between the
frequencies of ref_clk and smp_clk, and the number of divider stages (the smp_clk_div_stages generic) used in
each blk_clock_freq instance:

« ref_ck frequency > smp_clk frequency * 2/ (2+*smp_clk_div_stages)

For small values of smp_clk_div_stages, the accuracy of a measured clock frequency is approximately equal to the

accuracy of ref_clk.

Common HDL Components
AD-UG-0004

Alpha Data Parallel Systems Ltd

Page 219

ADM-XRC Gen 3 SDK 1.4.0 User Guide
@ ALPHA DATA (V15 - 24th August 2011)

6.8 ChipScope
The Chipscope group is located in the hdl/vhdl/commonichipscopel directory and contains the following elements:
« ChipScope Components

6.8.1 ChipScope Components
6.8.1.1 ChipScope Block (blk_chipscope)
6.8.1.1.1 Introduction

This is a component in the ChipScope group. ts function is to instantiate up to 3 Xilinx ChipScope interfaces, each
connected to an ADB3 OCP channel.

Dependencies
+ ADB3 OCP Profile Definition Package (adb3_ocp)

6.8.1.1.2 Interface
The blk_chipscope component interface is shown in Figure 59 below and described in Table 126.

bik_chipscope

Figure 59: blk_chipscope Component Interface

Page 220 Common HDL Components
Alpha Data Parallel Systems Ltd. AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide.
(VLS - 24th August 2011)

@ ALPHA DATA

signal Type | Description
instantiate Generic | Enables generation of this component.
ChipScope 0
ocp_cho_clk Input__| OCP port clock
ocp_cho_m2s | Input | OCP port M2s
ocp_cho_s2m | Input | OCP port S2M.
ocp_cho_trig Input_| Trigger.
ChipScope 1
ocp_ch1_clk Input__| OCP port clock
ocp_chl_m2s | Input__| OCP port M2s
ocp_chl_szm | Input | OCP port S2M.
ocp_chi_trig Input_| Trigger.
ChipScope 2
ocp_ch2_clk Input | OCP port clock
ocp_ch2_m2s | Input | OCP port M2S.
ocp_ch2_s2m | Input__| OCP port S2M
ocp_ch2_trig Input_| Trigger.

Table 126: blk_chipscope Component Interface

6.8.1.1.3 Description
Instantiation of this component is controlled by the value of the instantiate generic. A true value is required for
instantiation

6.8.1.1.3.1 Synthesis

During synthesis, bik_chipscope.vhd in SADMXRC3_SDK/hdlivhdi/common/chipscope/ contains the
bik_chipscope component.

For each chipscope channel, a Xilinx chipscope_ila core is instantiated with connections as follows:
ILA clk input
+ OCP port clock

ILA data input

+ OCP port M2S: Addr(39:0), Data, BurstLength, DataByteEn, Tag,
+ OCP port S2M: Data, Tag.

« ILAtgo.

© ILAtigL

ILA trig0 input

+ OCP port M2S: RespAccept, DataValid, Cmd(1:0).
« OCP port S2M: Resp, DataAccept, CmdAccept.

ILA trigL input

Common HDL Components
AD-UG-0004 Alpha Data Parallel Systems Ltd

Page 221

ADM-XRC Gen 3 SDK 1.4.0 User Guide

@ALPHA DATA (V15 - 24th August 2011)

« Trigger input

ILA trig_out output

+ Unconnected

AXilinx chipscope_icon core is also instantiated.

Refer to Xilinx ChipScope Core Generation (ICON/ILA) for details of the ILA and ICON core generation procedure.

6.8.1.1.3.2 OCP-Only/Full MPTL Simulation
During simulation, blk_chipscope_sim.vhd in SADMXRC3_SDK/hdlivhdlicommon/chipscope! contains the
blk_chipscope component

In this simulation version, signals are generated as in the full version, but no chipscope_ila and chipscope._icon
components are instantiated.

6.8.1.1.4 Xilinx ChipScope Core Generation (ICON/ILA)
Prior to the initial bitstream build of a design using a Xilinx ChipScope interface, its ICON and ILA .ngc files will need to
be generated using the gen_chipscope.tcl script. Examples are as follows:
o generate .ngc fles for ADM-XRC-6T1 boards using Windows, start a shell and issue the following commands:

cd /d SADNXRC3_SDK¥\hd I \whdI\common\chipscope
xtclsh gen_chipscope. tcl admxrcétl

o generate .ngc files for ADM-XRC-6T1 boards using Linux, start a shell and issue the following commands:

cd $ADMXRC3_SDK/hd1/vhd1/common/chips:
xtelsh ./gen_chipscope. tcl admxre6tl

cope

Once generated, the Xilinx ChipScope interface .ngc files are located in hdlivhdi/common/chipscope/admxrc6ti/
ngel.

Note: The TCL script is run using the Xilinx customized TCL distribution TCL shell xtclsh. The path to this
shell must be defined for sucessful script execution.

Page 222 Common HDL Components
Alpha Data Parallel Systems Ltd. AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide.

(VLS - 24th August 2011)

@ ALPHA DATA

7 FPGA Design Guide

This section provides guidelines for FPGA designs targeting third generation Alpha Data hardware.

7.1 ADB3 OCP Protocol Reference

7.1.1 Introduction

OCP-IP Protocols in general allow interfacing between two modules, with one module the master (in control of the
transactions) and one module the slave. Each OCP-IP Protocol must have at least a command signal (Cmd), however

the definition of other sideband signals is fairly flexible.

+ Master Port - Initiates all transactions. Multiple transactions may be active at any one time if the slave can also

handle multiple transactions.

« Slave Port - Responds to master transactions only, does not initiate any transactions.

The main groupings of signals used in the ADB3 OCP protocol are a command group, synchronous with the Cmd

signal, and data transfer groups both from master to slave (write) and slave to master (ead)
is acknowledged independently allowing the flow to be controlled

Each of these groupings

The target MPTL interface provides the user with a bank of OCP ports through which data is passed as Read or Wite
transactions. The ports are as follows:

+ AMaster port for direct read and write transactions from the host via PCle Bars 2/3 and 4/5 (64 bit bars).

+ AMaster port for each DMA engine in the bridge FPGA.

« For advanced systems where the target FPGA design has a requirement for DMA to the host, an MPTL
interface can be provided that has an additional Slave Port.

All OCP ports operate independently. With multiple DMA engines in the bridge FPGA, the user can initiate multiple data
streams into and out of the target FPGA design.

7.1.2 Port Signal Definitions

The master port outputs the following signals to the slave port

Signal Group Type Width | Description

cmd Command | ocp_CmdT 3 | command dle, write, Read)

Addr Command | std_logic_vector | 64 | Command address (16-byte aligned)
BurstLength | Command | std_logic_vector | 12 | Command burst length

Tag Command | std_logic_vector | 8 | Command tag

Data Data std_logic_vector | 128 | Write data beat

DataByteEn | Data std_logic_vector | 16 | Write data beat byte enables
Datavalid | Data std_logic, 1| wiite data group valid

RespAccept | Response | std_logic 1| Read response group accept

Notes

« Portsignals are active high.
« Addris a byte address which is 16-byte aligned. The 4 LSBs are unused

Table 127: Master Port To Slave Port Signals

FPGA Design Guide
AD-UG-0004

Alpha Data Parallel Systems Ltd

Page 223

@ALPHA DATA

ADM-XRC Gen 3 SDK 1.4.0 User Guide
(V1.5 - 24th August 2011)

+ Dataconsists of 16 bytes which corresponds to write command addresses Addr..Addr+15.
+ DataByteEn enables writing of Data on a byte by byte basis.

The slave port outputs the following signals to the master port:

Signal Group Type Width | Description
CmdAccept | Command | std_logic 1| command group accept

DataAccept | Data std_logic 1| write data group accept

Data Response | std_logic_vector | 128 | Read response data beat

Resp Response | ocp_RespT 2 | Read response group valid (None, Valid)
Tag Response | std_logic_vector | 8 | Read response tag

Notes

« Portsignals are active high.

Table 128: Slave Port To Master Port Signals

+ Data consists of 16 bytes which corresponds to read command addresses Addr..Addr+15
+ Reading ocours for the full 16-bytes of Data.

7.1.3 OCP Port Operation

Each OCP Link operates as follows:

Command Group

1. When required, the Master Port outputs a write/read command, together with its associated address, tag, and

burst length

2. The Slave Portindicates its readiness to accept Master Port command group signals using its CmdAccept
signal. For each cycle in which there is a write/read command present together with an active CmdAccept, the
command group signals will be accepted by the Slave Port. The Slave Port asserts CmdAccept as and when it

3. The nextwrite/read command may be output in the cycle following the acceptance of the command group.

is able to.

Data Group (Associated with write transactions only)

1. When required, the Master Port outputs a data beat, together with its associated byte enables and data valid
flag

2. The Slave Port indicates its readiness o accept Master Port data group signals using its DataAccept signal.
For each cycle in which there is a valid data beat present together with an active DataAccept, the data group

signals will be accepted by the Slave Port. The Slave port asserts DataAccept as and when it is able to,

3. The next valid data beat may be output in the cycle following the acceptance of the data group.

Response Group (Associated with read transactions only)

1. The Slave Port outputs a response data beat, together with its associated tag and response valid flag, as and
when itis able to,

Page 224

FPGA Design Guide

Alpha Data Parallel Systems Ltd

AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide
(VL5 - 24th August 2011) @ ALPHA DATA

2. The Master Port indicates its readiness to accept Slave Port response group signals using its RespAccept
signal. For each cycle in which there is a valid response data beat present together with an active
RespAccept, the response group signals will be accepted by the Master Port. The Master port asserts
RespAccept as and when it is able to

3. The next response data beat may be output in the cycle following the acceptance of the response group.

In summary:
+ Provision of transaction commands and write data is controlled by the Master port.
Acceptance of transaction commands and write data is controlled by the Slave port.
Provision of read response data is controlled by the Slave port.

Acceptance of read response data is controlled by the Master port.

The operation of each group of signals is independent. Wite or read Commands may be provided before, during, or
after wiite data. Write or read Commands may be accepted before, during, or after Write data. It is the responsibility of
the master port to ensure that the number of write data beats provided corresponds with burst lengths of write
commands. Itis the responsibility of the slave port to ensure that the number of read response data beats provided
corresponds with burst lengths of read commands.

There is dependence of operation within each group of signals. Write data should be provided in the same order as
write commands are issued. Response data will be returned in the same order as read commands are issued.

During write transactions, writing of data is enabled on a byte by byte basis using the data group signal DataByteEn.
During read transactions, the full 16-bytes of response data is read and retumed to the Slave Port.

7.1.4 Example OCP Transaction Waveforms

This section contains timing diagrams for most common transactions and illustrates operation of the protocol
The diagrams show different transfer sequences, all of them valid OCP transactions. This is to show the different timing
sequences of commands and data transfers that are possible.

FPGA Design Guide Page 225

AD-UG-0004 Alpha Data Parallel Systems Ltd

ADM-XRC Gen 3 SDK 1.4.0 User Guide
@ ALPHA DATA (V1.5 - 24th August 201)

U

Master Port

Y S 8 ST R e

Adar I AL

BurstLength

Data T

DataByteEn BEO =

Datavalid

Resphccept

Tag 7

Slave Port

CmdAccept

DataAccept

Figure 60: Single Beat Write Transactions

Figure 60 shows two single beat write transactions. The Addr, BurstLength and Tag must be valid while the Cmd is
set to Write.

In the first case, the Cmd is accepted in the same cycle as itis asserted, and so retums to Idle in the next cycle. The
Data and DataByteEn are also asserted and accepted in the same clock cycle.

In the second case, the Cmd is not accepted until the 4th cycle after it is asserted (possibly due to the slave being
busy). The master in this case also does not assert the Datavalid signal unti after the Cmd. The Data is also not
accepted immediately, and therefore the DataValid must remain high unti the Data is accepted. Both examples are
legal within the protocol.

Page 226 FPGA Design Guide
Alpha Data Parallel Systems Ltd. AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide

(VL5 - 24th August 2011) @ ALPHA DATA

ak)

U

Master Port

Y S N ST 5 e

Adar I AL

BurstLength

Data

DataByteEn

Datavalid

Resphccept

Tag 7

Slave Port

CmdAccept

DataAccept

Resp AT AL

Tag i T

Figure 61: Single Beat Read Transactions

Figure 61 shows two single beat read transactions. The Addr, BurstLength and Tag must be valid while the Cmd is
set to Read.

In the first case the Cmd is immediately accepted. The slave port returns valid response Data (Q) on the following
clock cycle. The Tag sent with the Cmd is returned with the response Data. The Resp indicates when the response
Data and Tag are valid. The valid response is accepted by RespAccept on the following clock cycle.

The second example shows a delayed command accept, a delayed response and a delayed response accept. Both
examples are legal within the protocol

FPGA Design Guide Page 227
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.4.0 User Guide
@ ALPHA DATA (V1.5 - 24th August 201)

AN

o

Master Port

Y T e R e

Adar I AL

BurstLength

Data)02 7 3

DataByteEn

Datavalid

Resphccept

Tag i L TOLE

Slave Port

CmdAccept

DataAccept

Figure 62: Burst Write Transactions

Figure 62 shows two burst write transactions. A single Cmd is issued for multiple write Data beat transfers. The
command protocol operates in exactly the same manner as for single beat transfers. Multiple write data beat transfers
occur for each write Cmd. Write Data transfers only occur when both Datavalid and DataAccept are asserted. The
master port must wait on DataAccept being asserted before providing the next write Data beat. The slave port must
check that Datavalid is asserted before accepting the write Data beat.

Note: The DataAccept signal indicates that the slave port s able to accept master «portwite data present
on Data. The slave port may assert DataAccept even if DataValid is not asserted

Page 228 FPGA Design Guide
Alpha Data Parallel Systems Ltd. AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide
(VL5 - 24th August 2011) @ ALPHA DATA

BVR

ak)

Master Port

cmd fTBLE TOLE

3

Addr I

BurstLength

Data

DataByteEn

Datavalid

Respacoept .

Tag 7

Slave Port

Cnascoept [}

DataAccept

Resp NONE AT

Tag T
urst Read Transactions

Figure 63 shows a single burst read transaction. A single Cmd is issued for multiple read response Data beat transfers.
The command protocol operates in exactly the same manner s for single beat transfers. Multiple response data beat
transfers occur for each read Cmd. Read response Data transfers only occur when both Resp is Valid and
RespAccept is asserted. The slave port must wait on RespAccept being asserted before providing the next read
response Data beat. The master port must check that Resp is Valid before accepting the read response Data beat.

Note: The RespAccept signal indicates that the master port is able to accept slave port read response data
present on Data. The master port may assert RespAccept even if Resp is not Valid.

FPGA Design Guide Page 229
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.4.0 User Guide
@ ALPHA DATA (V1.5 - 24th August 201)

ek [WA AW RWAE

[S U 5 G e

Adar

Master Port

2]

BurstLength

Data)02

PR &3 C=) &3 =8 C=3 B8 £

Datavalid

Resphccept

Tag i T

Slave Port

CmdAccept

DataAccept

Tag o XX T
Figure 64: 'Valid’ Controlled Transactions

Figure 64 shows a single burst write transaction followed by a single burst read transaction. The write Data beats are
provided and accepted in the same cycle when Datavalid is active, as DataAccept is always active. The write and
read commands are accepted in the same cycle, as CmdAccept is always active. Commands and data group signals
are operating independently to each other.

The read response Data beats are provided and accepted in the same cycle when Resp is Valid, as RespAccept is
always active.

Note: The CmdAccept signal indicates that the slave port is able to accept master port commands present
on Cmd. The slave port may assert CmdAccept even if Cmd is Idle.

Page 230 FPGA Design Guide
Alpha Data Parallel Systems Ltd. AD-UG-0004

ADM-XRC Gen 3 SDK 1.4.0 User Guide.

(VL5 - 241h August 2011) @ALPHA DATA

8 The ADMXRC3 API

The ADMXRC3 API is the application programming interface that applications, including the ones in this SDK, use to
communicate with third generation Alpha Data hardware. This API is documented in the ADMXRC3 AP Specification

The ADMXRC3 API Page 231
AD-UG-0004 Alpha Data Parallel Systems Ltd

@ALPHA DATA

ADM-XRC Gen 3 SDK 1.4.0 User Guide
(V1.5 - 24th August 2011)

Revision History:

Date

Revision

Nature of Change

20/05/2010

1.0

Initial version

26/07/2010

11

Updated for release 1.1.0
Added SDK structure diagram.
Added information about example applications.

21/09/2010

Updated for release 1.2.0
Added section for getting started in VxWorks,
Documented VxWorks example applications.

04/03/2011

Updated for release 1.3.0
Documented new MEMTESTH example application.

Documented new options in existing example applications and utilties.
Documented DDR3 memory interface additions to UBER design,

Added outlines of common HDL components provided by SDK.

Corrected error in DEBUG column of table showing naming conventions for
VxWorks example binaries.

11/05/2011

Updated for release 1.3.1

05/09/2011

Updated for release 1.4.0

Documented improvements to SYSMON utilty.

Documented new test_board_clks and adb3_ocp_simple_bus_if_nb
components in Common HDL Components section.
‘Added timing diagrams to adb3_ocp_simple_bus_if and
adb3_ocp_simple_bus._if_nb components in Common HDL Components

section
Expanded ADB3 OCP Protocol Reference section.

Documented new adb3_target_tb_inc_pkg package in Common HDL
Components section

Updated Example HDL FPGA Designs section to reflect changes.

©2011 Alpha Data Parallel Systems Ltd.
property of their respective owners.

Al rights reserved. All other trademarks and registered trademarks are the

Adress: 4 West Sikermills Lane.
Egnburg, 13 300, Uc

Tlephone: 1413

ekt
Sales@apha i

bt T A dermcom

Adiess. 3507 Ringeby Coun e 105
Derver, CO B0Z11
Toptons: (69 808768

Fax) 820 9956 - ol ree:
Ghal aleagapnaaiacom
website: i alpha-data.com

	1 Introduction
	1.1 Document conventions
	1.2 Supported operating systems
	1.3 Supported Alpha Data hardware
	1.4 Installation
	1.4.1 Installation in Windows
	1.4.2 Installation in Linux
	1.4.3 Installation in VxWorks

	1.5 Structure of this SDK

	2 Getting started
	2.1 Getting started in Windows 2000 / XP / Server 2003
	2.2 Getting started in Windows Vista and later
	2.3 Getting started in Linux
	2.4 Getting started in VxWorks

	3 Example applications for Windows and Linux
	3.1 Building the example applications in Windows
	3.2 Building the example applications in Linux
	3.3 DUMP utility
	3.4 FLASH utility
	3.4.1 Failsafe bitstream mechanism

	3.5 INFO utility
	3.6 ITEST example
	3.7 MEMTESTH example
	3.8 MONITOR utility
	3.9 SIMPLE example
	3.10 SYSMON utility
	3.10.1 SYSMON sensor data logging
	3.10.2 Building SYSMON in Linux

	3.11 VPD utility

	4 Example applications for VxWorks
	4.1 Building the example VxWorks applications in Windows
	4.2 Building the example VxWorks applications in Linux
	4.3 MAKE options for the example VxWorks applications
	4.4 FLASH utility (VxWorks)
	4.4.1 Failsafe bitstream mechanism (VxWorks)

	4.5 INFO utility (VxWorks)
	4.6 ITEST example (VxWorks)
	4.7 MEMTESTH example (VxWorks)
	4.8 MONITOR utility (VxWorks)
	4.9 SIMPLE example (VxWorks)
	4.10 VPD utility (VxWorks)

	5 Example HDL FPGA Designs
	5.1 Introduction
	5.2 Design Simulation Using Modelsim
	5.2.1 Full MPTL Simulation (TARGET_USE = SIM_MPTL)
	5.2.2 OCP-Only Simulation (TARGET_USE = SIM_OCP)

	5.3 Bitstream Build Using Xilinx ISE
	5.3.1 Building All Example Bitstreams for Windows
	5.3.2 Building All Example Bitstreams for Linux
	5.3.3 Building Specific Example/Board/Device Bitstreams

	5.4 Simple Example FPGA Design
	5.4.1 Board Support
	5.4.2 Source Location
	5.4.2.1 VHDL Source Files for Simulation
	5.4.2.2 VHDL Source Files for Synthesis
	5.4.2.3 XST Files
	5.4.2.4 Implementation Constraint Files

	5.4.3 Design Synthesis and Bitstream Build
	5.4.4 Design Description
	5.4.4.1 Clock and Reset Generation
	5.4.4.2 Target MPTL Interface
	5.4.4.3 Target PCIe Interface
	5.4.4.4 OCP to Simple Bus Interface
	5.4.4.5 Simple Test Registers
	5.4.4.5.1 Register Description

	5.4.5 Testbench Description
	5.4.5.1 Clock Generation
	5.4.5.2 Bridge MPTL Interface
	5.4.5.3 Host PCIe Interface
	5.4.5.4 Direct Slave OCP Channel Probe
	5.4.5.5 Stimulus Generation and Verification
	5.4.5.5.1 Direct Slave OCP Channel
	5.4.5.5.1.1 Simple Test

	5.4.6 Design Simulation
	5.4.6.1 Initialisation Results (MPTL)
	5.4.6.2 Direct Slave OCP Channel Results
	5.4.6.3 Completion Results

	5.5 Uber Example FPGA Design
	5.5.1 Board Support
	5.5.2 Source Location
	5.5.2.1 VHDL Source Files for Simulation
	5.5.2.2 VHDL Source Files for Synthesis
	5.5.2.3 XST Files
	5.5.2.4 Implementation Constraint Files

	5.5.3 Design Synthesis and Bitstream Build
	5.5.3.1 Date/Time Package Generation

	5.5.4 Design Description
	5.5.4.1 Clock and Reset Generation
	5.5.4.1.1 Internal Clock Generation (MMCM)
	5.5.4.1.2 Internal Reset Generation (MMCM)
	5.5.4.1.3 MPTL Interface Clock Generation
	5.5.4.1.4 PCIe Interface Clock Generation
	5.5.4.1.5 Input Clock Buffering
	5.5.4.1.6 Input Clock Extraction (MGT Sourced)
	5.5.4.1.7 Output Clock Generation

	5.5.4.2 Target MPTL Interface
	5.5.4.3 Target PCIe Interface
	5.5.4.4 OCP Direct Slave Block
	5.5.4.4.1 Direct Slave Address Space Splitter
	5.5.4.4.2 Direct Slave Register Address Space
	5.5.4.4.2.1 Direct Slave Clock Domain Interface
	5.5.4.4.2.2 Direct Slave Register Address Space Splitter
	5.5.4.4.2.3 Simple Test Register Block
	5.5.4.4.2.3.1 Description
	5.5.4.4.2.3.2 Register Description

	5.5.4.4.2.4 Clock Frequency Measurement Register Block
	5.5.4.4.2.4.1 Description
	5.5.4.4.2.4.2 Register Description

	5.5.4.4.2.5 Interrupt Test Register Block
	5.5.4.4.2.5.1 Description
	5.5.4.4.2.5.2 Register Description

	5.5.4.4.2.6 Informational Register Block
	5.5.4.4.2.6.1 Description
	5.5.4.4.2.6.2 Register Description

	5.5.4.4.2.7 GPIO Test Register Block
	5.5.4.4.2.7.1 Description
	5.5.4.4.2.7.2 Register Description

	5.5.4.4.2.8 On-Board Memory Register Block
	5.5.4.4.2.8.1 Description
	5.5.4.4.2.8.2 Register Description

	5.5.4.4.3 Direct Slave BRAM Address Space
	5.5.4.4.3.1 Description
	5.5.4.4.3.2 Direct Slave BRAM Access Window

	5.5.4.4.4 Direct Slave On-Board Memory Address Space
	5.5.4.4.4.1 Description
	5.5.4.4.4.2 Direct Slave On-Board Memory Access Window

	5.5.4.5 OCP Switching Block
	5.5.4.5.1 Direct Slave On-Board Memory OCP Address Space Splitter Block
	5.5.4.5.2 BRAM OCP Multiplexor Block
	5.5.4.5.3 DMA Channel 0 OCP Address Space Splitter Block
	5.5.4.5.4 On-Board Memory Bank OCP Multiplexors

	5.5.4.6 BRAM Block
	5.5.4.7 On-Board Memory Interface Block
	5.5.4.8 On-Board Memory Application Block
	5.5.4.9 ChipScope Connection Block (optional)
	5.5.4.10 Design Package (uber_pkg)

	5.5.5 Testbench Description
	5.5.5.1 Clock Generation and Test
	5.5.5.2 Bridge MPTL Interface
	5.5.5.3 Host PCIe Interface
	5.5.5.4 OCP Channel Probes
	5.5.5.5 Stimulus Generation and Verification
	5.5.5.5.1 Non-OCP Functions
	5.5.5.5.1.1 Clock Output Test
	5.5.5.5.1.2 MPTL GPIO Bus Test (MPTL)
	5.5.5.5.1.3 DMA Abort Bus Test

	5.5.5.5.2 Direct Slave OCP Channel
	5.5.5.5.2.1 Simple Test
	5.5.5.5.2.2 Clock Frequency Measurement Test
	5.5.5.5.2.3 XRM GPIO Test
	5.5.5.5.2.4 Pn4/Pn6 GPIO Test
	5.5.5.5.2.5 Interrupt Test
	5.5.5.5.2.6 Informational Register Test
	5.5.5.5.2.7 BRAM Test
	5.5.5.5.2.8 On-Board Memory Test

	5.5.5.5.3 DMA OCP Channels
	5.5.5.5.3.1 DMA OCP Command and Write Data Process
	5.5.5.5.3.2 DMA OCP Response Process

	5.5.5.6 On-Board Memory Simulation Models
	5.5.5.7 Testbench Package (uber_tb_pkg)

	5.5.6 Design Simulation
	5.5.6.1 Date/Time Package Generation
	5.5.6.2 Initialisation Results
	5.5.6.2.1 DDR3 SDRAM MIG Core MMCM Status
	5.5.6.2.2 Testbench Status (MPTL)
	5.5.6.2.3 DDR3 SDRAM Initialisation

	5.5.6.3 Non-OCP Functions Results
	5.5.6.3.1 MPTL GPIO Bus Test Results (MPTL)

	5.5.6.4 Direct Slave OCP Channel Results
	5.5.6.4.1 Simple Test Results
	5.5.6.4.2 Clock Frequency Measurement Test Results
	5.5.6.4.3 XRM GPIO Test Results
	5.5.6.4.4 Pn4/Pn6 GPIO Test Results
	5.5.6.4.5 Interrupt Test Results (MPTL)
	5.5.6.4.6 Informational Register Test Results
	5.5.6.4.7 BRAM Test Results
	5.5.6.4.8 On-Board Memory Test Results

	5.5.6.5 DMA OCP Channels Results
	5.5.6.6 Completion Results

	6 Common HDL Components
	6.1 ADB3 OCP
	6.1.1 ADB3 OCP Profile Definition Package (adb3_ocp)
	6.1.2 ADB3 OCP Component Declaration Package (adb3_ocp_comp)
	6.1.3 ADB3 OCP Components
	6.1.3.1 adb3_ocp_cross_clk_dom
	6.1.3.1.1 Introduction
	6.1.3.1.2 Interface
	6.1.3.1.3 Description
	6.1.3.1.3.1 Command Path
	6.1.3.1.3.2 Write Data Path
	6.1.3.1.3.3 Read Response Path

	6.1.3.2 adb3_ocp_mux_b
	6.1.3.2.1 Introduction
	6.1.3.2.2 Interface
	6.1.3.2.3 Description

	6.1.3.3 adb3_ocp_mux_nb
	6.1.3.3.1 Introduction
	6.1.3.3.2 Interface
	6.1.3.3.3 Description
	6.1.3.3.3.1 Command Path
	6.1.3.3.3.2 Write Data Path
	6.1.3.3.3.3 Read Response Path

	6.1.3.4 adb3_ocp_ocp2ddr3_nb
	6.1.3.4.1 Introduction
	6.1.3.4.2 Interface
	6.1.3.4.3 Description
	6.1.3.4.3.1 Command Path
	6.1.3.4.3.2 Write Data Path
	6.1.3.4.3.3 Read Response Path

	6.1.3.5 adb3_ocp_retime_nb
	6.1.3.5.1 Introduction
	6.1.3.5.2 Interface
	6.1.3.5.3 Description
	6.1.3.5.3.1 Command Path
	6.1.3.5.3.2 Write Data Path
	6.1.3.5.3.3 Read Response Path
	6.1.3.5.3.4 SRL16E Retime Block (adb3_ocp_srl16_ret)

	6.1.3.6 adb3_ocp_simple_bus_if
	6.1.3.6.1 Introduction
	6.1.3.6.2 Interface
	6.1.3.6.3 Description
	6.1.3.6.3.1 Example Waveforms

	6.1.3.7 adb3_ocp_simple_bus_if_nb
	6.1.3.7.1 Introduction
	6.1.3.7.2 Interface
	6.1.3.7.3 Description
	6.1.3.7.3.1 Command Path
	6.1.3.7.3.2 Write Data Path
	6.1.3.7.3.3 Read Response Path
	6.1.3.7.3.4 Example Waveforms

	6.1.3.8 adb3_ocp_split_b
	6.1.3.8.1 Introduction
	6.1.3.8.2 Interface
	6.1.3.8.3 Description

	6.1.3.9 adb3_ocp_split_nb
	6.1.3.9.1 Introduction
	6.1.3.9.2 Interface
	6.1.3.9.3 Description
	6.1.3.9.3.1 Command Path
	6.1.3.9.3.2 Write Data Path
	6.1.3.9.3.3 Read Response Path

	6.1.4 ADB3 OCP Testbench Package (adb3_ocp_tb_pkg)

	6.2 ADB3 Target
	6.2.1 ADB3 Target Types Definition Package (adb3_target_types_pkg)
	6.2.2 ADB3 Target Include Package (adb3_target_inc_pkg)
	6.2.3 ADB3 Target Package (adb3_target_pkg)
	6.2.4 ADB3 Target Components
	6.2.4.1 Target MPTL Interface Wrapper (mptl_if_target_wrap)
	6.2.4.1.1 Introduction
	6.2.4.1.2 Interface
	6.2.4.1.3 Description
	6.2.4.1.3.1 OCP-Only Simulation
	6.2.4.1.3.2 Full MPTL Simulation and Synthesis
	6.2.4.1.3.2.1 Full MPTL simulation
	6.2.4.1.3.2.2 Synthesis

	6.2.4.2 Target PCIe Interface Wrapper (pcie_if_target_wrap)
	6.2.4.2.1 Introduction
	6.2.4.2.2 Interface
	6.2.4.2.3 Description
	6.2.4.2.3.1 OCP-Only Simulation
	6.2.4.2.3.2 Synthesis

	6.2.5 ADB3 Target Testbench Include Package (adb3_target_tb_inc_pkg)
	6.2.6 ADB3 Target Testbench Package (adb3_target_tb_pkg)
	6.2.7 ADB3 Target Testbench Components
	6.2.7.1 Bridge MPTL Interface Wrapper (mptl_if_bridge_wrap)
	6.2.7.1.1 Introduction
	6.2.7.1.2 Interface
	6.2.7.1.3 Description
	6.2.7.1.3.1 OCP-Only Simulation
	6.2.7.1.3.2 Full MPTL Simulation

	6.2.7.2 Host PCIe Interface Wrapper (pcie_if_host_wrap)
	6.2.7.2.1 Introduction
	6.2.7.2.2 Interface
	6.2.7.2.3 Description
	6.2.7.2.3.1 OCP-Only Simulation

	6.2.7.3 Board Clock Generation and Test (test_board_clks)
	6.2.7.3.1 Introduction
	6.2.7.3.2 Interface
	6.2.7.3.3 Description

	6.3 ADB3 Probe
	6.3.1 ADB3 Probe Package (adb3_probe_pkg)
	6.3.2 ADB3 Probe Components
	6.3.2.1 adb3_ocp_transaction_probe
	6.3.2.1.1 Introduction
	6.3.2.1.2 Interface
	6.3.2.1.3 Description

	6.4 Memory Interface
	6.4.1 Memory Interface Package (mem_if_pkg)
	6.4.2 Xilinx DDR3 SDRAM MIG Cores
	6.4.2.1 Xilinx DDR3 SDRAM MIG Core Generation

	6.4.3 Memory Interface Components
	6.4.3.1 DDR3 SDRAM Memory Interface Bank (ddr3_if_bank)
	6.4.3.1.1 Introduction
	6.4.3.1.2 Interface
	6.4.3.1.3 Description
	6.4.3.1.3.1 adb3_ocp_ocp2ddr3_nb
	6.4.3.1.3.2 Xilinx DDR3 SDRAM MIG Core

	6.5 Memory Application
	6.5.1 Memory Application Components
	6.5.1.1 Memory Test Block (blk_mem_test)
	6.5.1.1.1 Introduction
	6.5.1.1.2 Interface
	6.5.1.1.3 Description

	6.6 Memory Model
	6.6.1 DDR3 SDRAM Memory Model
	6.6.1.1 DDR3 SDRAM Model Package (ddr3_sdram_pkg)
	6.6.1.2 DDR3 SDRAM Model Components
	6.6.1.2.1 DDR3 SDRAM Model (ddr3_sdram)
	6.6.1.2.1.1 Introduction
	6.6.1.2.1.2 Interface
	6.6.1.2.1.3 Description
	6.6.1.2.1.3.1 Message Reporting
	6.6.1.2.1.3.2 Part Selection
	6.6.1.2.1.3.3 Initialisation Delay Selection
	6.6.1.2.1.3.4 Memory Contents Initalisation
	6.6.1.2.1.3.5 Memory Contents Logging

	6.7 Clock Frequency Measurement
	6.7.1 Clock Frequency Measurement Components
	6.7.1.1 Clock Frequency Measurement Block (blk_clock_freq)
	6.7.1.1.1 Introduction
	6.7.1.1.2 Interface
	6.7.1.1.3 Description
	6.7.1.1.3.1 Clock Frequency Measurement Block Constraints

	6.8 ChipScope
	6.8.1 ChipScope Components
	6.8.1.1 ChipScope Block (blk_chipscope)
	6.8.1.1.1 Introduction
	6.8.1.1.2 Interface
	6.8.1.1.3 Description
	6.8.1.1.3.1 Synthesis
	6.8.1.1.3.2 OCP-Only/Full MPTL Simulation

	6.8.1.1.4 Xilinx ChipScope Core Generation (ICON/ILA)

	7 FPGA Design Guide
	7.1 ADB3 OCP Protocol Reference
	7.1.1 Introduction
	7.1.2 Port Signal Definitions
	7.1.3 OCP Port Operation
	7.1.4 Example OCP Transaction Waveforms

	8 The ADMXRC3 API
	Tables
	Table 1: Example applications for Windows and Linux
	Table 2: Naming conventions for VxWorks examples binary
	Table 3: Example HDL FPGA Designs
	Table 4: Simple Design Makefile Targets
	Table 5: Available Variants of the Simple Example Design
	Table 6: Simple Design Direct Slave Address Map
	Table 7: Simple Design, DATA Register (0x000000)
	Table 8: Available Variants of the Simple Example Design Testbench
	Table 9: Uber Design Makefile Targets
	Table 10: Available Variants of the Uber Example Design
	Table 11: Available Variants of blk_clks Block
	Table 12: Uber Design Direct Slave Address Space
	Table 13: Uber Design Direct Slave Register Address Space
	Table 14: Simple Test Register Block Address Map
	Table 15: Simple Test Register Block, DATA Register (0x000000)
	Table 16: Available Variants of blk_ds_clk_read Block
	Table 17: Internally Generated Clock Frequency Measurement
	Table 18: Externally Sourced Clock Frequency Measurement (ADM-XRC-6T1)
	Table 19: Clock Frequency Measurement Register Block Address Map
	Table 20: Clock Frequency Measurement Register Block, SEL Register (0x000040)
	Table 21: Clock Frequency Measurement Register Block, CTRL/STAT Register (0x000044)
	Table 22: Clock Frequency Measurement Register Block, FREQ Register (0x000048)
	Table 23: Interrupt Test Register Block Address Map
	Table 24: Interrupt Test Register Block, SET Register (0x0000C0)
	Table 25: Interrupt Test Register Block, CLEAR/STAT Register (0x0000C4)
	Table 26: Interrupt Test Register Block, MASK Register (0x0000C8)
	Table 27: Interrupt Test Register Block, ARM Register (0x0000CC)
	Table 28: Interrupt Test Register Block, COUNT Register (0x0000D0)
	Table 29: Informational Register Block Address Map
	Table 30: Informational Register Block, DATE Register (0x000140)
	Table 31: Informational Register Block, TIME Register (0x000144)
	Table 32: Informational Register Block, SPLIT Register (0x000148)
	Table 33: Informational Register Block, BRAM_BASE Register (0x00014C)
	Table 34: Informational Register Block, BRAM_MASK Register (0x000150)
	Table 35: Informational Register Block, MEM_BASE Register (0x000154)
	Table 36: Informational Register Block, MEM_MASK Register (0x000158)
	Table 37: Informational Register Block, MEM_BANKS Register (0x00015C)
	Table 38: Informational Register Block, SDK_VER Register (0x000160)
	Table 39: Available Variants of blk_ds_io_test Component
	Table 40: GPIO Test Register Block Address Map
	Table 41: GPIO Test Register Block, XRM_GPIO_DA_DATAO Register (0x000200)
	Table 42: GPIO Test Register Block, XRM_GPIO_DA_DATAI Register (0x000204)
	Table 43: GPIO Test Register Block, XRM_GPIO_DA_TRI Register (0x000208)
	Table 44: GPIO Test Register Block, XRM_GPIO_DB_DATAO Register (0x00020C)
	Table 45: GPIO Test Register Block, XRM_GPIO_DB_DATAI Register (0x000210)
	Table 46: GPIO Test Register Block, XRM_GPIO_DB_TRI Register (0x000214)
	Table 47: GPIO Test Register Block, XRM_GPIO_DC_DATAO Register (0x000218)
	Table 48: GPIO Test Register Block, XRM_GPIO_DC_DATAI Register (0x00021C)
	Table 49: GPIO Test Register Block, XRM_GPIO_DC_TRI Register (0x000220)
	Table 50: GPIO Test Register Block, XRM_GPIO_DD_DATAO Register (0x000224)
	Table 51: GPIO Test Register Block, XRM_GPIO_DD_DATAI Register (0x000228)
	Table 52: GPIO Test Register Block, XRM_GPIO_DD_TRI Register (0x00022C)
	Table 53: GPIO Test Register Block, XRM_GPIO_CS_DATAO Register (0x000230)
	Table 54: GPIO Test Register Block, XRM_GPIO_CS_DATAI Register (0x000234)
	Table 55: GPIO Test Register Block, XRM_GPIO_CS_TRI Register (0x000238)
	Table 56: GPIO Test Register Block, PN4_GPIO_P_DATAO Register (0x00023C)
	Table 57: GPIO Test Register Block, PN4_GPIO_P_DATAI Register (0x000240)
	Table 58: GPIO Test Register Block, PN4_GPIO_P_TRI Register (0x000244)
	Table 59: GPIO Test Register Block, PN4_GPIO_N_DATAO Register (0x000248)
	Table 60: GPIO Test Register Block, PN4_GPIO_N_DATAI Register (0x00024C)
	Table 61: GPIO Test Register Block, PN4_GPIO_N_TRI Register (0x000250)
	Table 62: GPIO Test Register Block, PN6_GPIO_MS_DATAO Register (0x000254)
	Table 63: GPIO Test Register Block, PN6_GPIO_MS_DATAI Register (0x000258)
	Table 64: GPIO Test Register Block, PN6_GPIO_MS_TRI Register (0x00025C)
	Table 65: GPIO Test Register Block, PN6_GPIO_LS_DATAO Register (0x000260)
	Table 66: GPIO Test Register Block, PN6_GPIO_LS_DATAI Register (0x000264)
	Table 67: GPIO Test Register Block, PN6_GPIO_LS_TRI Register (0x000268)
	Table 68: On-Board Memory Register Block Address Map
	Table 69: On-Board Memory Register Block, DS_BANK Register (0x000300)
	Table 70: On-Board Memory Register Block, DS_PAGE Register (0x000304)
	Table 71: On-Board Memory Register Block, BANKx_CTRL Register (0x000320, 0x000340, ...)
	Table 72: On-Board Memory Register Block, BANKx_OFFSET Register (0x000324, 0x000344, ...)
	Table 73: On-Board Memory Register Block, BANKx_LENGTH Register (0x000328, 0x000348, ...)
	Table 74: On-Board Memory Register Block, BANKx_INFO Register (0x00032C, 0x00034C, ...)
	Table 75: On-Board Memory Register Block, BANKx_STAT Register (0x000330, 0x000350, ...)
	Table 76: On-Board Memory Register Block, BANKx_APP_ERR_ADDR Register (0x000334, 0x000354, ...)
	Table 77: On-Board Memory Register Block, BANKx_MUX_ERR Register (0x000338, 0x000358, ...)
	Table 78: On-Board Memory Register Block, BANKx_IF_ERR Register (0x00033C, 0x00035C, ...)
	Table 79: Direct Slave BRAM Access Window
	Table 80: Direct Slave On-Board Memory Access Window
	Table 81: Uber Design Direct Slave On-Board Memory Address Map
	Table 82: Uber Design DMA Channel 0 Address Map
	Table 83: Available Variants of blk_mem_if Block
	Table 84: Available Variants of the Uber Example Design Testbench
	Table 85: Available Variants of test_uber_mem Component
	Table 86: Available Variants of On-Board Memory Models
	Table 87: Available Variants of uber_tb_pkg Package
	Table 88: adb3_ocp_cross_clk_dom Component Interface
	Table 89: adb3_ocp_mux_b Component Interface
	Table 90: adb3_ocp_mux_nb Component Interface
	Table 91: adb3_ocp_ocp2ddr3_nb Component Interface
	Table 92: adb3_ocp_retime_nb Component Interface
	Table 93: adb3_ocp_simple_bus_if Component Interface
	Table 94: adb3_ocp_simple_bus_if_nb Component Interface
	Table 95: adb3_ocp_split_b Component Interface
	Table 96: adb3_ocp_split_nb Component Interface
	Table 97: Available Variants of the adb3_target_inc_pkg Package
	Table 98: Available Variants of the adb3_target_pkg Package
	Table 99: mptl_if_target_wrap Component Interface
	Table 100: Available Variants of Simulation Only Version of mptl_if_target_wrap Component
	Table 101: Available Variants of mptl_if_target_wrap Component
	Table 102: Available Variants of Target MPTL Interface Netlist
	Table 103: Available Variants of MPTL Interface Core
	Table 104: pcie_if_target_wrap Component Interface
	Table 105: Available Variants of Simulation Only Version of pcie_if_target_wrap Component
	Table 106: Available Variants of pcie_if_target_wrap Component
	Table 107: Available Variants of PCIe Interface Core
	Table 108: Available Variants of the adb3_target_tb_inc_pkg Package
	Table 109: Available Variants of the adb3_target_tb_pkg Package
	Table 110: mptl_if_bridge_wrap Component Interface
	Table 111: Available Variants of Simulation Only Version of mptl_if_bridge_wrap Component
	Table 112: Available Variants of mptl_if_bridge_wrap Component
	Table 113: Available Variants of Bridge MPTL Interface Netlist
	Table 114: pcie_if_host_wrap Component Interface
	Table 115: Available Variants of Simulation Only Version of pcie_if_host_wrap Component
	Table 116: test_board_clks Component Interface
	Table 117: Available Variants of test_board_clks Component
	Table 118: adb3_ocp_transaction_probe Component Interface
	Table 119: MIG vs ISE Version Compatibility
	Table 120: Versions of DDR3 SDRAM MIG Core in Use
	Table 121: ddr3_if_bank Component Interface
	Table 122: Available Variants of ddr3_if_bank Component
	Table 123: blk_mem_test Component Interface
	Table 124: ddr3_sdram Component Interface
	Table 125: blk_clock_freq Component Interface
	Table 126: blk_chipscope Component Interface
	Table 127: Master Port To Slave Port Signals
	Table 128: Slave Port To Master Port Signals

	Figures
	Figure 1: Structure of the ADM-XRC Gen 3 SDK
	Figure 2: SYSMON user interface
	Figure 3: SYSMON notification area icon
	Figure 4: SYSMON sensor information tab
	Figure 5: SYSMON 'scope tab
	Figure 6: SYSMON Action menu in Linux
	Figure 7: SYSMON Action menu in Windows
	Figure 8: Simple Design Block Diagram (MPTL)
	Figure 9: Simple Design Block Diagram (PCIe)
	Figure 10: Simple Design Testbench and Top Level Block Diagram (MPTL)
	Figure 11: Simple Design Testbench and Top Level Block Diagram (PCIe)
	Figure 12: Uber Design Top Level Block Diagram (MPTL)
	Figure 13: Uber Design Top Level Block Diagram (PCIe)
	Figure 14: Uber Design Top Level Hierarchy (MPTL)
	Figure 15: Uber Design Top Level Hierarchy (PCIe)
	Figure 16: Uber Design Package Dependencies
	Figure 17: Uber Design Internal Clock Generation (MMCM)
	Figure 18: Uber Design Clock Buffering/Extraction
	Figure 19: Uber Direct Slave Block Diagram
	Figure 20: Uber OCP Switching Block
	Figure 21: Uber BRAM Block Diagram
	Figure 22: Uber Memory Interface Block Diagram
	Figure 23: Uber Design Testbench and Top Level Block Diagram (MPTL)
	Figure 24: Uber Design Testbench and Top Level Block Diagram (PCIe)
	Figure 25: Uber Design Testbench Hierarchy (MPTL)
	Figure 26: Uber Design Testbench Hierarchy (PCIe)
	Figure 27: adb3_ocp_cross_clk_dom Component Interface
	Figure 28: adb3_ocp_cross_clk_dom Block Diagram
	Figure 29: adb3_ocp_mux_b Component Interface
	Figure 30: adb3_ocp_mux_nb Component Interface
	Figure 31: adb3_ocp_mux_nb Block Diagram
	Figure 32: adb3_ocp_ocp2ddr3_nb Component Interface
	Figure 33: adb3_ocp_ocp2ddr3_nb Block Diagram
	Figure 34: adb3_ocp_retime_nb Component Interface
	Figure 35: adb3_ocp_retime_nb Block Diagram
	Figure 36: adb3_ocp_srl16_ret Block Diagram
	Figure 37: adb3_ocp_simple_bus_if Component Interface
	Figure 38: OCP Writes (Burst Length = 1) To 32-bit Simple Bus
	Figure 39: OCP Read From 32-bit Simple Bus (Read Latency = 1)
	Figure 40: OCP Writes/Reads (Burst Length = 1) To/From 128-bit Simple Bus
	Figure 41: adb3_ocp_simple_bus_if_nb Component Interface
	Figure 42: adb3_ocp_simple_bus_if_nb Block Diagram
	Figure 43: OCP Writes (Burst Length = 1) To 32-bit Simple Bus
	Figure 44: OCP Read From 32-bit Simple Bus (Read Latency = 1)
	Figure 45: OCP Writes/Reads (Burst Length = 1) To/From 128-bit Simple Bus
	Figure 46: adb3_ocp_split_b Component Interface
	Figure 47: adb3_ocp_split_nb Component Interface
	Figure 48: adb3_ocp_split_nb Block Diagram
	Figure 49: mptl_if_target_wrap Component Interface
	Figure 50: pcie_if_target_wrap Component Interface
	Figure 51: mptl_if_bridge_wrap Component Interface
	Figure 52: pcie_if_host_wrap Component Interface
	Figure 53: test_board_clks Component Interface
	Figure 54: adb3_ocp_transaction_probe Component Interface
	Figure 55: ddr3_if_bank Component Interface
	Figure 56: blk_mem_test Component Interface
	Figure 57: ddr3_sdram Component Interface
	Figure 58: blk_clock_freq Component Interface
	Figure 59: blk_chipscope Component Interface
	Figure 60: Single Beat Write Transactions
	Figure 61: Single Beat Read Transactions
	Figure 62: Burst Write Transactions
	Figure 63: Burst Read Transactions
	Figure 64: 'Valid' Controlled Transactions

	Alpha Data Website

