e,ALPHA DATA

ADM-XRC Gen 3
SDK 1.3.0 User
Guide

Revision: 1.3
Date: 04th March 2011

@ALPHA DATA

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(1.3 - 04th March 2011)

©2011 Copyright Alpha Data Parallel Systems Ltd.
All rights reserved.
This publication is protected by Copyright Law, with all rights reserved. No

part of ti

publication may be reproduced, in any shape or form, without

prior written consent from Alpha Data Parallel Systems Limited.

Address
Telephone
Fax

email
website

Head Office

4 West Silvermills Lane,
Edinburgh, EH3 58D, UK

+44 131 558 2600

+44 131 558 2700
sales@alpha-data.com
http:/fwww.alpha-data.com

US Office

3507 Ringsby Court Suite 105
Denver, CO 80216

(303) 954 8768
(866) 820 9956 - toll free
sales@alpha-data.com
hitp://www.alpha-data.com

ADM-XRC Gen 3 SDK 130 User Guide
(V1.3 - 04ih March 2011) @ ALPHA DATA

Table Of Contents
1

1.1 Document
1.2 Supported operating syste:
1.3 Supported Alpha Data hardware
1.4 Installation
1.4.1 Installation in Windoy
1.4.2 Installation in Linu
1.4.3 Installation in VxWork:
1.5 Structure of this SDK
Getting started
2.1 Getting started in Windows 2000 / XP / Server 2003
2.2 Getting started in Windows Vista and later
2.3 Getting started in Linux
2.4 Getting started in VxWorks

~

3 Example for Windows and Linu
3.1 Building the example in Wind
3.2 Building the example in Linu
3.3 DUMP utiity.

3.4 FLASH utilty.
3.4.1 Failsafe bitstream mechanism.

3.5 INFO utilty

3.6 ITEST example.

BELEREERovaasnmomn e e e e

3.7 MEMTESTH mple 22
3.8 MONITOR utility 23
3.9 SIMPLE example. 24
310 SYSMON utiity. e
3.10.1 Building SYSMON in L 27
311 VPD uilty 28
4 Example appli for VxWorks 32
4.1 Building the example VxWorks in Windows 32
4.2 Building the example VxWorks in Linw 22
4.3 MAKE options for the example VxWorks 32
4.4 FLASH utilty (VxWorks) 35
4.4.1 Failsafe bitstream mechanism (VxWorks) 36
4.5 INFO utility (VxWorks) 38
4.6 ITEST example (VxWorks) 0
4.7 MEMTESTH example (VxWorks) 2
4.8 MONITOR utiity (VxWorks) a3
4.9 SIMPLE example (VxWorks) 2
410 VPD utiity (VxWorks) 45
5 Example HDL FPGA Designs 49
5.1 Introduction a9
5.2 Design Simulation Using Modelsim 49

ADM-XRC Gen 3 SDK 1.3.0 User Guide

@ALPHA DATA (v1.3 - 04th March 2011)

5.2.1 Full MPTL Simulation (TARGET_USE = SIM_MPTL) 29
5.2.2 OCP-Only Simulation (TARGET_USE = SIM_OCP) 50
5.3 Bitstream Build Using Xilinx™ ISE 50
5.3.1 Building All Example Bitstreams for Wind 50
5.3.2 Building All Example Bitstreams for Linu 51
5.3.3 Building Specific Device Bitstreams 51
5.4 Simple Example FPGA Design 52
5.4.1 Board Support 52
5.4.2 Source Location 52
5.4.2.1 VHDL Source Files for Simulation 52
5.4.2.2 VHDL Source Files for Synthesi 52
5.4.2.3 XST File: 52
5424 Constraint File: 52
5.4.3 Design Synthesis and Bitstream Build 52
5.4.4 Design Description 54
5.4.4.1 Clock Generation. 56
5.4.4.1.1 OCP Clock 56
5.4.4.1.2 Target MPTL Interface Clock 56
5.4.4.2 Target MPTL Interfac 6
5.4.4.3 OCP to Simple Bus Interface Block 56
5.4.4.4 Simple Test Registers. 56
5.4.4.4.1 Register Description 56
5.4.5 Testbench Description 57
5.4.5.1 Clock Generation. 59
5.45.2 Bridge MPTL Interface 59
5.4.5.3 Direct Slave OCP Channel Probe 59
5.4.5.4 Stimulus Generation and Verification 59
5.45.4.1 Direct Slave OCP Channel 50
5.4.5.4.1.1 Simple Test 60

5.4.6 Design Simulation 60
5.4.6.1 Initialisation Result 60
5.4.6.2 Direct Slave OCP Channel Result 61
5.4.6.3 Completion Results 61
5.5 Uber Example FPGA Design 62
5.5.1 Board Support 62
5.5.2 Source Location 62
5.5.2.1 VHDL Source Files for Simulation 62
5.5.2.2 VHDL Source Files for Synth 62
55.2.3 XST Fil 62
5524 Constraint File: 62
5.5.3 Design Synthesis and Bitstream Build 62
55.3.1 Date/Time Package Generation 6
5.5.4 Design Description 65
5.5.4.1 Clock Generation Block. 69

5.5.4.1.1 Internal Clock Generation (MMCM) 69

ADM-XRC Gen 3 SDK 130 User Guide
(V1.3 - 04ih March 2011) @ ALPHA DATA

5.5.4.1.2 Internal Reset Generation (MMCM) 69
5.5.4.1.3 MPTL Interface Clock Generation 69
5.5.4.1.4 Input Clock Buffering 70
5.5.4.1.5 Input Clock Extraction (MGT Sourced). 70
5.5.4.1.6 Output Clock Generation. 70
5.5.4.2 Target MPTL Interfac 73
5.5.4.3 OCP Direct Slave Block. 73
5.5.4.3.1 OCP Cross-Clock Domain Block 75
5.5.4.3.2 Direct Slave Address Space Splitter Block 75
5.5.4.3.3 Simple Test Register Block. 76
55.4.3.3.1 Description 7%
55.4.3.3.2 Register Description %6
5.5.4.3.4 Clock Frequency Register Block 76
55.4.3.4.1 Description 76
55.4.3.4.2 Register Description .
55.4.3.5 Interrupt Test Register Block 78
55.4.3.5.1 Description 78
55.4.3.5.2 Register Description 79
55436 Register Block 80
55.4.3.6.1 Description 80
5.5.4.3.6.2 Register Description 0
55.4.3.7 GPIO Test Register Block. P
55.4.3.7.1 Description 82
5.5.4.3.7.2 Register Description P
5.5.4.3.8 On-Board Memory Register Block 89
5.5.4.38.1 Description 89
5.5.4.3.8.2 Register Description 89
5.5.4.3.9 Direct Slave BRAM Access Block 93
5.5.4.3.9.1 Description 93
5.5.4.3.9.2 Direct Slave BRAM Access Window 93
5.5.4.3.10 Direct Slave On-Board Memory Access Block 93
5.5.4.3.10.1 Description 93
5.5.4.3.10.2 Direct Slave On-Board Memory Access Window .. 93
5.5.4.4 OCP Switching Block. 94
5.5.4.4.1 Direct Slave On-Board Memory OCP Address Space Splitter Block 96
5.5.4.4.2 BRAM OCP Multiplexor Block 96
5.5.4.4.3 DMA Channel 0 OCP Address Space Splitter Block %
5.5.4.4.4 On-Board Memory Bank OCP 97
5.5.4.5 BRAM Block 97
5.5.4.6 On-Board Memory Interface Block: 99
5.5.4.7 On-Board Memory Application Block. 101
5.5.4.8 ChipScope™ Connection Block (optional) 101
5.5.4.9 Design Package 101
5.5.5 Testbench Description 10:

5.5.5.1 Clock Generation. o

ADMXRC Gen 3 SDK 1.3.0 User Guide
@ ALPHA DATA (V13- 0dth March 2011)

5.5.5.2 Bridge MPTL Interface 107
555.5.3 OCP Channel Prob 10
5.5.5.4 Stimulus Generation and Verification 101

555.5.4.1 Non-OCP Functions 108
5.5.5.4.1.1 Clock Output Test. 108
5.5.5.4.1.2 MPTL GPIO Bus Test 108
5.5.5.4.1.3 DMA Abort Bus Test 108

5.5.5.4.2 Direct Slave OCP Channel 108
55.5.4.2.1 Simple Test 109
5.5.5.4.2.2 Clock Frequency Test 109
5.5.5.4.2.3 XRM GPIO Test 10
5.5.5.4.2.4 Pn4/Pn6 GPIO Test. 10
555.4.2.5 Interrupt Test an
555426 Register Test EET
55.5.4.2.7 BRAM Test 1
5.5.5.4.2.8 On-Board Memory Test 1

55.5.4.3 DMA OCP Channel: e
5.5.5.4.3.1 DMA OCP Command and Write Data Process 114
55.5.4.3.2 DMA OCP Response Proce 1s

5.5.5.5 Memory Device Simulation Model 15
5.5.5.6 Testbench Packag 16
5.5.6 Design Simulation 1
5.5.6.1 Date/Time Package Generation 1
5.5.6.2 Initialisation Resul 1

55.6.2.1 DDR3 SDRAM MIG Core MMCM Status 1

55.6.2.2 Testbench Statu 18

5.5.6.2.3 DDR3 SDRAM Inifialisation. 18

5.5.6.3 Non-OCP Functions Resuts 18

5.5.6.3.1 Clock Output Test Result 18

5.5.6.3.2 MPTL GPIO Bus Test Result 18

5.5.6.3.3 DMA Abort Bus Test Results 19

5.5.6.4 Direct Slave OCP Channel Result 19
55.6.4.1 Simple Test Result o
555.6.4.2 Clock Frequency Test Result 19
5.5.6.4.3 XRM GPIO Test Result 19
5.5.6.4.4 Pna/Pn6 GPIO Test Result 120
55.6.4.5 Interrupt Test Results 120
55646 Register Test Result 121
55.6.4.7 BRAM Test Results 121
55.6.4.8 On-Board Memory Test Results 121
55.6.5 DMA OCP Channels Rest 1
5.5.6.6 Completion Result 1

6 Common HDL C 124
6.1 ADB3 OCP Library 1

6.1.1 ADB3 OCP Profile Definition Package (adb3_ocp) 1

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(V1.3 - 04th March 2011)

@ALPHA DATA

61311

6.1.3.1.2 Interface

6.1.3.1.3 Description

6.1.3.2 adb3_ocp_mux_b

61321

6.1.3.2.2 Interface

6.1.3.2.3 Description
6.1.3.3 adb3_ocp_mux_nb

61331

6.1.3.3.2 Interface

6.1.3.3.3 Description

61341

6.1.3.4.2 Interface

6.1.3.4.3 Description

6.1.35 adb3_ocp_retime_nb.

6.1.35.1

6.1.3.5.2 Interface

6.1.3.5.3 Description

6.1.36.1

6.1.3.6.2 Interface

6.1.3.6.3 Description

6.1.3.7 adb3_ocp_split_b

6.137.1

6.1.3.7.2 Interface

6.1.3.7.3 Description
6.1.3.8 adb3_ocp_split_nb

6.1.38.1

6.1.3.8.2 Interface

6.1.3.8.3 Description

6.1.2 ADB3 OCP Library Component Declaration Package (adb3_ocp_comp).. 126
6.1.3 ADB3 OCP Library Component 1
6.1.3.1 adb3_ocp_cross_clk_dom 1
1
1
1

6.1.3.1.3.1 Command Path 120

6.1.3.1.3.2 Write Data Path 129

6.1.3.1.3.3 Read Response Path 129

130

130

130

130

131

131

131

131

6.1.3.3.3.1 Command Path 133

6.1.3.3.3.2 Write Data Path 133

6.1.3.3.3.3 Read Response Path 134

6.1.3.4 adb3_ocp_ocp2ddr3_nb. 136

136

136

13

6.1.3.4.3.1 Command Path 139

6.1.3.4.3.2 Write Data Path 139

6.1.3.4.3.3 Read Response Path 140

141

141

141

141

6.1.3.6 adb3_ocp_simple_bus_if. 142

142

142

142

143

143

143

143

144

144

144

144

6.1.3.8.3.1 Command Path 146

146

6.1.3.8.3.2 Write Data Path

ADM-XRC Gen 3 SDK 1.3.0 User Guide

@ALPHA DATA (25 0ath arch 2011)
6.1.3.8.3.3 Read Response Path 147
6.2 MPTL Library 149
6.2.1 MPTL Library Component: 140
6.2.1.1 Bridge MPTL Interface Wrapper (mpt_if_bridge_wrap) 149
62111 149
6.2.1.1.2 Interface 149
6.2.1.1.3 Description 150
6.2.1.1.3.1 OCP-Only Simulation 150
6.2.1.1.3.2 Full MPTL Simulation 150
6.2.1.2 Target MPTL Interface Wrapper (mptl_if_target_wrap) 151
62121 151
6.2.1.2.2 Interface 151
6.2.1.2.3 Description 15:
6.2.1.2.3.1 OCP-Only Simulation 15:
6.2.1.2.3.2 Full MPTL Simulation 15:
6.2.1.2.3.3 Synthesi 15:
6.2.2 MPTL Interface Components 153
6.2.2.1 Bridge MPTL Interface For OCP-Only Simulation (mptl_if_bridge_sim) . 153
62211 153
6.2.2.1.2 Interface 153
6.2.2.1.3 Description 153
6.2.2.2 Target MPTL Interface For OCP-Only Simulation (mptl_if_target_sim)c.o.c.vvorer 155
62221 155
62.2.2.2 Interface 155
6.2.2.2.3 Description 155
6.2.2.3 Bridge MPTL Interface For Full MPTL Simulation 15
62231 15
6.2.2.32 Interface 15
6.2.2.3.3 Description 15
6.2.2.4 Target MPTL Interface For Full MPTL Simulation 158
62241 158
6.2.2.4.2 Interface 158
6.2.2.4.3 Description 158
6.2.25 Target MPTL Interface For Synthesi 150
62251 159
6.2.2.5.2 Interface 159
6.2.2.5.3 Description 159
6.3 ADB3 Target Library 160
6.3.1 ADB3 Target Types Definition Package (adb3_target_types_pkg). 160
6.3.2 ADB3 Target Include Package (adb3_target_inc_pkg) 161
6.3.3 ADB3 Target Package (adb3_target_pkg) 16
6.3.4 ADB3 Target Testhench Package (adb3_target_th_pkg) 164
6.4 ADB3 Probe Library. 16
6.4.1 ADB3 Probe Library Package (adb3_probe_pkg) 16

6.4.2 ADB3 Probe Library Component: 16¢

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(V1.3 - 04th March 2011)

@ALPHA DATA

6.4.2.1 adb3_ocp_transaction_probe.

6.4.21.1

6.4.2.1.2 Interface

6.4.2.1.3 Description

6.5 Memory Interface Library

65211

6.5.2.1.2 Interface

6.5.2.1.3 Description

16
16
16
166
16
6.5.1 Memory Interface Library Package (mem_if_pkg) 16
6.5.2 Memory Interface Library Component: 168
6.5.2.1 DDR3 SDRAM Memory Interface Bank (ddr3_if_bank_v3_6) 168
168
168
169
6.5.2.1.3.1 OCP To DDR3 SDRAM MIG Core (adb3_ocp_ocp2ddr3_nb) . 169
6.5.2.1.3.2 Xilinx™ DDR3 SDRAM MIG Core 169
6.5.2.1.4 Xilinx™ DDR3 SDRAM MIG Core Generation 169

6.6 Memory Application Library
6.6.1 Memory Application Library Component

6.6.1.1 Memory Test Block (blk_mem_test)

66111

6.6.1.1.2 Interface

6.6.1.1.3 Description

6.7 Memory Model Library.

6.7.1 DDR3 SDRAM Memory Model

6.7.1.1 DDR3 SDRAM Model Package (ddr3_sdram_pkg)
6.7.1.2 DDR3 SDRAM Model Component:

6.7.1.2.1 DDR3 SDRAM Model (ddr3_sdram)

6.7.1.2.1.1 Introduction,

6.7.1.2.1.2 Interface

6.7.1.2.1.3 Description

6.7.1.2.1.3.1 Message Reporting

6.7.1.2.1.3.2 Part Selection

6.7.1.2.1.3.3 Initialisation Delay Selection.

6.7.1.2.1.3.4 Memory Contents Initalisation

6.7.1.2.1.3.5 Memory Contents Logging

6.8 Clock Frequency Library

6.8.1 Clock Frequency Library Component:
6.8.1.1 Clock Frequency Measurement Block (blk_clock_freq) .. 177
68111 177
6.8.1.1.2 Interface 177
6.8.1.1.3 Description 178
6.8.1.1.3.1 Clock Frequency Measurement Block Constraints 178
6.9 ChipScope™ Library 179
6.9.1 Xilinx™ ChipScope™ Interface (ICON/ILA) 179
6.9.2 ChipScope™ Library Component 180
6.9.2.1 ChipScope™ Block (blk_ChipScope™) 180
69211 180

ADM-XRC Gen 3 SDK 1.3.0 User Guide

@ALPHA DATA (v1.3 - 04th March 2011)

6.9.2.1.2 Interface 180

6.9.2.1.3 Description 181

6.9.2.2 ChipScope™ Simulation Block (blk_chipscope_sim). 181
69221 181

6.9.2.2.2 Interface 181

6.9.2.2.3 Description 18:

7 FPGA design guide 18:

7.1 ADB3 OCP Protocol Reference. 18

7.1.1 Introduction. 18

7.1.2 ADB3 OCP Signal Definition: 18:
7.1.3 Example OCP Transfer Waveform Diagram: 184
8 The ADMXRC3 API 190

Tables

Table 1: Example applications for Windows and Linux 11
Table2: Naming conventions for VxWorks examples binary 34
Table3: Example HDL FPGA Design: 49
Table 4: Simple Design Makefile Targets 52
Table5: Simple Design Direct Slave Address Map 57
Table 6: Simple Design, DATA Register (0x000000) 57
Table 7: Uber Design Makefile Target: 63
Table 8: Uber Design Direct Slave Address Map 75
Table9: Simple Test Register Block Address Map 76
Table 10: Simple Test Register Block, DATA Register (0x000000) .. 76
Table 11: Clock Frequency Measurement Register Block Address Map. 77
Table 12: Clock Frequency Measurement Register Block, SEL Register (0x000040) 77
Table 13: Clock Frequency Measurement Register Block, CTRL/STAT Register (0x000044)..... 78
Table 14: Clock Frequency Measurement Register Block, FREQ Register (0x000048) . 78
Table 15: Interrupt Test Register Block Address Map 79
Table 16: Interrupt Test Register Block, SET Register (0X0000CO) S~ . 79
Table 17: Interrupt Test Register Block, CLEAR/STAT Register (0x0000C4). 79
Table 18: Interrupt Test Register Block, MASK Register (0x0000C8)...... 79
Table 19: Interrupt Test Register Block, ARM Register (0x0000CC) 79
Table 20: Interrupt Test Register Block, COUNT Register (0x0000DO0). 79
Table 21: Informational Register Block Address Map. 80
Table 22: Informational Register Block, DATE Register (0x000140)........ - - - 80
Table 23: Informational Register Block, TIME Register (0x000144). - - — - - - 81
Table 24: Informational Register Block, SPLIT Register (0x000148)........ . p— » - - 81
Table 25: Informational Register Block, BRAM_BASE Register (0x00014C)... — - - - 81
Table 26: Informational Register Block, BRAM_MASK Register (0x000150)... — . - " 81
Table 27: Informational Register Block, MEM_BASE Register (0x000154) — . - " 81
Table 28: Informational Register Block, MEM_MASK Register (0x000158) 81
Table 29: Informational Register Block, MEM_BANKS Register (0x00015C) 81

Table 30: GPIO Test Register Block Address Map 82

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(V1.3 - 04th March 2011)

@ALPHA DATA

Table 31:
Table 32:
Table 33:
Table 34:
Table 35:
Table 36:
Table 37:
Table 38:
Table 39:
Table 40:
Table 41:
Table 42:
Table 43:
Table 44:
Table 45:
Table 46:
Table 47:
Table 48:
Table 49:
Table 50:
Table 51:
Table 52:
Table 53:
Table 54:
Table 55:
Table 56:
Table 57:
Table 58:
Table 59:
Table 60:
Table 61:
Table 62:
Table 63:
Table 64:
Table 65:
Table 66:
Table 67:
Table 68:
Table 69:
Table 70:
Table 71:
Table 72:
Table 73:
Table 74:
Table 75:

GPIO Test Register Block, XRM_GPIO_DA_DATAO Register (0x000200). 83
GPIO Test Register Block, XRM_GPIO_DA_DATAI Register (0x000204) . 83
GPIO Test Register Block, XRM_GPIO_DA_TRI Register (0x000208).. 83
GPIO Test Register Block, XRM_GPIO_DB_DATAO Register (0x00020C) 83
GPIO Test Register Block, XRM_GPIO_DB_DATAI Register (0x000210) 83
GPIO Test Register Block, XRM_GPIO_DB_TRI Register (0x000214 84
GPIO Test Register Block, XRM_GPIO_DC_DATAO Register (0x000218) 84
GPIO Test Register Block, XRM_GPIO_DC_DATAI Register (0x00021C) 84
GPIO Test Register Block, XRM_GPIO_DC_TRI Register (0x000220) ... 84
GPIO Test Register Block, XRM_GPIO_DD_DATAO Register (0x000224) 84
GPIO Test Register Block, XRM_GPIO_DD_DATAI Register (0x000228) 84
GPIO Test Register Block, XRM_GPIO_DD_TRI Register (0x00022C).... 84
GPIO Test Register Block, XRM_GPIO_CS_DATAO Register (0x000230). 85
GPIO Test Register Block, XRM_GPIO_CS_DATAI Register (0x000234) 85
GPIO Test Register Block, XRM_GPIO_CS_TRI Register (0x000238).. 86
GPIO Test Register Block, PN4_GPIO_P_DATAO Register (0x00023C)... 87
GPIO Test Register Block, PN4_GPIO_P_DATAI Register (0x000240). 87
GPIO Test Register Block, PN4_GPIO_P_TRI Register (0x000244)... 87
GPIO Test Register Block, PN4_GPIO_N_DATAO Register (0x000248) 87
GPIO Test Register Block, PN4_GPIO_N_DATAI Register (0x00024C) 87
GPIO Test Register Block, PN4_GPIO_N_TRI Register (0x000250) 87
GPIO Test Register Block, PN6_GPIO_MS_DATAO Register (0x000254) 88
GPIO Test Register Block, PN6_GPIO_MS_DATAI Register (0x000258)... 88
GPIO Test Register Block, PN6_GPIO_MS_TRI Register (0x00025C). 88
GPIO Test Register Block, PN6_GPIO_LS_DATAO Register (0x000260) 88
GPIO Test Register Block, PN6_GPIO_LS_DATAI Register (0x000264) 89
GPIO Test Register Block, PN6_GPIO_LS_TRI Register (0x000268) 89
On-Board Memory Register Block Address Map. 89
On-Board Memory Register Block, DS_BANK Register (0x000300) %
On-Board Memory Register Block, DS_PAGE Register (0x000304) %
On-Board Memory Register Block, BANKx_CTRL Register (0x000320, 0x000340, %
On-Board Memory Register Block, BANKX_OFFSET Register (0x000324, 0x000344, ... 91
On-Board Memory Register Block, BANKx_LENGTH Register (0x000328, 0x000348, .. 91
On-Board Memory Register Block, BANKX_INFO Register (0x00032C, 0x00034C, 91
On-Board Memory Register Block, BANKx_STAT Register (0x000330, 0x000350, ... 91
On-Board Memory Register Block, BANKX_APP_ERR_ADDR Register (0x000334, 0x000354, 92
On-Board Memory Register Block, BANKx_MUX_ERR Register (0x000338, 0x000358, .. 92
On-Board Memory Register Block, BANKx_DDR3_ERR Register (0x00033C, 0x00035C. 92
Direct Slave BRAM Access Wind 93
Direct Slave On-Board Memory Access Wind 93
Uber Design Direct Slave On-Board Memory Address Map... 9%
Uber Design DMA Channel 0 Address Map 9%
ADB3 OCP Library adb3_ocp_cross_clk_dom Component Interface ... 127

ADB3 OCP Library adb3_ocp_mux_b Component Interfac

130

ADB3 OCP Library adb3_ocp_mux_nb Component Interfac

131

ADM-XRC Gen 3 SDK 1.3.0 User Guide

@ALPHA DATA (v1.3 - 04th March 2011)

Table 76: ADB3 OCP Library adb3_ocp_ocp2ddr3_nb Component Interface 136
Table 77: ADB3 OCP Library adb3_ocp_retime_nb Component Interface 141
Table 78: ADB3 OCP Library adb3_ocp_simple_bus_if Component Interface 142

Table 79: ADB3 OCP Library adb3_ocp_split_b Component Interfa 143

Table 80: ADB3 OCP Library adb3_ocp_split_nb Component Interface 144
Table 81: MPTL Library mptl_if_bridge_wrap Component Interface 149
Table 82: MPTL Library mptl_if_target_wrap Component Interface 151
Table 83: Available variants of the adb3_target_inc_pkg package 161
Table 84: ADB3 Probe Library adb3_ocp_transaction_probe Component Interface. 165
Table 85: Memory Interface Library ddr3_if_bank_v3_6 Component Interface. 168
Table 86: Memory Application Library blk_mem_test Component Interface 171
Table 87: Memory Model Library ddr3_sdram Component Interface ... 174
Table 88: Clock Frequency Measurement Library blk_clock_freq Component Interface 177
Table 89: ChipScope™ Library blk_ChipScope™ Component Interface e 180
Table 90: ADB3 OCP Master Signalk 18:

Table 91: ADB3 OCP Slave Signal: 184

Figures

Figure 1: Structure of the ADM-XRC Gen 3 SDK' 3
Figure 2: SYSMON user interface - device information 25
Figure 3: SYSMON user interface - sensor reading: 26
Figure 41 SYSMON user interface - sensor display 26
Figure 5: Simple Design Block Diagram 55
Figure 6: Simple Design Testbench Block Diagram. 58
Figure 7: Uber Design Top Level Block Diagram 66
Figure 8: Uber Design Top Level Hierarchy 67
Figure 9: Uber Design Package Dt 68
Figure 10: Uber Design Internal Clock Generation (MMCM) 71
Figure 11: Uber Design Clock 72
Figure 12: Uber Direct Slave Block Diagram 74
Figure 13: Uber OCP Switching Block 95
Figure 14: Uber BRAM Block Diagram 98
Figure 15: Uber Memory Interface Block Diagram 100
Figure 16: Uber Design Testbench And Top Level Block Diagram 104
Figure 17: Uber Design Testbench Hierarchy 106
Figure 18: ADB3 OCP Library adb3_ocp_cross_clk_dom Component Interface .. . O -1
Figure 19: ADB3 OCP Library adb3_ocp_cross_clk_dom Block Diagram. 128
Figure 20: ADB3 OCP Library adb3_ocp_mux_b Component Interface. 130
Figure 21: ADB3 OCP Library adb3_ocp_mux_nb Component Interface. 131
Figure 22: ADB3 OCP Library adb3_ocp_mux_nb Block Diagram. 13

Figure 23: ADB3 OCP Library adb3_ocp_ocp2ddr3_nb Component Interface — . - 136
Figure 24: ADB3 OCP Library adb3_ocp_ocp2ddr3_nb Block Diagram. 138
Figure 25: ADB3 OCP Library adb3_ocp_retime_nb Component Interface 141

Figure 26: ADB3 OCP Library adb3_ocp_simple_bus_if Component Interface S - 182

ADM-XRC Gen 3 SDK 1.3.0 User Guide

(V1.3 - 04ih March 2011) @ ALPHA DATA

Figure 27: ADB3 OCP Library adb3_ocp_split_b Component Interfa 143
Figure 28: -ADB3 OCP Library adb3_ocp_split_nb Component Interfa 144
Figure 29: -ADB3 OCP Library adb3_ocp_split_nb Block Diagram 145
Figure 30: MPTL Library mptl_if_bridge_wrap Component Interface 149
Figure 31: MPTL Library mptl_if_target_wrap Component Interface 151
Figure 32: ADB3 Probe Library adb3_ocp_transaction_probe Component Interface.. 165
Figure 33: Memory Interface Library ddr3_if_bank_v3_6 Component Interface. 168
Figure 34: Memory Application Library blk_mem_test Component Interface 171
Figure 35: Memory Model Library ddr3_sdram Component Interface 174
Figure 36: ~Clock Frequency Measurement Library blk_clock_freq Component Interface ... 177
Figure 37: ChipScope™ Library blk_ChipScope™ Component Interface S . 180
Figure 38: Single Beat Write 185
single Beat Read 186
Burst Writ 18
Burst Read 188

Figure 42: OCP Slave Controlled Transfers 189

ADM-XRC Gen 3 SDK 1.3.0 User Guide

@ALPHA DATA (v1.3 - 04th March 2011)

Page Intentionally left blank.

ADM-XRC Gen 3 SDK 1.3.0 User Guide.

(V1.3 - 04ih March 2011) @ALPHA DATA

1 Introduction

This document describes the ADM-XRC Gen 3 Software Development Kit (SDK), which provides resources for
developers working with the third generation of reconfigurable computing hardware from Alpha Data. The key features
of the SDK are:

Example applications that use the ADMXRC3 API.
Example HDL FPGA designs that target third generation Alpha Data hardware such as the ADM-XRC-6TL.
These designs are built from a number of HDL components that are also provided in this SDK.

Utilties for working with third generation Alpha Data hardware.

I
HN

Document conventions

In order to avoid unnecessary repetition of information pertaining to both Windows and Linux environments, the
directory separator character for pathnames in this document s the forward slash (/). A pathname or directory name in
aWindows environment has forward slashes replaced by backslashes. For example, the path hdlivhdl s also hdlivhdl
in a Linux environment, but is hdl\vhdl in a Windows environment.
A pathname ending in a forward slash implies that the pathname refers to a directory as opposed to a file. For example,
apps/src/ is the name of directory.
Unless stated otherwise or preceded by a forward slash or a Windows drive letter, pathnames and filenames in this
document are relative to where this SDK has been installed on the development or host machine. For example:
+ Ci/Program Files/Alpha Data/ is an absolute pathname that translates to the directory C:\Program
Files\Alpha Datal in a Windows environment

+ appsisrciitestitest.c is a pathname relative to the root of the SDK that translates to the file /opt/

in a Linux assuming that the root of the SDK is /opt/

admxreg3sdk-1.3.0/.

Itis assumed that the environment variable ADMXRC3_SDK is set to point to the root of the SDK. This environment
variable is referenced in Linux shell commands as SADMXRC3_SDK and as %ADMXRC3_SDKY% in Windows shell
commands. The installer for the Windows SDK normally sets this environment variable automatically so that it is
present in the user's environment, but in Linux a user must manually add this variable to his or her environment

1.2 Supported operating systems
This SDK supports the following operating systems:

+ Windows NT-based operating systems beginning with Windows 2000. Both 32-bit and 64-bit editions are
supported.
 Linux distributions running a 2.6.x kernel.

Beginning with release 1.2.0, this SDK includes header files and example code for VxWorks. For VxWorks

development, it is assumed that a host / development machine is available that runs one of the above operating
systems.

1.3 Supported Alpha Data hardware

The example applications and HDL code in this SDK support the following models in Alpha Data's range of
reconfigurable computing hardware:

. ADM-XRC-6TL

+ ADM-XRC6TL

Introduction Page 1
AD-UG-0004 Alpha Data Parallel Systems Ltd

ADMXRC Gen 3 SDK 1.3.0 User Guide
’ALF“‘ DATA (v1.3 - 04th March 2011)

1.4 Installation
1.4.1 Installation in Windows
The default installation location depends upon whether the operating system is a 32-bit or 64-bit edition of Windows:
+ 9%ProgramFiles%/ADMXRCG3SDK-1.3.0/ in 32-bit editions of Windows,
. %ProgramFiles(x86)%/ADMXRCG3SDK-1.3.0/ in 64-bit editions of Windows.
During installation, the installer automatically creates an environment variable ADMXRC3_SDK that points to where the
SDK is installed. Certain example applications use this environment variable to locate FPGA bitstream (.BIT) files. A

user need not manually set this variable, but if using several versions of the SDK, it can be set manually according to
which version of the SDK is in use.

1.4.2 Installation in Linux
This SDK is supplied as a tarball (tar.gz extension) that should normally be extracted to the fopt/ directory, which
places the root of the SDK atioptiadmxrcg3sdk-1.3.0/.

After installation, an environment variable ADMXRC3_SDK must be defined that points to where the SDK is installed.
Certain example applications use this environment variable to locate FPGA bitstream (BIT) files. A convenient way to
permanently define this variable for a given user is to add the following to the user's .bash_profile:

ADMXRC3_SOK=/0pt/adnxrcg3sdk-1.3.0
export ADMXRC3_SDK

1.4.3 Installation in VxWorks

Since VxWorks normally requires a Windows, Linux or UNIX host, this SDK must be installed on a Windows or Linux
host as described in Section 1.4.1 or Section 1.4.2.

1.5 Structure of this SDK

Page 2 Introduction
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(V1.3 - 04th March 2011)

@ALPHA DATA

“The root of the SDK, e.g. JopUadmxrcg3sdk-1.1.0

common —

platform
linux_—
wing2

dump
flash —

Example appi d uilties.

Makefiles and project files for Linux

Project iles for Windows

Source code for example applications
‘Source code shared by multple example applications

Linux-specific portability source code.
Windows-specific portabillty source code

Source code for DUMP utity
‘Source code for FLASH utity

Prebuilt binaries for le applicati

L win32

[l

Prebuit binaries for x64 editions of Windows
Prebuilt binaries for x86 editions of Windows

Prebuilt bitstreams for example FPGA designs

admxrcstl
admxrestl -

common

= doc for SDK; contains
hal
L vhal
comi Common VHDL libraries; shared by muliple example FPGA designs
ad
adb3_probe
examples — Example VHDL FPGA designs
simple SIMPLE example FPGA design
admxrcst ADM-XRC-6TL-specific code for SIMPLE example FPGA design
admxrcstl ——— ADM-XRC-6TL specific code for SIMPLE example FPGA design
common Model-independent code for SIMPLE example FPGA design
uber UBER example FPGA design

ADM-XRC-6TL-specific code for UBER example FPGA design
ADM-XRC-6T1-specific code for UBER example FPGA design

Model-independent code for UBER example FPGA design

API header fies

API lbrary files
DLL for x64 editions of Windows
86 oLL for Windows

Figure 1: Structure of the ADM-XRC Gen 3 SDK

Alpha Data Parallel Systems Ltd.

Page 3

ADM-XRC Gen 3 SDK 1.3.0 User Guide

@ALPHA DATA (v1.3 - 04th March 2011)

2 Getting started
2.1 Getting started in Windows 2000 / XP / Server 2003

| Note: This section also applies to Windows Vista and later when User Account Control (UAC) is disabled.

This section describes how to run a basic confidence test on Alpha Data hardware, in Windows 2000/ XP / Server
003. This confidence test assumes the following:
1. Allfeatures of the SDK were installed, as described in Section 1.4.
2. Any model from Alpha Data's reconfigurable computing range that is supported by this SDK is installed in the
machine. For a list of hardware supported, refer to Section 1.3

3. The ADB3 driver is installed. The ADB3 driver for Windows is available from Alpha Data's public FTP site: ftp://
ftp.alpha-data.com/publadmxrcg/windows.
4. You are logged on as a user that is a member of the Administrators group.

First, start an SDK command prompt by clicking on the 'SDK Command Prompt’ shortcut from the ‘ADM-XRC Gen 3
SDK' group on the Windows start menu. This command prompt automatically starts with the working directory set to the
bin/win32/x86/ folder of the SDK and also ensures that the ADMXRC3_SDK environment variable is set correctly.

Next, run the info utility. The output looks like this:

APY infornat
AP

Tbrary version 1.1.2
Driver version a2

Card infornation

Mod ADN-XRC-6TL.
Serial number 106(0X6A)

Nunber of programmable clocks 1

Number of OWA charnels 2
Number of target Fi 1
Nimber of Tocal bus windows 4
10
1
1
Nunber of mefory banks a

Bank presence bitnap oxF
Target FPGA information
FPGA O XC6VIX3B5LFFI759-2C stepping ES
Nemory bank information
ank 0 SORMA, DDR3. GSSI6(OX10000) KiW X 32+0 bits
303.0 MHz -

Conn
Bank 1 SDRAM, DDR3, sssae(oxwom) kil x 32+0 bits

303.0'Wz - 5333 W

nect
Bank 2 SDRAM, DDR3, assae(oxwooo) kil x 32+0 bits
303.0'Uz 5333
Connectivity m
Bank 3 SDRAM, DDR3, 65536(0xwum) kil x 32+0 bits
303.0 NHz - '533.3 Wi
Connectivity mask o

Local bus window information
Window 0 (Target FPGA O pre Bus base OXF5800000 Size 0x400000
Local base 0x0 size 0x400000

Virtual size 0x400000

ndow 1 (Target FFGA 0 non Bus base OXFB40D000 size 0x400000
ocal base 0x0 size
Virtual size 0x400000

ndow 2 (ADN-XRC-GTL-speci Bus base OXFB2FFO00 Size 0x1000
Local base 0x0 size 0x0

Page 4 Getting started
Alpha Data Parallel Systems Ltd. AD-UG-0004

ADM-XRC Gen 3 SDK 130 User Guide
(V1.3 - 04ih March 2011) @ ALPHA DATA

Virtual size 0x1000

Window 3 (ADB3 bridge regis Bus base OxFB2FE000 size 0x1000
Local base Ox0 size OXO
Virtual size 0x1000

Now run the simple example application. It prompts the user to enter hexadecimal values (up to 32 bits), and displays
these value nibble-reversed. The nibble-reversal is performed by the target FPGA. Pressing CTRL-Z exits this example.
The output looks like this:

Enter values for 1/0
(CTRL-D / CTRL-Z to exit)

1234abcd
OUT = 0x1234abed, IN = Oxdcbad32l
deadbeef

OUT = Oxdeadbeef, IN = Oxfeebdaed
cafe

reface
OUT = Oxcafeface, IN = Oxecafefac
If everything works s described above, then the hardware, driver and SDK are all correctly installed and substantially
working. Possible next steps are:

+ Experiment with modifying and rebuilding the simple example application in order to become familiar with the
basics of the ADMXRC3 AP

+ Experiment with modifying and rebuilding the simple example FPGA design in order to become familiar with
creating FPGA designs for Alpha Data hardware.

2.2 Getting started in Windows Vista and later

| Note: If User Account Control is disabled, please refer instead to the instructions in Section 2.1.

This section describes how (o run a basic confidence test on Alpha Data hardware, in versions of Windows that have

User Account Control (UAC) such as Windows Vista and later. This confidence test assumes the following

1. Allfeatures of the SDK were installed, as described in Section 1.4.

2. Any model from Alpha Data’s reconfigurable computing range that is supported by this SDK is installed in the
machine. For a list of hardware supported, refer to section Section 1.3

3. The ADB3 driver is installed. The ADB3 driver for Windows is available from Alpha Data's public FTP site: ftp://
ftp.alpha-data.com/publadmxrcg3/windows.

4. You are logged on as a user that is a member of the Administrators group.

Because of User Account Control (UAC), it is not possible to make use of the ‘SDK Command Prompt’ shortcut that is
installed along with the SDK. Instead, start a command prompt by right-clicking on the ‘Command Prompt’ shorteut in
the ‘Accessories' program group and selecting ‘Run as administrator'. This willtypically incur a UAC confirmation
prompt. Then, enter the following command (do not omit the double quotes)

“HADMXRC3_SDK¥\env . bat™

This executes the env.bat batch file, which sets up the environment and changes to the folder containing the prebuilt
example application binaries. In order for this to work correctly, the ADMXRC3_SDK system environment variable must
be correctly defined. The installer normally sets this variable, but if not, it must be set using the Windows Control Panel
as a system environment variable to point to where the SDK is installed.

Next, run the info utiity. The output looks like this:

Getting started Page 5
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADMXRC Gen 3 SDK 1.3.0 User Guide
@ ALPHA DATA (V13- 0dth March 2011)

card infornation
Nodel ADI-XRC-6TL.
Serial number 106(0x6A)

Number of progranmable clocks 1
Number of DWA channels 2
Number of target FPGAS 1
Number of local bus windows 4

Number of sensors 10

H
S
g
N
E
H
g
g
H
<
g
g
H
sae

Nunber of merory banks
Bank presence bitnap oxF

Target FPGA information
FPGA 0

Xc6VIX365LFFI759-2C Stepping ES

Nemory bank informat

SORAN, DOR3, 6S536(0X10000) kil x 3240 bits
3.0 Wz - 523.3

Connectivity m
Bank 1 SORAN, DOR3, 65536(0x10000) Kill x 3240 bits
303.0'
Comnoctivity nask
Bank 2 SORAU, DDR3, 65536(0x1m)ou) KiW x 32+0 bits

3.0 Wz - 5333 W

ty m
Bank 3 SR DORS 65536(0)(10000) Kill x 32+0 bits
303.0 MHz - 533.3 NHz

Connectivity nask 0x1
Local bus window information
Window 0 (Target FPGA O pre Bus base OXF5800000 size 0x400000
Local base Ox0 Size 0x400000
Virtual size 0x400000
ndow 1 (Target FPGA O non Bus base OXFB400000 Size 0x400000
Local base 0x0 size 0x400000
Virtual size 0x400000
Window 2 (ADM-XRC-GTL-speci Bus base OxFB2FFO00 size 0x1000
Local base 0x0 size Ox0
Virtual size 0x1000
ndow 3 (ADB3 bridge regis Bus base OxFB2FE000 Size 0x1000
Local base 0x0 size 0x0
Virtual size 0x1000

Now run the simple example application. It prompts the user to enter hexadecimal values (up to 32 bits), and displays
these value nibble-reversed. The nibble-reversal is performed by the target FPGA. Pressing CTRL-Z exits this example.
The output Iooks like this:

Enter values for 1/(
(CTRL-D / CTRL-Z to exll)

1234abed
OUT = 0x1234abed, IN = Oxdcbad32l

ee
OUT = Oxdeadbeef, IN = Oxfeebdaed
fefac
UT = Oxcafeface, IN = Oxecafefac
If everything works s described above, then the hardware, driver and SDK are all correctly installed and substantially
working. Possible next steps are:
« Make a copy of the SDK in your own filespace, and use the copy to experiment with modiifying and rebuilding
the simple example application in order to become familiar with the basics of the ADMXRC3 API
« Make a copy of the SDK in your own filespace, and use the copy to experiment with modifying and rebuilding

the simple example FPGA design in order to become familiar with creating FPGA designs for Alpha Data
hardware.

Page 6 Getting started
Alpha Data Parallel Systems Ltd. AD-UG-0004

ADM-XRC Gen 3 SDK 1.3.0 User Guide

(V1.3 - 04ih March 2011) @ ALPHA DATA

2.3 Getting started in Linux

This section describes how to run a basic confidence test on Alpha Data hardware, in Linux. This confidence test
assumes the following:

1. This SDK is installed as described in Section 1.4, and the ADMXRC3_SDK environment variable is set to
point to where the SDK has been installe

2. Any model from Alpha Data's reconfigurable computing fange that s supported by this SDK is installed in the
machine. For a list of hardware supported, refer to Section 1.

3. The ADB3 driver is installed. The ADB3 driver for Linux is available from Alpha Datas public FTP site: ftp://

ftp.alpha-data.com/publadmxrcg3/linux.

Note: In the following text, it is assumed that it is possible to log in as ‘root'. If a Linux distribution is used
where users are expected to use 'sudo’ rather than logging in as root, then in all of the following
instructions, commands should be prefixed with ‘sudo’ so that the effect is the same as 'su' to ‘root.

Log in as root (if possible), change directory to where the SDK has been installed, and then run the configure script:

$ cd SADNXRC3_SDK
$ _/configure

This detects certain features of the operating system environment so that the example applications can be built. Next,
change directory to the Linux application directory:

$ od apps/linux
$ make clean all

Having built the example applications, run the info utiiy:
s info/info

‘The output Iooks like this:

APY infornat
AP

n
ibrary version 1.1.2
Driver version 112
Card infornation
ADI-XRC-6TL
nunber 106(0x6A)
of programnable clocks 1
of DA channels 2
of 1
of local bus windows 4
of sensors 10
of 1/0 nodule sites 1
of local bus windows 4
OF menory banks 4
Bank presence bitnap oxF
Target FPGA infornation
FPGA 0 XC6VIX3B5LFFI759-2C stepping ES
Nemory bank information
Bank 0 SORMA, DDR3. 6SSI6(OX10000) KiW X 32+0 bits
303.0'M
Comoctivity nas
Bank 1 SDRAM, DDR3, 65536(0xwum) kil x 32+0 bits
303.0 Nz - 'S
Connectivity m
Bank 2 SORAN. DR, 65536(0x10000) kil x 3240 bits
303.0'M
Comnoctivity nask
Bank 3 SDRAM, DDR3, essae(oxwum) kil x 32+0 bits
Getting started Page 7

AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADMXRC Gen 3 SDK 1.3.0 User Guide
@ ALPHA DATA (V13- 0dth March 2011)

303.0 WHz - 533.3 WHz
Connectivity mask Ox1

Local bus window infornation

Window 0 (Target FPGA O pre Bus base OXF5800000 size 0x400000
Local base OxD Size 0x400000
Virtual size 0x400000

ndow 1 (Target FPGA 0 non Bus base OxFBA400000 size 0x400000
Local base O0x0 size 0x400000
Virtual size 0x400000

Window 2 (ADN-XRC-6TL-speci Bus base OxFB2FFO00 Size 0x1000
Local base Ox0 size OXO
Virtual size 0x10

rdow 3 (ADRS bridge regls Bus bass OEBZREDOD size 0x1000
Local base 0x0 size
Virtual size 0x1000

Now run the simple example application:
B

it prompts the user to enter hexadecimal values (up to 32 bits), and displays these value nibble-reversed. The
nibble-reversal is performed by the target FPGA. Pressing CTRL-D exits this example. The output looks like this:

ple/simple

Enter values for 1/0
(CTRL-D / CTRL-Z to exit)

1234ab
o = uxuuabcu IN = Oxdcbad321
dea
o

deeadheef, IN = Oxfeebdaed

cafeface

OUT = Oxcafeface, IN = Oxecafefac
If everything works as described above, then the hardware, driver and SDK are all correctly installed and substantially
working. Possible next steps are:

Experiment with modifying and rebuilding the simple example application in order to become familiar with the

basics of the ADMXRC3 API
Experiment with modifying and rebuilding the simple example FPGA design in order to become familiar with
creating FPGA designs for Alpha Data hardware.

2.4 Getting started in VxWorks

Note: Before attempting to follow the instructions in this section, we recommend first building the ADB3
Driver for VxWorks and following the instructions for getting started, verifying that the driver appears to
start correctly on the target system. For details, please refer to the release notes for the ADB3 Driver for
VxWorks

The example VxWorks applications in this SDK are supplied only in source code form because it is impractical to
provide binaries for the near-infinite number of possible VxWorks configurations. As a result, a downloadable module
binary for the examples must be built using one of the supported Wind River VxWorks tooichains (DIAB or GNU).

A second consideration is how the target system will access the downloadable module that you build. In the following
discussion, the term staging area refers to the some location on the development machine's filesystem(s) that the
target system can access via FTP, NFS, or whatever other method the target system uses for host file access. There
are two main approaches:

Getting started

Page 8
Alpha Data Parallel Systems Ltd. AD-UG-0004

ADM-XRC Gen 3 SDK 1.3.0 User Guide

(V1.3 - 04ih March 2011) @ ALPHA DATA

+ Copythe entire SDK into the staging area, and build the examples there into a downloadable module. The
target system can then access the downloadable module from the staging area. This approach is convenient
‘as no manual copying of files is required atter building, but may be problematic on some host operating
systems if file permissions in the staging area do not permit the execution of build commands in the staging
area.

+ Copythe SDK to an arbitrary location (e.g. your personal folder on the development machine) and build the
examples there into a downloadable module. The downloadble module must then be copied to the staging
area, and the target system can then access it. This approach is compatible with restrictive file permissions in
the staging area, but the downside is the inconvenience of manually copying of the downloadable module into
the staging area each time it is built

Whichever approach is chosen, the next step is build the example applications as described in Section 4.1 or Section
4.2 This yields a file admxrc3Apps.out containing all of the examples that can be downloaded to the target system.
The location of this file is as shown in Table 2.

To download the file onto the target system, use the target system's console or a VxWorks host shell on the target
system in order to enter the following command:

> 1d <host:/path/to/adnxrc3Apps .out
where host:/pathitol is replaced by the host and folder that contains admxrc3Apps.out.

Now the INFO utiity can be run as a basic confidence test that the applications were built correctly. Enter the following
command:

-> admxre3info
The output looks like this:

API information

APY library version 1.1.2
Driver version 112

card infornation

Nodel ADI-XRC-6TL
Serial number 106(0x6A)
Nunber of programmable clocks 1

Nunber of DMA channels 2

Number of target FPGAS 1

Nunber of local bus windows 4

Nunber of sensors 10
Nunber of 1/0 module sites
Number of Tocal bus windows
Nunber of merory banks

Bank presence bitnap oxF

Target FPGA informat
FPGA 0

sape

Xc6vIx365tFf1759-2C step ES

Nerory bank inforrat
SDRAW, DDR3, 65536 Kilord x 32+0 bits
303.0 NHz -'533.3 MHz
Connectivity mask 0x1

Bank 1 SDRAW, DDR3, 65536 Killord x 32+0 bits
303.0 NHz - 533.3 NHz
Cor 1

Bank 2 SDRAW, DDR3, 65536 Kilord x 32+0 bits
303.0 NHz -'533.3 WHz
Connectivity mask 0x1

Bank 3 SDRAW, DDR3, 65536 Killord x 32+0 bits
303.0 NHz - 533.3 NHz

Connectivity mask Ox1

Local bus window infornation

Vindow 0 (Target FPGA O pre Bus base OxF1400000 size 0x400000
Local base OxD Size 0x400000

Getting started Page 9
AD-UG-0004 Alpha Data Parallel Systems Ltd.

@ALPHA DATA

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(1.3 - 04th March 2011)

ndow 1 (Target FPGA 0 non

ndow 2 (ADN-XRC-6TL-speci

ndow 3 (ADB3 bridge re

Now run the simple example:

> adnxrcasinp!

Virtual size 0x400000
Bus base OxF0400000 size 0x400000
Local base OxD size 0x400000

irtual size 0x400000

Bus base OXFOB00000 Size 0x1000
cal b 00 size 00

Virtual size Ox10

Beebase 7 ONFORDI000 size 0x1000

Local 0x0 size 0x0

Virtual size 0x1000

It prompts the user to enter hexadecimal values (up to 32 bits), and displays these value nibble-reversed. The
nibble-reversal is performed by the target FPGA. Pressing CTRL-D exits this example. The output looks like this:

Enter values for 1/0
(CTRL-D / CTRL-Z to exi

1234abed
OUT = Ox1234abcd, IN
deadbeef

OUT = Oxdeadbeef.

ca
OUT = Oxcafeface, IN

Oxdcba4321
. IN = Oxfeebdaed

Oxecafefac

If everything works as described above, then the hardware, driver and SDK are all correctly installed and substantially

working. Possible next steps are:

« Experiment with modifying and rebuilding the simple example application in order to become familiar with the

basics of the ADMXRC3 AP,

« Experiment with modifying and rebuilding the simple example FPGA design in order to become familiar with
creating FPGA designs for Alpha Data hardware.

Page 10

Getting started

Alpha Data Parallel Systems Ltd. AD-UG-0004

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(V1.3 - 04ih March 2011) @ALPHA DATA

3 Example applications for Windows and Linux

The example applications and utilties are described in the following subsections.

DUMP Utilty for reading and writing memory access windows

FLASH Utilty for programming FPGA bitstream (.BIT) files in user-programmable Flash memory

INFO Utilty for displaying information about a reconfigurable computing device

[TesT Example demonstrating how to consume target FPGA interrupt notifications in an
application

MEMTESTH | Example demonstrating host-driven memory test

MONITOR | uility that displays sensor readings

SIMPLE Example demonstrating how to read and write registers in a target FPGA
Utilty that combines the functionality of the INFO and MONITOR utiltes in a graphical
SYSMON
user interface
. Utilty that allows the Vital Product Data of a reconfigurable computing device to be read
or written

Table 1: Example applications for Windows and Linux

Source code for the example Windows and Linux applications is provided in the apps/src directory, relative to the root
of the SDK.

3.1 Building the example applications in Windows
A Microsoft Visual Studio 2008 solution apps/win32/apps.sin is provided, containing all of the Windows examples. To
build all of the examples, use the "Batch Build" command in Visual Studio.

3.2 Building the example applications in Linux

o build all of the example applications, excluding the SYSMON utiity, at once, enter the following shell commands in a
BASH shell:
$ cd SADVXRC3_SDK/apps/|

$ _/configure
$ make clean al

When compiling on 64-bit bi-architecture machine such as x86_64, two executables are buil for each example
application: a 64-bit native version and a 32-bit version. For example, the native version of INFO is named info, and the
32-bit version is info32. For machines that are not bi-architecture, only the native version is built. The configure script
determines whether o not to build bi-architecture versions of the example applications.

The SYSMON utilty must be built separately, because it depends upon certain packages being present in the system.
For further details, refer to Section 3.10.1

Example applications for Windows and Linux Page 11
AD-UG-0004 Alpha Data Parallel Systems Ltd

ADMXRC Gen 3 SDK 1.3.0 User Guide
’ALF“‘ DATA (v1.3 - 04th March 2011)

3.3 DUMP utility

Command line

dunp offset [n]
dump B offset [n]
dunp offset [n]
dump B offset [n]
dump offset [n] 1
dump o offset [n] 1
dump offset [n] 1
dump o offset [n] 1
where
window is the memory window to read or wite.
offset is the offset into the window at which to begin reading or writing.
n is the number of bytes to read or write.
data is an optional data item, valid for write commands.

and the following options are accepted;

-index <index> Specifies the index of the card to open (default 0).
-sn <#f> Specifies the serial number of the card to open.
-be Causes the data to be read or written to be treated as litle-endian (default).
+be Causes the data to be read or written to be treated as big-endian.
hex Causes write values to be interpreted as decimal unless prefixed by '0x'
(defaul)
+hex Causes write values to be interpreted as hexadecimal always.
Summary

Displays data read from a memory access window, or writes data to a memory access window.
Description

The DUMP utility operates in of two modes:

+ Reading data from a memory access window and displaying it for this mode, use the rb, rw, rd or rq
commands.

Writing data to a memory access window; for this mode, use the wb, ww, wd o wq commands.

In either mode, the option +be may be passed, before the command. This causes the DUMP utility to adopt bi
byte ordering convention as opposed to litle-endian (the default).

Read mode

The read command implies the radix for displaying data:

Byte (8-bit) reads; data is displayed as bytes.

Page 12 Example applications for Windows and Linux
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(V1.3 - 04ih March 2011) @ALPHA DATA

w

Word (16-bit) reads; data is displayed as words.

Doubleword (32-bit) reads; data is displayed as doublewords,
q

Quadword (64-bit) reads; data is displayed as quadwords,

After the read command, a window index and an offset must be supplied, in that order. This specifies the memory
access window to be read, and where in that window to begin reading data. An optional length parameter, in bytes, can
also be supplied. If omitted, the length is equal to the radix implied by the read command. If present, the length
parameter specifies how many bytes to read and display. The length should be an integer multiple of the width; if not,
the length is rounded down.
For example, the command

dump rw 0 0x80000 Ox60
produces output of the form

Window 0 offset 0x80000 mapped @ 0x00150000
Dump of memory at 0x00150000 + 96(0x60) bytes:
00 06 08 0a OC

: 000e 000F 000c b4S6 c567 d678 5asa
ceee ecee ee2? eeee eece eece eeee
ecee ecce eece ecee ecce ceee eeee
afa7 596 445d 8232 163f 8414 ldle
294 faSc cd61 d464 d39d leed 69f8
0x00150050: 5858 489 20ff b77b ef92 ad3a 6a27 €620

Write mode

The write command implies the radix (that is, word size) to be used when performing writes:
. wb
Data is written as bytes (8-bit).

ww
Data is written as words (16-bi).

. wd

Data is written as doublewords (32-bit).

wa
Data is written as quadwords (64-bit),

After the write command, a window index and an offset must be supplied, in that order. This specifies the memory
access window to be read, and where i that window to begin writing data. An optional length parameter, in bytes, can
also be supplied. If omitted, the length is equal to the radix implied by the write command. If present, the length
parameter specifies how many bytes to write. The length should be an integer multiple of the width; if not, the length is
rounded down.

The program obtains the values to be written in two ways: from any additional parameters on the command line after
the length parameter, and then from the standard input stream (stdin). This works as follows:

1. Any remaining command line arguments, if present after the length parameter, are interpreted as data values.
to be written. These values are assumed to be of the radix implied by the command, and are witten to the
memory window, incrementing the offset with each word written. If there are enough values passed on the
command line to satisfy the byte count, the program terminates.

Example applications for Windows and Linux Page 13
o

AD-UG-0004 Alpha Data Parallel Systems Ltd

ADMXRC Gen 3 SDK 1.3.0 User Guide
@ ALPHA DATA (V13- 0dth March 2011)

2. Ifthere are insufficient data values passed on the command line, the program waits for values to be entered on
the standard input stream. Values entered this way are also assumed to be of the radix implied by the
command, and are witten to the memory window, incrementing the offset with each word written. When the
entire byte count that was specified in the length parameter has been satisfied or end-of-ile is encountered,
the program terminates.

An example session looks like this:

Codurp rd 0 0x80000 0xd0

Vindow 0 offset 0x80000 mapped @ 0x00200000

Dump of memory at 0x00200000 + 80(0xd0) bytes:
00 04 08 oc

0x002d0000: 00000000 00000000 00000000 00000000

0x002d0010: 00000000 00000000 00000000 00000000

0x002d0020: 00000000 00000000 00000000 00000000

0x002d0030: 00000000 00000000 00000000 00000000

C>dump wd 0 0x80004 Ox8 Oxdeadbeef

Window 0 offset 0x80004 mapped @ 0x00110004
0xB0004: OXDEADBEEF

0x80008: Oxcafeface

C>dump rd 0 0x80000 Ox40

Window 0 offset 0x80000 mapped @ 0X00110000
Dunp of memory at 0x00110000 + 64(0x40) bytes:

00 04 08

0c
0x00110000: 00000000 deadbeef cafeface 00000000

Oa0110030: 00500000 00300000 00000000 2060000

Remarks

When entering data for write commands, values are expressed in decimal by default. To express data as hexadecimal,
prefix it with ‘0x’ or use the +hex option.

The DUMP utility uses store instructions for writes that are equal to the width specified on the command line, it
possible. This is not possible f the CPU architecture in use does not have store instructions of the required width o if
the offset specified on the command line would result in unaligned stores. In the case of an unaligned offset, writes are
performed as a sequence of byte stores, because unaligned stores are illegal on some CPU architectures.,

Page 14 Example applications for Windows and Linux
Alpha Data Parallel Systems Ltd. AD-UG-0004

ADM-XRC Gen 3 SDK 130 User Guide
(V1.3 - 04ih March 2011) @ ALPHA DATA

3.4 FLASH utility

WARNING: Incorrect use of the +failsafe option may impact long-term reliability of a reconfigurable
computing card. Please refer to Section 3.4.1 below for an explanation of the +failsafe option and how it
may be used

Command line
flash
Tl

flash
flash
flash

where

target-index is the index of a target FPGA.
filename is the name of a BIT file (program or verify commands only).

and the following options are accepted;

-index <index> Specifies the index of the card to open (default 0)
-sn <> Specifies the serial number of the card to open.
ailsafe Causes the default image to be erased / programmed / verified (default).
. Causes the failsafe image to be erased / programmed / verified; see
+ailsafe ; © A
Failsafe bitstream mechanism below.
force Causes a mismatch between the target FPGA device and the BIT file device
to resultin an error (default).
+orce Causes a mismatch between the target FPGA device and the BIT file device
10 be ignorex
Summary

Blank-checks, erases, programs or verifies a target FPGA bitstream image in the user-programmable Flash memory of
adevice

Description
The FLASH utility has five commands:
+ chkblank <target-index>
Verifies that an image is blank, i.e. all bytes are OxFF.
+ erase <targetindex>
Erases an image so that it becomes blank, i.e. all bytes are OXFF.

info

Displays information about the Flash memory.

« program <target-index> <filename>

Programs the specified bitstream (.BIT) file into an image so that the target FPGA s configured from the image
at power-on or reset.

Example applications for Windows and Linux Page 15
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide

@ALPHA DATA (v1.3 - 04th March 2011)

« verify <target-index> <filename>
Verifies that an image contains the specified bitstream (.BIT) fle.

chkblank command

The chkblank command verifies that a target FPGA image is blank, i.e. all bytes are OxFF, but does not modify the
Flash memory bank. Following the command, an index of a target FPGA in the device must be specified. The index of
the target FPGA is normally zero but may be nonzero in models with multiple target FPGAS,

For example, to blank-check the default image for target FPGA 0:

flash program 0 /path/to/my_design.bi

erase command

The erase command erases a target FPGA image so that it becomes blank, i.e. all bytes are OxFF. It automatically
performs a blank-check after erasing. Following the command, an index of a target FPGA in the device must be
specified. The index of the target FPGA is normally zero but may be nonzero in models with multiple target FPGAS.

For example, to erase the default image for target FPGA 0

flash erase 0

info command

The info command displays information about the Flash memory and then exits, without doing anything else.

program command

The program command programs a target FPGA image with the data in the specified bitstream (.BIT) file. Following
the command, an index of a target FPGA in the device and the name of a bitstream (.BIT) filename must be specified.
The index of the target FPGA is normally zero but may be nonzero in models with multiple target FPGAS.

If the device in the _BIT file does not match the target FPGA, this command fails with an error and does not program the
target FPGA image, unless the +force option is passed. Verification is automatically performed after programming.

For example, to program the defaultimage for target FPGA 0 with a bitstream file called my_design.bit:

flash program 0 /path/to/my_design.bit

verify command

The verify command verifies that a target FPGA image contains the data in the specified bitstream (.BIT) file, but does
not modify the Flash memory bank. Following the command, an index of a target FPGA in the device and the name of a
bitstream (BIT) filename must be specified. The index of the target FPGA is normally zero but may be nonzero in in
models with multiple target FPGAS.

If the device in the .BIT file does not match the target FPGA, this command fails with an error unless the +force option
is passed. If discrepancies between the target FPGA image and the data in the .BIT file are found, they are displayed
(up to a certain number of erroneous bytes), followed by a failure message.

For example, to verify that the default image for target FPGA 0 contains the data in a bitstream file called
my_design.bit

flash verify 0 /path/to/my_design.bit

3.4.1 Failsafe bitstream mechanism

Due to errata in certain Xilinx™ FPGA families, the following Gen 3 models have a "failsafe bitstream” mechanism:

Page 16 Example applications for Windows and Linux
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.3.0 User Guide.

(V1.3 - 04ih March 2011) @ALPHA DATA

+ ADM-XRC-6TL
+ ADM-XRC-6T1

In the above models, each target FPGA has two images: a default image, and a failsafe image. Alpha Data
factory-programs a known-good "null bitstream" into the failsafe image. When power is applied to a card, the fimware.
on the card first looks for a valid bitstream in the default image. If no bitstream is found, the firmware uses the null
bitstream in the failsafe image to configure the target FPGA. In this way, the firmware ensures that the target FPGA is
always configured with something when it is powered-on.

Because the purpose of the failsafe image is to protect the target FPGA from sub-micron effects that would otherwise
degrade the performance of the target FPGA over time, Alpha Data recommends that the failsafe image should never
be erased. If overwritien, a customer must ensure that the bitstream is valid, known-good and satisfies the
requirements for protecting the target FPGA from sub-micron effects.

Xilinx™ answer record 35055 elaborates on protecting Virtex-6 GTX transceivers from performance degradation over
time

Example applications for Windows and Linux Page 17
AD-UG-0004 Alpha Data Parallel Systems Ltd

http://www.xilinx.com/support/answers/35055.htm

ADM-XRC Gen 3 SDK 1.3.0 User Guide

@ALPHA DATA (v1.3 - 04th March 2011)

3.5 INFO utility

Command line
info [op 1
where the following options are accepted:

n

flash Causes Flash bank information not to be shown (defaul)
+flash Causes Flash bank information to be shown.
index <index> Specifies the index of the card to open (default 0).
-0 Causes /0 module information not to be shown (defaul).
+io Causes /0 module information to be shown.
-sensor Causes sensor information not to be shown (defaul).
+sensor Causes sensor information to be shown.
-sn <#> Specifies the serial number of the card to open.
Summary

Displays information about a reconfigurable computing device.

Description

The INFO utility demonstrates the use of most of the informational functions in the ADMXRC3 API. It uses
ADMXRC3_OpenEx to open a device in passive mode, meaning that an unprivileged user can successfully run it. The
output consists of several sections, the first of which is obtained using ADMXRC3_GetVersioninfo:

API infornation
A rary version 111
Driver version 110

‘The second section shows information obtained using ADMXRC3_GetCardinfoEx, and shows the information in the
ADMXRC3_CARD_INFOEX structure:

card infornation
Node ADII-XRC-6TL
serial 101(0x65)
Nunber of programmable clocks 1

Nunber of DA channels

Nunber of target FPGAS

Nunber of local bus windows 4
Nunber of sensors 1
Nunber of 1/0 module sites 1
Nunber of local bus windows 4
Nunber of merory banks

Bank presence bitnap oxF

o

The third section uses the NumTargetFpga member of the ADMXRC3_CARD_INFOEX structure and
ADMXRC3_GetFpgalnfo to enumerate the target FPGAS in the device:
Target FPGA information
FPGA O XC6VIX240LFF1759
The fourth section uses the NumMemoryBank member of the ADMXRC3_CARD_INFOEX structure and
ADMXRC3_GetBankinfo to enumerate the memory banks (non-Flash) in the device:

Nemory bank information
ank 0 SDRAW, DDR3, 65536 Killord x 32+0 bits

Page 18 Example applications for Windows and Linux
Alpha Data Parallel Systems Ltd. AD-UG-0004

ADM-XRC Gen 3 SDK 1.3.0 User Guide

(423 0 v 201) @ALPHA DATA
303.0 Mz - 533.3 iz
Connectivity mask Ox1
Bank 1 SDRAM, DDR3, 65536 kl\‘/urd x 32+0 bits

3.0 Wz - 5333 W

ty m
Bank 2 snww. o0R3. 65536 kiwom X 3240 bits
303.0 M

Bank 3 SDRAM, DDR3, 65536 kl\‘/urd X 32+0 bits
303.0 MHz - 533.3 Wi
Connectivity mask ot

The fourth section uses the NumWindow member of the ADMXRC3_CARD_INFOEX structure and
ADMXRC3_GetWindowinfo to enumerate the memory access windows in the device:

Local bus window information
Window 0 (Target FPGA O pre Bus base OxF5400000 Size 0x400000
Local base 0x0 size 0x400000

Virtual size 0x400000

(Target FPGA 0 non Bus base OXFACO0000 Size 0x400000
Local base Ox0 Size 0x400000
Virtual size 0x4000(

(ADN-XRC-6TL-speci Bus base OXFAAFFO00 Size 0x1000
Local base 0x0 size 0x0
Virtual size 0x1000

(ADB3 bridge regis Bus base OXFAAFEO00 Size 0x1000
Local base 0x0 size Ox0
Virtual size 0x1000

The next section appears if the +flash option is passed on the command line. It uses the NumFlashBank member of

the ADMXRC3_CARD_INFOEX structure and ADMXRC3_GetFlashinfo to enumerate the Flash memory banks in the
device:

Flash bank information
Bank 0 Intel 28F256P30, 65536(0x10000) Kil
Useable area 0x1200000-0x3FFFFFF

The next section appears if the +io option is passed on the command line. It uses the NumModuleSite member of the

ADMXRC3_CARD_INFOEX structure and ADMXRC3_GetModulelnfo to enumerate the I/O module sites in the device

and show what s fited, if anything
1/0 module information
Module 0 Not present

The final section appears if the +sensor option is passed on the command line. It uses the NumSensor member of the

ADMXRC3_CARD_INFOEX structure and ADMXRC3_GetSensorinfo to enumerate the sensors in the device:

Sensor information

Sensor 0 1V supply rai
V. double 0. error 0.0
sensor 1 175V supply ra
V. double,” exponent 0, error 0.0
sensor 2 178V supply rail
V. double,” exponent 0, error 0.0
sensor 3 2/5v supply rail
V. double.” exponent 0, error 0.1
Sensor 4 33y supiy rail
doul nent 0, error 0.1
sensor 5 5 supply r:
V. Gouble, exponent 0, error 0.1
sensor 6 rra
V. double. exponent 0, error 0.2
sensor 7 XRI_1/0 voltage
V. double, exponent 0, error 0.1
sensor 8 Lig7 internal temperature
deg. C. double, exponent 0, error 3.0
sensor 9 Target FPGA temperature
deg. C. double, exponent 0, error 4.0
Example applications for Windows and Linux Page 19
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADMXRC Gen 3 SDK 1.3.0 User Guide
’ALF“‘ DATA (v1.3 - 04th March 2011)

3.6 ITEST example

Command line

est [option ...]
where the following options are accepted:

-index <index> Specifies the index of the card to open (default 0).
-sn <> Specifies the serial number of the card to open.

Summary

D of FPGA interrupt

Description

This example demonstrates how to consume FPGA interrupt noltifications in an application. It uses the interrupt test
register block of the Uber example FPGA design, described in Section 5.5.4.3.5 as a means of generating FPGA
interrupt notifications, and starts a thread whose purpose is to wait for and acknowledge interrupts from the target
FPGA.

When ITEST is started, the main thread first configures target FPGA O with the bitstream (b file) for the Uber example
FPGA design. The main thread then launches an interrupt thread that waits for notifications, in a loop. The main thread
then proceeds o wait for input, also in a loop. At this point, the user may press RETURN (o generate an interrupt, or
enter 'q’ to terminate the program. On termination, the program displays the number of FPGA interrupt notifications that
the interrupt thread consumed during execution.

A sample session looks like this

Enter *q° to quit, or anything else to generate an interrupt:
d

Interrupt thread startec

Enter *q* to quit, or anything else to generate an interrupt:
Enter "q" to quit, or anything else to generate an interrupt:
Enter "q" to quit, or anything else to generate an interrupt:
Enter *q" to quit, or anything else to generate an interrup
Enter *q" to quit, or anything else to generate an interrupt:

Generated 5 interrupts

Interrupt thread saw 5 interrupt(s)
The blank lines in the above session are simply empty lines where the user has pressed return. As can be seen, each
of the 5 interrupts generated results in the interrupt thread consuming a notification.

Remarks

As noted in the ADMXRC3 API Specification (see functions ADMXRC3_RegisterWin32Event,

ADMXRC3_Register m and ADMXRC3_ ificati the ADMXRC3 AP! does not queue each type
of notification. Therefore, this example works as expected as long as the frequency of target FPGA interrupt
notifications is not too fast for the interrupt thread. Since the rate of generation of notifications in this example is limited
the user's keyboard input rate, the interrupt thread should be able to keep up (as long as the machine is not heavily
loaded with other processes). Nevertheless, it is important to note that in this simple example, there is no mechanism
for throttling the rate of notifications so that notifications cannot be lost. In a real application, the preferred design
approaches are:

Page 20 Example applications for Windows and Linux

Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 130 User Guide
(V1.3 - 04ih March 2011) @ ALPHA DATA

1. Architect the FPGA design and host application so that they tolerate out-of-date notifications being missed. For
example, if the target FPGA generates an interrupt when data arrives via an /O interface, it does not matter if
the host application does not succeed in consuming every target FPGA interrupt notification, because the
notifications before the latest one are considered out-of-date. When the host application handies a notification,
it reads a register in the target FPGA o determine the amount of new data rather than using the number of
notifications consumed. What matters is that regardiess of how many times the target FPGA generates an
interrupt, the host application is guaranteed to eventually wake up and check for new data.

2. Use a fully handshaked system, where the host application must positively acknowledge a target FPGA
interrupt before the target FPGA generates a new interrupt.

In fact, the above two approaches are best used together, because minimizing the number of FPGA interrupts
minimizes unnecessary context switches in the operating system

Example applications for Windows and Linux
o

Page 21
AD-UG-0004 Alpha Data Parallel Systems Ltd.

@ALPHA DATA

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(1.3 - 04th March 2011)

3.7 MEMTESTH example

Command line

mentesth [option .

1

where the following options are accepted:

-banks <bitmask>

-dma

+dma

-index <index>

-maxerror <#>

-repeat <i#>

sn<#>

Summary

Specifies which banks to test, as a bitmask (default all banks).

Use CPU-initiated data transfer instead of DMA data transfer during the test;
this is relatively slow and may increase runtime to minutes instead of
seconds.

Use DMA transfers for transferring data between host memory and the target
FPGA (default).

Specifies the index of the card to open (default 0).

Specifies the maximum number of data verification errors to display; note
that further errors are still counted and a total is displayed at the end of the
test (default 20).

Specifies the number of times to repeat the data test; 0 means "for ever"
(default 1),

Specifies the serial number of the card to open.

Performs a host-driven test of the memory banks on a reconfigurable computing card.

Description

The MEMTESTH example demonstrates the transfer of data between host memory and on-board memory devices (for
example, DDR3 SDRAM on the ADM-XRC-6T1), via the target FPGA. A number of test phases are performed, each
with a different data generation method, such as alternating an 55 / AA patter, “own address" etc. In each phase, each
bank is tested by first fillng the bank with data and then reading it back in order to verify that data transfers are

error-free.

This example makes use of the Uber example FPGA design. Assuming no errors are detected, running it produces

output of the form:

Bank 00: DDR-3 SDRAM.

262144 (0x40000)

. 262144 (0x40000)
. 262144 (0x40000)
. 262144 (0x40000)
X000T

performing host-driven memory test. ..
Phase 1 - 0x55 pattern

Phase 2 - OxAA pattern

Phase 3 - own address pattern

Phase 4 - pseudorandon data

Neasuring throughput. ..

Throughput from host to memory is 439.7 M
Throughput fron memory to host is 1009.6 MiB/s

Page 22 Example applications for Windows and Linux

Alpha Data Parallel Systems Ltd

AD-UG-0004

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(V1.3 - 04th March 2011)

@ALPHA DATA

3.8 MONITOR utility

Command line

monitor [option ...]

where the following options are accepted:

-index <index>
-period <delay>

-repeat <n>

sn<#>

Summary

Specifies the index of the card to open (default 0),

Specifies the update period, in seconds,

Specifies the number of updates to perform (default 0); a value of zero

means "repeat for ever"

Specifies the serial number of the card to open.

Displays readings from all sensors.

Description

The MONITOR utilty repeatedly displays sensor readings in the command shell at the interval specified by the -period
option. The number of updates to perform before terminating can be specified on the command line using the -repeat
option, but by default, the program runs until interrupted with CTRL-C.

It makes use of the ADMXRC3_GetSensorinfo and ADMXRC3_ReadSensor functions from the ADMXRC3 APY, and
because it opens a device in passive mode using ADMXRC3_OpenEx, it can run alongside other reconfigurable
computing applications without disturbing them

‘The output looks like this:

Sensor

5
e varisble

LMB7 internal temperature: 49.
Target FPGA temperature: 57.000000 deg C

257 (0x101) => ADM-XRC-6TL

101 (0x69)

22987000 v

1V supply
rail: 1.500186 V

rail: 1.803192 V
2.5 supply 20508896 V
3.3V supply 3.268082 V

supply

oviel
XRM 170 voltage:
000000 deg C

Example applications for Windows and Linux

AD-UG-0004

Alpha Data Parallel Systems Ltd

Page 23

ADMXRC Gen 3 SDK 1.3.0 User Guide
@ ALPHA DATA (V13- 0dth March 2011)

3.9 SIMPLE example

Command line
simple [option ...]
where the following options are accepted:

-index <index> Specifies the index of the card to open (default 0).
-sn <> Specifies the serial number of the card to open.
-uber Uses SIMPLE FPGA design (default).
+uber Uses UBER FPGA design.

Summary

Demonstrates access to target FPGA registers.
Description

The SIMPLE example application demonstrates accessing FPGA registers in its simplest form. I first configures target

FPGA 0 with the Simple example FPGA design, or the Uber example FPGA design if the +uber option is specified.

It then waits for input from the user. The user enters hexadecimal values (up to 32 bits in length), and for each value:

1. The program writes the value to a register in the target FPGA.

2. The target FPGA nibble-reverses the value and makes the reversed value available to be read via a register.
Here, nibble-reversing means that the FPGA swaps bits 31:28 with 3:0, 27:24 with 7:4 etc.

3. The program reads back and displays the nibble-reversed value.

The program terminates on CTRL-D (Linux) or CTRL-Z (Windows). A sample session looks like this:

Enter values for 1/0
(CTRL-D / CTRL-Z t0 &

1234abed
OUT = 0x1234abcd, IN = Oxdcbad321
deadbeef
OUT = Oxdeadbeef, IN = Oxfeebdaed
cafeface
OUT = Oxcafeface, IN = Oxecafefac

Page 24 Example applications for Windows and Linux
Alpha Data Parallel Systems Ltd. AD-UG-0004

ADM-XRC Gen 3 SDK 1.3.0 User Guide

(v1.3 - 0ath March 2011) @ ALPHA DATA

3.10 SYSMON utility

Command line

sysmon

Summary

Utiity presenting device information and hardware sensors in a graphical user interface.

Description

The SYSMON utility combines the information shown by the INFO and MONITOR utilities with a graphical user
interface. Its main function is graphical display of hardware sensor data, and it can be minimized to the notification area
of the deskiop (the "System Tray" in Windows) in order to run unobtrusively.

It makes use of the ADMXRC3_ and ADMXRC3_f functions from the ADMXRC3 APY, and
because it opens a device in passive mode using ADMXRC3_Open€Xx, it can run alongside other reconfigurable
computing applications without disturbing them

The user interface of the Linux version of SYSMON is as follows upon starting the utilty:

- ADMXRC3 Diagnostics

RC-6TL SN #101 v Update period |15 v ‘

[Device Information | Sensor information | Sensor Readout
~ APlinformation

Device

I~ API version 110
L Driver version 110

~ Summary information

[Model 257 (0x101) => ADM-XRC-6TL,

|- Serial Number 101(65)

\— Number of target FPGAS 1
\~ Number of clock generators 1

[Number of DMA channels 1

~ Number of windows 4

-~ Number of sensors 10

|- Number of /O module sites 1 8

Figure 2: SYSMON user interface - device information

The Windows version of SYSMON offers equivalent functionality, but uses a different GUI technology to that of the
Linux version. The second tab shows sensor readings in tabular form:

Example applications for Windows and Linux Page 25
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADMXRC Gen 3 SDK 1.3.0 User Guide
QALPNA DATA (v1.3 - 04th March 2011)

- ADMXRC3 Diagnostics v

Device | Index 0 ADM-XRC-6TLSN #101 v | Update period |1s v About..

[sensor Information |
Device Information | Sensor Information | Sensor Readout

| Description Value Unit

1 1.5V supply rail 151 v
2 1.8V supply rail 18 v
3 2.5V supply rail 251 v
4 33V supply rail 327 v
5 5V supply rail 502 v
6 XMC variable powerrail 12V
7 XRM /O voltage 25 v
8 LMB87internal temperature 49 deg.C
9 Target FPGA temperature 58 deg.C

Figure 3: SYSMON user interface - sensor readings

The third tab displays sensor readings in graphical form:

- ADMXRC3 Diagnostics v
Device | Index 0 ADM-XRC-6TLSN #101 v | Update period |1s v About..
—_—

Device Information Sémsar Information | Sensor Readout.

ne (L]

Key

Figure 4: SYSMON user interface - sensor display

Initially, the ‘scope is empty and displays no sensors. The above figure shows the effect of clicking the voltage button,
labelled 2 in the above figure. The user interface elements of the 'scope toolbar are s follows:

Page 26 Example applications for Windows and Linux
Alpha Data Parallel Systems Ltd. AD-UG-0004

ADM-XRC Gen 3 SDK 1.3.0 User Guide

(V1.3 - 04ih March 2011) @ ALPHA DATA

1. The temperature button sets the 'scope to display all temperature sensors in the device. Once some sensors
are displayed, updates begin.

2. The voltage button sets the ‘scope to display all voltage sensors in the device. Once some sensors are
displayed, updates begin.

3. The current button sets the 'scope to display all current sensors in the device. Once some sensors are
displayed, updates begin.

4. Mouse over the key to see which sensor corresponds to which colored trace.

5. The pause / resume bution can be used to pause and resume update of the ‘scope.

6. ltem 6 is a button that adds another ‘scope when clicked, to a maximum of 4, o that various types of sensor
can be viewed at the same time.

7. ltem 7 is a button that destroys a 'scope when clicked. If there is only one 'scope, the button is disabled

3.10.1 Building SYSMON in Linux

The Linux version of the SYSMON utiity uses GTKMM-2.4. This package is present in recent Linux distributions such
as Fedora Core 13, but may not be present in all Linux distributions. For this reason, SYSMON is built separately from
the other example applications. A non-exhaustive list of the packages that are required to build SYSMON is as follows:

gtkmm24-devel cairomm-devel
libsige++20-devel glibmm24-devel
pangomm-devel pkgconfig

o run SYSMON, the corresponding runtime packages are required

gtkmm24. cairomm
libsige++20 glibmm24
pangomm

To build the "

elease" configuration of SYSMON, enter the following commands in a BASH shell:

. SADMXRC3_SDK/apps/F irux
,/cunr igur

cd s

$ nake, CONF1G=Release clean al

woo

The path is then

Example applications for Windows and Linux Page 27
AD-UG-0004 Alpha Data Parallel Systems Ltd

ADMXRC Gen 3 SDK 1.3.0 User Guide
’ALF“‘ DATA (v1.3 - 04th March 2011)

3.11 VPD utility

Command line

vpd 1 b address n [data]
vpd 7 fw address n
vpd 1 fd address n
vpd 1 Tq address n
vpd 1 s address n
vpd 7 b address
vpd 1 rv address
vpd 7 rd address
vpd 1 rq address
vpd 7 wb address
vpd 1w address
vpd 7 wd address
vpd 1 wq address
vpd 1 ws address
where
address is the address in VPD memory at which to begin reading or writing.
n is the number of bytes to read or write.
data is a numeric data item, valid for fill and write commands.
string is a string data item, valid for fil and write commands.

and the following options are accepted;

-index <index> Specifies the index of the card to open (default 0).
-sn <#> Specifies the serial number of the card to open.
Causes numeric data values to be interpreted as decimal unless prefixed by
-hex o
'0x' (default).
+hex Causes numeric data values to be interpreted as hexadecimal always.
Summary

Displays data read from VPD memory, or writes data to VPD memory.

Description

The VPD utility operates in one of three modes:

« Filling a region of VPD memory with a value or string; for this mode, use the fb, fw, fd, fq or fs commands.
+ Reading data from VPD memory and displaying it for this mode, use the rb, rw, rd or rq commands.

* Writing numeric or string data to a region of VPD memory; for this mode, use the wb, ww, wd, wq or ws
commands.

Fill mode

When filling a region of VPD memory with data, the fill command specifies whether the data is numeric or string data. In
the case of numeric data, the command also implies the radix (i.e. word size) of the data. The available fill commands
are:

Page 28 Example applications for Windows and Linux
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.3.0 User Guide.

(V1.3 - 04ih March 2011) @ALPHA DATA

©
Fill value is a byte (8-bit).
. fw
Fill value is a word (16-bit).
.M

Fill value is a doubleword (32-bif).

fq

Fill value is a quadword (64-bit).

fs

Fill value is an ASCII string (8-bit characters).

The next 3 arguments after the fil command must be:

(a) address - the byte address within VPD memory at which to begin filling

(b) n - byte count; the number of bytes of VPD memory to fill

(c) data or string - the numeric or string value to place in the specified region of VPD memory

If the command is s and the string value is shorter than the byte count n, the string is repeated untilthe byte count is
satisfied. If the string is longer than the byte count n, only the first n characters are used. If a string contains spaces, it
must be quoted on the command line so that it is not interpreted by the shell as two or more separate arguments,

For the numeric fil commands b, fw, fd and fa, the numeric value is repeated unti the byte count is satisfied.

Read mode

The read command implies the radix (i.e. word size) used for displaying the data:

Byte (8-bit) reads; data is displayed as bytes.

w
Word (16-bit) reads; data is displayed as words.

« o

Doubleword (32-bit) reads; data is displayed as doublewords,

q
Quadword (64-bit) reads; data is displayed as quadwords,

After the read command, an address must be supplied, which specifies where in VPD memory to begin reading. An
optional length parameter, in bytes, can also be supplied. If omitted, the length is equal to the radix implied by the read
command. If present, the length parameter specifies how many bytes to read and display. The length should be an
integer multiple of the width; if not, the length is rounded down.

Write mode
The write command specifies whether the data is numeric or string data. In the case of numeric data, the command
also implies the radix (i.e. word size) of the data. The available write commands are:
. wb
Data is written as bytes (8-bit)

ww
Data is written as words (16-bi).

o wd

Data is written as doublewords (32-bit).

Example applications for Windows and Linux Page 29
AD-UG-0004 Alpha Data Parallel Systems Ltd

ADMXRC Gen 3 SDK 1.3.0 User Guide
’ALF“‘ DATA (v1.3 - 04th March 2011)

wa

Data is written as quadwords (64-bit)

. ws

Data is supplied as one or more ASCIl strings (8-bit characters).

After the write command, an address must be supplied, which specifies where in VPD memory to begin writing data. An
optional length parameter, i bytes, can also be supplied. If omitted, the length is equal to the radix implied by the write
command. If present, the length parameter specifies how many bytes to write. The length should be an integer multiple
of the width; if not, the length is rounded down

The program obtains the values to be written in two ways: from any additional parameters on the command fine after
the length parameter, and then from the standard input stream (stdin). This works as follows:

1. Any remaining command line arguments, if present after the length parameter, are interpreted as data values.
to be written. Numeric values are assumed to be of the radix implied by the command parameter. As each
value it written to VPD memory, the address is incremented. If there are enough values passed on the
command line to satisfy the byte count, the program terminates.

2. Ifthere are insufficient data values passed on the command line, the program waits for values to be entered on
the standard input stream. Numeric values entered this way are also assumed to be of the radix implied by the
command. As each value it written to VPD memory, the address is incremented. When the entire byte count
that was specified in the length parameter has been satisfied or end-of-file is encountered, the program
terminates.

Example session
The following session was captured under Linux using an ADM-XRC-6TL. The base address 0x100000 is used
because that is the VPD-space address of the user-definable area of VPD memory in the ADM-XRC-6TL.

$./vpd rb 0x100000 0x60
Dump of VPD at 0x100000 + 96(0X60) bytes:
07 08

102 03 04 05 06 09 0a 0b Oc 0d Oe
0x00100000: £ FF FF fF ff FF FF FF Ff f
0x00100010: FF FF F f Ff ©f 7f 7f 7f 7 7f 7 f
0x00100020: £ Ff FF £f ©f ©f ff ff ff ff £f ff
TF FF F F FF ©F 7f 7f 7F 7 7f 7 11

£ FF FF £f Ff ©f ff ff ff ff ff f

F FF FF F FF 7 fF

T T
0 *hello world!®
12
3

e

0 oxassa

$./vpd 0 0x60
Dump of VPD at 0x100000 + 96(0X60) bytes:

0 01 02 03 04 05 06 07 08 09 Oa Ob Oc
0x00100000: ff ff ff ff ff ff ff ff 68 65 6c 6c 6T
0X00100010: 72 6c 64 21 68 65 6c 6c 6F 20 77 6f Ff Ff
0X00100020: ef be ad de ce fa fe ca 78 56 34 12 ff
0x00100030: ff 5a a5 5a a5 5a a5 5a a5 5a a5
0X00100040: Ff Ff ff Ff £ ff ff £ ff I I 1 1f 1T
0x00100050: Ff Ff Ff Ff ff ff ff f f f ff ff f ff

33323

L .
NOTE: the above sesssion assumes that VPD write protection has been disabled as described in the release notes for
the ADBS3 Driver for Linux or Windows (as appropriate)

Remarks

When entering data for fil or write commands, values are expressed in decimal by default. To express data as
hexadecimal, prefix it with ‘0 or use the +hex option.

Page 30 Example applications for Windows and Linux
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.3.0 User Guide.

(V1.3 - 04ih March 2011) @ALPHA DATA

In the current version of the VPD utiity, data is always read from and written to VPD memory in little-endian byte order.

Example applications for Windows and Linux Page 31
AD-UG-0004 Alpha Data Parallel Systems Ltd

ADMXRC Gen 3 SDK 1.3.0 User Guide
’ALF“‘ DATA (v1.3 - 04th March 2011)

4 Example applications for VxWorks

The example applications and utilties are described in the following subsections.

FLASH Utilty for programming FPGA bitstream (.BIT) files in user-programmable Flash
memory

INFO Utilty for displaying information about a reconfigurable computing device

[TesT Example demonstrating how to consume target FPGA interrupt notifications in an
application

MEMTESTH Example demonstrating host-driven memory test

MONITOR Utilty that displays sensor readings

SIMPLE Example demonstrating how to read and write registers in a target FPGA

. Utilty that allows the Vital Product Data of a reconfigurable computing device to

be read or written

Source code for the example VxWorks and Linux
the root of the SDK,

tions is provided in the directory, relative to

4.1 Building the example VxWorks applications in Windows

If using a Windows machine for VxWorks hosting and development, follow these steps:

1. Make a copy of the SDK according to the discussion in Section 2.4,

2. Start a VxWorks Development Shell via the shortcut on the Windows Start Menu. It is important to use this.
shortcut in order to obtain the correct environment for performing command-line builds using the Wind River
VxWorks toolchains.

3. Change directory to

$(ADUXRC3_SDK)/apps/vxworks

where S(ADMXRC3_SDK) is the root of the copy of the SDK that you have made.
4. Execute the following command, replacing <config> with the name of the configuration that is appropriate for

your target system:

make CONFIG=<config> clean all
For example, the Pentium 4 configuration for VxWorks 6.7 is p4-6.7, and the PowerPC 604 configuration for
VxWorks 6.7 is ppc604-6.7. The configuration that you use depends on the target system. Alpha Data supplies
several predefined configurations, but it is possible that none of these are exactly what is required for your
target system. Refer to Section 4.3 for a discussion of configurations and how to create a new configuration
‘The full path, by default, of the binary downloadable module is:

S(ADNXRC3_SDK)/app: ks/<confi ~out

However, the DEBUG and VSB options can modify this path as shown in Table 2.

4.2 Building the example VxWorks applications in Linux
TBA

4.3 MAKE options for the example VxWorks applications

Page 32 Example applications for VxWorks
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.3.0 User Guide.

(V1.3 - 04ih March 2011) @ALPHA DATA

‘The top-level Makefile for the VxWorks examples accepts a number of options which are passed on the MAKE
command line. These are:

« CONFIG=<configuration>
Specifies a predefined configuration defined by the file rules.<configuration>, located i the same folder as
the Makefile. This option affects the directory where the binary is placed; see Table 2 below for details
The rules file may contain any of the following options; for an example, see rules.p4-6.7.
. CPU=<cpu>
Specifies the CPU being targetted; for example PPC604 or PENTIUM4 (default). Must be appropriate for the
TARGET option.
+ DEBUG=<false|true>
Specifies a release (false) or debug (true, default) build. This option affects the directory where the binary is
placed; see Table 2 below for details.
. EXTRA_CCOPTS=<extra compiler options>
Specifies extra C compiler options.
. EXTRA_LDOPTS=<extra linker options>
Specifies extra linker options.
+ TARGET=<target spec>
Defines the target specification, which must be appropriate for the CPU option. Examples of valid target
specifications for the DIAB toolchain are -tPPC604FH:vxworks55 (PowerPC 604 VxWorks 5.5) and
tPENTIUMALH:vxworks67 (default, Pentium 4 VxWorks 6.7). Examples of valid target specifications for the
GNU toolchain are -mcpu=604 (PowerPC 604) and -mtune=pentiuma -march=pentiumd (Pentium 4).
+ TOOLCHAIN=<diablgnu>
Specifies the toolchain to be used to build the driver; legal values are diab (default) or gnu. If the gnu
toolchain is selected, the following additional options must be specified (which can be in the rules file specified
by the CONFIG option, for convenience):
cC=<compiler>
Specifies the C compiler; must be appropriate for the CPU and TARGET options. For example, ccppc
selects the PowerPC GNU compiler.
« LD=<linker>
Specifies the linker; must be appropriate for the CPU and TARGET options. For example, Idppc selects
the PowerPC GNU linker.

+ NM=<object dumper>
Specifies object dumper; must be appropriate for the CPU and TARGET options. For example, nmppc
selects the PowerPC GNU object dump uilty.

. VSB=<variant>
Specifies VxWorks source build (VSB) variant libraries, if required. If omitted, the normal libraries are used.
“The most common value for this option is smp. This option affects the directory where the binary is placed; see
Table 2 below for details.

When the CONFIG option is specified, the SDK's build system reads a rules file that contains values for the other
options. For example, the configuration ppc604-6.7 has a rules file rules.ppc604-6.7. This configuration targets a
PowerPC 604 CPU running VxWorks 6.7. and by way of ilustration, the rules file contains:

CPU=PPCEO4
ifeq (SCTOOLCHAIN) diab)
EXTRA_C!

TARGETo PPCaOARH vorkasT
else

ifeq (SCTOOLCHAIN) .gnu)
EXTRA_CCOPT call

Example applications for VxWorks Page 33
AD-UG-0004 Alpha Data Parallel Systems Ltd

ADMXRC Gen 3 SDK 1.3.0 User Guide
’ALF“‘ DATA (v1.3 - 04th March 2011)

Ni=nmppc
TARGET=-cpu=604

else
$(error “TOOLCHAIN $(TOOLCHAIN) not recognized.")
endif
endif

If no CONFIG option is specified, the default configuration is default. The rules.default file contains:
CPU=PENTIUMA
ifeq (SCTOOLCHAID dish)

NT IUMALH: vxworks67

ifeq (S(TOOLCHAIN) ,gnu)
CC=cepentium

Itis possible that none of the predefined configurations supplied by Alpha Data is appropriate for your hardware
platform. If that is the case, a new configuration can be created by using one of the existing rules files as a template
and modifying it appropriately.

Several options affect the location where the resulting binary is placed, assuming that a build is successful. The naming
conventions are as follows:

DEBUG option | VSB option Path to binary
false not defined | $(ADMXRC3_SDK] pps.out
true not defined | $(ADMXRC3_SDK)/appsivxworks/<config>/debug/admxrc3Apps.out
false defined | SADMXRC3_SDK)/appsiorks/<config>/release_<VSB value>/
admxrc3Apps.out
e defined | SVADMXRC3_SDK)/appsivxworks/<config>/debug_<VSB value>/
admxrc3Apps.out

Table 2: Naming conventions for VxWorks examples binary

For example, if DEBUG=true and VSB=smp, the path to the binary is

S(ADNXRC3_SDK)/apps/vxwiorks/<config>/debug_sip/admxrc3Apps. out

Page 34 Example applications vmVqurks

Alpha Data Parallel Systems Ltd UG-0004

ADM-XRC Gen 3 SDK 1.3.0 User Guide.
(V1.3 - 04th March 2011)

@ ALPHA DATA

4.4 FLASH utility (VxWorks)

WARNING: Incorrect use of the FLAG_FAILSAFE value (0x100) for the flags parameter may impact
fong-term reliabilty of a reconfigurable computing card. Please refer to Section 4.4.1 below for an
explanation of the failsafe bitstream mechanism and how it may be used.

Invocation in VxWorks shell

adnxrc3Fl.

adnxrc3Flash

where

index

flags

target-index

“filename”

<flags>,
<flags>

nfo"
hkblank”,

is normally the index of reconfigurable computing device (default 0).
However, this may be interpreted as a serial number instead of an index if
flags contains Ox1.

is the bitwise OR of zero or more of the following flags (default 0):
FLAG_BYSERIAL (0x1) => index is interpreted as a serial number rather
than a device index

FLAG_FORCE (0x10) => a program or verify command proceeds even if the
FPGAtype in the .BIT file device does not match the FPGA type in the
device

FLAG_FAILSAFE (0x100) => performs the operation on the the failsafe
image instead of the default image

is the index of a target FPGA (default 0).

is a string containing the name of a BIT file (program or verify commands
only).

The FLASH utiity requires one of the following commands to be passed s a string argument in the third parameter

chkblank command

chkblank

Verifies that an image is blank, i.e. all bytes are OxFF.

erase

Erases an image so that it becomes blank, i.e. all bytes are OxFF.

info

Displays information about the Flash memory.

program

Programs the specified bitstream (.BIT) file into an image so that the target FPGA s configured from the image

at power-on or reset.

verify
Verifies that an image contains the specified bitstream (.BIT) fle.

The chkblank command verifies that a target FPGA image is blank, i.e. all bytes are OxFF, but does not modify the
Flash memory bank. Following the command, an index of a target FPGA in the device must be specified. The index of
the target FPGA is normally zero but may be nonzero in models with multiple target FPGAS.

Example applications for VxWorks
AD-UG-00(

04

Page 35
Alpha Data Parallel Systems Ltd

ADM-XRC Gen 3 SDK 1.3.0 User Guide

@ALPHA DATA (v1.3 - 04th March 2011)

For example, to blank-check the default image for target FPGA 0 in the reconfigurable computing device whose index is

-> adnxrc3Flash 0,0, chkblank”,0

erase command

The erase command erases a target FPGA image so that it becomes blank, i.e. all bytes are OXFF. It automatically
performs a blank-check after erasing. Following the command, an index of a target FPGA in the device must be

specified. The index of the target FPGA is normally zero but may be nonzero in models with multiple target FPGAS.
For example, to erase the default image for target FPGA 0 in the reconfigurable computing device whose index is 0:

-> adnxrc3Flash 0,0,"erase",0

info command

The info command displays information about the Flash memory and then exits, without doing anything else.

program command

The program command programs a target FPGA image with the data in the specified bitstream (.BIT) file. Following
the command, an index of target FPGA in the device and the name of a bitstream (.BIT) filename must be specified.
The index of the target FPGA is normally zero but may be nonzero in models with multiple target FPGAs.

If the device in the .BIT file does not match the target FPGA, this command fails with an error and does not program the
target FPGA image, unless the +force option is passed. Verification is automatically performed after programming.

For example, to program the default image for target FPGA 0, in the reconfigurable computing device whose index is 0,
with a bitstream file called my_design.bit:

-> adnxrc3Flash 0,0, progran*,0, "host:/path/to/my_design.bit"

verify command

The verify command verifies that a target FPGA image contains the data in the specified bitstream (.BIT) file, but does
not modiy the Flash memory bank. Following the command, an index of a target FPGA in the device and the name of a
bitstream (BIT) filename must be specified. The index of the target FPGA s normally zero but may be nonzero in
models with multiple target FPGAs.

If the device in the .BIT file does not match the target FPGA, this command fails with an error unless the +force option
is passed. If discrepancies between the target FPGA image and the data in the .BIT file are found, they are displayed
(up to a certain number of erroneous bytes), followed by a failure message.

For example, to verify that the default image for target FPGA 0, in the reconfigurable computing device whose index is
0, contains the data in a bitstrea file called my_design.bit:

-> adnxrc3Flash 0,0,"ver

.0, "host:/path/to/my_design.bi

4.4.1 Failsafe

stream mechanism (VxWorks)

Due to errata in certain Xilinx™ FPGA families, the following Gen 3 models have a "failsafe bitstream” mechanism:
. ADM-XRC-6TL

. ADM-XRC-6T1

Page 36 Example applications for VxWorks
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(V1.3 - 04ih March 2011) @ ALPHA DATA

In the above models, each target FPGA has two images: a default image, and a failsafe image. Alpha Data
factory-programs a known-good “null bitstream" into the failsafe image. When power is applied to a card, the firmware
on the card first looks for a valid bitstream in the default image. If no bitstream is found, the firmware uses the nul
bitstream in the failsafe image to configure the target FPGA. In this way, the firmware ensures that the target FPGA is
always configured with something when it is powered-on.

Because the purpose of the failsafe image is to protect the target FPGA from sub-micron effects that would otherwise
degrade the performance of the target FPGA over time, Alpha Data recommends that the failsafe image should never
be erased. If overwritien, a customer must ensure that the bitstream is valid, known-good and satisfies the
requirements for protecting the target FPGA from sub-micron effects.

Xilinx™ answer record 35055 elaborates on protecting Virtex-6 GTX transceivers from performance degradation over
time.

Example applications for VxWorks Page 37

AD-UG-0004 Alpha Data Parallel Systems Ltd

http://www.xilinx.com/support/answers/35055.htm

ADM-XRC Gen 3 SDK 1.3.0 User Guide

@ALPHA DATA (v1.3 - 04th March 2011)

4.5 INFO utility (VXWorks)

Invocation in VxWorks shell

adnxrc3info <index>, <flags>

where

index specifies the index of the card to open (default 0).

is the bitwise OR of zero or more of the following flags (default 0):
fags FLAG_SHOWFLASHINFO (0x10) => show Flash bank information.

FLAG_SHOWMODULEINFO (0x20) => show I/O module information.

FLAG_SHOWSENSORINFO (0x40) => show sensor information.

Summary

Displays information about a reconfigurable computing device.

Description

The INFO utility demonstrates the use of most of the informational functions in the ADMXRC3 API. It uses

ADMXRC3_OpenEx to open a device in passive mode, meaning that an unprivileged user can successfully run it. The
output consists of several sections, the first of which is obtained using ADMXRC3_GetVersioninfo:

AP infornati
API library version 1.1.2
Driver version 112

The second section shows information obtained using ADMXRC3_GetCardinfoEx, and shows the information in the
ADMXRC3_CARD_INFOEX structure:

Card infornation
ADI-XRC-6TL

SEFEN nunber 106(0x6A)

Nunber of programmable clocks 1

Nunber of DMA channels

Number of target FPGAS

Nuriber of Tocal bus windows 4

Nunber of sensors 10

Nuriber of 170 nodule sites 1

Nunber of local bus windows 4

Nunber of mefory banks 4

Bank presence bitnap oxF

The third section uses the NumTargetFpga member of the ADMXRC3_CARD_INFOEX structure and
ADMXRC3_GetFpgalnfo o enumerate the target FPGAS in the device:
Target FPGA information
FPGA O XCOVIX3B5LFFI759-2C Stepping ES
The fourth section uses the NumMemoryBank member of the ADMXRC3_CARD_INFOEX structure and
ADMXRC3_GetBankinfo to enumerate the memory banks (non-Flash) in the device:

Memory bank information
Bank 0 SORAI, DOR3, 65536 killord x 32+0 bits
303.0 W

Comnoctivity nask 0

Bank 1 SoRm, DORS, 65556 ord x 32:0 bits
303.0'WHz - 633.3 iz
Connect

Bank 2 SORAY. DDRS, 65596 klwurd x 3240 bits
303.0'MHz - '533.3 M

Page 38 Example applications for VxWorks
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 130 User Guide
(V1.3 - 04ih March 2011) @ ALPHA DATA

Connectivity mask Ox1
Bank 3 SORAM, DDR3, 65536 kiWord x 32+0 bits
303.0 MHz - 533.3 WHz
Connectivity mask Ox1

‘The fourth section uses the NumWindow member of the ADMXRC3_CARD_INFOEX structure and
ADMXRC3_GetWindowinfo to enumerate the memory access windows in the device:

Local bus window information
Window 0 (Terget FPGA O pre Bus bese 0XFSB00000 size 0x400000
Local base Ox0 Size Oxdl
virtuel size 0xd00000
Window 1 (Target FPGA O non Bus base OxFB400000 Size 0x400000
Cocal base 0n0. aise oxi0000
Virtual size 0x400000
ndow 2 (ADM-XRC-6TL-speci Bus base OXFB2FFO00 size 0x1000
Local base 0x0 size 0x0
Virtual size 0x1000
Window 3 (ADB3 bridge regis Bus base OXFB2FEQ00 Size 0x1000
Local base 0x0 size 0x0
Virtual size 0x1000

The next section appears if the FLAG_SHOWFLASHINFO (0x10) flag is used. It uses the NumFlashBank member of
the ADMXRC3_CARD_INFOEX structure and ADMXRC3_GetFlashinfo to enumerate the Flash memory banks in the
device:

Flash bank infornation
Bank 0

Intel 28F256P30, 65536(0x10000)
Useable area 0x1200000-0x3FFFFFF
The next section appears if the FLAG_SHOWMODULEINFO (0x20) flag is used. It uses the NumModuleSite member
of the ADMXRC3_CARD_INFOEX structure and ADMXRC3_GetModulelnfo to enumerate the /0 module sites in the
device and show what is fitted, if anything

1/0 module information

Nodule 0 Not present
The final optional section appears if the FLAG_SHOWSENSORINFO (0x40) flag is used. It uses the NumSensor
member of the ADMXRC3_CARD_INFOEX structure and ADMXRC3_GetSensorinfo to enumerate the sensors in the
device:

sensor information

Sensor 0 1V supply rail
exponent 0, error 0.0

sensor 1 y ra
exponent 0, error 0.0
sensor 2 y rail
¥. double, exporent 0, error 0.0
Sensor 3 2/5v supply rail
V. double. exp rent 0, error 0.1
Sensor 4 313V supply r
V. double, Exmment 0, error 0.1
sensor 5
error 0.1
Sensor 6
. error 0.2
Sensor 7
V. double, exponent 0, error 0.1
sensor 8 L7 internal temperature
leg. C, double, exponent 0, error 3.0
sensor 9 Target FPGA terperature
deg. C, double, exponent 0, error 4.0
Example applications for VxWorks Page 39

AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADMXRC Gen 3 SDK 1.3.0 User Guide
’ALF“‘ DATA (v1.3 - 04th March 2011)

4.6 ITEST example (VxWorks)

Invocation in VxWorks shell

admxrc31Test dex>
where
index specifies the index of the card to open (default 0).
Summary
D of FPGA interrupt
Description

This example demonstrates how to consume FPGA interrupt notifications in an application. It uses the interrupt register
test block of the Uber example FPGA design, described in Section 5.5.4.3.5 as a means of generating FPGA interrupt
notifications, and starts a thread whose purpose is to wait for and acknowledge interrupts from the target FPGA.
When ITEST is started, the main thread first configures target FPGA 0 with the bitstream (bt file) for the Uber example
FPGA design. The main thread then launches an interrupt thread that waits for notifications, in a loop. The main thread
then proceeds to wait for input, also in a loop. At this point, the user may press RETURN to generate an interrupt, or
enter 'q’ to terminate the program. On termination, the program displays the number of FPGA interrupt notifications that
the interrupt thread consumed during execution.
Asample session looks like this:

Enter *q" to quit, or anyth-ng else to generate an interrupt:

Interrupt thread star

Enter "q* to quit, or anything else to generate an interrupt:

Enter

o to anything else to generate an interrupt:
Enter "q" to anything else to generate
Enter *q° to anything else to generate
Enter *q" to anything else to generate

q

Generated 5 interrupts

Interrupt thread saw 5 interrupt(s)
The blank lines in the above session are simply empty lines where the user has pressed return. As can be seen, each
of the 5 interrupts generated resuils in the interrupt thread consuming a notification.

Remarks

As noted in the ADMXRC3 AP Specification (see functions ADMXRC3_RegisterWin32Event,

ADMXRC: and ADMXRC3_¢ the ADMXRC3 API does not queue each type
of notification, Theremre this example works as expected as long as the frequency of target FPGA interrupt
notifications is not too fast for the interrupt thread. Since the rate of generation of notifications in this example is limited
the user's keyboard input rate, the interrupt thread should be able to keep up (as long as the machine is not heavily
Ioaded with other processes). Nevertheless, it is important to note that in this simple example, there is no mechanism
for throtting the rate of notifications so that notifications cannot be lost. In a real application, the preferred design
approaches are:

Page 40 Example applications for VxWorks

Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 130 User Guide
(V1.3 - 04ih March 2011) @ ALPHA DATA

1. Architect the FPGA design and host application so that they tolerate out-of-date notifications being missed. For
example, if the target FPGA generates an interrupt when data arrives via an /O interface, it does not matter if
the host application does not succeed in consuming every target FPGA interrupt notification, because the
notifications before the latest one are considered out-of-date. When the host application handies a notification,
it reads a register in the target FPGA o determine the amount of new data rather than using the number of
notifications consumed. What matters is that regardiess of how many times the target FPGA generates an
interrupt, the host application is guaranteed to eventually wake up and check for new data.

2. Use a fully handshaked system, where the host application must positively acknowledge a target FPGA
interrupt before the target FPGA generates a new interrupt.

In fact, the above two approaches are best used together, because minimizing the number of FPGA interrupts
minimizes unnecessary context switches in the operating system

Example applications for VxWorks
o

Page 41
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADMXRC Gen 3 SDK 1.3.0 User Guide
’ALF“‘ DATA (v1.3 - 04th March 2011)

4.7 MEMTESTH example (VxWorks)

Invocation in VxWorks shell

adnxrcaVenTestH <index>, <bankmask>, <bNoDma>, <numRep>, <maxError>

where
index specifies the index of the card to open (default 0).
bankmask is a bitmask specifying which banks to test (0 => all).

should be nonzero to use CPU-initiated data transfer instead of DMA data
bNoDma transfer during the test; this is relatively slow and may increase runtime to
minutes instead of seconds.

is the number of repetitions of the test to perform, minus 1 (0 => 1 repetition,

numRep -1=> for ever).

is the maximum number of data verification errors to display; note that
maxEror further errors are stil counted and a total is displayed at the end of the test
(0=> default of 20).

Summary
Performs a host-driven test of the memory banks on a reconfigurable computing card.
Description

The MEMTESTH example demonstrates the transfer of data between host memory and on-board memory devices (for
example, DDR3 SDRAM on the ADM-XRC-6T1), via the target FPGA. A number of test phases are performed, each
with a different data generation method, such as alternating an 55 / AA pattern, “own address" etc. In each phase, each
bank s tested by first filing the bank with data and then reading it back in order to verify that data transfers are
error-free.

This example makes use of the Uber example FPGA design. Assuming no errors are detected, running it produces
output of the form:

Bank 00: DOR-3 SORAN. 262144 (0x40000) KB
DDR-3 SDRAM, 262144 (0x40000) kiB

DDR-3 SORAM. 267144 (Od0000y Kib

: DDR-3 SORAW, 262144 (0x40000) KiB

Bank test mask is 0x000T

Perforning host-driven nenory test...

Phase 1 - OX55 patte

Phase 2 - OXAA

Phase 3 - own address pattern

Phase 4 - pseudorandon data

Neasuring throughput. . .

Throughput from host to memory is 439.7 NiB/s

Throughput fron menory to host is 1009.6

Page 42 Example applications for VxWorks
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(V1.3 - 04ih March 2011) @ALPHA DATA

4.8 MONITOR utility (VxWorks)

Invocation in VxWorks shell

adnxrcaVonitor <index>, <flags>, <period>, <number0fUpdates>

where
index specifies the index of the card to open (default 0).
fags is a bitwise OR of flags that modify the behavior of this utiiy (default 0);
o must be 0 as there are currently no flags defined.
period is the update period, in seconds.
numberOfUpdates specifes the number of updates to perform (defauit 0); a vale of zero
means "repeat for ever'
Summary

Displays readings from all sensors.

Description

The MONITOR utilty repeatedly displays sensor readings in the VxWorks shell at the interval specified by the period
parameter. The number of updates to perform before terminating is specified by the number of updates parameter. If
not specified, the default is 0, which means that the example runs for ever.

This utility makes use of the ADMXRC3_(and ADMXRC3_| functions from the ADMXRC3
API, and because it opens a device in passive mode using ADMXRC3_OpenEx, it can run alongside other
reconfigurable computing applications without disturbing them

The output looks like this:

Nodel : 257 (0x101) => ADM-XRC-6TL
Serial number: 101 (0x65
Number of sensors: 10
Sensor 0 1V supply : 0.987000 V
Sensor 1 1.5V supply 1.509186 V
Sensor 2 1.8V supply 12803102 V
Sensor 3 2.5V supply 2.508896 V/
Sensor 4 3.3V supply 30268082 V
Sensor 5 5V supply 5.017990 V
Sensor 6 XMC variable power rail: 12.000000 V
Sensor 7 XRM 170 voltage: 2.49571:
Sensor 8 Lw87 temperature: 49.000000 deg C
Sensor 9 Target FPGA temperature: 57.000000 deg C
Example applications for VxWorks Page 43
AD-UG-0004 Alpha Data Parallel Systems Ltd

ADMXRC Gen 3 SDK 1.3.0 User Guide
’ALF“‘ DATA (v1.3 - 04th March 2011)

4.9 SIMPLE example (VxWorks)

Invocation in VxWorks shell

adnxrc3sinple <index>, <flags>

where
index specifies the index of the card to open (default 0).
is the bitwise OR of zero or more of the following flags (default 0):
flags FLAG_USEUBER (0x10) => use UBER bitstream instead of SIMPLE
bitstream
Summary

Demonstrates access to target FPGA registers.

Description

The SIMPLE example application demonstrates accessing FPGA registers in its simplest form. It first configures target
FPGA 0 with the Simple example FPGA design, or the Uber example FPGA design if the flags parameter includes
FLAG_USEUBER (0x10). It then waits for input from the user. The user enters hexadecimal values (up to 32 bits in
length), and for each value:

1. The program writes the value to a register in the target FPGA,

2. The target FPGA nibble-reverses the value and makes the reversed value available to be read via a register.
Here, nibble-reversing means that the FPGA swaps bits 31:28 with 3:0, 27:24 with 7:4 etc.
3. The program reads back and displays the nibble-reversed value

The program terminates on CTRL-D (Linux) or CTRL-Z (Windows). A sample session looks like this:

Enter values for 1/0
(CTRL-D / CTRL-Z t0 exit)

1234abod
OUT = 0x1234abed, IN = Oxdcbad321
deadbeef
OUT = Oxdeadbeef, IN = Oxfeebdaed
cafeface

OUT = Oxcafeface,

= Oxecafefac

Page 44 Example applications for VxWorks
AD.

Alpha Data Parallel Systems Ltd -UG-0004

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(V1.3 - 04ih March 2011) @ALPHA DATA

4.10 VPD utility (VXWorks)

Invocation in VxWorks shell

<address>, <n>,
<address>, <n>,
<address>, <n>,

<n>,
<address>, <n>,

<n>
<address>, <n>
<address>, <n>
<address>, <n>
<address>, <n>[, “num-arg"]

admxrcavpd <flags>,
<flags>, "

<address>, <n>[, "nun-arg"]
<address>. <n>[, "nun-arg”]
1 <address>, <n>[, "nun-arg"]
admxrc3Vpd dex>, <flags>, <address>, <n>[, “str-arg"]
where
index specifies the index of the card to open (default 0)

is the bitwise OR of zero or more of the following flags (default 0):
FLAG_BYSERIAL (0x1) => index is interpreted as a serial number rather
flags than a device index.
FLAG_HEX (0x10) => causes the utilty to interpret all numeric data values
as hexadecimal.

address is the address in VPD memory at which to begin reading or writing
n is the number of bytes to read or write.
num-arg" is a string containing a numeric data argument; required for the fb, fw, fd &
9 fq commands and optional for the wb, ww, wd & wq commands.
- is a string argument; required for the fs command and optional for the ws
swarg command.
Summary

Displays data read from VPD memory, or writes data to VPD memory.
Description

The VPD utilty operates in one of three modes:

Filling a region of VPD memory with a value or string; for this mode, use the fb, fw, fd, fq or fs commands.
Reading data from VPD memory and displaying it; for this mode, use the rb, rw, rd o rq commands.

Writing numeric or string data to a region of VPD memory; for this mode, use the wh, ww, wd, wg or ws
commands.

Fill mode

When fillng a region of VPD memory with data, the fill command specifies whether the data is numeric or string data. In

the case of numeric data, the command also implies the radix (i.e. word size) of the data. The available fill commands
are:

Example applications for VxWorks Page 45
AD-UG-0004 Alpha Data Parallel Systems Ltd

ADM-XRC Gen 3 SDK 1.3.0 User Guide

@ALPHA DATA (v1.3 - 04th March 2011)

©
Fill value is a byte (8-bit).
. fw
Fill value is a word (16-bit).
.M

Fill value is a doubleword (32-bif).

fq

Fill value is a quadword (64-bit).

fs

Fill value is an ASCII string (8-bit characters).

The next 3 arguments after the fil command must be:

(a) address - the byte address within VPD memory at which to begin filling

(b) n - byte count; the number of bytes of VPD memory to fill

(c) data or string - the numeric or string value to place in the specified region of VPD memory

If the command is s and the string value is shorter than the byte count n, the string is repeated untilthe byte count is
satisfied. If the string is longer than the byte count n, only the first n characters are used. If a string contains spaces, it
must be quoted on the command line so that it is not interpreted by the shell as two or more separate arguments,

For the numeric fil commands b, fw, fd and fa, the numeric value is repeated unti the byte count is satisfied.

Read mode

The read command implies the radix (i.e. word size) used for displaying the data:

Byte (8-bit) reads; data is displayed as bytes.

w
Word (16-bit) reads; data is displayed as words.

« o

Doubleword (32-bit) reads; data is displayed as doublewords,

q
Quadword (64-bit) reads; data is displayed as quadwords,

After the read command, an address must be supplied, which specifies where in VPD memory to begin reading. An
optional length parameter, in bytes, can also be supplied. If omitted, the length is equal to the radix implied by the read
command. If present, the length parameter specifies how many bytes to read and display. The length should be an
integer multiple of the width; if not, the length is rounded down.

Write mode
The write command specifies whether the data is numeric or string data. In the case of numeric data, the command
also implies the radix (i.e. word size) of the data. The available write commands are:
. wb
Data is written as bytes (8-bit)

ww
Data is written as words (16-bi).

o wd

Data is written as doublewords (32-bit).

Page 46 Example applications for VxWorks
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(V1.3 - 04ih March 2011) @ALPHA DATA

wa

Data is written as quadwords (64-bit)

. ws

Data is supplied as one or more ASCIl strings (8-bit characters).

After the write command, an address must be supplied, which specifies where in VPD memory to begin writing data. An
optional length parameter, i bytes, can also be supplied. If omitted, the length is equal to the radix implied by the write
command. If present, the length parameter specifies how many bytes to write. The length should be an integer multiple
of the width; if not, the length is rounded down

The program obtains the values to be written in two ways: from any additional parameters on the command fine after
the length parameter, and then from the standard input stream (stdin). This works as follows:

1. Any remaining command line arguments, if present aiter the length parameter, are interpreted as data values
to be written. Numeric values are assumed to be of the radix implied by the command parameter. As each
value it written to VPD memory, the address is incremented. If there are enough values passed on the
command line to satisfy the byte count, the program terminates.

2

If there are insufficient data values passed on the command line, the program waits for values to be entered on
the standard input stream. Numeric values entered this way are also assumed to be of the radix implied by the
command. As each value it written to VPD memory, the address is incremented. When the entire byte count
that was specified in the length parameter has been satisfied or end-of-file is encountered, the program
terminates.

Example session
The following session was captured using an ADM-XRC-6TL. The base address 0x100000 is used because that is the
VPD-space address of the user-definable area of VPD memory in the ADM-XRC-6TL.

> adnxrcavpd 0,0,"rb™,0x100000,0x60
Dump of VPD at 0xi00000 + 96(0x60) bytes:

00 01 02 03 04 05 06 07 08 09 0a Ob Oc 0d Oe
OX00100000: Ff £F £F 1 TF £ £F £7 1€ £1 €7 10 17 17 17
FF FF F f Ff ©f 7f 7f 7f 7 7f 7 f
£ Ff FF £f ©f ©f ff ff ff ff £f ff
TF FF F F FF ©F 7f 7f 7F 7 7f 7 11
£ FF FF £f Ff ©f ff ff ff ff ff f
FF FF F FF Ff 7f ff 7f 7f 7f 7f 7f

5", 0100008, 20, "hel 1o wo

.0x100020,12

0x100031,10, "Oxa55a"

> adnxrcavpd 0,0,"rb",0x100000,0x60
Dump of VPD at 0x100000 + 96(0x60) bytes:
00 01 02 03 04 05 06 07 08 09
0x00100000: ff ff ff ff ff ff ff Tf 68 65
0x00100010: 72 6c 64 21 68 65 6C 6C 6F 20
0X00100020: ef be ad de ce fa fe ca 78 56
0x00100030: ff 5a a5 5a a5 5a a5 5a a5 5a
0x00100040: Ff ff ff Ff ff ff ff £f £f T
F FF FF £ Ff £ £F fF

ob 0c 0d e OF

hello wo

i
ridinelio wo.
X4,

32B8IZP
-
3
2
3
2

NOTE: the above sesssion assumes that VPD write protection has been disabled as described in the release notes for
the ADB3 Driver for VxWorks.

Remarks

Example applications for VxWorks Page 47
AD-UG-0004 Alpha Data Parallel Systems Ltd

ADM-XRC Gen 3 SDK 1.3.0 User Guide

@ALPHA DATA (v1.3 - 04th March 2011)

When entering data for fil or write commands, values are expressed in decimal by defaut. To express data as
hexadecimal, prefix it with ‘0’ or use the FLAG_HEX (0x10) flag.

In the current version of the VPD utily, data is always read from and written to VPD memory in litle-endian byte order

Page 48 Example applications for VxWorks
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.3.0 User Guide.

(V1.3 - 04ih March 2011) @ALPHA DATA

5 Example HDL FPGA Designs
5.1 Introduction

Anumber of example FPGA designs are included with the SDK. The purpose of these is to demonstrate functionality
available on the Virtex-6 based ADM-XRC series of cards and also to serve as customisable starting points for
user-developed designs. A testbench and simulation/build scripts are also included with each example design.

The example applications use these example designs to demonstrate how software running on the host CPU can
interact with an FPGA design.

The table below lsts the example FPGA designs and their related applications:

Minimal design that of he ible registers. The
SIMPLE example application (Windows and Linux / VxWorks) uses this design.

D of h ible registers. The SIMPLE example
application (Windows and Linux / VxWorks) uses this design when the +uber option is
passed on the command line.

Uber Demonstrates generation of host interrupts by the target FPGA. The ITEST example
application (Windows and Linux / VxWorks) uses this design.

Demonstrates interfaces to on-board memory such as DDR3 SDRAM. The MEMTESTH
example application (Windows and Linux / VxWorks) uses this design.

simple

Table 3: Example HDL FPGA Designs
These example designs are located in the hdlivhdi/examples/ directory.

5.2 Design Simulation Using Modelsim

Testbench code and macro files compatible with Modelsim are provided for simulation of each example FPGA design.
For details specific to each example design, refer to its Design Simulation section. VHDL source code is compiled for
simulation using the 1993 standard.

Two types of simulation are currently available, termed "Full MPTL" and "OCP-only". They are selected by the
TARGET_USE constant in the package adb3_target_inc_pkg. There are several variants of the
adb3_target_inc_pkg package. Refer to Table 83.
5.2.1 Full MPTL Simulation (TARGET_USE = SIM_MPTL)
This simulates the actual MPTL interface core between the Bridge and Target FPGAS as follows:
« OCP transactions are converted to MPTL data by the example design testbench MPTL interface.
« The example design testbench MPTL interface is connected to the example FPGA design MPTL interface
« The example FPGA design MPTL interface converts MPTL data back to OCP transactions.
HDL source files are used to simulate the example testbench and example FPGA designs. HDL netlists are used to
simulate the MPTL interface.
Advantages

+ Simulates the actual MPTL interface core.

Disadvantages

+ Requires full initialisation period before MPTL interface is available for OCP transactions.

Example HDL FPGA Designs Page 49
AD-UG-0004 Alpha Data Parallel Systems Ltd

ADM-XRC Gen 3 SDK 1.3.0 User Guide

@ALPHA DATA (v1.3 - 04th March 2011)

+ Runs more slowly than OCP-only simulation.
In most cases this level of simulation detail is not required and the OCP-only simulation should be used.

5.2.2 OCP-Only Simulation (TARGET_USE = SIM_OCP)
This replaces the MPTL interface core between the Bridge and Target FPGAs with a direct OCP connection as follows:
+ OCP transactions are transferred to a simulation version of the example design testbench MPTL interface.

« The example design testbench simulation MPTL interface is connected to the example FPGA design simulation
MPTL interface.

+ The example FPGA design simulation MPTL interface transfers the OCP transactions.

HDL source files are used to simulate the example testbench and example FPGA designs. OCP-only simulation HDL.
source files are used to simulate the MPTL interface.

Advantages

« Requires minimal initialisation period before MPTL interface is available for OCP transactions,
« Runs more quickly than full MPTL simulation.

Disadvantages

. Does not simulate the actual MPTL interface core.
In most cases this type of simulation should be used.

5.3 Bitstream Build Using Xilinx™ ISE

Note: Xilinx™ ISE version 12.3 or 12.4 is required by this version of the SDK

Bitstreams for all supported combinations of example FPGA design, board, and device are supplied pre-built in the bit/
directory of the SDK. This directory is the HDL equivalent of the bin/ directory for the example C/C++ applications. The
source files required to re-build all bitstreams are supplied in the hd directory. Bitstream build in the Windows

environment uses the Microsoft Visual Studio NMAKE utility. Bitstream build in the Linux environment uses GNU Make.

5.3.1 Building All Example Bitstreams for Windows

An Makefile compatible with NMAKE is provided for building il bitstreams for all example FPGA designs in Windows. It
is located in the hdlivhdllexamples/ directory. As many bitstream files are generated, it may take from minutes to
hours to run to completion. To perform the build, start a shell and issue the following commands:

cd /d %ADNXRC3_SDK¥\hdI\vhdI\exanples

nnake al
To completely rebuild all example bitstreams, issue the commands:

cd /d %ADMXRC:
nnake clean al

DKI\dI\vhd \exanples

To install the resulting bitstream files in the bit/ directory, start a shell and issue the following commands:

cd /d %ADNXRC3_SDK#\hdI\vhdI\exanples
nnake install

Note: The above commands build the bitstream files, if necessary, before installing them.

Page 50 Example HDL FPGA Designs
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.3.0 User Guide.

(V1.3 - 04ih March 2011) @ALPHA DATA

5.3.2 Building All Example Bitstreams for Linux

A Makefile compatible with GNU Make is provided for building all bitstreams for all example FPGA designs in Linux. It is
located in the hdl/vhdl/examples directory. As many bitstream files are generated, it may take from minutes to hours to
run to completion. To perform the build, start a shell and issue the following commands:

cd $ADMXRC3_SDK/hd1/vhdl/exanples
make all

To completely rebuild all example bitstreams, issue the commands:

cd $ADMXRC3_SDK/hd1/vhdl/exanples
make clean all

To install the resulting bitstream files in the bit/ directory, start a shell and issue the following commands:

cd $ADMXRC3_SDK/hd1/vhdl/exanples
make instal

Note: The above commands build the bitstream files, if necessary, before installing them
5.3.3 Building Specific Example/Board/Device Bitstreams

For each example FPGA design, a Makefile s provided for building all ts bitstreams, or a specific board/device
bitstream. For details specific to each example design, refer to its Design Synthesis and Bitstream Build section.

Example HDL FPGA Designs Page 51
AD-UG-0004 Alpha Data Parallel Systems Ltd

ADM-XRC Gen 3 SDK 1.3.0 User Guide

@ALPHA DATA (v1.3 - 04th March 2011)

5.4 Simple Example FPGA Design
5.4.1 Board Support

The Simple FPGA design is compatible with all Virtex-6 based boards.
5.4.2 Source Location

The Simple FPGA design is located in hdi/vhdl/examples/simple/. Source files common to all boards are located in
the hdlivhdi/examples/simple/common directory. These include the design and testbench top levels.

5.4.2.1 VHDL Source Files for Simulation

For a complete st of the source files used during simulation efer (0 the appropriate Modelsim macro fie located n the
board design directory; for example, 1.do for OCP-only
simulation of the ADM-XRC-6T1.

5.4.2.2 VHDL Source Files for Synthesis

For a complete st ofthe source fls used during synthesis, efe o the appropriate XST projec i located n the
board design directory; for example, 1-6v1x240t prj for an
ADM-XRC-6T1 fitted with a 6VLX240T device.

5.4.2.3 XST Files
XST Project files (.prj) are located in the board design directory; for example, hdiivhdl/examples/simple/admxrc6t1/
simple-admxrc6t1-6vIx240t.prj for an ADM-XRC-6T1 fitted with a 6VLX240T device.

XST Script files (.scr) are located in the board design directory; for example, hdlivhdllexamples/simple/admxrc6ty/
simple-admxrc6t1-6vix240t.scr for an ADM-XRC-6T1 fitted with a 6VLX240T device.

XST constraint fles (.xcf) are located in the board design directory: for example, hdiivhdi/examples/simple/
admxrc6tl/simple-admxrcétl.xcf for an ADM-XRC-6T1.

5.4.2.4 Implementation Constraint Files
Implementation constraint files (.ucf) are located in the board design directory; for example, hdlivhdi/examples/
simple/admxrcétl/simple-admxrcétl.ucf for the ADM-XRC-6T1.

5.4.3 Design Synthesis and Bitstream Build

A Makefile is provided for building the Simple design bitstreams (.bit files). Depending on the target passed to NMAKE
or GNU Make, for Windows and Linux hosts respectively, bitstreams can be builtfor a specific board-device
combination, or bitstreams can be built for all supported board-device combinations.

When a_bit file is buit, it is not used by the example unless itis copied into the bit/simple/
directory. This can be done manually, or by using the Makefile.

The Makefile also be used to delete .bit files and intermediate files, so that the next time the design is buil it is
quaranteed to be built from VHDL sources as opposed to beginning at some intermediate step.

The Makefile for the Simple design has the following targets:

Page 52 Example HDL FPGA Designs
Alpha Data Parallel Systems Ltd UG-0004

ADM-XRC Gen 3 SDK 1.3.0 User Guide.

(V1.3 - 04ih March 2011) @ALPHA DATA

Target Class | Effect

all Builds all .bit files for all supported board and device

build (Builds the bit file for the board specified by <model> with a device
specified by <device>.

bit_<model>_<device>

Builds and installs all .bit files for all supported board and device

install - in the directory bit/simplel.
insta
Builds the _bit file for the board specified by <model> with a device
inst_<model>_<device> specified by <device> and copies it to the directory bit/simple/.
Deletes all it fles and intermediate build files for all supported
clean board and device combinations (but does not delete any files from
clean

Deletes the _bit file and intermediate build files for the board
clean_<model>_<device> specified by <model> with a device specified by <device> (but
does not delete any files from

Table 4: Simple Design Makefile Targets

Files that are considered intermediate files of the build process are placed in the directories hdl/vhdl/examples/

and Output files, including bit files, are placed in hdi/vhdi/examples/
simple/output/. Filenames of any bitstreams built are thus of the form hdl/vhdl/examples/simple/output/simple-<
board>-<device>.bit. When a target of class "clean” is executed, output and intermediate files are deleted, but files in
bit/simple/ are unaffected.

Before a bitstream can be used by one of the example applications, it must be copied to bit/simple/ by executing a
target of class ‘install’, or by manually copying the bit file.
‘Some example make commands follow:

1. To perform a build of all Simple design bitstreams using Windows, start a shell and issue the following
commands:

cd /d HADNXRC3_SDK¥\hdI\WhdINexanples\simple
nnake al
Similarly using Linux, start a shell and issue the following commands:
cd $ADMXRC3_SDK/hd1/vhdl/exanples/simple
ke all

2. To perform a build and install the resulting bitstreams using Windows, start a shell and issue the following
commands:
cd /d SADNXRC3_SDK¥\hdI\vhdINexanples\simpl
nnake install
Similarly using Linux, start a shell and issue the following commands:
cd SADUXRC3_SDK/hd1/vhdl/exanples/sinple
make instal

3. To perform a build for an ADM-XRC-6T1 board fitted with an 6VLX240T device using Windows, start a shell
and issue the following commands:
cd /d %ADUXRC3_SDK’AhdI\vhd I\exanples\simple
nmake bit_admxrc6tl_6vIx240t
Similarly using Linux, start a shell and issue the following commands:

cd SADIXRC3_SDK/hdl/vhdl/exanples/sinple
make bit_adixrc6tl_6vix240t

Example HDL FPGA Designs Page 53
AD-UG-0004 Alpha Data Parallel Systems Ltd

ADM-XRC Gen 3 SDK 1.3.0 User Guide

@ALPHA DATA (v1.3 - 04th March 2011)

4. To perform a build and install for an ADM-XRC-6T1 board fitted with an 6VLX240T device using Windows, start
a shell and issue the following commands:

cd /d %ADNXRC3_SDK#\hdI\vhdI\exanples\simple
nnake inst_admxrc6tl_6vIx240t

Similarly using Linux, start a shell and issue the following commands:

o SADMXRC3_SDK/hd/vhdll/examples/simple
make inst_admxrc6tl_6vix240t

5. To delete all .bit files and intermediate build files in Windows, start a shell and issue the following commands:
cd /d %ADMXRC3_SDK#\hdI\vhdI\examples\simple
nmake clean
Similarly using Linux, start a shell and issue the following commands:
cd_ $ADIXRC3_SDK/hd1/vhdl /exanples/sinple
make clean
6. To delete the .bit file and intermediate build files for an ADM-XRC-6T1 board fitted with an 6VLX240T device
using Windows, start a shell and issue the following commands:
cd /d %ADUXRC3_SDKs\hdI\vhdI\exanples\sinple
nmake clean_admxrc6tl_6vix240t
Similarly using Linux, start a shell and issue the following commands:

cd $ADIXRC3_SDK/hdl/vhdl/exanples/sinple
make clean_admxrc6tl_6vIx240t

5.4.4 Design Description
The Simple example FPGA design demonstrates register access on the Virtex-6 series of ADM-XRC boards. The
design consists of:
. Clock Generation
« Target MPTL interface block, using an instance of mptl_if_target_wrap
« OCP to simple bus interface block, using an instance of adb3_ocp_simple_bus_if
-+ simple test registers implemented using VHDL processes.

Figure 5 below shows the main elements of the Simple design:

Page 54 Example HDL FPGA Designs
Alpha Data Parallel Systems Ltd. AD-UG-0004

ADM-XRC Gen 3 SDK 1.3.0 User Guide

(VL3 - 04th March 2011)

@ALPHA DATA

simple_|

mptl_if_target_wrap

MPTL Bridge to Target MPTL B2T
MPTL Target to Bridge «- MPTL T28
MPTL Sideband #--- MPTL Sideband
DS ocP

DMA OCP

adb3_ocp_simple_bus_if

simple.
Test

Registers.

MPTL clk ——»}

usr_clk
Reference clk ——b

10 with VHDL record type defined in adb3_target_inc_pkg
(depends on BOARD_TYPE and TARGET_USE)

<—» Direct Slave OCP
<—» DMAOCP

Figure 5: Simple Design Block Diagram

Example HDL FPGA Designs
AD-UG-000:

4

Alpha Data Parallel Systems Ltd.

Page 55

ADM-XRC Gen 3 SDK 1.3.0 User Guide

@ALPHA DATA (v1.3 - 04th March 2011)

5.4.4.1 Clock Generation
5.4.4.1.1 OCP Clock

The Simple example design is driven by an OCP clock named usr_clk. This is a buffered version of the differential

reference clock that is input via the top level ref_clk port. The actual source of the clock in the hardware depends upon

the board selected, and is defined in the constraints file located in the board-specific design directory; for example, hdl/
i 1 1.uc for the ADM-XRC-6T1.

5.4.4.1.2 Target MPTL Interface Clock

The target MPTL interface block requires a clock to be input via its mptl_clk port. The actual source of the clock in the
hardware depends upon the board selected, and is defined in the constraints file located in the board-specific design
directory; for example, le-adh 1.ucf for the ADM-XRC-6TL. Itis
differential and buffered within the MPTL interface block.

5.4.4.2 Target MPTL Interface

This block wraps up the target MPTL interface core, instantiating an MPTL to OCP interface appropriate to the board in
use. The purpose of the block s to connect the MPTL (the data channel between the Bridge and Target FPGAS) to the
Direct Slave and DMA OCP channels within the FPGA design. Refer to the component mptl_if_target_wrap for details.

Note: The Direct Slave address space supported by the Bridge is smaller than the full ADB3 OCP address
space. For the board in use, itis indicated by the DS_ADDR_WIDTH constant in the package
adb3_target_inc_pkg

Note: The DMA address space supported by the Bridge is smaller than the full ADB3 OCP address space.
For the board in use, it is indicated by the DMA_ADDR_WIDTH constant in the package
adb3_target_inc_pkg

5.4.4.3 OCP to Simple Bus Interface Block
Aninstance of adb3_ocp_simple_bus_if terminates the Direct Slave OCP channel with the Simple test registers,
driving a small bus whose signals are as follows:
1. ds_a- The register address, derived from some low order bits of the Direct Slave OCP address. This is used to
select the correct register for writes, and to control a multiplexor that drives ds_g for reads.
2. ds_w - Indicates that write data is valid on the signal ds_d and write byte enables are valid on the signal
ds_we.
ds_we - Byte write enables; qualified by ds_w.
ds_d - Write data; qualified by ds_w.
ds_r - Indicates that valid data must be presented on ds_g on the following clock cycle.
ds_q - Driven with read data by a multiplexor controlled by ds_a. The registers of the FPGA design are inputs
to the multiplexor.

R

5.4.4.4 Simple Test Registers

Aset of VHDL processes uses the signals ds_a, ds_w etc. described above to implement a single register. Although
there is a single register in this example, in principle as many registers can be created as are required.

5.4.4.4.1 Register Description

Page 56 Example HDL FPGA Designs
Alpha Data Parallel Systems Ltd. AD-UG-0004

ADM-XRC Gen 3 SDK 1.3.0 User Guide. O ALpua oATA

(V1.3 - 04th March 2011)

The Simple FPGA design implements registers in the Direct Slave OCP address space as follows:

[Name [Type [Addess |
| pATA | ”Rw | oxo00000 |

Table 5: Simple Design Direct Slave Address Map

[Bits_ [mnemonic | Type | Function |
[310 |oATA | Rw [indicates the nibble-reversed version of the last data written. |

Table 6: Simple Design, DATA Register (0x000000)

Note: there is no address decoding, so this register appears aliased everywhere in the Direct Slave OCP address
space.
5.4.5 Testbench Description

The testbench for the Simple example FPGA design is in
test_simple.vhd. Figure 6 below shows the testbench, with the simple_I FPGA design embedded in it.

Example HDL FPGA Designs
AD-UG-0004 Alpha Data Parallel Systems Ltd

Page 57

@ALPHA DATA

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(V1.3 - 04th March 2011)

)
ot oidge v i gt w

o
ovocr
ouroc oy
skt 5
Clack ST
oo
rym—

o 10 With VHDL record type defined n adb3_target inc_pkg (depends < Direct Save OCP.
: on BOARD_TYPE and TARGET_USE)

Figure 6: Simple Design Testbench Block Diagram

Page 58

Alpha Data Parallel Systems Ltd.

Example HDL FPGA Designs
AD-UG-0004

ADM-XRC Gen 3 SDK 1.3.0 User Guide.

(V1.3 - 04ih March 2011) @ALPHA DATA

The Simple example FPGA design testbench consists of the following functions:
+ Clock generation for the testbench and the Unit Under Test (UUT).

. The Unit Under Test (UUT), which is the one-and-only instance of the simple_| block.

+ The Bridge MPTL interface block, using an instance of mptl_if_bridge_wrap.

« Direct Slave OCP channel probe, using an instance of adb3_ocp_transaction_probe.
. Stimulus Generation and Verification.

5.45.1 Clock Generation

The testbench generates the clocks ref_clk and mptl_clk according to which board is selected, in order to model the

hardware, and these drive the unit under test (simple_I).

The testbench also feeds mpti_clk into the Bridge MPTL Interface (an instance of mpti_if_bridge_wrap).

The Bridge MPTL Interface mpti_if_bridge_wrap port ocp_clk_out drives the OCP clock ocp_clk that is used within

the testbench for monitoring OCP transactions. This is generated depending on the type of simulation selected by the

TARGET_USE constant in the package adb3_target_inc_pkg:

« InOCP-only simulation (TARGET_USE = SIM_OCP), the UUT's main OCP clock (usr_clk in this case) is
routed out of the UUT (simple_) via the mptl_if_target_wrap instance and into the testbench's instance of
mptl_if_bridge_wrap. The mptl_if_bridge_wrap instance outputs this signal as ocp_clk. This route is shown
in Figure 6 as the route consisting of points 1, 2, 3 and 5.

« Infull MPTL simulation (TARGET_USE = SIM_MPTL), ocp_clk is entirely independent of any clock within the
UUT, and the testbench's mptl_if_bridge_wrap instance passes ocp_clk_full through to ocp_clk. This is
shown in Figure 6 as the route consisting of points 4 and 5.

5.4.5.2 Bridge MPTL Interface

The testbench contains an instance of mptl_if_bridge_wrap, which translates Direct Slave and DMA OCP transactions
in the testbench to MPTL data. mpti_if_bridge_wrap wraps up the Bridge MPTL interface core, instantiating an OCP
10 MPTL core appropriate for the BOARD_TYPE and TARGET_USE constants from the package
adb3_target_inc_pkg

The mptl_if_bridge_wrap output mptl_sb_b2t.mptl_bridge_gtp_online_ is combined with the Simple example
FPGA design output mptl_sb_t2b.mptl_target_gtp_online_I to produce the mptl_online_long signal. This indicates
that the MPTL interface is active and stable.

Note: The testbench monitors mptl_online_long and will terminate the simulation with an error message if it becomes
inactive. This may occur if, for example, a protocol error arises on the MPTL signals during a full MPTL simulation.

5.4.5.3 Direct Slave OCP Channel Probe
This function moniitors the Direct Slave OCP channel for addressing/transaction problems. It generates warnings/errors
if it detects an illegal OCP operation. A probe error will result in a 'FAILED' Simple simulation result. It uses the
component adb3_ocp_transaction_probe.

5.4.5.4 Stimulus Generation and Verification

This function consists of a set of processes that generate stimulus and verify the results of the simulation via the
mptl_if_bridge_wrap instance. There is one test section:

5.4.5.4.1 Direct Slave OCP Channel

Note: all filenames mentioned in this section are relative to the path hdlivhdi/examples/simple/common.

Example HDL FPGA Designs Page 59
AD-UG-0004 Alpha Data Parallel Systems Ltd

ADM-XRC Gen 3 SDK 1.3.0 User Guide

@ALPHA DATA (v1.3 - 04th March 2011)

The test_simple testbench, implemented in test_simple.vhd, provides test stimulus to and verifies test results from
the UUT's OCP Direct Slave channel. The stimulus is actually applied in the form of OCP commands and data to the
Bridge MPTL interface, but apart from the packetisation, multiplexing and demultiplexing that occurs in the MPTL
interfaces (both Bridge and Target), the arrangement is transparent. In other words, it behaves as if the stimulus were
applied directly 1o the Target FPGA's Direct Slave OCP channels:

« The Bridge MPTL interface converts OCP commands and write data originating in test_simple to MPTL
protocol. Within the target FPGA, the Target MPTL interface converts MPTL protocol back into OCP
commands and data. Thus, neither test_simple nor the UUT (simple) is aware that OCP stimulus passes.
through the MPTL.

« Responses originating in the Target FPGA are correspondingly converted to MPTL protocol by the Target
MPTL interface, and converted back into OCP responses by the Bridge MPTL interface}. Thus, neither
test_simple nor the UUT (simple) is aware that OCP responses pass through the MPTL.

Tests performed are detailed in the following subsections.

5.45.4.1.1 Simple Test
This test exercises the Simple Test Registers as follows:
1. Writes the 32-bit value OXCAFEFACE to the DATA register.
2. Reads back the DATA register and compares it with the expected value OXECAFEFAC. If the expected and
actual values do not match, the test is considered a failure.

Test complete and passfail indications are returned using the simple_complete and simple_passed signals
respectively in test_simple.vhd.
Example results from this test are documented in direct slave OCP channel results.

5.4.6 Design Simulation
Modelsim macro files are located in each of the board-specific design directories. The macro file that should be used
depends upon the type of simulation reqmred
« OCP-only: i del>.do
© FulMPTL: del>-mptl.do

where <model> corresponds to the board in use; for example admxrc6t for the ADM-XRC-6TL.

Modelsim simulation is initiated using the vsim command with the appropriate macro file; for example, to perform an
OCP-only Modelsim simulation in Windows for the ADM-XRC-6T1, start a shell and issue the following commands:

cd_/d %ADNXRC3_SDK¥AhdI\vhdI\exanples\sinpleNadnxrc6tl
vsim -do “simple-adnxrc6tl.do"

In Linux, the commands are:

cd_$ADIXRC3_SDK#/hd1/vhd1 /exanples/sinple/adnxrc6tl
vsim ple-adnxrostl . do”

Note: The Modelsim macro files always delete any previously compiled data before compiing the Simple
design.

Expected simulation results are shown below.

5.4.6.1 Initialisation Results

Modelsim output during initialisation of simulation is of the form:

** Note: Board Type © adn_xrc_6t1

Page 60 Example HDL FPGA Designs
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.3.0 User Guide @ ALPHA DATA

(V1.3 - 04th March 2011)

Tine: 0 ps_ tearation: 0 Instance: /test
i Nore: Target b +ocy

u Tin 0 Instance: /test.s
%+ Note: Vabeing for WPTL antine.

Tine: 0 ps Iteration: 0 Instance: /test

rote

5.4.6.2 Direct Slave OCP Channel Results

Modelsim output during simulation is of the form:

* Note: Wrote sinplle TATA 4 bytes DICAFEFACE ith enable OPLILL to byte address 0x00000
¥ Tine: 1625 ns Iteration: 6 Instance: /test_simple

 ++ lote: Read sinphe DATA 4 bytes DECAFEFAC From byt adiress 0000000

Tine: 1637500 ps IMeration: 7 Instance: /test_siple

= ote: Test Sinpll comploted: PASSED

637500 ps Iteration: 7 Instance: /test_simple

5.4.6.3 Completion Results

Assuming that all tests passed, Modelsim transcript output on successful completion of simulation is of the form:

4+ Failure: Test o n SIWPLE corpleted: PASSED.
4 Tine: 1687500 ps Iterati
Break in Process test_results.

Zconnon/test_sinple.vhd

rple.vhd tine 230

et p at - reommonstest
7

WACRO _/sinple-adnxrcBLL.do PAUSED at

Example HDL FPGA Designs
AD-UG-0004 Alpha Data Parallel Systems Ltd.

Page 61

ADM-XRC Gen 3 SDK 1.3.0 User Guide

@ALPHA DATA (v1.3 - 04th March 2011)

5.5 Uber Example FPGA Design
5.5.1 Board Support

The Uber FPGA design is compatible with all Virtex-6 based boards.
5.5.2 Source Location

The Uber FPGA design is located in hdlivhdllexamples/uber/. Source files common to all boards are located in the
hdlivhdllexamples/uber/commont directory. These include the design and testbench top levels.

5.5.2.1 VHDL Source Files for Simulation

For a complete st of the source files used during simulation efer (0 the appropriate Modelsim macro fie located n the
board design directory; for example, 1.do for OCP-only simulation
of the ADM-XRC-6T1.

5.5.2.2 VHDL Source Files for Synthesis

For a complete st ofthe source fls used during synthesis, efe o the appropriate XST projec i located in the
board design directory; for example, 1-6v1x240. prj for an
ADM-XRC-6T1 fitted with a 6VLX240T device.

5.5.2.3 XST Files
XST Project files (.prj) are located in the board design directory; for example, hdiivhdl/examples/uber/admxrc6tl/
uber-admxrc6t1-6vIx240t.prj for an ADM-XRC-6T1 fitted with a 6VLX240T device.

XST Script files (scr) are located in the board design directory; for example, hdlivhdllexamples/uber/admxrc6ti/
uber-admxrc6t1-6vIx240t.scr for an ADM-XRC-6T1 fitted with a 6VLX240T device.

XST constraint fles (.xcf) are located in the board design directory: for example, hdiivhdi/examples/uber/admxrc6ty/
uber-admxrc6tl.xcf for an ADM-XRC-6T1.

5.5.2.4 Implementation Constraint Files
Implementation constraint files (.ucf) are located in the board design directory; for example, hdlivhdi/examples/uber/
admxrcétl/uber-admxrcétl-6vix240t.ucf for the ADM-XRC-6T1 with a 6VLX240T device.

5.5.3 Design Synthesis and Bitstream Build

A Makefile is provided for building the Uber design bitstreams (bt files). Depending on the target passed to NMAKE or
GNU Make, for Windows and Linux hosts respectively, bitstreams can be built for a specific board-device combination,
or bitstreams can be buit for all supported board-device combinations,

When a_bit file is buit, it is not used by the example unless itis copied into the bit/uber/
directory. This can be done manually, or by using the Makefile.

The Makefile also be used to delete .bit files and intermediate files, so that the next time the design is buil it is
quaranteed to be built from VHDL sources as opposed to beginning at some intermediate step.

Page 62 Example HDL FPGA Designs
Alpha Data Parallel Systems Ltd UG-0004

ADM-XRC Gen 3 SDK 1.3.0 User Guide.
(V1.3 - 04th March 2011)

@ ALPHA DATA

The Makefile for the Uber design has the following targets:

Note: Before performing the first bitstream build of Uber, HDL files for the Xilinx™ DDR3 SDRAM Memory
Interface Generator (MIG) core must be generated using the script gen_mem_if.bat (Windows) or
gen_mem_if.bash (Linux) in hdlivhdlicommon/mem_ifiddr3_sdramimig_v3_6/. Refer to Section 6.5 for
details.

Note: Changing the constant CHIPSCOPE_ON in hdl/vhdl/examples/uber/common/uber.vhd from false
o true causes a ChipScope™ block to be included when building the Uber design. If CHIPSCOPE ONis
true, the ChipScope™ ILA core chipscope_ila.ngc and ICON core chipscope_icon.ngc

generated using the gen_ChipScope™ bat (Windows) or gen_ChipScope™ bat (Linux) scnm i hllivhds
common/ChipScope™}. Refer to Section 6.9 for details.

Target Class | Effect

Builds all .bit files for all supported board and device combinations.

bit_<model>_<device>

build | Builds the .bit file for the board specified by <model> with a device
specified by <device>.

Builds and installs all .bit files for all supported board and device

install a in the directory bit/uber/.
instal
Builds the _bit il for the board specified by <model> with a device
inst_<model>_<device> specified by <device> and copies it to the directory bit/uber/.
Deletes all it files and intermediate build iles for all supported
clean board and device combinations (but does not delete any files from
bitjuber)
clean
Deletes the .bit file and intermediate build files for the board
clean_<model>_<device> specified by <model> with a device specified by <device> (but

does not delete any files from bit/uber/)

Table 7: Uber Design Makefile Targets

Files that are considered intermediate files of the build process are placed in the directories hdl/vhdl/examples/uber/
build/ and hdlivhdilexamples/uberledifl. Output fles, inclucing .bit iles, are placed in hdlivhdliexamplesiuber/

output/. Filenames of any bitstreams built are thus of the form

device>.bit. When a target of class "clean is executed, output and intermediate files are deleted, but files in bit/uber/
are unaffected,

Before a bistream can be used by one of the example applications, it must be copied to bit/uberd by executing a target

of class “install’, or by manually copying the .

Some example make commands follow:

1. To perform a build of all Uber design bitstreams using Windows, start a shell and issue the following
commands:
cd /d %ADNXRC3_SDK'AhdI\vhdI\exanples\uber
nmake al
Similarly using Linux, start a shell and issue the following commands:
cd SADIXRC3_SDK/hd1/vhd1/exanples/uber
2. To perform a build and install the resulting bitstreams using Windows, start a shell and issue the following
commands:
cd /d %ADMXRC3_SDK#\hdI\vhdI\examples\uber
nmake install
Example HDL FPGA Designs Page 63
AD-UG-0004 Alpha Data Parallel Systems Lid

ADMXRC Gen 3 SDK 1.3.0 User Guide
’ALF“‘ DATA (v1.3 - 04th March 2011)

Similarly using Linux, start a shell and issue the following commands:
d $ADMXRC3_SDK/hd1/vhd1/exanples/uber
ake instal
3. Toperform a build for an ADM-XRC-6T1 board fitted with an 6VLX240T device using Windows, start a shell
and issue the following commands:

cd /d %ADNXRC3_SDK#\hdI\vhdI\exanples\uber
nnake bit_admxrc6tl_6vix240t

Similarly using Linux, start a shell and issue the following commands:
cd $ADMXRC3_SDK/hd1/vhd]/exanples/uber
make bit_admxrc6tl_bvIx240t
4. To perform a build and install for an ADM-XRC-6T1 board fitted with an 6VLX240T device using Windows, start
a shell and issue the following commands:
cd /d HADNXRC3_SDK¥\hdI\vhdI\exanples\uber
nnake inst_admxrc6tl_6vix240t
Similarly using Linux, start a shell and issue the following commands:

o4, SADUXRC3_SOK/hdl/ vl /exanples./uber
_admxrc6tl_6vIx240t

5. Todelete all bit files and intermediate build files in Windows, start a shell and issue the following commands:
d /d %ADUXRC3_SDKS\hdT\vhd INexanples\uber
nnake clean
Similarly using Linux, start a shell and issue the following commands:
cd SADMXRC3_SDK/hd1/vhdl /exanples/uber
make clean
6. To delete the .bit file and intermediate build files for an ADM-XRC-6T1 board fitted with an 6VLX240T device
using Windows, start a shell and issue the following commands:
cd /d %ADUXRC3_SDK#\hdI\vhdI\exanples\uber
nnake clean_adixrc6tl_6vIx240t
Similarly using Linux, start a shell and issue the following commands:

cd $ADMXRC3_SDK/hd1/vhdl/exanples/uber
make clean_adnxrc6tl_6vIx240t

5.5.3.1 Date/Time Package Generation

If XST is required to be run during bitstream build, the Makefile will run the TCL script hdlivhdiiexamples/uber/
gen_today_pkg.tcl to generate a file containing the today_pkg package. This package defines HDL constants
containing the date and time at which the script was run. The name of the generated file depends upon the board
selected and is located in the board design directory; for example, hdlivhdl/examples/uber/admxrcétl/
today_pkg_admxrc6tl_6vIx240t.vhd for the ADM-XRC-6T1 with a 6VLX240T device. Script output i of the form:

kg_admxrc6tl_6vIx240t. vhd
- This Tile vas generated autonatically using the file gen_today_pkg.bat

Tibrary ieee;
use iece.std logic_1164.al
package today_pkg is

constant TODAYS |
constant TODAYS_

: std_logic_vector(31 downto 0)
* std_logic_vector(31 downto 0)

end package today_pkg;

Page 64 Example HDL FPGA Designs
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.3.0 User Guide

(V1.3 - 04ih March 2011) @ ALPHA DATA

5.5.4 Design Description

The Uber example FPGA design demonstrates functionality available in Gen 3 Alpha Data reconfigurable computing

hardware such as the ADM-XRC-6T1

The design includes the following functional areas:

. Clock generation block (blk_clocks)

+ MPTL interface block (mptl_if_target_wrap)

+ OCP Direct Slave block (blk_direct_slave), which includes:
Connection between clock domains, between the pll_pri_clk domain and the relatively low frequency
pli_reg_clk domain.

+ Direct Slave address space splitter block

« Simple test register block (blk_ds_simple_test)

« Clock frequency measurement register block (blk_ds_clk_read)

+ GPIOtest register block (blk_ds._io_test)

+ Interrupttest register block (blk_ds_int_test)

. Informational register block (blk_ds_info), including build datestamp and build timestamp
« On-board memory control and status register block (blk_ds_mem_reg)

. Direct Slave access to BRAM

+ Direct Slave access to on-board memory

+ OCP switching block (blk_dma_switch)

+ BRAM block (blk_bram)

« On-board memory interface block (blk_mem_if)

« On-board memory application block (blk_mem_app)

+ Optional ChipScope™ connection block (blk_ChipScope™)

The top-level VHDL source file of Uber is hdlivhdi/examples/uber/commoniuber.vhd. Figure 7 shows its main
elements. Figure 8 shows the hierarchy of the design.

The design includes the following packages:

« ADB3 OCP profile definition package (adb3_ocp)

« ADB3 OCP library component declaration package (adb3_ocp_comp)

+ ADB3 target types definition package (adb3_target_types_pkg)

« ADB3 target include package (adb3_target_inc_pkg)

« ADBS target package (adb3_target_pkg)

« Memory interface library package (mem_if_pkg)

« Design package (uber_pkg)

Figure 9 shows the design package dependencies.

Example HDL FPGA Designs Page 65
AD-UG-0004 Alpha Data Parallel Systems Ltd.

@ALPHA DATA

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(VL3 - 04th March 2011)

e

it o, b e siave
WP Bidge o Targe war
e Targs o i 2
eoana p—
Eoc
> owocele,
owd peciic) o
“pecic) wme
[
e o L
plLrem ek .
P e
— '
owsocs |
L rwoce i
10 with VHDL .
i pigandorver.
e Gependson son L and <> Drea s 0cP
TARGET_USE) < omaoce

Figure 7: Uber Design Top Level Block Diagram

Page 66

Alpha Data Parallel Systems Ltd.

Example HDL FPGA Designs
AD-UG-0004

ADM-XRC Gen 3 SDK 130 User Guide
(VL3 - 04th March 2011) @ ALPHA DATA

« ocks | o s | ok am
o csks o b pram

Memary test x banks DDRIMIG core x ks

Ker [l onsoard memory OCP blocks.

[oweasmeocrbods [T AphaData MPTL nertace Bitstream build (nge core) Full MPTLsimulaion
[omaoce tocks [AvhaData MPTL inertce Core

S ——

" e =

Figure 8: Uber Design Top Level Hierarchy

Example HDL FPGA Designs Page 67
AD-UG-0004 Alpha Data Parallel Systems Ltd.

@ALPHA DATA

ADM-XRC Gen 3 SDK 1.3.0 User Guide

(v1.3- 04th M

iarch 2011)

Board-Sp:

ecific Packages (ADM-XRC-6T1)

adb3_target_types pkg

[e]

adb3 target _inc_pkg

adb3_target_th_pkg

db3_target_pkg

R et b P —

—

Example Design-Specific Packages (Uber)

uber_tb_pkg

uber_pkg

uber_tb_pkg.vhd

uber_pkg.vhd

[

T

Example Design Top Level (Uber)

test_uber

uber

Figure 9: Uber Design Package Dependencies

Page 68

Alpha Data Parallel Systems Ltd.

Example HDL FPG
Al

A Designs

D-UG-0004

ADM-XRC Gen 3 SDK 1.3.0 User Guide.

(V1.3 - 04ih March 2011) @ALPHA DATA

5.5.4.1 Clock Generation Block

The clock and reset generation block is by _clocks.vhd. It
includes the following functional areas:

« Internal clock generation (MMCM)

« Internal reset generation (MMCM)

+ MPTLinterface clock generation

« Input clock buffering

« Input clock extraction (MGT sourced)

+ Output clock generation

5.5.4.1.1 Internal Clock Generation (MMCM)

This consists of an Xilinx™ MMCM block driven by the clks_in.ref_clk global clock input. It generates three output
clocks: pll_pri_clk, pll_reg_clk, and pll_mem_clk. Refer to Figure 10.

pll_ref_clk

« Thisis used as a reference clock by the design.

« Itis fixed at 200 MHz and used to measure the frequencies of the other clocks in the clock frequency
measurement section, as well as being the reference clock for the IODELAYCTRL instances used in the DDR3
SDRAM interfaces. The three clocks immediately below are derived from this clock.

« The source of this clock is the clks_in.ref_clk global clock input.

pll_pri_clk

« This clock is used as the primary OCP clock by the design.

« itis derived from pil_ref_clk and set to 200 MHz. It drives much of the OCP logic in the Uber design, including
the DMA OCP section.

pll_reg_clk

+ Thisis used as a low frequency clock by the design.

+ Itis derived from pil_ref_clk and set to 80 MHz. It drives the low-frequency OCP Direct Slave register section.

« s frequency need not be related to any of the other clocks.

pll_mem_clk

« Thisis used as the clock for the DDR3 SDRAM memory interfaces in the design.

« Itis derived from pli_ref_clk and set to 400 MHz. It drives the on-board memory interface section.

5.5.4.1.2 Internal Reset Generation (MMCM)
An active high asynchronous user reset pll_rst is generated from the MMCM locked signal. Refer to Figure 10.
5.5.4.1.3 MPTL Interface Clock Generation

The MPTL interface block requires a differential mptl_clk clock input. lts source is dependent on the board selected.
Refer to Figure 11.

Example HDL FPGA Designs Page 69
AD-UG-0004 Alpha Data Parallel Systems Ltd

ADMXRC Gen 3 SDK 1.3.0 User Guide
’ALF“‘ DATA (v1.3 - 04th March 2011)

5.5.4.1.4 Input Clock Buffering

Clocks are input on the clks_in signal of type clks_in_t and are buffered. Clock support is dependent on the board
selected. Type clks_in_tis defined in the uber_pkg package which is located in hdl/vhdl/examples/uber/commor.
Refer to Figure 11,

5.5.4.1.5 Input Clock Extraction (MGT Sourced)

MGT sourced clocks are input on the clks_mgt_in signal of type clks_mgt_in_t and are converted from double-ended
10 single-ended and then buffered. The buffered clocks are connected to the clk_vec signal. The connection order is
defined by the clk_vec_t type in the uber_pkg package. MGT sourced clock support is dependent on the board
selected. Type clks_mgt_in_tis defined in the uber_pkg package which s located in hdlivhdi/examples/uber/
common/. Refer to Figure 11.

5.5.4.1.6 Output Clock Generation

Clocks are generated and output on the clks_out signal of type clks_out_t. Clock support is dependent on the board
selected. Type clks_out_tis defined in the uber_pkg package which is located in hdlivhdllexamples/uber/common.
Refer to Figure 11,

Page 70 Example HDL FPGA Designs
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.3.0 User Guide.
(V1.3 - 04th March 2011)

@ALPHA DATA

VM BASE

VY

\

urS ok

et ot cuoutoe

e »
Mo

BURG otk

\

Figure 10: Uber Design Internal Clock Generation (MMCM)

Example HDL FPGA Designs
AD-UG-0004

Alpha Data Parallel Systems Ltd.

Page 71

@ALPHA DATA

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(1.3 - 04th March 2011)

aks_matinmgr112 chop. i
XEL | mat ok nuuGT112_CLKo_NUw)
o | Mot tueTIEz CLko
ks matinmgr112_ckon —— {18
o ces
A] bt Now)
ks mgtinmgi13_chop. 1 BUPDS | maLai buGT1I3 CLKO_NUM)

aks_matinmgr113_chon ——{ 18

aks_mat_inmori17_ckop.

ks motinmg17_chon —c{ 18

1BUFDS

ooz

1BUFDS
oEL
°

ooz

mgt_ck_BUMGTLLT_CLKO_NUM)

X _vee DUGINGTLLZ_CLKO_NUM)

e _vec_ bYGNGTLL_CLKO_NUM)

e vee bYGINGTLLT_CLKO_NUM)

ADM-XRC-6TL

ale ik

» v bocuc

ks inoam_gclk m2cp

ks inaam_gok macn |

BiLreg ok

» [N

) chs_owsm_mgk c2mp
ces_outm_ ik c2mn

ks ngtinmgt114_csop mou_ ko,

ADM-XRC-6TL mptl_clk generation e . v
ket in gt 15_cho, otk

ADM-XRC-6TL mptl_clk generation oL mAtS 0 pake
cks_ngtinmgr115_ckon mot_ckn

Figure 11: Uber Design Clock Buffering/Extraction

Page 72

Alpha Data Parallel Systems Ltd

Example HDL FPGA Designs
AD-UG-000:

ADM-XRC Gen 3 SDK 130 User Guide
(V1.3 - 04ih March 2011) @ ALPHA DATA

5.5.4.2 Target MPTL Interface

This block wraps up the target MPTL interface core, instantiating an MPTL to OCP interface appropriate to the board in
use. The purpose of the block is to connect the MPTL (the data channel between the Bridge and Target FPGAS) to the
Direct Slave and DMA OCP channels within the FPGA design. Refer to the component mptl_if_target_wrap for details.
The Uber design output signal mptl_sb_t2b.mptl_target_configured_ indicates that the FPGA OCP based blocks
are ready to communicate with the bridge via the MPTL interface. This output is generated using the
mptl_if_target_wrap input ocp_ready. In the case of the Uber design, this ocp_ready input is driven by a signal
derived from the LOCKED flag of the design's main MMCM (i.e. the one generating pll_pri_clk etc.). This holds off
MPTL intitialisation until after the MMCM is locked.

The reason for holding off MPTL initialisation is to prevent a race condition that might otherwise occur between (a)
software attempting to read or write Target FPGA registers after configuration and (b) the main MMCM in the design
achieving lock. Holding off MPTL initialisation between the Bridge and Target until the design's main MMCM has
achieved lock causes a call to ADMXRC3_C« to wait until MPTL has been completed,
thus guaranteeing that the Target FPGA is in the pvuper state for software on the host to communicate with it.

Note: The Direct Slave address space supported by the Bridge is smaller than the full ADB3 OCP address
space. For the board in use, itis indicated by the DS_ADDR_WIDTH constant in the package
adb3_target_inc_pkg

Note: The DMA address space supported by the Bridge is smaller than the full ADB3 OCP address space.
For the board in use, itis indicated by the DMA_ADDR_WIDTH constant in the package
adb3_target_inc_pkg

5.5.4.3 OCP Direct Slave Block

This block is by _direct_slave.vhd, and connects the Direct Slave
OCP channel to various register blocks and a couple of memory access windows via an OCP address space splitter.
Most of the logic in this block is in the relatively low frequency (80 MHz) pli_reg_clk domain. Therefore, a secondary

function of this block is to connect the high speed pll_pri_clk domain to the pll_reg_clk domain. The main elements
are:

+ Connection between clock domains, between the pll_pri_clk domain and the relatively low frequency
pll_reg_clk domain.

Direct Slave address space splitter block

« Simple test register block (blk_ds_simple_test)

Clock frequency measurement register block (blk_ds_clk_read)

Interrupt test register block (blk_ds_int_test)

Informational register block (blk_ds_info), including build datestamp and build timestamp

+ GPIO test register block (blk_ds_io_test)

+ On-board memory control and status register block (blk_ds_mem_reg)
. Direct Slave access to BRAM
+ Direct Slave access to on-board memory

Ablock diagram of the OCP Direct Slave block is shown in Figure 12

Example HDL FPGA Designs

Page 73
AD-UG-0004 Alpha Data Parallel Systems Ltd.

@ALPHA DATA

/ADM-XRC Gen 3 SDK 13.0 User Guide
(VL3 - 04th March 2011)

pmen_
et

a3 cross i dom

ik ds_simpie o5t

aav3.ocp_soi b

bl g e read

3 oco_cross <l dor

e

b direct save

wio_now
bl et
Jor— .—~ nenpt |
05 PAGE and 03 BANK.
b g mem

Figure 12: Uber Direct Slave Block Diagram

Page 74

Example HDL FPGA Designs
Alpha Data Parallel Systems Ltd. AD-UG-0004

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(V1.3 - 04ih March 2011) @ALPHA DATA

5.5.4.3.1 OCP Cross-Clock Domain Block

‘This connects the Direct Slave OCP channel from the higher speed clock domain (pll_pri_clk) to the lower speed
register clock domain (pll_reg_clk), using an instance of the ADB3 OCP library component
adb3_ocp_cross_clk_dom,

5.5.4.3.2 Direct Slave Address Space Splitter Block

An instance of the ADB3 OCP library component adb3_ocp_split_b spliis the Direct Slave OCP channel into multiple
secondary OCP channels, which are then routed to their appropriate blocks.

The splitis defined by the Direct Slave address space ranges defined in the DS_ADDR_RANGE_TABLE constant in
the uber_pkg package. The constant DS_ADDR_RANGE_TABLE consists of pairs of { base address, mask } for each
address range that the splitter recognises. For each range, the lower address is identified by the base address, and the
upper address is identified by (base address + mask).

Note: In each mask value, a 1 bit causes the corresponding bit of the incoming OCP address to be ignored when the
splitter determines which address range, if any, the incoming OCP address hits. As an optimisation, the
DS_ADDR_RANGE_TABLE constant in the uber_pkg package uses the function ds_mask_conv from the package
adb3_target_pkg to ensure that the topmost DS_ADDR_WIDTH bits of the mask values are all ones, since these bits
will never be anything but zero in incoming OCP addresses. The following example illustrates how an address is
determined to hit a given address range.

First, we note that address range 1 has the following base and mask information as defined in

DS_ADDR_RANGE _TABLE:

Address range 1 base = ds_base_conv(x"0000C0") = 0x00000000_000000C0
Address range 1 mask = ds_mask_conv(X'00003F") = OXFFFFFFFF_FFC0003F
=> Address bits used in comparison = 0x00000000_003FFFCO

When an incoming OCP address must be decoded, decoding is performed as follows for address range 1:

Incoming OCP address (for example) = 0x00000000_000000D0
=> Masked incoming OCP address = 0x00000000_000000C0
Hits address range 1, since masked incoming OCP address = address range 1 base

Table Table 8 below shows the information in DS_ADDR_RANGE_TABLE and which functional area each index
corresponds to:

Address Address Range Function

range index

0 0x000000-0x00003F _| Simple test registers

1 0x000040-0x00007F | Clock frequency measurement registers.

2 (0x0000C0-0x0000FF | Interrupt test registers

3 0x000140-0x00017F | Informational registers

4 0x000200-0x00027F | GPIO test registers

5 0x000300-0x0003FF | On-board memory control and status registers
6 0x080000-0xOFFFFF | Direct Slave access to BRAM

7 0x200000-0x3FFFFF | Direct Slave access to on-board memory

Table 8: Uber Design Direct Slave Address Map

Example HDL FPGA Designs Page 75
AD-UG-0004 Alpha Data Parallel Systems Ltd

ADMXRC Gen 3 SDK 1.3.0 User Guide
’ALF“‘ DATA (v1.3 - 04th March 2011)

Note: Reads of undefined areas of the address space return data consisting of OXDEADCODE. Wiites to
undefined areas have no effect

5.5.4.3.3 Simple Test Register Block
5.5.4.3.3.1 Description

The Simple Test Register block contains a register that returns the nibble-reversed value of anything written to it. It is
by

y _ds_simple_test.vhd. It consists of an instance of the ADB3
OCP library component adb3_ocp_simple_bus_if and a set of VHDL processes that implement the nibble-reversal
register

The adb3_ocp_simple_bus_if instance drives a simple parallel bus with the following signals:

1. ds_a- The register address, derived from some low order bits of the Direct Slave OCP address. This is used to

select the correct register for writes, and to control a multiplexor that drives ds_g for reads.
2. d

d
ds_we - Byte write enables; qualified by ds_w.

ds_d - Write data; qualified by ds_w.

ds_r - Indicates that valid data must be presented on ds_q on the following clock cycle.

is_w - Indicates that write data is valid on the signal ds_d and write byte enables are valid on the signal
is_we.

o0 s w

ds_q - Driven with read data by a multiplexor controlled by ds_a. The registers of the FPGA design are inputs
to the multiplexor.

5.5.4.3.3.2 Register Description

Aset of VHDL processes in uses the signals ds_a, ds_w etc. described above to implement a single register. Although

there is a single register in this example, in principle as many registers can be created as are required. The registers
appear in the Direct Slave OCP address space as follows:

[Name [Address |
| pATA | oxo00000 |

Table 9: Simple Test Register Block Address Map

[Bits [Mnemonic [Type [Function |
[310 | DATA

| Rw | Returns the nibble-reversed version of the last data written. |

Table 10: Simple Test Register Block, DATA Register (0x000000)

5.5.4.3.4 Clock Frequency Measurement Register Block
5.5.4.3.4.1 Description

The clock frequency register block is
blk_ds_clk_read.vhd and performs the following functions:

Measurement of frequencies of internally generated (MMCM) clocks.
Measurement of frequencies of externally sourced clocks

Page 76 Example HDL FPGA Designs
AD-UL

Alpha Data Parallel Systems Ltd 1G-0004.

ADM-XRC Gen 3 SDK 1.3.0 User Guide.

(V1.3 - 04ih March 2011) @ALPHA DATA

It consists of an instance of adb3_ocp_simple_bus_if, multiple instances of the clock frequency measurement block
(blk_clock_freq), and a set of processes that implement the registers.

The clock frequency measurement component (blk_clock_freq) is instantiated for the main OCP clocks of the design,
enabling them to be measured;

< plref_ck
« pllpri_ck
« plreg_ck

« pll_mem_ck
blk_clock_freq is also instantiated for each board-dependent clock according to the CLKS_IN_VALID constant
defined in the uber_pkg package.

Within this block, a function conv_ref_clk_tcval returns the clock frequency measurement period, and hence the
measurement resolution, as a function of the TARGET_USE constant from the package adb3_target_pkg. The
REF_CLK_TCVAL constant defines the measurement period in pil_ref_clk cycles as follows:

OCP-only simlation (TARGET_USE = SIM_OCP)
« Period = (REF_CLK_FREQ_HZ/1000000) ref_clk cycles = 1yis.
+ Resolution = IMHz.

Full MPTL simlation (TARGET_USE = SIM_MPTL)

« Period = (REF_CLK_FREQ_HZ/1000000) ref_clk cycles = 1yis.
+ Resolution = 1MHz.

Synthesis (TARGET_USE = SYN_NGC)

« Period = (REF_CLK_FREQ_HZ) ref_clk cycles = 1s.

+ Resolution = 1Hz.

If the clocking infrastructure of the Uber design as described in Section 5.5.4.1is modified to change the frequencies
of pli_pri_clk andlor pli_ref_clk, the values mapped to the smp_clk_div_stages generics may need to be changed to
ensure that the relationship defined in Section 6.8.1.1.3 stil holds for every blk_clock_freq instance.

5.5.4.3.4.2 Register Description

As in the simple test register block, an instance of adb3_ocp_simple_bus_if together with some VHDL processes
implement the registers that control clock frequency measurement. These registers appear in the Direct Slave OCP.
address space as follows:

Name Address|
SEL 0x000040
CTRL/STAT 0x000044
FREQ 0x000048

Table 11: Clock Frequency Measurement Register Block Address Map

Example HDL FPGA Designs Page 77
AD-UG-0004 Alpha Data Parallel Systems Ltd

ADM-XRC Gen 3 SDK 1.3.0 User Guide

OaLena DATA (V1.3 -04th March 2011)
Bits | Mnemonic Type | Function
315 (Reserved)
40 [SEL_CLK M | Selects which clock's measured frequency and flags are available in

the FREQ and STAT registers, respectively.
pll_reg_clk (Internal)
I_pri_clk (Internal)
00010 => pil_ref_clk (Internal)
00011 => pll_mem_clk (Internal)
01100 => Ick (External)

10110 => mgt114_clko (External MGT clock)
11000 => mgt115_clkO (External MGT clock)
11010 => mgt116_clko (External MGT clock)
11100 => mgt117_clko (External MGT clock)

Table 12: Clock Frequency Measurement Register Block, SEL Register (0x000040)

Bits | Mnemonic Type | Function
CLR_UPDATE | R/ | Write: controls frequency measurement updated flags:
WIC | 1= Clear all measurement updated flags.
0= No action.
Read: indicates selected frequency measurement update status:
1= Measurement updated
0 = Measurement not updated.

@

30 | CLK_VALID R

o

Indicates selected board clock valid status:
1= Clock valid on this board.
0= Clock not valid on this board.

29 | CLK_RUNNING | R

o

Indicates selected clock running status:
1= Clock running
0= Clock not running.

28:0 (Reserved)

Table 13: Clock Frequency Measurement Register Block, CTRL/STAT Register (0x000044)

31:0

Bits_| Mnemonic [Type [Function |
| FrReQ | RO [indicates selected clock frequency measurement in Hz. |

Table 14: Clock Frequency Measurement Register Block, FREQ Register (0x000048)

5.5.4.3.5 Interrupt Test Register Block
5.5.4.3.5.1 Description

The interrupt test register block is by _ds_int_testvhd and
performs the following functions:

+ Control of interrupt generation.

It consists of an instance of adb3_ocp_simple_bus_if and a set of VHDL processes that implement the registers and
interrupt generation.

Page 78 Example HDL FPGA Designs
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(V1.3 - 04ih March 2011) @ALPHA DATA

5.5.4.3.5.2 Register Description

As in the simple test register block, an instance of adb3_ocp_simple_bus_if together with some VHDL processes
implement a set of registers for generating interrupts on the host. These registers appear in the Direct Slave OCP.
address space as follows:

Name Address|

SET 0x0000C0O
CLEAR/STAT 0x0000C4
MASK 0x0000C8
ARM 0x0000CC
COUNT 0x0000D0

Table 15: Interrupt Test Register Block Address Map

Bits_| Mnemonic Type [Function

31:0 | SET W1S | Write: writing a 1 to a particular bt sets the corresponding bit in the
STAT register.
Read: returns undefined data

Table 16: Interrupt Test Register Block, SET Register (0x0000C0)

Bits_ | Mnemonic Type [Function
31:0 | CLEAR/STAT

R/ | The interrupt output is asserted whenever at least one bit in the
WIC | STAT register is 1 and not masked by the MASK register.
Write: writing a 1 to a particular bit clears the corresponding bit in
the STAT register.
Read: returns the current value of the STAT register.

Table 17: Interrupt Test Register Block, CLEAR/STAT Register (0x0000C4)

Bits_ | Mnemonic Type [Function

310 | MASK M | Controls/indicates the masking (1) or enabling (0) of individual bits.
in the STAT register. When a bit is 0, the corresponding bit in the
STAT register is unmasked (ie. allowed to assert the interrupt
output).

Table 18: Interrupt Test Register Block, MASK Register (0x0000C8)

[Bits [Mnemonic [Type [Function |
31:0 | ARM WO | Awrite to this register will force the FPGA interrupt output to its
inactive state for one cycle of pil_reg_clk.
Table 19: Interrupt Test Register Block, ARM Register (0x0000CC)
Example HDL FPGA Designs Page 79

AD-UG-0004 Alpha Data Parallel Systems Ltd

ADM-XRC Gen 3 SDK 1.3.0 User Guide

OaLena DATA (v1.3- 04th March 2011)
Bits_| Mnemonic Type | Function
31:0 | COUNT RW | Write: if the STAT register is zero, then the COUNT register is set to

the value written. If the STAT register is non-zero, writes to the
COUNT register have no effect

Read: indicates the number of clock cycles that have elapsed while
the STAT register is non-zero.

Table 20: Interrupt Test Register Block, COUNT Register (0x0000D0)

Since the COUNT register increments as long as at least one interrupt is active in the STAT register, the COUNT
register can be used by host software to measure the time taken to respond to and clear an interrupt

5.5.4.3.6 Informational Register Block
5.5.4.3.6.1 Description

The register block is by
registers that indicate the following:

+_info.vhd and contains

+ The date and time at which the design's .bit file was built.
+ The status of Direct Slave OCP address splitter.

« The base address and size of the BRAM block (blk_bram).
+ The status of the on-board memory interfaces.

It consists of an instance of adb3_ocp_simple_bus_if and a set of VHDL processes that implement the registers.

5.5.4.3.6.2 Register Description

Asin the simple test register block, an instance of adb3_ocp_simple_bus_if together with some VHDL processes
implement the informational registers. These registers appear in the Direct Slave OCP address space as follows:

Name Address|

DATE 0x000140
TIME 0x000144
SPLIT 0x000148
BRAM_BASE 0x00014C
BRAM_MASK 0x000150
MEM_BASE 0x000154
MEM_MASK 0x000158
MEM_BANKS 0x00015C

Table 21: Informational Register Block Address Map

Bits | Mnemonic Type | Function
31:0 | DATE RO Indicates date of build (DD/MM/YYYY) in BCD format where:
DD = Day of month

MM = Month of year
YYYY = Year.

This information is obtained from the TODAYS_DATE constant in
the today_pkg package.

Table 22: Informational Register Block, DATE Register (0x000140)

Page 80 Example HDL FPGA Designs
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.3.0 User Guide.
(V1.3 - 04th March 2011)

@ ALPHA DATA

Bits_| Mnemonic Type | Function
310 | TIME RO | Indicates time of build (HH/MM/SS/LL) in BCD format where:
HH = Hour of da
MM = Minute of hour
SS = Second of minute
LL = Millisecond of second.
This information is obtained from the TODAYS_TIME constant in
the today_pkg package.
Table 23: Informational Register Block, TIME Register (0x000144)
Bits_| Mnemonic Type | Function
318 (Reserved).
70 |spuT RO | Indicates multiple split ports active error count
Table 24: Informational Register Block, SPLIT Register (0x000148)
Bits | Mnemonic Type | Function
31:0 | BASE RO | Indicates the base address of the BRAM access window in the
Direct Slave OCP address space.
This information is obtained from the BRAM_ADDR_BASE
constant in the package uber.
Table 25: Informational Register Block, BRAM_BASE Register (0x00014C)
Bits | Mnemonic Type | Function
310 | MASK RO | Indicates the address mask of the BRAM access window in the
Direct Slave OCP address space.
This information is obtained from the BRAM_ADDR_MASK
constant in the package uber.
Table 26: Informational Register Block, BRAM_MASK Register (0x000150)
Bits_| Mnemonic Type | Function
310 | BASE RO | Indicates the base address of the on-board memory access
window in the Direct Slave OCP address space.
This information is obtained from the RAM_WIN_ADDR_BASE
constant in the package uber.
Table 27: Informational Register Block, MEM_BASE Register (0x000154)
Bits | Mnemonic Type | Function
31:0 | MASK RO | Indicates the address mask of the on-board memory access

window in the Direct Slave OCP address space.
This information is obtained from the RAM_WIN_ADDR_MASK
constant in the package uber.

Table 28: Informational Register Block, MEM_MASK Register (0x000158)

Example HDL FPGA Designs
AD-UG-0004

Alpha Data Parallel Systems Ltd

Page 81

@ALPHA DATA

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(1.3 - 04th March 2011)

Bits | Mnemonic Type | Function
314 (Reserved).
30 | MEM_BANKS | RO | Indicates number of on-board memory bank interfaces present in

the FPGA example design.
This information is obtained from the MEM_BANKS constant in the
adb3_target_inc_pkg package.

Table 29: Informational Register Block, MEM_BANKS Register (0x00015C)

5.5.4.3.7 GPIO Test Register Block
5.5.4.3.7.1 Description

The GPIO test register block is

the following functions:
Control of XRM GPIO bi-directional interface in example design (i present)
Control of Pnd GPIO bi-directional interface in example design (if present)
Control of P GPIO bi-directional interface in example design (if present)

by (_ds_io_testvhd and performs

It consists of an instance of adb3_ocp_simple_bus_if and a set of processes that implement the registers that drive
and retur the logic levels on the GPIO pins.

Note: This block implements a general scheme for driving/accepting data on the GPIO interfaces using
registers connected to the Direct Slave OCP channel. This scheme is known colloguially as "bit-banging",
and is not suitable for high speed communication, as the block contains no logic for sequencing signals as
required by a typical communications protocol. The user is encouraged to implement an 1/0 interface
'scheme appropriate to their own application.

5.5.4.3.7.2 Register Description

As in the simple test register block, an instance of adb3_ocp_simple_bus_if together with some VHDL processes
implement the registers for the GPIO pins. These registers appear in the Direct Slave OCP address space as follows:

Name Address

XRM_GPIO_DA_DATAO 0x000200
XRM_GPIO_DA_DATAI 0x000204
XRM_GPIO_DA_TRI 0x000208
XRM_GPIO_DB_DATAO 0x00020C
XRM_GPIO_DB_DATAI 0x000210
XRM_GPIO_DB_TRI 0x000214
XRM_GPIO_DC_DATAO 0x000218
XRM_GPIO_DC_DATAI 0x00021C
XRM_GPIO_DC_TRI 0x000220
XRM_GPIO_DD_DATAO 0x000224
XRM_GPIO_DD_DATAI 0x000228
XRM_GPIO_DD_TRI 0x00022C
XRM_GPIO_CS_DATAQ 0x000230

Table 30: GPIO Test Register Block Address Map (continued on next page)

Page 82

Example HDL FPGA Desi
Alpha Data Parallel Systems Ltd AD-UL

ans

1G-0004.

ADM-XRC Gen 3 SDK 1.3.0 User Guide.

(V1.3 - 04th March 2011)

@ ALPHA DATA

Name Address
XRM_GPIO_CS_DATAI 0x000234
XRM_GPIO_CS_TRI 0x000238
PN4_GPIO_P_DATAO 0x00023C
PN4_GPIO_P_DATAI 0x000240
PN4_GPIO_P_TRI 0x000244
PN4_GPIO_N_DATAO 0x000248
PN4_GPIO_N_DATAI 0x00024C
PN4_GPIO_N_TRI 0x000250
PN6_GPIO_MS_DATAO 0x000254
PN6_GPIO_MS_DATAI 0x000258
PN6_GPIO_MS_TRI 0x00025C
PN6_GPIO_LS_DATAO 0x000260
PN6_GPIO_LS_DATAI 0x000264
PN6_GPIO_LS_TRI 0x000268
Table 30: GPIO Test Register Block Address Map
Bits | Mnemonic | Type | Function
31:16 | DAPOUT | M | Controlsfindicates logic levels driven on the da_p(15:0) XRM GPIO pins.
150 [DANOUT| M | Controlsfindicates logic levels driven on the da_n(15:0) XRM GPIO pins.
Table 31: GPIO Test Register Block, XRM_GPIO_DA_DATAO Register (0x000200)
Bits | Mnemonic | Type [Function
31:16 | DAP_IN | RO | Indicates the actual logic levels on the da_p(15:0) XRM GPIO pins,
150 [DAN_IN| RO | Indicates the actual logic levels on the da_n(15:0) XRM GPIO pins.
Table 32: GPIO Test Register Block, XRM_GPIO_DA_DATAI Register (0x000204)
Bits | Mnemonic | Type [Function
31:16 [DAPTRI| M | Controlsindicates the tisate enables for the da_p(15:0) XRM GPIO pins.
Ifabitis 1, the pin is tristated (h
150 [DANTRI| M | Controlsiindicates the tristate enables for the da _n(15:0) XRM GPIO pins,
Ifabitis 1, the pin is tristated (hig
Table 33: GPIO Test Register Block, XRM_GPIO_DA_TRI Register (0x000208)
Bits | Mnemonic | Type [Function
31:16 [DBPOUT| M |C logic levels driven on the db_p(15:0) XRM GPIO pins.
150 [DBNOUT| M |cC logic levels driven on the db_n(15:0) XRM GPIO pins.

Table 34: GPIO Test Register Block, XRM_GPIO_DB_DATAO Register (0x00020C)

Example HDL FPGA Designs
AD-UG-0004

Alpha Data Parallel Systems Ltd

Page 83

@ALPHA DATA

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(1.3 - 04th March 2011)

Bits | Mnemonic | Type [Function
31:16 | DB_P_IN | RO | Indicates the actual logic levels on the db_p(15:0) XRM GPIO pins.
150 | DB_N_IN| RO | Indicates the actual logic levels on the db_n(15:0) XRM GPIO pins.
Table 35: GPIO Test Register Block, XRM_GPIO_DB_DATAI Register (0x000210)
Bits | Mnemonic | Type [Function
31:16 [DBPTRI[M | Contiolsfindicates the tistate enables for the db_p(15:0) XRM GPIO pins,
Ifabitis 1, the pin is tristated (h
15:0 |DBNTRI | M | Controlsfindicates the tistate enables for the db_n(15:0) XRM GPIO pis.
Ifabitis 1, the pin is tristated (h
Table 36: GPIO Test Register Block, XRM_GPIO_DB_TRI Register (0x000214)
Bits_| Mnemonic | Type | Function
31:16 [DCPOUT| M |cC: logic levels driven on the dc_p(15:0) XRM GPIO pins.
15:0 | DC_N.OUT [M | Controlsfindicates logic levels driven on the dc_n(15:0) XRM GPIO pins.
Table 37: GPIO Test Register Block, XRM_GPIO_DC_DATAO Register (0x000218)
Bits | Mnemonic | Type [Function
31:16 | DC_P_IN | RO | Indicates the actual logic levels on the dc_p(15:0) XRM GPIO pins.
150 [DC_N_IN| RO | Indicates the actual logic levels on the dc_n(15:0) XRM GPIO pins.
Table 38: GPIO Test Register Block, XRM_GPIO_DC_DATAI Register (0x00021C)
Bits | Mnemonic | Type [Function
31:16 [DCP_TRI | M | Contiols/indicates the tistate enables for the dc_p(15:0) XRM GPIO pins.
Ifabitis 1, the pin is tristated (hig
150 [DC_NTRI| M | Controls/indicates the tristate enables for the dc _n(15:0) XRM GPIO pins.
Ifabitis 1, the pin i tristated (high
Table 39: GPIO Test Register Block, XRM_GPIO_DC_TRI Register (0x000220)
Bits | Mnemonic | Type | Function
31:16 | DD_P_OUT | M | Controlsfindicates logic levels driven on the dd_p(15:0) XRM GPIO pins.
150 [DD_N_OUT | M | Controlsfindicates logic levels driven on the dd_n(15:0) XRM GPIO pins.
Table 40: GPIO Test Register Block, XRM_GPIO_DD_DATAO Register (0x000224)
Bits | Mnemonic | Type [Function
31:16 | DD_P_IN | RO | Indicates the actual logic levels on the dd_p(15:0) XRM GPIO pins.
150 | DD_N_IN| RO | Indicates the actual logic levels on the dd_n(15:0) XRM GPIO pins.

Table 41: GPIO Test Register Block, XRM_GPIO_DD_DATAI Register (0x000228)

Page 84

Alpha Data Parallel Systems Ltd

Example HDL FPGA Designs
AD-UG-0004

ADM-XRC Gen 3 SDK 1.3.0 User Guide.
(V1.3 - 04th March 2011)

@ ALPHA DATA

Bits | Mnemonic | Type [Function
31:16 [DD_P_TRI| M [Controlsfindicates the tisate enables for the dd_p(15:0) XRM GPIO pins.
Ifabitis 1, the pin is tristated (high:
150 [DD_N_TRI| M | Controlsiindicates the tristate enables for the dd n(15 0) XRM GPIO pins.
Ifabitis 1, the pin is tristated (h
Table 42: GPIO Test Register Block, XRM_GPIO_DD_TRI Register (0x00022C)
Bits | Mnemonic Type | Function
3118 (Reserved)
17 |ppbccPouT| M | Controlsiindicates the logic level driven on the dd_cc_p XRM GPIO
16 |Dp_CCN.OUT| M | Controlsiindicates the logic level driven on the dd_cc_n XRM GPIO
15 |[pcccPouT| M | Controlsiindicates the logic level driven on the dc_cc_p XRM GPIO
14 [pcccNout| M | Controlsiindicates the logic level driven on the dc_cc_n XRM GPIO
13 |[pBCCPOUT| M | Controlsiindicates the logic level driven on the db_cc_p XRM GPIO
pin.
12 [DBCCN.OUT| M | Controlsiindicates the logic level driven on the db_cc_n XRM GPIO
pin.
1 |[paccPouT| M | Controlsiindicates the logic level driven on the da_cc_p XRM GPIO
pin.
10 |[DACCNOUT| M | Controlsiindicates the logic level driven on the da_cc_n XRM GPIO
pin.
96 |sp_out M | Controlsfindicates the logic levels driven on the sd(3:0) XRM GPIO
pins.
54 | sc_out M | Controlsiindicates the logic levels driven on the sc(1:0) XRM GPIO
pins
32 |se_out M | Controlsiindicates the logic levels driven on the sb(1:0) XRM GPIO
pins
10 |saout M

Controlsfindicates the logic levels driven on the sa(1:0) XRM GPIO
pins

Table 43: GPIO Test Register Block, XRM_GPIO_CS_DATAO Register (0x000230)

Example HDL FPGA Designs
AD-UG-0004

Alpha Data Parallel Systems Ltd

Page 85

ADM-XRC Gen 3 SDK 1.3.0 User Guide

@ALPHA DATA (v1.3 - 04th March 2011)

Bits_| Mnemonic Type | Function
31:18 (Reserved)

17_|pb_cc PN | R

16 | DD_CC_N_IN | RO | Indicates the actual logic level on the dd_cc_n XRM GPIO pin.

o

Indicates the actual logic level on the dd_cc_p XRM GPIO pin,

15 | pc_cc PN | RO | indicates the actual logic level on the dc_cc_p XRM GPIO pin,
14 | DC_CC_N_IN | RO | Indicates the actual logic level on the dc_cc_n XRM GPIO pin,
13 | DB_CC_P_IN | RO | Indicates the actual logic level on the db_cc_p XRM GPIO pin.
12 | DB_CC_N_IN | RO | Indicates the actual logic level on the db_cc_n XRM GPIO pin.
1 [DACCPIN| RO | indicates the actual logic level on the da_cc_p XRM GPIO pin.
10 | DA_CC_N_IN | RO | Indicates the actual logic level on the da_cc_n XRM GPIO pin.
9:6 | SD_IN RO | Indicates the actual logic levels on the sd(3:0) XRM GPIO pins,
54 | SCIN RO | Indicates the actual logic levels on the sc(1:0) XRM GPIO pins.
32 [sBIN RO | Indicates the actual logic levels on the sb(1:0) XRM GPIO pins,
10 |sAIN RO | Indicates the actual logic levels on the sa(L:0) XRM GPIO pins.

Table 44: GPIO Test Register Block, XRM_GPIO_CS_DATAI Register (0x000234)

Bits | Mnemonic Type | Function
31:18 (Reserved)
17 [op_ccP_TRI| M | Controlsindicates the tristate enable for the dd_cc_p XRM GPIO pin.
ifabitis 1, the pin is tristated (high-impedanc

16 | DD_CCNTRI| M | Controls/indicates the tristate enable for the dd_cc_n XRM GPIO pin.
If a bitis 1, the corresponding pin is tristated (high-impedance).

15 |pc_CCPTRI| M | Controlsfindicates the tristate enable for the dc_cc_p XRM GPIO pin.
It abitis 1, the corresponding pin is tristated (high-impedance)
14 |DCCCN_TRI| M | Controlsfindicates the tristate enable for the dc_cc_n XRM GPIO pin.
Ifabitis 1, the corresponding pin is tristated (high-impedance)

13 [DBCC_P_TRI| M | Controls/indicates the tristate enable for the db_cc_p XRM GPIO pin.
If a bitis 1, the corresponding pin is tristated (high-impedance).

12 |DB.CCNTRI| M | Controlsfindicates the tristate enable for the db_cc_n XRM GPIO pin,

ifabitis 1, the pin is trstated (high-impedanc
11 [DACCP_TRI| M | Controlsfindicates the tristate enable for the da_cc_p XRM GPIO pin.
ifabitis 1, the pin is tristated (high-impedanc

10 |[DACCNTRI| M | Controlsfindicates the tristate enable for the da_cc_n XRM GPIO pin
It abitis 1, the corresponding pin is tristated (high-impedance)

96 | SD_TRI M | Controlsfindicates the tristate enables for the sd(3:0) XRM GPIO pins.
If a bitis 1, the corresponding pin is tristated (high-impedance).

5:4 SC_TRI M Controls/indicates the tristate enables for the sc(1:0) XRM GPIO pins.
If a bitis 1, the corresponding pin is tristated (high-impedance).

32 SB_TRI M Controls/indicates the tristate enables for the sb(1:0) XRM GPIO pins.
If a bitis 1, the corresponding pin is tristated (high-impedance).

10 [SATRI M | Controls/indicates the tristate enables for the sa(1:0) XRM GPIO pins.
ifabitis 1, the pin s tristated (high-impedanc

Table 45: GPIO Test Register Block, XRM_GPIO_CS_TRI Register (0x000238)

Page 86 Example HDL FPGA Designs
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.3.0 User Guide.
(V1.3 - 04th March 2011)

@ ALPHA DATA

Bits

Mnemonic | Type | Function

31:0

P_DATAO | M | Controlsfindicates logic levels driven on the gpio_p
(PN4_GPIO_WIDTH-1:0) Pn GPIO pins. If PN4_GPIO_WIDTH is less
than 32, the top (32-PN4_GPIO_WIDTH) bits of this register are unused.
The constant PN4_GPIO_WIDTH is defined in the package
adb3_target_inc_pkg.

Table 46: GPIO Test Register Block, PN4_GPIO_P_DATAO Register (0x00023C)

Bits

Mnemonic | Type | Function

310

P_DATAI | RO | Indicates the actual logic levels on the gpio_p(PN4_GPIO_WIDTH-1:0)
Pn4 GPIO pins. If PN4_GPIO_WIDTH is less than 32, the top
(32-PN4_GPIO_WIDTH) bits of this register are unused.

The constant PN4_GPIO_WIDTH is defined in the package
adb3_target_inc_pkg.

Table 47: GPIO Test Register Block, PN4_GPIO_P_DATAI Register (0x000240)

Bits

Mnemonic | Type | Function

31:0

P_TRI M | Controlsfindicates the tristate enables for the gpio_p
(PN4_GPIO_WIDTH-1:0) Pn4 GPIO pins. If PN4_GPIO_WIDTH is less
than 32, the top (32-PN4_GPIO_WIDTH bits o his register are unused.
Ifabitis 1, the pin is tristated (high:

The constant PN4_GPIO_WIDTH is defined in the package
adb3_target_inc_pkg.

Table 48: GPIO Test Register Block, PN4_GPIO_P_TRI Register (0x000244)

Bits

Mnemonic | Type | Function

31:0

N_DATAO | M | Controlsfindicates logic levels driven on the gpio_n
(PN4_GPIO_WIDTH-1:0) Pn GPIO pins. If PN4_GPIO_WIDTH is less
than 32, the top (32-PN4_GPIO_WIDTH) bits of this register are unused.
The constant PN4_GPIO_WIDTH is defined in the package
adb3_target_inc_pkg.

Table 49: GPIO Test Register Block, PN4_GPIO_N_DATAO Register (0x000248)

Bits

Mnemonic | Type [Function

310

N_DATAI | RO | Indicates the actual logic levels on the gpio_n(PN4_GPIO_WIDTH-1:0)
Pn4 GPIO pins. If PN4_GPIO_WIDTH is less than 32, the top
(32-PN4_GPIO_WIDTH) bits of this register are unused.

The constant PN4_GPIO_WIDTH is defined in the package
adb3_target_inc_pkg.

Table 50: GPIO Test Register Block, PN4_GPIO_N_DATAI Register (0x00024C)

Example HDL FPGA Designs
AD-UG-0004

Alpha Data Parallel Systems Ltd

Page 87

ADM-XRC Gen 3 SDK 1.3.0 User Guide

@ALPHA DATA (v1.3 - 04th March 2011)

Bits | Mnemonic | Type [Function

31:0 | N_TRI M | Controlsiindicates the tristate enables for the gpio_n
(PN4_GPIO_WIDTH-1:0) Pn GPIO pins. If PN4_GPIO_WIDTH is less
than 32, the fop (32-PN4_GPIO_WIDTH bits o this register are unused.
Ifabitis 1, the pin is tristated (high:

The constant PN4_GPIO_WIDTH is defined in the package
adb3_target_inc_pkg.

Table 51: GPIO Test Register Block, PN4_GPIO_N_TRI Register (0x000250)

Bits | Mnemonic | Type [Function

31:0 | MSDATAO | M | If PN6_GPIO_WIDTH is less than or equal to 32, this register is ignored.

If PN6_GPIO_WIDTH is at least 32, this register controls/indicates logic
levels driven on the gpio(PN6_GPIO_WIDTH:32) PN6 GPIO pins. If
PN6_GPIO_WIDTH is less than 64, the top (64-PN6_GPIO_WIDTH) bits of
this register are unused.

The constant PN6_GPIO_WIDTH is defined in the package
adb3_target_inc_pkg

Table 52: GPIO Test Register Block, PN6_GPIO_MS_DATAO Register (0x000254)

Bits | Mnemonic | Type [Function

31:0 | MS_DATAI| RO | If PN6_GPIO_WIDTH is less than or equal to 32, this register is ignored.

11 PN6_GPIO_WIDTH is at least 32, this register indicates the actual logic
levels on the gpio(PN6_GPIO_WIDTH:32) PN6 GPIO pins. If
PN6_GPIO_WIDTH is less than 64, the top (64-PN6_GPIO_WIDTH) bits of
this register are unused

The constant PN6_GPIO_WIDTH is defined in the package
adb3_target_inc_pkg

Table 53: GPIO Test Register Block, PN6_GPIO_MS_DATAI Register (0x000258)

Bits | Mnemonic | Type [Function

31:0 [MS_TRI | M | IfPN6_GPIO_WIDTH is less than or equal to 32, this register is ignored.

If PN6_GPIO_WIDTH is at least 32, this reg\s(er canuu\s/mmcales the
tristate enables for the gpio(PN6_GPIO_WI 6 GPIO pins. If
PN6_GPIO_WIDTH is less than 64, the top (64 PN6_ Gmo _WIDTH) bits of
this register are unused

Ifabitis 1, the pin is tristated (high:

The constant PN6_GPIO_WIDTH is defined in the package
adb3_target_inc_pkg

Table 54: GPIO Test Register Block, PN6_GPIO_MS_TRI Register (0x00025C)

Bits_| Mnemonic [Type [Function

310 |LSDATAO | M | IfPN6_GPIO_WIDTH is at least 32, this register controlsfindicates logic
levels driven on the gpio(31:0) Pné GPIO pins.

1t PN6_GPIO_WIDTH is less than 32, this register controlsfindicates logic
levels driven on the gpio(PN6_GPIO_WIDTH-1:0) Pné GPIO pins, and the
top (32-PN6_GPIO_WIDTH) bits of this register are unused.

‘The constant PN6_GPIO_WIDTH is defined in the package
adb3_target_inc_pkg

Table 55: GPIO Test Register Block, PN6_GPIO_LS_DATAO Register (0x000260)

Page 88 Example HDL FPGA Designs
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.3.0 User Guide.
(V1.3 - 04th March 2011)

@ ALPHA DATA

Bits

Mnemonic | Type

Function

31:0

LS_DATAI | RO

If PN6_GPIO_WIDTH is at least 32, mvs register indicates the actual logic
levels on the gpio(31:0) Pné GPIO pin:

If PN6_GPIO_WIDTH is less than 32, his register indicates the actual logic
levels on the gpio(PN6_GPIO_WIDTH-1:0) Pn6 GPIO pins, and the top
(32-PN6_GPIO_WIDTH) bits of this register are unused.

The constant PN6_GPIO_WIDTH is defined in the package
adb3_target_inc_pkg

Table 56: GPIO

Test Register Block, PN6_GPIO_LS_DATAI Register (0x000264)

Bits

Mnemonic | Type

Function

31:0

LSTRI | M

1f PN6_GPIO_WIDTH is at least 32, this register controls/indicates the
tristate enables for the gpio(31:0) Pn GPIO pins

1f PN6_GPIO_WIDTH is less than 32, this register controls/indicates the
tristate enables of the gpio(PN6_GPIO_WIDTH-1:0) Pné GPIO pins, and
the top (32-PN6_GPIO, W\DTH) hns of this register are unused.

Ifabitis 1, the s tristated (high-

The constant PN6_GPIO_ WIDTH % defned i the package
adb3_target_inc_pkg

Table 57: GPIO Test Register Block, PN6_GPIO_LS_TRI Register (0x000268)

5.5.4.3.8 On-Board Memory Register Block
5.5.4.3.8.1 Description

The on-board Memory register block is in _ds_mem_reg.vhd and
contains the following register groups:

+ Control of paging for the Direct Slave on-board memory access window via the DS_BANK and DS_PAGE
registers
« Status of the on-board memory interfaces.

Control and status of the on-board memory application block (FPGA-driven on-board memory test)

It consists of an instance of adb3_ocp_simple_bus_if and a set of VHDL processes that implement the memory
control and status registers.

5.5.4.3.8.2 Register Description

As in the simple test register block, an instance of adb3_ocp_simple_bus_if together with some VHDL processes
implement the memory control and status registers. These registers appear in the Direct Slave OCP address space as

follows:

Name Address
DS_BANK 0x000300
DS_PAGE 0x000304
BANKO_CTRL 0x000320
BANK1_CTRL 0x000340
BANKO_OFFSET 0x000324
BANK1_OFFSET 0x000344

Table 58: On-Board Memory Register Block Address Map (continued on next page)

Example HDL FPGA Designs

AD-UG-0004

Alpha Data Parallel Systems Ltd

Page 89

@ALPHA DATA

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(1.3 - 04th March 2011)

Name Address
BANKO_LENGTH 0x000328
BANKI_LENGTH 0x000348
BANKO_INFO 0x00032C
BANKI_INFO 0x00034C
BANKO_STAT 0x000330
BANK1_STAT 0x000350
BANKO_APP_ERR_ADDR 0x000334
BANKI_APP_ERR_ADDR 0x000354
BANKO_MUX_ERR 0x000338
BANKI_MUX_ERR 0x000358
BANKO_DDR3_ERR 0x00033C
BANK1_DDR3_ERR 0x00035C

Table 58: On-Board Memory Register Block Address Map

Mnemonic Type | Function

31:0

DS_BANK M | Controls which on-board memory bank is accessed via the
Direct Slave OCP address window.

The number of bits of this field that are actually used is
controlled by the BANK_ADDR_WIDTH constant defined in
blk_direct_slave. Bits 31:BANK_ADDR_WIDTH are

ignored

Refer to Table 70 for an explanation of how this register
affects access to on-board memory.

Table 59: On-Board Memory Register Block, DS_BANK Register (0x000300)

Bits

Mnemonic Type | Function

310

DS_PAGE M | Controls which page of on-board memory bank selected by
the DS_BANKregister is accessed via the Direct Slave OCP

address window.

The number of bits of this field that are actually used is
controlled by the PAGE_ADDR_WIDTH_DDR3 constant
defined in bik_direct_slave. Bis 31:
PAGE_ADDR_WIDTH_DDRS3 are ignored.

Refer to Table 70 for an explanation of how this register
affects access to on-board memory.

Table 60: On-Board Memory Register Block, DS_PAGE Register (0x000304)

Page 90

Alpha Data Parallel Systems Ltd

Example HDL FPGA Designs
AD-UG-0004

ADM-XRC Gen 3 SDK 1.3.0 User Guide.
(V1.3 - 04th March 2011)

@ ALPHA DATA

Bits | Mnemonic Type | Function
319 (Reserved)
8 START_TEST WO | On-board memory application control:
Write 1 to initiate the FPGA-driven on-board memory test for
bank x; has no effect unless
BANKx_STAT.MEM_APP_DONE is 1.
7.0 (Reserved)

Table 61: On-Board Memory Register Block, BANKx_CTRL Register (0x000320, 0x000340, ..)

Bits

Mnemonic

Type | Function

310

MEM_APP_OFFSET

M | on-board memory application control
Determines the starting address (in 16-byte words) for the
FPGA-driven on-board memory test for bank x.

Table 62: On-Board Memory Register Block, BANKx_OFFSET Register (0x000324, 0x000344, ...)

Bits

Mnemonic

Type [Function

310

MEM_APP_LENGTH

M | On-board memory application control:
Determines the number of 16-byte words that are tested by
the FPGA-driven on-board memory test for bank x.

Table 63: On-Board Memory Register Block, BANKx_LENGTH Register (0x000328, 0x000348,

Bits

Mnemonic

Type | Function

31:28

DS_BANK_WIDTH

RO | Indicates the width in bits of the Direct Slave on-board

defined in blk_direct_slave.

Memory bank select register. The value of this register is
determined by the constant BANK_ADDR_WIDTH. This is

27:24

DS_PAGE_WIDTH

RO | Indicates the width in bits of the Direct Slave on-board

This is defined in blk_direct_slave.

Memory page select register. The value of this register is
determined by the constant PAGE_ADDR_WIDTH_DDRS3,

23:16

DATA_BYTES

RO | Indicates the number of bytes in the on-board Memory
bank x OCP data word.

DDR3_16_BYTE_ADDR -
WIDTH

register is determined by the constant
DDR3_16_BYTE_ADDR_WIDTH. This is defined in the
package adb3_target_inc_pkg.

RO | Indicates the width in bits of the on-board memory bank x
address space using 16-byte addressing. The value of this

BYTE_ADDR_WIDTH

address space using byte addressing. The value of this
register is determined by the constant
DDR3_BYTE_ADDR_WIDTH. This is defined in the
package adb3_target_inc_pkg

RO | Indicates the width in bits of the on-board Memory bank x

Table 64: On-Board Memory Register Block, BANKx_INFO Register (0x00032C, 0x00034C, ...)

Example HDL FPGA Designs
AD-UG-0004

Alpha Data Parallel Systems Ltd

Page 91

ADM-XRC Gen 3 SDK 1.3.0 User Guide

@ALPHA DATA (v1.3 - 04th March 2011)

Bits_| Mnemonic Type | Function
31:28 | BANK_NUMBER RO | The number of the bank this register applies to.
27:24 (Reserved)

23 | MEM_APP_ERR RO | On-board memory application status:

1=> An error occurred during the last FPGA-driven test of
memory bank x; valid if and only if MEM_APP_DONE is 1.
22:20 | MEM_APP_ERR_PH RO | On-board memory application status:

Indicates at which phase the last FPGA-driven test of
memory bank x failed; valid if and only if both
MEM_APP_DONE and MEM_APP_ERR are 1.

19:17 (Reserved)
16 | MEM_APP_DONE RO | On-board memory application status:
1 => The FPGA-driven test of memory bank x is idle/done.
15:12 (Reserved)
118 | MEM_IF_ERR RO | On-board memory interface bank x initialisation error status:

Bit (3): Reset (active high).

Bit (2:1): Read leveling error.

Bit (0): Write leveling error.

74 (Reserved)

30 | MEM_IF_STAT RO | On-board memory interface bank x initialisation status:
Bit (3): Init complete.

Bit (2:1): Read leveling complete.

Bit (0): Write leveling complete.

Table 65: On-Board Memory Register Block, BANKx_STAT Register (0x000330, 0x000350, ...)

Bits_| Mnemonic Type | Function
31:25 (Reserved)

24:0 | MEM_APP_ERR_ADDR | RO | On-board memory application status:

Returns the address (in 16-byte words) of the first error
detected in the last FPGA-driven test of memory bank x;
valid if and only if both BANKx_STAT.MEM_APP_DONE
and BANKx_STAT.MEM_APP_ERR are 1.

Table 66: On-Board Memory Register Block, BANKx_APP_ERR_ADDR Register (0x000334, 0x000354,

[Bits_] Mnemonic Type | Function |

31:0 | MUX_ERR RO | OCP switching bank x adb3_ocp_mux_nb block error
status. Refer to Section 6.1 for a description

Table 67: On-Board Memory Register Block, BANKx_MUX_ERR Register (0x000338, 0000358, ...)

Bits | Mnemonic Type | Function

310 | MEM_IF_ERR RO | On-board memory interface bank x
adb3_ocp_ocp2ddr3_nb block error status. Refer to
Section 6.1 for a description.

Table 68: On-Board Memory Register Block, BANKx_DDR3_ERR Register (0x00033C, 0x00035C, ...)

Page 92 Example HDL FPGA Designs
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.3.0 User Guide.

(V1.3 - 04ih March 2011) @ALPHA DATA

5.5.4.3.9 Direct Slave BRAM Access Block

5.5.4.3.9.1 Description
This block creates a window in the Direct Slave OCP address space through which the BRAM block can be read and
written. To do accomplish this, secondary port 6 of the Direct Slave address space splitter (in the pll_reg_clk

domain) is connected to the OCP switching block (in the pll_pri_clk domain) by an instance of the component
adb3_ocp_cross_clk_dom.

5.5.4.3.9.2 Direct Slave BRAM Access Window

The BRAM access window appears in the Direct Slave OCP address space as follows:

[Name | Address
[BRAM access window | oxoso000-oxoFFFFE |

Table 69: Direct Slave BRAM Access Window

5.5.4.3.10 Direct Slave On-Board Memory Access Block
5.5.4.3.10.1 Description

This block creates a window in the Direct Slave OCP address through which the on-board memory interfaces can be
read and written. To do accomplish this, secondary port 7 of the Direct Slave address space splitter (in the
pli_reg_clk domain) is connected to the OCP switching block (in the pll_pri_clk domain) by an instance of the
component adb3_ocp_cross_clk_dom

Since the Direct Slave channel has useable OCP address space of 4 MiB, which is not sufficient to access all banks of
on-board memory, Direct Slave OCP addresses are augmented by the values of the DS_BANK and DS_PAGE
registers as described in Table 59 and Table 60 respectively. The augmented OCP memory address, which is
generated in the pll_reg_clk domain, is then connected to the pll_pri_clk domain by an instance of the component
adb3_ocp_cross_clk_dom

5.5.4.3.10.2 Direct Slave On-Board Memory Access Window

In the Direct Slave OCP address space, all on-board memory banks are accessed through a 2 MiB address window.
When a Direct Slave OCP address hits this window, it is augmented by the DS_BANK and DS_PAGE registers in order
to be able to access all banks of on-board memory.

The on-board memory access window appears in the Direct Slave OCP address space as follows:

[vame [Address |
[on-Board memory access window | oxe00000-0x3FFFFE |

Table 70: Direct Slave On-Board Memory Access Window

‘The conversion from Direct Slave OCP addresses to augmented OCP memory addresses works as follows:

Example HDL FPGA Designs Page 93
AD-UG-0004 Alpha Data Parallel Systems Ltd

ADMXRC Gen 3 SDK 1.3.0 User Guide
’ALF“‘ DATA (v1.3 - 04th March 2011)

Augmented OCP memory address [20:0] = Direct Slave OCP address [20:0]

Augmented OCP memory address [DMA_ADDR_WIDTH-BANK_ADDR_WIDTH-1:21] = DS_PAGE
Augmented OCP memory address [DMA_ADDR_WIDTH-1:DMA_ADDR_WIDTH-BANK_ADDR_WIDTH] =
DS_BANK

Augmented OCP memory address [63:DMA_ADDR_WIDTH] = 0

where DMA_ADDR_WIDTH is defined in adb3_target_inc_pkg and BANK_ADDR_WIDTH is defined in
blk_direct_slave. For example, for the ADM-XRC-6T1, this yields:

Augmented OCP memory address [20:0] = Direct Slave OCP address [20:0]
Augmented OCP memory address [35:21] = DS_PAGE [14:0]

Augmented OCP memory address [38:36] = DS_BANK [2:0]

Augmented OCP memory address [63:39] = 0

This produces augmented OCP addresses which are compatible with the memory address decoding scheme defined in
Table 71.

5.5.4.4 OCP Switching Block
This block is by _dma_switch.vhd and its purpose is to connect
together the various OCP channels in the Uber design in a useful way. A block diagram of the OCP switching block is
shown in Figure 13

Page 94 Example HDL FPGA Designs
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(V1.3 - 04th March 2011)

@ALPHA DATA

a3, 0cp mux.00

a3, ocp_spit>

(€]

—c A

owsocer
ownocz

a3 ocp mux o>

(0]

Memapp 0ce1

a3 ocp 0

i—-mw

—' =

PG)

Figure 13: Uber OCP Switching Block

Example HDL FPGA Designs

AD-UG-000:

4

Alpha Data Parallel Systems Ltd.

Page 95

ADMXRC Gen 3 SDK 1.3.0 User Guide
’ALF“‘ DATA (v1.3 - 04th March 2011)

The OCP switching block makes connections between the various OCP channels in the design as follows:
+ Direct Slave on-board memory access OCP channel <=> On-board memory bank interface OCP channels
. Direct Slave BRAM access OCP channel <=> BRAM interface OCP channel

+ Memory application <=> On-board memory bank interface OCP channels

+ DMAOCP channel 0 <=> BRAM block OCP channel

. DMA OCP channel 0 <=> On-board memory bank interface OCP channels

+ Other DMA OCP channels <=> BRAM block OCP channel

5.5.4.4.1 Direct Slave On-Board Memory OCP Address Space Splitter Block

Refering to item 1 in Figure 13, this instance of adb3_ocp_split_nb splits the Direct Slave on-board memory OCP
channel into multiple secondary OCP channels, according to the address map in Table 71 below. The address map is
defined by the the constant DS_DDR3_ADDR_RANGE_TABLE in the uber_pkg package.

Index_| Block Type Address Range
0 On-board memory bank 0 | Memory 0 11

1 On-board memory bank 1 | Memory

2 On-board memory bank 2_| Memory

3 On-board memory bank 3 | Memory 0x4000000000-0x4FFFFFFFFF

Table 71: Uber Design Direct Slave On-Board Memory Address Map

Note: Reads of undefined areas of the address space retur data consisting of OXDEADCODE. Writes to
undefined areas have no effect

5.5.4.4.2 BRAM OCP Multiplexor Block
Referring to item 2 in Figure 13, this instance of adb3_ocp_mux_nb muliplexes all OCP channels which require to be
connected to the BRAM block:
. Direct Slave BRAM access OCP channel
. DMA channel 0 splitter secondary OCP channel with index 0
. The other DMA OCP channels

5.5.4.4.3 DMA Channel 0 OCP Address Space Splitter Block

Refering to item 3 in Figure 13, this instance of adb3_ocp_split_nb splits DMA OCP channel 0 into multiple
secondary OCP channels according to the address map in Table 72. The address map s defined by the constant
DMA_ADDR_RANGE_TABLE in the uber_pkg package.

Index | Block Type Address Range
[} BRAM Memory
1 On-board memory bank 0| Memory | 0x1000000000-0x1FFFFFFFFF
2 On-board memory bank 1| Memory
3 On-board memory bank 2_| Memory
4 On-board memory bank 3 | Memory | 0x4000000000-0x4FFFFFFFFF

Table 72: Uber Design DMA Channel 0 Address Map

Page 96 Example HDL FPGA Designs
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.3.0 User Guide

(V1.3 - 04ih March 2011) @ ALPHA DATA

Note: Reads of undefined areas of the address space return data consisting of OXDEADCODE. Writes to
undefined areas have no effect

5.5.4.4.4 On-Board Memory Bank OCP Multiplexors
Items 4, 5, 6 and 7 in Figure 13 are instances of adb3_ocp_mux_nb whose purpose is to enable multiple OCP
channels to access the the on-board memory banks:
. Direct Slave on-board memory splitter OCP channels with indices 0 to 3
« Memory application OCP channels (FPGA-driven memory test)
- DMA OCP channel 0 splitter indices 1 to 4

5.5.4.5 BRAM Block

This block is by _bram.vhd and contains a RAM composed of
BIockRAM primitives that can be read and written via the OCP switching block (see Section 5.5.4.4) by:

+ The Direct Slave OCP channel, via the BRAM access window.
+ DMAchannel 0, according to the address map in Table 72.
« Any other DMA channel, where the BRAM block is aliased throughout the entire OCP address space.

Figure 14 shows the BRAM block connected to the OCP switching block:

Example HDL FPGA Designs Page 97
AD-UG-0004 Alpha Data Parallel Systems Ltd.

@ALPHA DATA

ADM-XRC Gen 3 SDK 1.3.0 User Guide

(V1.3 - 04th March 2011)

bl bram

o6 [<r 0w ocro rave
e [<r ownocro Rk
a3 ocp_mux o>
— 0P [er o ocro Rk
L focn ot pram
ownocez
P ek

Figure 14: Uber BRAM Block Diagram

Page 98

Alpha Data Parallel Systems Ltd.

Example HDL FPGA Designs
AD-UG-0004

ADM-XRC Gen 3 SDK 130 User Guide
(V1.3 - 04ih March 2011) @ ALPHA DATA

An instance of adb3_ocp_simple_bus_if could have been used, together with BlockRAM primitives, to implement this
block. Although this would work, read and write performance would be unsatisfactory since adb3_ocp_simple_bus_if
is not designed for high data throughput.

Therefore, instead of the above arrangement, a state machine provides the OCP interface, implementing what s in
effect a high-throughput version of adba _ocp_simple_bus._if. Awrapper for a Virtex-6 BlockRAM called
bram_single_wrap and _single_wrap.vhd is instantiated
multple times to create a 512 KiB RAM nahallow FIFG buffers ata read om this RAM, partly to mitigate the effect of
BlockRAM read latency on throughput and partly to make the implementation of the OCP interface state machine
simpler and faster

5.5.4.6 On-Board Memory Interface Block

This block is by _mem_if.vhd and instantiates a memory interface
for each bank of on-board memory. This enables the following agents to read and write on-board memory banks via the
OCP switching block (see Section 5.5.4.4)

« The Direct Slave OCP channel, via the on-board memory access window.

. DMA channel 0, according to the address map in Table 72.

+ The memory application (see Section 5.5.4.7).

‘The number of memory interfaces and the number of DDR3 SDRAM memory interfaces are defined by the
MEM_BANKS and DDR3_BANKS constants respectively in the adb3_target_inc_pkg package. For the
ADM-XRC-6TL and ADM-XRC-6T1, which are fitted only with DDR3 SDRAM memory, DDR3_BANKS is equal to
MEM_BANKS. This arrangement is subject to change, should support for models with on-board memory other than
DDR3 SDRAM be added (o the SDK.

Figure 14 shows the on-board memory interface block connected to the OCP switching block:

Example HDL FPGA Designs Page 99
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
@ALPHA DATA (v1.3 - 04th March 2011)

o5 0cp_soi_nb 13,000 mur 1t 3. ocp_ocp20r3.1. ooRa G core

osmanoce < —sloce ocer

ocrale— ocnlc | 2 e oo
, ocrale
03 ccp mux o e ocp ocpzaars o coranG core
oem app ocP1 o

153 0cp a0 w153 0cp_ocoraars 0 ooRa G core

o1 0cp o1 0
o

T

ol ama_swieh

Figure 15: Uber Memory Interface Block Diagram

Page 100 Example HDL FPGA Designs
Alpha Data Parallel Systems Ltd. AD-UG-0004

ADM-XRC Gen 3 SDK 1.3.0 User Guide.

(V1.3 - 04ih March 2011) @ALPHA DATA

For each bank of on-board DDR3 SDRAM memory, this block instantiates a ddr3_mem_if_bank component (see
Section 6.5). In addition, this block contains some logic common to all banks of memory such s reset logic and an
IDELAYCTRL instance.

The status of the memory interfaces, which indicates whether or not training and initialisation was successful for each
bank, can be determined via the registers defined in Section 5.5.4.3.8.

5.5.4.7 On-Board Memory Application Block

This block is _mem_app.vhd and is intended to contain code
that performs some useful luncnon on the on-board memory banks.

In the Uber design as supplied by Alpha Data, the memory application is an FPGA-driven memory test. Therefore, it
instantiates one memory test module (blk_mem_test) per bank of on-board memory, allowing some or all of me
on-board memory banks to be simultaneously tested. The advantage of the FPGA-driven memory test, over

host-driven memory test where test data is generated and verified on the host and transferred via the Bndge is that the.
FPGA-driven memory test is faster and able to stress-test the memory subsystem by operating all banks
simultaneously. Refer to Section 6.6 for a functional description of blk_mem_test.

Since this block has access to all banks of on-board memory, it is suitable for prototyping processing algorithms that
operate on large amounts of data. Users are therefore encouraged to replace the logic in this block with their own
application.

5.5.4.8 ChipScope™ Connection Block (optional)

This block optionally instantiates logic that enables several ADB3 OCP channels to be monitored using Xilinx™

ChipScope™. Itis by ™/blk_ChipScope™.vhd.

When the CHIPSCOPE_ON constant in ™/uber.vhd is true, ChipScope logic is
instantiated.

Note: For simulation, a dummy version of this block is used, by ey

blk_chipscope_sim.vhd. Refer to Section 6.9 for a functional description.

Note: Prior to the initial bitstream build of a design using a Xilinx™ ChipScope™ interface, the
ChipScope™ core .ngc files must be generated. Refer to Section 6.9 for a description of the procedure.

5.5.4.9 Design Package
The package uber_pkg defines types, constants, and functions which are used by the Uber example FPGA design.
Defininitions are s follows:
Top level signal types
+ clks_in_t. Arecord type containing non-MGT based input clock elements.
« clks_mgt_in_t. Arecord type containing MGT based input clock elements.
+ clks_out_t. Arecord type containing output clock elements.
« xrm_gpio_t. Arecord type containing XRM bi-directional GPIO elements.
« pn4_gpio_t. A record type containing PN4 bi-directional GPIO elements.
+ pn6_gpio_t. Arecord type containing PN bi-directional GPIO elements.
« gpio_inout_t. Arecord type containing all bi-directional GPIO elements.

Direct slave interface memory map constants

« Direct slave memory map sections base address constants (type adb3_ocp_addr_s)

Example HDL FPGA Designs Page 101
AD-UG-0004 Alpha Data Parallel Systems Ltd

ADMXRC Gen 3 SDK 1.3.0 User Guide
’ALF“‘ DATA (v1.3 - 04th March 2011)

Direct slave memory map sections mask address constants (type adb3_ocp_addr_s).

Direct slave memory map sections range constants (type addr_range_t)

+ DS_ADDR_RANGE_TABLE. Direct slave memory map address range table constant (type
addr_range_table_t).

+ Memory map sections register offsets (type natural).

« Memory map sections register offset addresses (type adb3_ocp_addr_s).

DMA interface memory map constants

« DMAmemory map sections base address constants (type adb3_ocp_addr_s).

« DMAmemory map sections mask address constants (type adb3_ocp_addr_s).

« DMAmemory map sections range constants (type addr_range_t).

+ DMA_ADDR_RANGE_TABLE. DMA memory map address range table constant (type addr_range_table._t).

Clock frequency measurement types

« clk_vec_sel_t. Type definition for clock select index vector

« clk_vec_range_t. Type definition for clock select index number.

+ mgt_clk_pin_t. Type definition for all MGT double ended clock inputs.

+ mgt_clk_buf_t. Type definition for all MGT single ended buffered clock inputs.

« clk_vec_t. Type definition for al internal clocks/exteral clock inputs.

+ clk_vec_stat_t. Type definition for measurement status for all internal clocks/external clock inputs.

« clk_vec_freq_t. Type definition for measurement frequency for allinternal clocks/external clock inputs.

Clock frequency measurement constants

« Assignment of an index vector (type clk_vec_sel_{) to all interal clocks/extemal clock inputs.
« Assignment of an index number (type clk_vec_range_t) to allinternal clocksfexternal clock inputs.
+ CLKS_IN_VALID Clock validity vector (type clk_vec_t) for all external clock inputs.

Memory interface types

« mem_if_stat_array_t. Array of all memory interface bank status vectors.

« mem_if_err_array_t. Array of all memory interface bank error vectors.

+ mem_if_rdy_array_t Array of all memory interface bank ready signals.

« mem_if_debug_array_t. Array of all memory interface bank debug vectors,

Memory application types

+ mem_app_go_array_t. Array of all memory application bank go signals.

+ mem_app_offset_array_t Aray of all memory application bank test offset vectors.

+ mem_app_length_array._t. Array of all memory application bank test length vectors.

+ mem_app_done_array_t. Aray of all memory application bank done signals.

. mem_app_err_array_t. Array of all memory application bank error signals.

« mem_app_err_ph_array_t. Array of all memory application bank error phase vectors.

+ mem_app_err_addr_array_t. Array of all memory application bank error address vectors.

Component definitions

Page 102 Example HDL FPGA Designs
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.3.0 User Guide.

(V1.3 - 04ih March 2011) @ALPHA DATA

« blk_clocks
« blk_direct_slave

« blk_ds_simple_test
+ blk_ds_clk_read

« blk_ds_io_test

« blik_ds_int_test

+ blk_ds_mem_reg

« blk_ds_info

« blk_dma_switch

« blk_bram

« blk_mem_if

« blk_mem_app

« blk_ChipScope™

« blk_clock_freq

5.5.5 Testbench Description

The testbench for the Uber example FPGA design is by
test_uber.vhd. Figure Figure 16 shows the testbench, with the top level of uber embedded in it

Example HDL FPGA Designs Page 103
AD-UG-0004 Alpha Data Parallel Systems Ltd

@ALPHA DATA

ADM-XRC Gen 3 SDK 1.3.0 User Guide

(VL3 - 04th March 2011)

s wuihen

est e s ot oridge v R

b arect save

~LTL

e Sostana
st ube_am psoer
omoce 4—i—4 owaoce owacce
i comp o ok o
cro [Ty ol

ama_como —
.
{esttor probes cloct bl mom_sop.
generaon
p— e .
omocr
owaocs
« 19V VHOL ecordype defned n adb trge . palber kg <> DIt S CP <> Oboar nemap 0cP
o 10 used s dependent on board type <—»omaoce > pmoce

Figure 16: Uber Design Testbench And Top Level Block Diagram

Page 104

Alpha Data Parallel Systems Ltd.

Example HDL FPGA Designs
AD-UG-0004

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(V1.3 - 04th March 2011)

@ALPHA DATA

The Uber example FPGA design testbench consists of the following functions:

Clock generation for the testbench and the Unit Under Test (UUT).

‘The Unit Under Test (UUT), which is the one and only instance of the top-level uber block.

The Bridge MPTL interface block, using an instance of mptl_if_bridge_wrap.
OCP channel probes, using instances of adb3_ocp_transaction_probe.
Stimulus Generation and Verification.

Instances of the DDR3 SDRAM simulation model (ddr3_sdram).

‘The hierarchical structure of the testbench is shown in Figure 17:

The testbench includes the following packages:

ADB3 OCP profile definition package (adb3_ocp)
ADBS3 target types definition package (adb3_target_types_pkg)
ADBS3 target include package (adb3_target_inc_pkg)

ADBS3 target testbench package (adb3_target_tb_pkg)

Memory interface library package (mem_if_pkg)

Design package (uber_pkg)

Testbench package (uber_tb_pkg)

DDR3 SDRAM model package (ddr3_sdram_pkg)

Figure 9 shows the design package dependencies.

Example HDL FPGA Designs

AD-UG-0004

Alpha Data Parallel Systems Ltd.

Page 105

@ALPHA DATA

ADM-XRC Gen 3 SDK 1.3.0 User Guide

(V1.3 - 04th March 2011)

Uber example design and testbench
Diect Slave (05) OCP test

Direc Master (OM) OCP test

Ditect Momory Accass (OMA) OCP test

Alpha Data MPTL interface 1P

oooomg

OCP wansacion checking

o

E—
s

P ——

<BoaraPTL mataces 1op

0P anly simulation

[R——
st st sroves

<Bomra PTL etz

Bitstream build (nge core)

[——
<o PTL e

Full MPTL|simulation

o
<Boa WPTL ertaces_ 90

VHDL netist

s pave s
a3 ocp cansacion prose

i sve |
a,_cep_wansacon proe.

s pove |

s ccp warsacin e

Page 106

Figure 17: Uber Design Testbench Hierarchy

Alpha Data Parallel Systems Ltd.

Example HDL FPGA Designs
AD-UG-0004

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(V1.3 - 04th March 2011)

@ALPHA DATA

5.5.5.1 Clock Generation

This function produces the clocks required by the Unit Under Test (uber) and the bridge MPTL interface block. Clock
generation is performed at the top level of the Uber testbench, in hdl/vhdl/examples/uber/common/test_uber.vhd.
The testbench generates the following clocks:

clks_in is a signal of record type that drives the UUT's top-level clks_in port. It is generated in a board-specific
way, depending upon the BOARD_TYPE constant in the package adb3_target_inc_pkg. Among others, it
contains the 200 MHz reference clock from which the main clocks in Uber are derived (see Section 5.5.4.1 for
details of clock generation in Uber).

clks_mgt_in is a signal of record type that drives the UUT's top-level clks_mgt_in port, and is a bundie of all
of the MGT-related clocks. It is generated in a board-specific way, depending on the BOARD_TYPE constant
in the package adb3_target_inc_pkg.

The testbench generates the clock mptl_clk with a frequency that depends upon the BOARD_TYPE constant
in the package adb3_target_inc_pkg, in order to model the hardware. This clock drives the Bridge MPTL
Interface (an instance of mptl_if_bridge_wrap) in the testbench.

ocp_clk is a clock driven by the Bridge MPTL Interface so that OCP transactions can be generated and
verified by the testbench.

The ocp_clk signal requires special explanation. This clock is driven by the Bridge MPTL Interface
mptl_if_bridge_wrap. Itis used within the testbench for monitoring OCP transactions, and how it is generated
depends upon the type of simulation selected by the TARGET_USE constant i the package adb3_target_inc_pkg:

In OCP-only simulation (TARGET_USE = SIM_OCP), the UUT's main OCP clock (pll_pri_clk in this case) is
routed out of the UUT via the mptl_if_target_wrap instance and into the testbench's instance of
mptl_if_bridge_wrap. The mptl_if_bridge_wrap instance outputs this signal as ocp_clk. This route is shown
in Figure 16 as the route consisting of points 1, 2, 3, 4 and 6

In full MPTL simulation (TARGET_USE = SIM_MPTL), ocp_clk is entirely independent of any clock within the
UUT, and the testbench's mptl_if_bridge_wrap instance passes ocp_clk_full through to ocp_clk. This is
shown in Figure 6 as the route consisting of points 5 and 6.

5.5.5.2 Bridge MPTL Interface

The testbench contains an instance of mptl_i

{_bridge_wrap, which translates Direct Slave and DMA OCP transactions

iin the testbench to MPTL data. mptl_if_bridge_wrap wraps up the Bridge MPTL interface core, instantiating an OCP
to MPTL core appropriate for the BOARD_TYPE and TARGET_USE constants from the package
adb3_target_inc_pkg

The mptl_

_bridge_wrap output mptl_sb_b2t.mpti_bridge_gtp_online_ is combined with the Simple example

FPGA design output mptl_sb_t2b.mptl_target_gtp_online_I to produce the mptl_online_long signal. This indicates
that the MPTL interface is active and stable.

Note: The testbench monitors mptl_online_long and will terminate the simulation with an error message i it becomes
inactive. This may occur if, for example, a protocol error arises on the MPTL signals during a full MPTL simulation.

5.5.5.3 OCP Channel Probes

This function monitors the Direct Slave and DMA OCP channels for addressingftransaction problems. It generates
warningsferrors f it detects an illegal OCP operation. A probe error will result in a 'FAILED" Uber simulation result. It
uses the component adb3_ocp_transaction_probe.

5.5.5.4 Stimulus Generation and Verification

Example HDL FPGA Designs Page 107

AD-UG-0004

Alpha Data Parallel Systems Ltd

ADM-XRC Gen 3 SDK 1.3.0 User Guide

@ALPHA DATA (v1.3 - 04th March 2011)

This function consists of a set of processes that generate stimulus and verify the results of the simulation via the
mptl_if_bridge_wrap instance

5.5.5.4.1 Non-OCP Functions

The top level of the testbench, hdl/vhdi/examples/uber/commonitest_uber.vhd, verifies a few features of the UUT
(the Uber design) that cannot be tested by application of OCP stimulus. These tests are explained in the next few
subsections.

5.5.5.4.1.1 Clock Output Test
Note: all flenames mentioned in this section are relative to the path hdl/vhdl/examples/uber/common/.

The process clk_out_p in test_uber.vhd measures the frequencies of the bunde of clocks clks_out driven by the
UUT and compares them with expected frequencies.

Test complete and pass/fail indications are returned using the top_comp.clk_out_complete and
top_pass.clk_out_passed signals respectively in test_uber.v

Example results from this test are documented in clock output test results.

5.5.5.4.1.2 MPTL GPIO Bus Test

Note: all filenames mentioned in this section are relative to the path hdlivhdi/examples/uber/commony.
The process mptl_gpio_p in test_uber.vhd verifies that the general purpose /0 (GPIO) pins between the Bridge and
Target FPGAs behave as expected. The UUT (top-level of uber) loops back these GPIO pins o that whatever value is
driven into the top-level port gpio_b2t in uber.vhd is driven out of the gpio_t2b port

The testbench drives the constant value X"F1D0" onto the gpio_b2t port of the UUT, so the process mptl_gpio_p
verifies that the UUT drives the same value out of its gpio_t2b port.

Test complete and pass/fail indications are returned using the top_comp.mptl_gpio_complete and
top_pass.mptl_gpio_passed signals respectively in test_uber.vhd

Example results from this test are documented in MPTL GPIO bus test results.

5.5.5.4.1.3 DMA Abort Bus Test

Note: all filenames mentioned in this section are relative to the path hdlivhdl/examples/uber/commor/.
The process dma_abort_p in test_uber.vhd verifies that the Target FPGA never attempts to abort a DMA transfer. If
any bit of the signal dma_abort driven by the mptl_if_bridge_wrap s asserted, it indicates that the UUT is attempting
to abort a DMA transfer. This should never happen by design. The process therefore verifies that all bits of the
dma_abort signal are always zero.

Test complete and pass/fail indications are returned using the top_comp.dma_abort_complete and
top_pass.dma_abort_passed signals respectively in test_uber.vhd.

Example results from this test are documented in DMA abort bus test results.

5.5.5.4.2 Direct Slave OCP Channel

Note: all filenames mentioned in this section are relative to the path hdl/vhdl/examples/uber/common/.

An instance of the test_uber_ds component, implemented in test_uber_ds.vhd, provides test stimulus to and verifies
test results from the UUT's OCP Direct Slave channel. The stimulus is actually applied in the form of OCP commands
and data to the Bridge MPTL interface, but apart from the packetisation, multiplexing and demultiplexing that occurs in
the MPTL interfaces (both Bridge and Target), the arrangement is transparent. In other words, it behaves s if the
stimulus were applied directly to the Target FPGA's Direct Slave OCP channels:

Page 108 Example HDL FPGA Designs
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.3.0 User Guide

(V1.3 - 04ih March 2011) @ ALPHA DATA

« The Bridge MPTL interface converts OCP commands and write data originating in test_uber_ds to MPTL
protocol. Within the target FPGA, the Target MPTL interface converts MPTL protocol back into OCP
commands and data. Thus, neither test_uber_ds nor the UUT (uber) is aware that OCP stimulus passes
through the MPTL.

« Responses originating in the Target FPGA are correspondingly converted to MPTL protocol by the Target
MPTL interface, and converted back into OCP responses by the Bridge MPTL interface). Thus, neither
test_uber_ds nor the UUT (uber) is aware that OCP responses pass through the MPTL.

test_uber_ds performs several tests, which are detailed in the following subsections.

5.5.5.4.2.1 Simple Test
This test exercises the Simple Test Register Block as follows:
1. Writes the 32-bit value OXCAFEFACE to the DATA register.

2. Reads back the DATA register and compares it with the expected value OXECAFEFAC. If the expected and
actual values do not match, the test is considered a failure.

Test complete and pass/fail indications are returned using the ds_comp.simple_complete and
ds_pass.simple_passed signals respectively in test_uber.vhd.

Example results from this test are documented in simple test results.

5.5.5.4.2.2 Clock Frequency Measurement Test
This test exercises the Clock Frequency Measurement Register Block as follows:
1. Clears the "measurement valid" flags for ll clocks whose frequencies can be measured, by writing
0x80000000 to the CTRL/STAT register.
2. Selects pll_reg_clk by writing 0 (corresponding to PLL_REG_CLK_SEL) to the SEL register.
3. Waits for a measurement to be completed, by polling until bit 31 of the CTRL/STAT register is 1
4. Reads the FREQ register and compares it with the expected frequency for pll_reg_clk of 80 MHz.

The test then performs similar steps for pll_pri_clk, which is the main OCP clock in Uber:

5. Selects pll_pri_clk by writing 1 (corresponding to PLL_PRI_CLK_SEL) to the SEL register.

6. Waits for a measurement to be completed, by polling until bit 31 of the CTRL/STAT register is 1.

7. Reads the FREQ register and compares it with the expected frequency for pll_pri_clk of 200 MHz.

Lastly, the test checks the frequency of the MGT113_CLKO clock:

8. Selects the MGT113_CLKO clock by writing 20 (corresponding to MGT113_CLKO_SEL) to the SEL register.

9. Waits for a measurement to be completed, by polling until bt 31 of the CTRL/STAT register.

10. Reads the FREQ register (see Table 14) and compares it with the expected frequency for MGT113_CLKO. The
expected frequency of this clock depends upon the BOARD_TYPE constant from the package
adb3_target_inc_pkg.

Note: When measured frequencies are compared with expected frequencies, they are permitted a small margin of error,
since they are subject to quantization error due to the small number of reference clock cycles over which the
measurement s performed (so that the simulation does ot take excessive real time to complete). f the expected and
actual values do not match to within the error margin, the test is considered a failure.

Test complete and pass/fail indications are retured using the ds_comp.clock_complete and ds_pass.clock_passed
signals respectively.

Example HDL FPGA Designs Page 109
AD-UG-0004 Alpha Data Parallel Systems Ltd

ADM-XRC Gen 3 SDK 1.3.0 User Guide

@ALPHA DATA (v1.3 - 04th March 2011)

Example results from this test are in clock frequency test results.

5.5.5.4.2.3 XRM GPIO Test

This test exercises with the XRM-related registers of the GPIO Test Register Block as follows:

1. Writes the 32-bit value 0x76543210 to the XRM_GPIO_DD_DATAO register. This sets the value to be driven
onto the dd_p(15:0) and dd_n(15:0) XRM GPIO pins, but at this point these pins are stil tistated
(high-impedance).

2. Writes the 32-bit value 0x00000000 to the XRM_GPIO_DD_TRI register. This allows the value written in the
previous step to be driven onto the dd_p(15:0) and dd_n(15:0) XRM GPIO pins.

3. Reads the XRM_GPIO_DD_DATAI register, to get the actual logic levels on the dd_p(15:0) and dd_n(15:0)
XRM GPIO pins. It then compares the actual value with the expected value of 0x76543210. If the expected and
actual values do not mach, the test is considered a failure.

4. Wiites the 32-bit value OxFFFFFFFF to the XRM_GPIO_DD_TRI register in order to stop driving the dd_p
(15:0) and dd_n(15:0) XRM GPIO pins.

Section complete and pass/fail indications are returned using the ds_comp.frontio_complete and
ds_pass.frontio_passed signals respectively.

Example results from this test are documented in XRM GPIO test results.

5.5.5.4.2.4 Pn4/Pn6 GPIO Test

This test exercises with the Pnd-related and Pn6-related registers of the GPIO Test Register Block. First, the

Pnd-related registers are exercised as follows:

1. Writes the 32-bit values OXAABBCCDD and 0x55443322 to the PN4_GPIO_P_DATAO and
PN4_GPIO_N_DATAO registers, respectively. This sets the values to be driven onto the gpio_p and gpio_n
Pna GPIO pins, but at this point these pins are still tristated (high-impedance).

2. Writes the 32-bit value 000000000 to both the PN4_GPIO_P_TRI and PN4_GPIO_N_TRI registers. This
allows the values written in the previous step to be driven onto the gpio_p and gpio_n Pn4 GPIO pins.

3. Reads the PN4_GPIO_P_DATAI and PN4_GPIO_N_DATAI registers, to get the actual logic levels on the
gpio_p and gpio_n Pn4 GPIO pins. It then compares the actual values with the expected values of
OXAABBCCDD and 0x55443322 respectively. If the expected and actual values do not match, the test is
considered a failure.

Note: If the constant PN4_GPIO_WIDTH from the package adb3_target_inc_pkg is less than 32, the top
32-PN4_GPIO_WIDTH bits of each value are not used in the comparison.

4. Writes the 32-bit value OXFFFFFFFF to both the PN4_GPIO_P_TRI and PN4_GPIO_N_TRI registers in order
to stop driving gpio_p and gpio_n Pnd GPIO pins.

The second part exercises with the Pné-related registers of the GPIO Test Register Block as follows:

5. Writes the 32-bit values 0XAAAABBBB and 0xCCCCDDDD to the PN6_GPIO_MS_DATAO and
PN6_GPIO_LS_DATAO registers, respectively. This sets the values to be driven onto the Pné GPIO pins, but
atthis point these pins are still ristated (high-impedance).

6. Writes the 32-bit value 0x00000000 to both the PN6_GPIO_MS_TRI and PN6_GPIO_LS_TRI registers. This
allows the values written in the previous step to be driven onto the Pné GPIO pins.

7. Reads the PN6_GPIO_MS_DATAI and PN6_GPIO_LS_DATAI registers, to get the actual logic levels on the
Pn6 GPIO pins. It then compares the actual values with the expected values of OxAAAABBBB and
OXCCCCDDDD respectively. If the expected and actual values do not match, the test is considered a failure.

Page 110 Example HDL FPGA Designs
Alpha Data Parallel Systems Ltd. AD-UG-0004

ADM-XRC Gen 3 SDK 1.3.0 User Guide

(V1.3 - 04ih March 2011) @ ALPHA DATA

Note: Depending on the constant PN6_GPIO_WIDTH from the package adb3_target_inc_pkg some of the
bits of the actual and expected values may be unused in the comparison. For example, if PN6_GPIO_WIDTH
is 46, the top 18 bits of the value read from PN6_GPIO_MS_DATAI are unused.

8. Wiites the 32-bit value OXFFFFFFFF to both the PN6_GPIO_MS_TRI and PN6_GPIO_LS_TRI registers in
order to stop driving the Pn6 GPIO pins.

Section complete and pass/fail indications are returned using the ds_comp.reario_complete and
is_pass.reario_passed signals respectively.
Example results from this test are documented in Pn4/Pné GPIO test results.

5.5.5.4.2.5 Interrupt Test

This test exercises the Interrupt Test Register Block. Its operation can be expressed in pseudocode as the following
algorithm:
1. Unmask all interrupts by writing 0 to the MASK register.
2. Read back the MASK register and verify that it has the expected value of 0. If the expected and actual values
do not match, the test is considered a failure.
3. Write the value OXFFFFFFF to the COUNT register.
4. Verify that the COUNT register has the expected value OXFFFFFFF.
5. Fornin0to31do
a Generate interrupt n, by writing the value 2°n to the SET register.
b. Wait for the interrupt signal linti_I to be asserted. This is a falling-edge sensitive signal in the testbench
that s driven low by the top-level port of the UUT whenever at least one interrupt is active in the CLEAR/
STAT register and also unmasked by the MASK register.
. Sample the CLEARISTAT register to determine which interrupt bitbits isfare active.
d. Clear the active interrupt(s) by writing the sampled value back to the CLEAR/STAT register.
€. Force the linti_I signal high (deasserted) for a clock cycle by writing a dummy value to the ARM register.
6. enddo
7. Verify that the CLEAR/STAT register now has a value of 0, since all interrupts should have been cleared. If the
value is non-zero, the test is considered a failure.

Steps c.d, and e model what an interrupt service routine (ISR) in a device driver might do. Step e is not strictly
necessary in this case, because this test exercises only one interrupt source at a time, but it is included to model what
an ISR would do. In a real application, multiple interrupt sources might become active at any time, including during the
time taken for an ISR to service an interrupt. Forcing linti_l high for one cycle ensures that the newly active interrupt
source results in another falling edge on linti_I.

Test complete and pass/fail indications are returned using the ds_comp.int_complete and ds_pass.int_passed
signals respectively.

Example results from this test are documented in Interrupt test results,

5.5.5.4.2.6 Informational Register Test
This test verifies that the Informational Register Block returns the expected values when read:
1. Reads the DATE register and verifies that it is equal to the constant TODAYS_DATE from the autogenerated
package today_pkg. If not, the test is considered a failure.
2. Reads the TIME register and verifies that it is equal to the constant TODAYS_TIME from the autogenerated
package today_pkg. If not, the testis considered a failure.

Example HDL FPGA Designs Page 111
AD-UG-0004 Alpha Data Parallel Systems Ltd

ADM-XRC Gen 3 SDK 1.3.0 User Guide

@ALPHA DATA (v1.3 - 04th March 2011)

3. Reads the BRAM_BASE register and verifies that it is equal to the constant BRAM_ADDR_BASE from the
package uber. If not, the test is considered a failure.

4. Reads the BRAM_MASK register and verifies that it is equal to the constant BRAM_ADDR_MASK from the
package uber. If not, the test is considered a failure.

5. Reads the MEM_BASE register and verifies that it is equal to the constant RAM_WIN_ADDR_BASE from the
package uber. If not, the test is considered a failure.

6. Reads the MEM_MASK register and verifies that
package uber. If not, the test is considered a failure.

7. Reads the MEM_BANKS register and verifies that itis equal to the constant MEM_BANKS from the package
adb3_target_inc_pkg. If not, the test is considered a failure.

is equal to the constant RAM_WIN_ADDR_MASK from the

Test complete and pass/fail indications are returned using the ds_comp.info_complete and ds_pass.info_passed
signals respectively.

Example results from this test are documented in informational register test results,

5.5.5.4.2.7 BRAM Test

This section exercises the BRAM Block by writing various values to it and reading them back. In the following test
cases, if the actual value read back is not equal to the expected value, the test is considered a failure:

1. Writes the 32-bit word 0x2389EF45 to the lowest address in the BRAM Block. This address is the value of the
constant BRAM_ADDR_BASE in the uber_pkg package. This value is then read back and compared with the
expected value (the same data that was written).

2. Writes 16 bytes consisting of the 32-bit words { OXEF123456, .. etc. ..., 0X56789ABC } to the lowest address in

the BRAM Block, i.e. BRAM_ADDR_BASE. This value is then read back and compared with the expected

value (the same data that was written).

Writes 32 bytes consisting of the 32-bit words { OXABCDEF12, .. etc. ..., OXFEDCBA9S } to the lowest address

in the BRAM Block, i.e. BRAM_ADDR_BASE. This value is then read back and compared with the expected

value (the same data that was written).

4. Writes the 32-bit word 0x369CF258 to an address that is 4 bytes below the lowest address in the BRAM Block,
i.e. BRAM_ADDR_BASE-4. This value is then read back and compared with the expected value, which is
OXDEADCODE (since the address used does not belong to any Direct Slave address range decoded by the
Uber design). This verifies that the lower address boundary of the BRAM Block is as expected.

5. Writes the 32-bit word 0x258BE147 o an address that is just above the highest address in the BRAM Block,
i.e. BRAM_ADDR_BASE+BRAM_ADDR_MASK-+1. This value is then read back and compared with the
expected value, which is OXDEADCODE (since the address used does not belong to any Direct Slave address
range decoded by the Uber design). This verifies that the upper address boundary of the BRAM Block is as
expected.

6. Writes 32 bytes consisting of the 32-bit words { 0XABCDEF12, .. etc. ..., OXFEDCBA9 } to an address that is
just above the highest address in the BRAM Block, i.e. BRAM_ADDR_BASE+BRAM_ADDR_MASK+1. This
value s then read back and compared with the expected value, which is 8 32-bit words of 0OXDEADCODE
(since the address used does not belong to any Direct Slave address range decoded by the Uber design). This
Verifies that the upper address boundary of the BRAM Block is as expected.

7. Writes the 32-bit word 0x147ADO36 to an address that is 4 bytes below the highest address in the BRAM
Block, i.e. BRAM_ADDR_BASE+BRAM_ADDR_MASK-3. This value is then read back and compared with
the expected value (the same data that was witten)

w

Test complete and pass/fail indications are returned using the ds_comp.bram_complete and ds_pass.bram_passed
signals respectively.
Example results from this test are documented in BRAM test results.

Page 112 Example HDL FPGA Designs
Alpha Data Parallel Systems Ltd. AD-UG-0004

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(V1.3 - 04th March 2011)

@ALPHA DATA

5.5.5.4.2.8 On-Board Memory Test

This test exercises several subsystems of the Uber design, including Direct Slave on-board memory access, the
memory application and on-board memory. To exercise the on-board memory bank OCP multiplexors, the test
programs the memory application to perform a short test of memory bank 1, while the test itself concurrently reads.
and writes memory locations in a different region of bank 1.

The steps performed by this test can be expressed in pseudocode as the following algorithm:

1. Pollthe BANK1_STAT register until it indicates (via bit 3) that initialisation of memory bank 1 is complete.

2. Display the value of the BANK1_STAT register on the simulator console.

3. Setthe BANK1_OFFSET register to 0XOOFFFEFF, which is the value of the constant RAM_TEST_OFF in
test_uber_ds.vhd. This is the address in bank 1 (as a 16-byte word index) at which the FPGA-driven memory
test will begin testing.

4. Display the value of the BANK1_OFFSET register on the simulator console.

5. Setthe BANKI_LENGTH register to 0x0000FF, which is the value of the constant RAM_TEST_LEN in
test_uber_ds.vhd. This is the number of 16-byte words, beginning at the BANK1_OFFSET address in bank 1,
that the FPGA-driven memory test willtest during each phase, minus 1. The value 0x0000FF therefore results
in 256 16-byte words being tested.

6. Display the value of the BANK1_LENGTH register on the simulator console.

7. Write 0x00000100 to the BANK1_CTRL, which initiates the FPGA-driven memory test for bank 1.

8. Setthe memory access window for accessing memory bank 1, by writing 1 to the DS_BANK register.

9. Setthe memory access window for accessing the bottom 2 MiB page of memory bank 1, by writing 0 to the
DS_PAGE register.

10. Write the 32-bit word 0x349AF056 to the bottom of the memory access window (the constant
RAM_WIN_ADDR_BASE in the uber_pkg package).

11 Read back the value just written, and compare it to the expected value of 0x349AF056. If the expected and
actual values are not equal, the test is considered a failure.

12. Setthe memory access window for accessing page 127, by writing 0x0000007F to the DS_PAGE register.
0x0000007F is the value of the constant DS_WIN_RAM_PAGE_TOP in test_uber_ds.vhd.

13. Write the 32-bit word 0x47AD0369 to the top of the memory access window (RAM_WIN_ADDR_BASE+
RAM_WIN_ADDR_MASK-3)

14. Read back the value just written, and compare it to the expected value of 0x47AD0369. If the expected and
actual values are not equal, the test is considered a failure.

15. Set the memory access window for accessing the bottom 2 MiB page, by writing 0 1o the DS_PAGE register.

16. Write 32 bytes consisting of the 32-bit words { OXABCDEF12, ... etc. ..., OXFEDCBA8 } to the bottom of the
memory access window. This is the case of an even-length burst (two 16-byte words) at an even address (bit
4 of the OCP address is 0).

17. Read back the data just written, and compare it to the expected value (the same data that was written). If the
expected and actual values are not equal, the test is considered a failure,

18. Write 48 bytes consisting of the 32-bit words { OXBCDEF123, .. etc. ..., 0x3456789A } to the bottom of the
memory access window. This s the case of an odd-length burst (three 16-byte words) at an even address (bit
4of the OCP address is 0).

19. Read back the data just written, and compare it to the expected value (the same data that was written). If the
expected and actual values are not equal, the test is considered a failure,

20. Write 32 bytes consisting of the 32-bit words { OXDEF12345, ... etc. ..., 0XDCBA9BT6 } to 16 bytes above the
bottom of the memory access window (RAM_WIN_ADDR_BASE+16). This is the case of an even-length
burst (two 16-byte words) at an odd address (bit 4 of the OCP address is 1).

Example HDL FPGA Designs Page 113
AD-UG-0004 Alpha Data Parallel Systems L.

ADM-XRC Gen 3 SDK 1.3.0 User Guide

@ALPHA DATA (v1.3 - 04th March 2011)

21 Read back the data just written, and compare it to the expected value (the same data that was written). If the
expected and actual values are not equal, the test is considered a failure,

Write 48 bytes consisting of the 32-bit words { OXEF123456, ... etc. ..., 0x6789ABCD } to 16 bytes above the
bottom of the memory access window (RAM_WIN_ADDR_BASE*+16). This is the case of an odd-length
burst (three 16-byte words) at an odd address (bit 4 of the OCP address is 1).

Read back the data just written, and compare it to the expected value (the same data that was written). If the
expected and actual values are not equal, the test is considered a failure,

Write the 32-bit word 0x45000000 to the bottom of the memory access window with byte enables 1000. This
exercises writing data on byte lane 3 (only) of the memory bank

Write the 32-bit word 0x00ABO00O to the bottom of the memory access window with byte enables 0100. This
exercises writing data on byte lane 2 (only) of the memory bank.

Write the 32-bit word 0x00000100 to the bottom of the memory access window with byte enables 0010. This
exercises writing data on byte lane 1 (only) of the memory bank.

Write the 32-bit word 0x00000067 to the bottom of the memory access window with byte enables 0001. This
exercises writing data on byte lane 0 (only) of the memory bank

28, Read back the 32-bit word just written, and compare it to the expected value of 0x45ABO167. If the expected
and actual values are not equal, the test is considered a failure.

Poll the BANK1_STAT register until it indicates (via bit 16) that the FPGA-driven memory test of bank 1 is
complete. If the last value read from BANK1_STAT indicates (via bit 23) that the FPGA-driven memory test
encountered an error, the test is considered a failure.

N
N

N
P

»
R

N
b

»
3

»
N

N
3

Test complete and pass/fail indications are retumned using the ds_comp.ram_complete and ds_pass.ram_passed
signals respectively.

Example results from this test are documented in on-board memory test results.

5.5.5.4.3 DMA OCP Channels

Note: all filenames mentioned in this section are relative to the path hdlivhdi/examples/uber/common.
An instance of the test_uber_dma component, implemented in test_uber_dma_1ch_nb.vhd, provides test stimulus to
and verifies test results from the UUT's DMA OCP channels. The stimulus is actually applied in the form of OCP
commands and data to the Bridge MPTL interface, but apart from the packetisation, multiplexing and demultiplexing
that occurs in the MPTL interfaces (both Bridge and Target), the arrangement is transparent. In other words, it behaves
as if the stimulus were applied directly to the Target FPGA's DMA OCP channels.

In this testbench, DMA channel 0 (the value of the constant DMA_SINGLE_CHANNEL in the package uber_tb_pkg) is
tested. Changing this constant is not recommended as in the Uber design, only DMA channel 0 has access to both the
BRAM Block and the On-Board Memory Interface Block. The entity test_uber_dma contains two processes that (i)
generate OCP commands & OCP write data, and (i)) accept OCP responses (read data). The following subsections
describe these processes

5.5.5.4.3.1 DMA OCP Command and Write Data Process
The process dma_channel_cmd_p in test_uber_dma_1lch_nb.vhd exercises DMA OCP channel 0 in the UUT as
described by the following pseudocode:
1. Setaddress := DMA_ADDR_WR, remaining := DMA_SIZE, tag :=
2. while remaining != 0 do
+ Set chunk := min(remaining, 128)

« Generate ‘chunk bytes of data consisting of 32-bit words equal to (OXBEEF0000 + index), incrementing
‘index’ by one with each 32-bit word generated.

, index := 0

Page 114 Example HDL FPGA Designs
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(V1.3 - 04ih March 2011) @ALPHA DATA

o s w

6.

Issue an OCP write command on DMA channel O with ‘address' as the address, tag' as the tag, and
length equal to ‘chunk’ using the data from step 4. Wait ntil the command has been accepted and all of
the data for the command has been transferred

Set remaining := remaining - chunk, address := address + chunk, tag := tag + 1

end while
Set address := DMA_ADDR_RD, remaining := DMA_SIZE, tag = 0

while remaining

0do
min(remaining, 128)
Issue an OCP read command on DMA channel 0 with ‘address' as the address, ‘tag’ as the tag, and
length equal to ‘chunk’. Wait until the command has been accepted.
Set remaining := remaining - chunk, address := address + chunk, tag

Set chunk

tag +1

end while

The DMA_SIZE, DMA_ADDR_WR and DMA_ADDR_RD constants are defined in the uber_tb_pkg package. The
values of DMA_ADDR_WR and DMA_ADDR_RD correspond to byte offset 0x7F00 into on-board memory bank 1,

Test complete and pass/fail indications for steps 1 to 3 are retumed using the dma_comp.dma_write_cmd_complete

and dma_|

pass.dma_write_cmd_passed signals respectively. Test complete and pass/fail indications for steps 4 to 6

are retumed using the dma_comp.dma_read_cmd_complete and dma_pass.dma_read_cmd_passed signals
respectively.

Example results from this test are documented in DMA OCP channels results.

5.5.5.4.3.2 DMA OCP Response Process

The process dma_channel_resp_p in test_uber_dma_1ch_nb.vhd exercises DMA OCP channel 0 in the UUT as
described by the following pseudocode:

1

3

Set remaining := DMA_SIZE, index := 0, expected_tag = 0
while remaining != 0 do

Set chunk := min(remaining, 128)

‘Wait for ‘chunk’ bytes of response data to be received from DMA OCP channel 0

Verify that the received data, considered as 32-bit words, equals the incrementing pattern OXBEEF0000 +
index, where index s incremented by 1 with each word checked. If a received 32-bit word does not equal
the expected pattern, the test is considered a failure.

Verify that the received OCP response tag for each 16-byte OCP word received equals ‘expected_tag'. If
it does not, the test is considered a failure.

Set remaining

‘emaining - chunk, expected_tag = expected_tag + 1

end while

The DMA_SIZE constant is defined in the uber_tb_pkg package.

Test complete and pass/fail indications are returned using the dma_comp.dma_read_resp_complete and
dma_pass.dma_read_resp_passed signals respectively.

Example results from this test are documented in DMA OCP channels results.

5.5.5.5 Memory Device Simulation Models

The testbench instantiates a DDR3 SDRAM simulation model for each memory device in each bank of on-board

e DDR3 SDRAM model s located in hdl/vhdl/common/mem_tb/ddr3_sdram. Refer to Section 6.7 for a

me
funcional description.

Example HDL FPGA Designs

AD-UG-0004

Page 115
Alpha Data Parallel Systems Ltd

ADMXRC Gen 3 SDK 1.3.0 User Guide
’ALF“‘ DATA (v1.3 - 04th March 2011)

The DDR3 SDRAM part to be simulated is selected according to the TB_DDR3_PART constant defined in the
uber_tb_pkg package.

5.5.5.6 Testbench Package
The package uber_tb_pkg defines types, constants, and functions which are used by the Uber example FPGA
testbench.
Defininitions are s follows:
Clock period constants
+ Testbench clock period constants (type time)
« Testbench clock frequency constsnts (type natural)

DMA test constants
+ DMA_WRITE_CHANNEL. The DMA channel used by writes (Host to FPGA) during 2 channel DMA test.
+ DMA_READ_CHANNEL. The DMA channel used by reads (FPGA to Host) during 2 channel DMA test.
+ DMA_SINGLE_CHANNEL. The DMA channel used by writes and reads during 1 channel DMA test.

+ DMA_ADDR_WR. The start address used by writes (Host to FPGA) during DMA test.

+ DMA_ADDR_RD. The start address used by reads (FPGA to Host) during DMA test.

« DMA_SIZE. The size of the DMA transfer in bytes.

« DMA_BL_WRITE. The OCP burst length used by writes (Host to FPGA) during DMA test.

+ DMA_BL_READ. The OCP burst length used by reads (FPGA to Host) during DMA test.

On-board RAM part selection constants

+ TB_DDR3_1G_PART. Part number of 1 Gib DDR3 SDRAM components.

« TB_DDR3_2G_PART. Part number of 2 Gib DDR3 SDRAM components.

+ TB_DDR3_PART. Part number of selected DDR3 SDRAM components.

+ TB_DDR3_ROW. Row address width of selected DDR3 SDRAM components.

+ TB_DDR3_COL. Column address width of selected DDR3 SDRAM components.

+ TB_DDR3_BANK. Bank address width of selected DDR3 SDRAM components.

« TB_DDR3_BYTE_ADDR_WIDTH. Byte address width of selected DDR3 SDRAM components.

+ TB_DDR3_16_BYTE_ADDR_WIDTH. 16-byte address width of selected DDR3 SDRAM components.

Interrupt test constants

+ MASK_EN_ALL. Interrupt mask register enable all constant.

Test status types
+ top_comp_t. Arecord type containing non-OCP test completion elements.

« ds_comp_t. Arecord type containing direct slave OCP test completion elements.
« dma_comp_t. Arecord type containing DMA OCP test completion elements.

+ top_pass_t. Arecord type containing non-OCP test pass elements.

« ds_pass_t Arecord type containing direct slave OCP test pass elements.

+ dma_pass_t. Arecord type containing DMA OCP test pass elements.

Page 116 Example HDL FPGA Designs
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 130 User Guide
(V1.3 - 04ih March 2011) @ ALPHA DATA

5.5.6 Design Simulation

Modelsim macro files are located in each of the target FPGA example design directories. The macro file that should be
used depends upon the type of simulation required:

« OcP-only: del>.do
« Full MPTL: del>-mptl.do

where <model> corresponds to the board in use; for example admxrc6t1. for the ADM-XRC-6T1.

Modelsim simulation is initiated using the vsim command with the appropriate macro file; for example, to perform an
OCP-only Modelsim simulation in Windows for the ADM-XRC-6T1, start a shell and issue the following commands:

cd /d KADNXRC3_SDK#\hdI\vhdI\exanples\uber\adnxrcstl
vsim ~do "uber-admxrcétl.do”

In Linux, the commands are:

cd_$ADMXRC3_SDK¥/hd1/vhd1/examples/uber/admxrc6tl
vsim -do “uber-admxrc6t1.do™

Note: The Modelsim macro files always delete any previously compiled data before compiling the Uber
design.

Note: Before performing the first simulation of the Uber design, HDL files for the Xilinx™ Memory Interface
Generator (MIG) DDR3 SDRAM interface must be generated using the script gen_mem_if.bat (Windows)
or gen_mem_if.bash (Linux) in hdlivhdl/commonimem_ifiddr3_sdramimig_v3_6/. Refer to Section 6.5
for details.

5.5.6.1 Date/Time Package Generation

Before compiling the Uber example design HDL and initiating simulation, the macro file runs a TCL script
gen_today_pkg.tcl to generate a file containing the today_pkg package. This package contains HDL constant
definitions containing the date and time at which the script was run. The file generated is dependent on the board
selected and is located in the board design directory; for example, hdlivhdl/examples/uber/admxrcéty/
today_pkg_admxrc6tl_sim.vhd for the ADM-XRC-6T1. Transcript output is of the form:

oday_pkg_adnxrstl.
e Fetevas generaced sutonaticatly by gen_today_pkg.teh

ate: 08/10/2010 (da/mn/Y¥VY)
e 15:26:45 (HH/AVSS)

ary ieee;
use ieee.sto logic_1164.a11;
package today_pkg is

constant TODAYS_DATE : std,
Constant TODAYS_TINE : st

end package today_oko:

X'08102010";
X"15264600"

vector(31 dounto 0) :
ctor (31 downto 0)

5.5.6.2 Initialisation Results
Modelsim transcript output during initiaisation of the simulation is of the form described in the following subsections
5.5.6.2.1 DDR3 SDRAM MIG Core MMCM Status

Each instantiation of the DDR3 SDRAM MIG core produces a summary of its MMCM clocking parameters:

s Write Clocks WICILADY Paraneters sesssimsis

Example HDL FPGA Designs Page 117
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADMXRC Gen 3 SDK 1.3.0 User Guide
@ ALPHA DATA (V13- 0dth March 2011)

RCK_PER_CLK 2

5.5.6.2.2 Testbench Status
The testbench produces a summary of the board and simulation type, and then waits for the MPTL interface to
complete its initialisation:

™ Notes Board Type ;s xrc 6K
07 ttoration: 0 nstance: /tost_uber
rget +ocy

#
or Ieration 0. Instance: /test_uber

- ove: hakeing for BTL ontine:

Tine: 015, Ttoration 0 nstance: /cest_uber

5.5.6.2.3 DDR3 SDRAM Initialisation

Each instantiated DDR3 SDRAM MIG core produces a truncated initialisation sequence during simulation. This is
detected by the DDR3 SDRAM models and warnings are issued by each instantiated part:
Varning: 0TS SORAU it £ 3) : Beviation fron recomended initiatisation sequence:
mmm of 2 ESET L de-assertion
4 nstance: /cest_uber/ddrs podel g_0/Gdr3 sdran bank_t_1/4dr3_sdran_inkt_fsn 3

00 10 teerat
1 == Varning: 0oR3 SomAY n fron reconmended ini

=
Uioration of 10ns CRE detay herore SESET L do-acsoreion
71771500 fs Iteration: 4 Instance: /test_uber/ddr3 nodel_g_0/ddr3_sdran bank

Each instantiated DDR3 SDRAM MIG core produces status information during its initialisation sequence:

alisation sequenc

PIIT: eory ndtlalization conpleted at S063.617 s
PHY_INIT rite Leveling conpleted at 22183.01

¥ PVCINIT! Read Leveling Stage 1 compteted. ot 30373.017 s

PHY_INIT: Read Leveling CLKDIV cal completed at 43313.017 ns

PHY_INIT: Read Leveling Stage 2 conpleted at 50636.017 ns

PHY_INIT: Phase Detector Initial Cal corpleted at 55618.017 ns

5.5.6.3 Non-OCP Functions Results

5.5.6.3.1 Clock Output Test Results
Modelsim transcript output during simulation is of the form:

Expected clicout freq = ouz

L0 pe eration: 10, Instace: /test uber

¥+ lote: Actual out freq = souz
1483750 pe. THeration: 10 hstance: /test_uber

Test clk_ou
1483750 s Iterati

corpleted: PASSED.
n: 10 Instance: /test_uber

5.5.6.3.2 MPTL GPIO Bus Test Results

Modelsim transcript output during simulation is of the form:

%+ Note: Test mpelgplo completed: PASSED:
Tine: 3028750 ps Iteration: 13 Instance: /test_uber

Page 118 Example HDL FPGA Designs
AD-UG-0004

Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(V1.3 - 04th March 2011)

@ALPHA DATA

5.5.6.3.3 DMA Abort Bus Test Results

Modelsim transcript output during simulation is of the form

#* Nots
Tine:

Test dra_abort conpleted: PASSED.
2278750 ps Iteration: 13 Instance: /test_uber

5.5.6.4 Direct Slave OCP Channel Results
5.5.6.4.1 Simple Test Results

Modelsim transcript output during simulation is of the form:

rote sinpte 1OAT 4 ytes OXISEEACE vt nsbte 0bL1 10 byt sress 01000000
2036750 ps Iteration: 13 Instance: /test_uber/tes

o: Read siple RDATA 4 bytes OUECAEFAC fron byte adiress oxunooun
2351250 ps Iterati : /test_uber/test_uber_d

Test simole completad: passeD.
2351250 ps Iterat Instance: /test_uber/test_uber_ds_i

5.5.6.4.2 Clock Frequency Measurement Test Results

Modelsim transcript output during simulation is of the form:

=+ Note: Wirote Clear AIN CTRL 4 bytes 0x30000000 with enable Ob1111 to byte address 0000044
Tine: 2538750 po. Iterations 15" Inotancer stest uberseest uber o
: Wrote PLLEG_OLK SEL SEL 4 bytes DX00000000 with snable OBILLL 0 byte address 0KG00040
2543750 2 teratto nce: /test_uber/test_uber_d:
] 4 hyres Crbo000nso From byse.adiress oxumms
176250 po._ Tteration: 15 Instance: /test. ubor/test.uber
: Expected freq < 60 iz 12 Mz
4176250 ps Iteration: 13 Instance: /test_uber/test_uber_ds._
sctual freq = 80 Mz
4176250 ps Iterat

n: 13 Instance: /test_uber/test_uber_ds.
Wrote PLL_PRICLK SEL SEL 4 bytes 0x00000001 with enable OBLL1 to byte address 0x000040
Instance: /test_uber/test_uber_ds_i
FREQ 4 bytes 0X000000C3 Fron byte adires 03000048

s,

Instance: /test_uber/test_uber_ds_

Instance: /test_uber/test_uber_ds_

014 rable OGLLL1 10 byte address 0x000040
tance: /test | uher/(est uber_
| Read WGTL13_CLKG FRED 4 bytes. OX0O0000FR 7on hyke-address 0R000048

Tnotanco: /test uber /test.uber o

Instance: /test_uber/test_uber_ds_i

48 Wz
5326250 pa Itoration: 13 Instance: /test_uber/test_uber_ds_

1

Test Clock Read conploted: PASSED.
5326250 ps Iteration: 13 Instance: /test uber/test uber ds i

5.5.6.4.3 XRM GPIO Test Results

Modelsim transcript output during simulation is of the form:

** Note: Hrote ARUGP10_0D DATAO 4 bytes OXTSSASZI0 with enable ODLLLL to byte address 0000224
instance: /test_ubor/test_u

G enabls ObL1T1 b byte address 0x00022C
Instance: /test_uber/test_uber_ds_

Test Front 10 conpltad: PASSED
6033750 ps It 13 Instance: /test_uber/test_uber_ds_i

Example HDL FPGA Designs
AD-UG-0004 Alpha Data Parallel Systems Ltd.

Page 119

ADM-XRC Gen 3 SDK 1.3.0 User Guide

@ALPHA DATA (v1.3 - 04th March 2011)

5.5.6.4.4 Pn4/Pn6 GPIO Test Results

Modelsim transcript output during simulation is of the form

1+ Note: rots FIA_GPIO_P DATAD 4 bytes OxMBSCEDD with ensble ObLLA1 o byte address 0x00023C

Wirote PNa_GPIO_P TRI 4 bytes OXFFFFFFFE with enablle Ob1111 to byte address 0000244
L 506750 b3 Itaration: 13 Inceance: stest uber/test uber o

Wrote PNa_GPIO_ TRI 4 bytes OXFFFFFFFF with enablle Ob1111 to byte address 0000250
6918750 ps IMeration: 13 Instance: /test_uber/test_uber_ds_i

rate PNG_GPIO_US DATAD 4 bytes OAAMSSSS with anabl ObL111 to byte address 0x000254
6026750 ps_Iteration: 13 Instance: /test_uber/te:

/test St_uber_¢
i 4 hyles oxccocnubb fmm byte address oxuoozsa

Vit enaste OOLIEL T byt address 0x00025C
1 Sbor ose_ubor s

CGPIO-LS TA1 4 bytes OMFFFFHFET With erable ObI1LL T0 byte address 0x000265
63750 ps Iteration: 13 Instance: /test uber/test uber_ds i

+* Note: Test Rear 10 corpleted: PASSED.
Tine: 7055750 5 Veeration: 15 Insiance: /tast_uber/test_uber_ds_i

5.5.6.4.5 Interrupt Test Results

Modelsim transcript output during simulation is of the form:

rote Intorrupt WK 4 bytes 0200000000 with cnable Ob1111 o byte address 0000068
8173750 ps Iteration: 13 Instance: /test_uber/test_ut
+ Read Interrupt IASK 4 bytes 0x00000000 fron byte uddress anooancs
8491250 ps Iteration: 13 Instance: /test_uber/test_uber_ds_

WFote Interrupt COUNT 4 bytes OXFFFFFFFF with enable unnn . % byt adaress 0x000000
: BS87S0 s Iteration: 13 Instance: /test uber/test.ber_

20 intoreupt CONT 4 bytes KEFSELFFE Tron byte’ address 0nG00000
8816250 ps Iteration: 13 Instance: /test_uber/test_uber_ds._

- Interrupt

+_uber
d interry masked STAT = 0X00000001
Instance: /test_uber/test_uber_d:

ed falling edge on

seaT0 ps_tarat Instance: /test_uber
tarrupt Handlers Cleared Intarruptcs). masked STAT = 0x00000002

S537s0 b Heeration: 15 Inevance: Teist uber/teet_wher_d

petected ol

Interrupt Nonitor q edge on
133750 s Iteratior nstance: /test_uber

 inearrapt randtor: Croared .nmmms) ssked STAT < 060000000

2867750 ps Itevation: 13 Instance: 7icst.uberLest_ uber.do

- Fead Intorrupt STAT 4 bytes 0XGO00000D fron byte address OKO000CA
13 Instar

29066250 ps Iteration: nce: /test_uber/test_uber_ds_i

** Note: Test Interrupt conpleted: PASSED.
Tine: 29066750 ps Iteration: 13 Instance: /test uber/test uber_ds

Page 120 Example HDL FPGA Designs
Alpha Data Parallel Systems Ltd. AD-UG-0004

ADM-XRC Gen 3 SDK 130 User Guide
(v1.3 - 0ath March 2011) @ ALPHA DATA

5.5.6.4.6 Informational Register Test Results

Modelsim transcript output during simulation is of the form

1+ Note: Rest Info OATE ¢ bytes OCLSGZZ0LL fron byte address 0KO00L40
20491250 ps _Iteration: 13 /test_uber/test_uber_ds_
- e Info TIVE 4 bytes OX10523600 fron oyee srese DX0001E:

30241250 ps Iteration: 13 I /test_uber/test_u
Info RAY BASE 4 bytes 0x00200000 fron byte address 0000154
30401250 ps Iteration: 13 Instance: /test_uber/test
- Info RAY MASK 4 bytes OXOOIFFEFF fron byte address 0000158
30741250 ps Iteration: 13 Instance: /test_uber/test_uber ds |
- cad Info RAN INFO 4 bytes 0XXO00XA fron byte address OxDOOISC
20991250 ps Iterati Initanco: /tost.ubor/tast ber.do.t

+* Note: Test Info conpleted: PASSED.

et 30091250 ps Iteration: 13 Instance: /test_uber/test_uber ds

5.5.6.4.7 BRAM Test Results

Modelsim transcript output during simulation is of the form:

™ Note: Hrote BN A base 4 bytes OKZIR0EESS with enable Gb1111 €0 byte adaress Ox0B0000
Tine: 30498750 ps Iteration: tance: /test_uber/test_uber_d

Nover Rand BAAY Adir ese 4 hytes exmems 7o byte adarass 6063000

Tine: 30876250 ps Iteration: 13 Instance: /test_uber/test_uber_ds

- tote: Urote sEAY Adr base 16 byte
enable 0b: yte address 0x050000

ot s08E730 . Theration: 13 Instance: /test uber/test wber

e Read BRAV AGdY base 16 bytes OXSTBOABCOEF L2546 BOABCOEF 23456

Time: 31266250 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i

Note: wrot 2 byte:
enable nhnxunu:nnxununununx 0 byte address 0x030000
Instance: /test_uber/test_uber_ds.

BRAN Addr base 32 bytes

om byke adiress 0x0B00

Time: 31671250 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i

** Note: Urote GOR Addr base-d 4 bytes OXERCF2SE with enable OGLLAL 10 byt address OXOTFFEC
Tine: 31678750 peIteration: 13 Instanco: /cest_ uber/testuber

Vlote: Read 008 Acr base-4 4 bytes DKDEADCOOE fron byte address uxovFFFc

Tine: 31016250 ps Iteratior pRithchreedfrell

fote: ot 00R Addr topr 4 bytes OCSSBELAT ith enablle ObLLLL €0 byte address 0xiooooD
Tine: 31023750 ps Iteration: 13 Instance: /test_uber/test_uber ds
i o ot 4 bytas (NOLADEOGE fran byee asaraas CRGBL00

Tine: 32151250 ps Iteration: 13 Instance: /test_uber/test uber ds i

1

Note: vrote 00%
enable ORI 11141111111 €0 yte sadress. D000
Tim 0 ps Iteration: 13 Instance: /test_uber/test uber ds
Note: Read 00f Addr topri 35 bytes

byte address 0x10000

Time: 32416250 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i

o SR AGdr top 4 bytes OX147A0036 With enablle OBLLLL to byte address OAUFFFFC

El

#
¥
i
#
"
"
"
"
"
"
s
"
#
#
¥
"
¥
"
"
"
"

Ylme 32423750 s Jreratton: 13 ico: /test_uber/test_uber_ds.
- Read BRAN Addr top 4 nms oxuunm fron byte address OXDFFFFC
Tine: 2001250 pe. - reerationt 19 e /test_uher/test_uber_ds.

Note: Test BRAN conpleted: PASSED
Tine: 32801250 ps Iteration: 13 Instance: /test_uber/test uber_ds i

5.5.6.4.8 On-Board Memory Test Results

Modelsim transcript output during simulation is of the form:

#** Note:
Time:

Tor on-board RAM bank 1 t¢ atise
S20010 pe Veoration: 15 instancer seest uber/test_uber_ds

Example HDL FPGA Designs Page 121
AD-UG-0004 Alpha Data Parallel Systems Ltd.

@ALPHA DATA

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

** Note: on-board RAM bank 1 i
Tine: 58551250 ps Iteration:
 Read RAN

iatised
13 Instance: /test_uber/test_uber_ds_i

Bank Info Reg 4 bytes OX3F10181C fron byte address OX00034C

oat ubor /tect.er

/test_uver

ps Iteration: 13 Instance: /test_uber/test_ui

tance: /te:

vee adorens nxzunoou
Iteration: 13 Instance: /test_uber/test_uber_d:

Iterati Instance: /test_uber/te:

Iteration: 13 Instance: /test_uber/test_uber_ds,
Addr top 4 bytes 0x47ADO369 fron byte address OXSFFFFC
Ieration: 13 Instance: /test_uber/test_uber.

s Page
Ieration: 13 Instance: /test_uber/test_uber ¢

ds i
yte address 0x000348

e 0b1111 to byte address 0x000348

r_ds
= ote: rots Rl Bank Ctrl Reg 4 bytes 0X00000100 with erabls 0611 To iyte auress 0000340

i Feg Addr 4 bytes 0X0000000L with enablo AL to byte address 0x000300

Pase g Addr 4 bytes OXO00OOOTE with enable ODLILL 1o byte address 03000304
on ds i

e top 4 bytes. 0ua7AD0%06 with enable Db1TL To byte address OXGFFFRC

Feg A 4 bytes 000000000 with snable ObLL11 o byte adress 0000304

ith emu OGLIIMIIIITIIIINIILL] to byts address 0x200000
tance: /test_uber/test uber_ds

i nace 52 byten
ron byte address 0x200000
Tine: 64021250 ps Iteration:

Note: Wrate RAN Win Addr base 48 bytes

EAEEEEES TEEEEE BEEEEEEG SEATRFEEEEEE Ba

13 Instance: /test_uber/test_uber_ds_i

‘enable 0b: €0 by
i Instance:/test_ubr/test_uber s

to address 0200000

fron byte address 0x200000
#

Time: 65741250 ps Iteration: 13 Instance: /test uber/test uber ds

n Addr

ot
onable GBI AATI11A to byte address OX200010
Time: SSTSA750 g Itaration: 13 Instance: /tast. uoer/test uber s |
Wi Addr base 32 bytes

ke adaress 02010
Tine: 67296250 ps Iteration: 13

Note: Wrote RAN Win Addr base 48 bytes

Instance: /test_uber/test_uber_ds.

enable 0b:
Tinet 67913750 pe.IKaration: 13 Instance: /cest uber/test. ubar ¢
Note: Read RAM Win Addr base 48 bytes

o byte address 04200010

fron byte address 0xz000to

" 41250 ps Iteration: 13 Instance: /test_uber/test_uber_ds i
= tote: Wrots Al Wi Addr base 4 bytes Ox4S00000D with enabls 061000 £ iyte adiress 0200000
T 750 ps Iteration: 13 Instance: /test_uber/te:
or base 4 hy(es oxo tn eneb a mw o byte sdaress 0200000
Iteration tance: /test_uber/test_u
Addr base 4 mes or00000100 Rith enable Ov0310 1o byte address 020000

er/test_uber_ds.

win
Iteration: tance: /test_uber/test_u
i Ao hace 4 bytes OMABOLET Tron byte adiress cxzmuuo
Iteration: 13 Instance: /test_uber/test_uber ¢

Tine: 60791550 ps

=2 tlota: Wlatting for Intarnal test of an-board Al bark 1 to complets
4 Tine: 69791250 ps Iterai Instance: /test_uber/test_uber_ds i
"

** Note: Read RAU Bank Stat Reg 4 bytes OXIXXXOXF fron byte address 03000350

Addr base 4 nytes 0200000067 with enabls 0b0001 €0 byte address x200000

Page 122
Alpha Data Parallel Systems Ltd.

Example HDL FPGA Designs
AD-UG-0004

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(V1.3 - 04th March 2011)

@ALPHA DATA

Tine: S1541250 g Itaration: 13 Instare: /tsst.user/test_uber_ts_|

#
** lote: Internal test of on-board RAN bank 1 conplets
#

** Note: Test RA conpleted: PASSED.

Tine: 81541250 ps Iteration: 13 Instance: /test uber/test_uber ds i

5.5.6.5 DMA OCP Channels Results

Modelsim transcript output during simulation is of the form:

=" Note: DU rand rosponse data process started
28750 ps Iteration. nstance: /test_uber/t:
- Oun urita process started (Base adiress = oZuO00OT
2028750 ps _Iterats Instance: /test_uber/ts
o A write pieted

Tine: 63493750 ps 13 Instance: /test_uber/1
I 4032 bytes transferre

63493750 ps Iteration: 13 Instance: /test_uber/
** llote: DA read comand process started (8ase address =
“ Iteration: 13 Instance: /test_uber/s
o read comand process conplete

T el Sssres0 b eeration: 15 nstances /test_uber/
** Note: DA read response data process complet

0 ine: raseza0 ps teeratton: 13 mmstance; Jeest_uber
=" Note: 4032 bytes transforred with 0 data ervor(s)

® Tine: 67456250 ps Iteration: 13 nce: /test_uber/
#** Note: Test DA co PSSt

§ 7 ine: G7as6280 pu " teerations 13 Instance: /test_uber

5.5.6.6 Completion Results

1541250 pa IHoration: 19 Inatance: /et uber/test_uber_ds_

est_uber_dra i

700y

est_uber_dna_

test_uber_dna

tost_uber_dna_i

0x2000007600)
tost_uber_dna_i

tost_uber_dna_i

test_uber_dua_i

test_uber_dna_i

test_uber_dna_i

Assuming that all tests passed, Modelsim transcript output on successful completion of simulation is of the form:

re: T ; UBER conpletacs PASSED.
82126250 ps Iteration: 15 Process: /test uber/t
Process test_results.p at -./comonstest uber vnd
n Breakpoint:

) BAGRO"fuber-adnurcati.do. PAUSED

ost_results p Fi
e 407

Break In Process test_results_p at ._/conon/test_uber vhd
at tine 216

Jconnon/test_uber..vhd

Example HDL FPGA Designs
AD-UG-0004 Alpha Data Parallel

Systems Lid.

Page 123

e

ADM-XRC Gen 3 SDK 1.3.0 User Guide

HA DATA (v1.3- 04th March 2011)

6 Common HDL Components

The ADM-XRC Gen 3 SDK provides a number of HDL components that are used in the example FPGA designs and

testb

interfaces and structure.

enches. These components may also be used in customer FPGA designs. This section provides details of their

‘The components are divided into libraries as follows:

ADB3 OCP library

MPTL library

ADBS3 target library

ADBS3 probe library

Memory interface library

Memory application library

Memory model library

Clock frequency measurement library
ChipScope™ library

Page 124

Common HDL Components
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.3.0 User Guide.

(V1.3 - 04ih March 2011) @ALPHA DATA

6.1 ADB3 OCP Library
The ADB3 OCP library is located in hdl/vhdl/common/adb3_ocp and contains the following elements:
« ADB3 OCP profile definition package (adb3_ocp)
« ADB3 OCP library component declaration package (adb3_ocp_comp)
« ADB3 OCP library components.

6.1.1 ADB3 OCP Profile Definition Package (adb3_ocp)
The package adb3_ocp defines constants and types which relate to the ADB3 OCP profile. This OCP profile is used for
many of the reuseable VHDL modules in this SDK, and to connect together the various blocks in the example FPGA
designs.
Two main types are defined:
Burst capable data flow from OCP Master to OCP Slave (M2S)
« Command Cmd of type ocp_CmdT (idle, Write, Read, Write Non Post).
+ Command Start Address Addr of type std_logic_vector with width ADB3_OCP_ADDR_WIDTH = 64.
+ Command Burst Length BurstLength of type std_logic_vector with width ADB3_OCP_BURST_WIDTH = 12.
« Command Tag Tag of type std_logic_vector with width ADB3_OCP_TAG_WIDTH = 8.
« Data Data of type std_logic_vector with width ADB3_OCP_DATA_WIDTH = 128,
+ Data Byte Enable DataByteEn of type std_logic_vector with width ADB3_OCP_BE_WIDTH = 16,
+ Data Valid Datavalid of type std_logic.
+ Response Accept RespAccept of type std_logic.

Burst capable data flow from OCP Slave to OCP Master (S2M)
+ Command Accept CmdAccept of type std_logic.

« DataAccept DataAccept of type std_logic.

+ Response Data Data of type std_logic_vector with width ADB3_OCP_DATA_WIDTH = 128,
+ Response Type Resp of type ocp_RespT (None, Valid, Failed, Error),

« Response Tag Tag of type std_logic_vector with width ADB3_OCP_TAG_WIDTH = 8.

Refer to Section 7.1 for a description of ADB3 OCP protocol transactions.

Common HDL Components Page 125
AD-UG-0004 Alpha Data Parallel Systems Ltd

ADM-XRC Gen 3 SDK 1.3.0 User Guide

@ALPHA DATA (v1.3 - 04th March 2011)

6.1.2 ADB3 OCP Library Component Declaration Package (adb3_ocp_comp)

The package adb3_ocp_comp defines I-purpose ADB3 OCP library

Components that require the data for the current OCP command to be fully read or written before the next OCP
command is accepted are categorised as 'blocking'. Blocking components have a lower data throughput in general, but
require less FPGA resources. Blocking components in the ADB3 OCP library are as follows:

+ adb3_ocp_mux_b

« adb3_ocp_simple_bus_if

+ adb3_ocp_split_b

Components that can accept further OCP commands before the data for the current OCP command has been fully read
or written are categorised as ‘non-blocking'. Non-blocking components have a higher data throughput in general, but
require more FPGA resources. Non-blocking components in the ADB3 OCP library are as follows:

« adb3_ocp_cross_clk_dom

« adb3_ocp_mux_nb

+ adb3_ocp_ocp2ddr3_nb

« adb3_ocp_retime_nb

« adb3_ocp_split_nb

Page 126 Common HDL Components
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.3.0 User Guide

(VL3 - 04th March 2011)

@ALPHA DATA

6.1.3 ADB3 OCP Library Components
6.1.3.1 adb3_ocp_cross_clk_dom
6.1.3.1.1 Introduction

This is a non-blocking component in the ADB3 OCP library. s function is to connect a single primary ADB3 OCP

channel in the primary clock domain to a single secondary ADB3 OCP channel in the secondary clock domain

Dependencies

+ The command path is independent from the write data path. Data acceptance does not block command

acceptance.

+ The command path is independent from the read response path. Response acceptance does not block

command acceptance.

6.1.3.1.2 Interface

The adb3_ocp_cross_clk_dom component interface is shown in Figure 18 below and described in Table 73.

adb3_ocp_cross_clk_dom

Figure 18: ADB3 OCP Library adb3_ocp_cross_clk_dom Component Interface

Signal Type | Description
OCP Primary Port
slave_rst Input__| OCP Primary (slave) port asynchronous reset
slave_clk Input__| OCP Primary (slave) port clock.
slave_m2s Input__| OCP Primary (slave) port M2S connection.
slave_s2m Output | OCP Primary (slave) port S2M connection.
OCP Secondary Port
‘master_rst Input | OCP Secondary (master) port reset.
master_clk Input__| OCP Secondary (master) port clock
master_m2s. Output | OCP Secondary (master) port M2S connection.
master_s2m Input | OCP Secondary (master) port S2M connection.

Table 73: ADB3 OCP Library adb3_ocp_cross_clk_dom Component Interface

6.1.3.1.3 Description

The adb3_ocp_cross_clk_dom component block diagram is shown in Figure 19 below.

Common HDL Components
AD-UG-0004

Alpha Data Parallel Systems Ltd.

Page 127

ADMXRC Gen 3 SDK 1.3.0 User Guide
@ ALPHA DATA (V13- 0dth March 2011)

a3 oep_cro%s_ck_dom
aito
siaves_m2s mastor_nzs
(cma. Tag.Aar (Gma, Tag, Ago,
Bursitengin) Eurstengh)
staves_som | [master_som
(Cmanceep) Geepl)
Cma FiF0
Command patn
aito
stave_mas master_nzs
(Oataval, ot (atavaid, Data,
138 eEr)
stave_s2m [master_s2m
(GaimAceem) (atanccesn)
Oa o
e gaa pain
aito
siave_s2m mastor_som,
(osp,Dota Tag) (osp,Dota, Tag)
s _| master_m2s
(Resphccsp) (RespAccest)
Resp FIF0.
stave_ck K
Read respanse pain

Figure 19: ADB3 OCP Library adb3_ocp_cross._clk_dom Block Diagram

Page 128 Common HDL Components
Alpha Data Parallel Systems Ltd. AD-UG-0004

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(V1.3 - 04th March 2011)

@ALPHA DATA

The component consists of three instances of the Asychronous FIFO block afifo. One for command signals, one for
data signals, and the third for response signals as follows:

6.1.3.1.3.1 Command Path

This consists of the Cmd, Tag, BurstLength, and Addr elements of the slave_m2s/master_m2s signals, and the

CmdAccept element of the slave_s2m/master_s2m signals,

Command FIFO

+ The slave_m2s port command elements are interfaced to the master_m2s port command elements via the
ccommand FIFO.

« The slave_s2m port CmdAccept element is generated from the command FIFO full flag.

+ The command FIFO write advance is generated from the slave_m2s port Cmd element and the command
FIFO ful flag.

« The command FIFO read advance is generated from the master_s2m port CmdAccept element and the
command FIFO empty flag.

6.1.3.1.3.2 Write Data Path

This consists of the DataValid, DataByteEn, and Data elements of the slave_m2s/master_ma2s signals, and the

DataAccept element of the slave_s2m/master_s2m signals

Write Data FIFO

« slave_m2s port write data elements are interfaced to the master_m2s port write data elements via the write
data FIFO.

+ The slave_s2m port DataAccept element is generated from the data FIFO full flag

« The write data FIFO write advance is generated from the slave_m?2s port DataValid element and the write

data FIFO fullflag.

The write data FIFO read advance is generated from the master_s2m port DataAccept element and the write

data FIFO empty flag.

6.1.3.1.3.3 Read Response Path

This consists of the Resp, Tag, and Data elements of the master_s2m/slave_s2m signals, and the RespAccept

element of the master_m2s/slave_m2s signals.

Read Response FIFO

« master_s2m port read response elements are interfaced to the slave_s2m port read response elements via
the read response FIFO.

. The master_m2s port RespAccept element is generated from the read response FIFO full flag.

« The read response FIFO write advance is generated from the slave_mz2s port Resp element and the read
response FIFO full flag.

« The read response FIFO read advance is generated from the slave_m2s port RespAccept element and the
read response FIFO empty flag.

Common HDL Components Page 129

AD-UG-0004 Alpha Data Parallel Systems Ltd

ADM-XRC Gen 3 SDK 1.3.0 User Guide

@ALPHA DATA (v1.3 - 04th March 2011)

6.1.3.2 adb3_ocp_mux_b
6.1.3.2.1 Introduction

This is a blocking component in the ADB3 OCP library. Its function is to multiplex muliple primary ADB3 OCP channels
onto a single secondary ADB3 OCP channel. The multiplex is controlled by round-robin arbitration of OCP commands.

6.1.3.2.2 Interface
The adb3_ocp_mux_b component interface is shown in Figure 20 below and described in Table 74.

adb3_ocp_mux_b

Figure 20: ADB3 OCP Library adb3_ocp_mux_b Component Interface

Signal Type | Description
mux_inputs Generic | Number of primary OCP channels to be multiplexed.
ocp_rst Input | ocp reset.
ocp_clk Input | OCP clock.

OCP Primary Ports
slaves_m2s Input | OCP Primary (slave) ports M2S connection.
slaves_s2m Output | OCP Primary (slave) ports S2M connection.

OCP Secondary Port
master_m2s. Output | OCP Secondary (master) port M2S connection.
master_s2m Input__| OCP Secondary (master) port S2M connection.

Table 74: ADB3 OCP Library adb3_ocp_mux_b Component Interface

6.1.3.2.3 Description
8D

Page 130 Common HDL Components
Alpha Data Parallel Systems Ltd. AD-UG-0004

ADM-XRC Gen 3 SDK 1.3.0 User Guide

(v1.3 - 0ath March 2011) @ ALPHA DATA

6.1.3.3 adb3_ocp_mux_nb
6.1.3.3.1 Introduction

This is a non-blocking component in the ADB3 OCP library. s function is to multiplex multiple primary ADB3 OCP
channels onto a single secondary ADB3 OCP channel. The multiplex is controlled by round-robin arbitration of OCP
commands.

Dependencies

+ The command path is independent from the write data path. Data acceptance does not block command
acceptance.

+ The command path is independent from the read response path. Response acceptance does not block
command acceptance.

« Transactions on multiple primary ADB3 OCP channels may be accepted simultaneously.

6.1.3.3.2 Interface
The adb3_ocp_mux_nb component interface is shown in Figure 21 below and described in Table 75,

adb3_ocp_mux_nb

Figure 21: ADB3 OCP Library adb3_ocp_mux_nb Component Interface

Signal Type [Description
mux_inputs Generic | Number of primary OCP channels to be multiplexed.
ocp_rst Input | OCP asynchronous reset.
ocp_ck Input_| OCP clock.

OCP Primary Ports
slaves_m2s Input_| OCP Primary (slave) ports M2S connection.
slaves_s2m Output_| OCP Primary (slave) ports S2M connection

OCP Secondary Port
master_m2s Output_| OCP Secondary (master) port M2S connection.
master_s2m Input_| OCP Secondary (master) port S2M connection.

Table 75: ADB3 OCP Library adb3_ocp_mux_nb Component Interface

6.1.3.3.3 Description

The adb3_ocp_mux_nb component block diagram is shown in Figure 22 below.

Common HDL Components Page 131
AD-UG-0004 Alpha Data Parallel Systems Ltd.

@ALPHA DATA

ADM-XRC

Gen 3 SDK 1.3.0 User Guide
(V1.3 -04th March 2011)

sinves_m2s(0)
nd, T, i, —|.
Burstenain

sives_s2m0)
Criaccept <}

stves_mas(n)
., Tag, . —
Burstenain

staves_samin)
Crtnccept <

Ty

a8b3_ocp_mux_ob_fio

Stave FIF0

adb3_ocp. mux_nb_fio b3_ocp_mue_nb_f0

Siave FIFO Command patn Master FFO

master_m2s
-+ (Gma, Tag, Ader,
Eursiengh)

mastr_szm
£ st

siaves m2s(0)
(©atavai, baa, —|
]

siaves_s2m0)
(aiaaccep

staves_ mas(n)

slves_s2m(n)
(Daianccep

a0v3_ocp_mux_ob_tio

aab3_ocp mux_ob o Fsu

Stave FIFO Wit Cma FIFO

a3 ocp_mux_nb_fio 53 ocp_muc_nb_fto

Stove FIFO wte data pth Master FFO

mastor_nzs
L aiavaio, Daa.
Daapyeen)

master_sam
[aanicest)

siaves_s2m(0)
(Rasp, e, Tog) <

siaves_m2s(0)
(Respccen) |

sives_sam(n)
o, Data, Tag) <

staves m2s(o)
Resphceepy |

adb3_ocp_mux_nb_fio adb3_ocp. mux_nb_fio Fsu

Read Resp Fsb

Stave FIFO Read Cmd FIFO.

a8b3_ocp_mux_ob_tio a083_ocp_mue_nb_fto

Siave FIF0 Read response pain Master FFO

| mastor_som
(esp,Daia, Tag)

master_m2s
[Gespacceon)

Figure 22: ADB3 OCP Library adb3_ocp_mux_nb Block Diagram

Page 132

Alpha Data Parallel Systems Ltd.

Common HDL Components
D-UG-0004

ADM-XRC Gen 3 SDK 1.3.0 User Guide

(V1.3 - 04ih March 2011) @ ALPHA DATA

6.1.3.3.3.1 Command Path

This consists of the Cmd, Tag, BurstLength, and Addr elements of the slaves_m2s/master_m2s signals, and the

CmdAccept element of the slaves_s2m/master_s2m signals.

Slave Command FIFOs

« The slaves_m2s ports command elements are interfaced to the slave command mux inputs via the slave
ccommand FIFOs.

+ The slaves_s2m ports CmdAccept elements are generated from the slave command FIFOs ot full lags.

+ The slave command FIFOs write advances are generated from the slaves_mz2s ports Cmd elements and the
slave command FIFOs not full lags.

+ The slave command FIFOs read advances are generated from the slave command select and the master,
write, and read command FIFO not fullflags.

Priority Selector
« Priority is assigned on a round-robin basis.
« The slave command select is generated from the highest priority non-empty slave command FIFO.

Slave Command Mux

+ The slave command mux select is generated from the slave command select.
+ The slave command mux routes the selected slave command FIFO to the master command FIFO.

Master Command FIFO

« The slave command mux output is interfaced to the master_m2s port command elements via the master
command FIFO.

« The master command FIFO write advance is generated from the slave command select and the master, write,
and read command FIFO not full flags

« The master command FIFO read advance is generated from the master_s2m port CmdAccept element and
the master command FIFO not emply flag

Write Command FIFO
+ The slave command select and s\ave command FIFO output BurstLength element are interfaced to the write
data FSM via the write command FIFO.

+ The write command FIFO write advance is generated from the master command FIFO write advance and
master command FIFO Cmd element.

« The write command FIFO read advance is generated from the write data FSM,

Read Command FIFO
+ The slave command select and slave command FIFO output BurstLength element are interfaced to the read
data FSM via the read command FIFO.

+ The read command FIFO write advance is generated from the master command FIFO write advance and
master command FIFO Cmd element.

+ The read command FIFO read advance is generated from the read data FSM

6.1.3.3.3.2 Write Data Path

Common HDL Components Page 133
AD-UG-0004 Alpha Data Parallel Systems Ltd

ADM-XRC Gen 3 SDK 1.3.0 User Guide

@ALPHA DATA (v1.3 - 04th March 2011)

This consists of the DataValid, DataByteEn, and Data elements of the slaves_m2s/master_m2s signals, and the

DataAccept element of the slaves_s2m/master_s2m signals.

Slave Write Data FIFOs

« The slaves_m2s ports write data elements are interfaced to the slave write data mux inputs via the slave write
data FIFOs.

+ The slaves_s2m ports DataAccept elements are generated from the slave write data FIFOS not fullflags.

« The slave write data FIFOs write advances are generated from the slaves_m2s ports Datavalid elements and
the slave write data FIFOs not full flags.

. The slave write data FIFOs read advances are generated from the write data select, the slave write data FIFOs
not empty flags, and the master write data FIFO not full flag

Slave Write Data Mux

+ The slave write data mux select is generated from the write data select.
+ The slave write data mux routes the selected slave write data FIFO to the master write data FIFO.

Master Write Data FIFO

+ The slave write data mux output is interfaced to the master_m2s port write data elements via the master write
data FIFO.

« The master write data FIFO write advance is generated from the write data select, the slave write data FIFO
not empty flags, and the master write data FIFO not fullflag

+ The master write data FIFO read advance is generated from the master_s2m port DataAccept element and
the master write data FIFO not empty flag.

Write Data FSM

+ Counts write data bursts for current entry in the write command FIFO.

+ The write data select is generated from the FSM state and write command FIFO output.
+ The write command FIFO read advance is generated from the FSM state.

6.1.3.3.3.3 Read Response Path

This consists of the Resp, Tag, and Data elements of the master_s2m/slaves_s2m signals, and the RespAccept

element of the master_m2s/slaves_m2s signals.

Master Read Response FIFO

« The master_s2m port read response elements are interfaced to the slave read response FIFOs via the master
read response FIFO.

« The master read response FIFO write advance is generated from the master_s2m port Resp element and the
master read response FIFO not full flag.

. The master read response FIFO read advance is generated from the read response select, slave read
response FIFOs not full flags, and the master read response FIFO not empty flag.

Slave Read Response FIFOs

+ The master read response FIFO is interfaced to the slaves_s2m ports read response elements via the slave
read response FIFO:

Page 134 Common HDL Components
Alpha Data Parallel Systems Ltd. AD-UG-0004

ADM-XRC Gen 3 SDK 1.3.0 User Guide.

(V1.3 - 04ih March 2011) @ALPHA DATA

« The slave read response FIFOs write advances are generated from the read response select, the slave read
response FIFOs not fullflags, and the master read response FIFO not full flag.

« The slave read response FIFOs read advances are generated from the slaves_m2s ports RespAccept
elements and the slave read response FIFOs not empty flags.

Read Response FSM

« Counts read response bursts for current entry in the read command FIFO.
+ The read response select is generated from the FSM state and read command FIFO output.
« Theread command FIFO read advance is generated from the FSM state.

Common HDL Components Page 135
AD-UG-0004 Alpha Data Parallel Systems Ltd

ADM-XRC Gen 3 SDK 1.3.0 User Guide

@ALPHA DATA (v1.3 - 04th March 2011)

6.1.3.4 adb3_ocp_ocp2ddr3_nb
6.1.3.4.1 Introduction

This is a non-blocking component in the ADB3 OCP library. s function is to interface a single ADB3 OCP channel to
the Xilinx™ DDR3 SDRAM MIG core user interface.

6.1.3.4.2 Interface

The adb3_ocp_ocp2ddr3_nb component interface is shown in Figure 23 below and described in Table 76.

adb3_ocp_ocp2ddr3_nb

Figure 23: ADB3 OCP Library adb3_ocp_ocp2ddr3_nb Component Interface

signal Type [Description

app_row_width | Generic | Width of the row part of the app_addr output.
app_col_width | Generic | Width of the col part of the app_addr output.
app_bank_width | Generic | Width of the bank part of the app_addr output.

app_addr_width_| Generic | Width of the app_addr output (4-byte addressing).

OCP Interface
ocp_rst Input_| OCP asynchronous reset.
ocp_clk Input | OCP clock.
ocp_m2s Input | OCP M2 connection.
ocp_s2m Output_| OCP S2M connection.

DDR3 SDRAM MIG Core User Interface
mig_rst Input | User interface reset.
mig_clk Input_| User interface clock.
phy_init_done | Input__| User interface phy calibration complete.
app_rdy Input_| User interface command ready.

Table 76: ADB3 OCP Library adb3_ocp_ocp2ddr3_nb Component Interface (continued on next page)

Page 136 Common HDL Components
Alpha Data Parallel Systems Ltd. AD-UG-0004

ADM-XRC Gen 3 SDK 1.3.0 User Guide.

(V1.3 - 04th March 2011)

@ ALPHA DATA

signal Type | Description

app_wdf_rdy | Input | User interface write data ready.

app_rd_data Input_| User interface read command data.
app_rd_data_valid | Input__| User interface read command data valid.

app_en Output | User interface command enable.

app_cmd Output | User interface command.

app_addr Output_ | User interface command address.

app_sz Output | User interface command on the fly BLB/BC4 select.
app_wdf_wren | Output | User interface write command data enable
app_wdf_data__| Output | User interface write command data.
app_wdf_mask | Output | User interface write command data mask (active low)
app_wdf_end | Output | User interface write command data end.

Table 76: ADB3 OCP Library adb3_ocp_ocp2ddr3_nb Component Interface

6.1.3.4.3 Description

The adb3_ocp_ocp2ddr3_nb component block diagram is shown in Figure 24 below.

Common HDL Components
AD-UG-0004

Alpha Data Parallel Systems Ltd

Page 137

@ALPHA DATA

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

03 oep_ocpadia b
oyt done
Cma it aito cma Output
o
. Tag, A, —. — a0y
Burstengin 1 aone
= app_ema
> app_ater
ocp_s2m
cmaszcep < [
Command patn
Data nput aito Data Ouput
(@atavel, Daa, —| F— app vl oy
Dutasetn) 1 aop vt uren.
£ app i cata
1 app_w_mask.
ocp_sam
e — £ app_wena
wte data pth
sito
Fead Tag FIFO
Resp Output atto Resp nput
ocp_s2m s
(esp,oota Tog) < [
ocpmzs _|
(Resphceon)
Read response patn

Figure 24: ADB3 OCP Library adb3_ocp_ocp2ddr3_nb Block Diagram

Page 138

Alpha Data Parallel Systems Ltd.

Common HDL Components
AD-UG-0004

ADM-XRC Gen 3 SDK 1.3.0 User Guide

(V1.3 - 04ih March 2011) @ ALPHA DATA

6.1.3.4.3.1 Command Path

This consists of the Cmd, Tag, BurstLength, and Addr elements of the ocp_m?2s signal, and the app_rdy, app_en,

app_cmd, app_addr, and app_sz signals.

Command Input

« This block operates in the ocp_clk domain.

+ The ocp_m2s port commanddata elements and command FIFO full lag are used to produce the command
FIFO data and write advance and the slave_s2m port CmdAccept element

+ ocp_m2s port transactions are converted into MIG core user interface transactions which are then written to
the command FIFO.

Command FIFO

+ MIG core user interface transaction data in the ocp_clk domain is interfaced to the mig_clk domain

Command Output
= This block operates in the mig_clk domain

« The command FIFO data output and empty flag are used to produce the MIG core user interface command
signals.

Read Tag FIFO

+ This block operates in the mig_clk domain.

+ The command FIFO data outputs cmd_fifo_bl8_out and cmd_fifo_tag_out are written to the read tag FIFO
on every MIG core user interface read command.

+ The read tag FIFO output tag_fifo_tag_out is used as the tag value for OCP response data written into the
response FIFO.

+ The read tag FIFO output tag_fifo_bl8_out is compared with the number of OCP response data words and
this is used to generate the read tag FIFO read advance.

6.1.3.4.3.2 Write Data Path

This consists of the DataValid, DataByteEn, and Data elements of the ocp_m2s signal, and the app_wdf_rdy,
app_wdf_wren, app_wdf_data, app_wdf_mask, and app_wdf_end signals.

Write Data Input

« This block operates in the ocp_clk domain.

. The ocp_m2s port command/data elements and write data FIFO full flag are used to produce the write data
FIFO data and write advance and the slave_s2m port DataAccept element.

« ocp_ma2s port write data is converted into MIG core user interface write data data which is then witten to the
write data FIF

Write Data FIFO

+ MIG core user interface write data in the ocp_clk domain is interfaced to the mig_clk domain.

Write Data Output

+ This block operates in the mig_clk domain.

Common HDL Components Page 139
AD-UG-0004 Alpha Data Parallel Systems Ltd

ADM-XRC Gen 3 SDK 1.3.0 User Guide

@ALPHA DATA (v1.3 - 04th March 2011)

+ The write data FIFO data output and empty flag are used to produce the MIG core user interface write data
signals.

6.1.3.4.3.3 Read Response Path

This consists of the Resp, Tag, and Data elements of the ocp_s2m signal, and the app_rd_data, and

app_rd_data_valid signals.

Read Response Input

« This block operates in the mig_clk domain.

« Theapp_rd_data, and app_rd_data_valid signals, read tag FIFO output tag_fifo_tag_out, and read
response FIFO full flag are used to produce the read response FIFO data and write advance.

. MIG core user interface read data signals are converted to OCP response data which is then written to the
read response FIFO.

Read Response FIFO

+ MIG core user interface read data in the mig_clk domain is interfaced to the ocp_clk domain

Read Response Output

« This block operates in the ocp_clk domain.
« The read response FIFO data output and empty flag, and ocp_m2s port element RespAccept are used to
produce the ocp_s2m port response elements and the response FIFO read advance.

Page 140 Common HDL Components
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 130 User Guide
(v1.3 - 0ath March 2011) @ ALPHA DATA

6.1.3.5 adb3_ocp_retime_nb
6.1.3.5.1 Introduction

This is a non-blocking component in the ADB3 OCP library. lts function is to re-time a single primary ADB3 OCP
channel, producing a single secondary ADB3 OCP channel

6.1.3.5.2 Interface
The adb3_ocp_retime_nb component interface is shown in Figure 25 below and described in Table 77.

adb3_ocp_retime_nb

Figure 25: ADB3 OCP Library adb3_ocp_retime_nb Component Interface

Signal Type | Description
ocp_rst Input__| OCP asynchronous reset.
ocp_ck Input | OCP clock.
OCP Primary Port
slave_m2s Input__| OCP Primary (slave) port M2S connection.
slave_s2m Output | OCP Primary (slave) port S2M connection.
OCP Secondary Port
master_m2s Output | OCP Secondary (master) port M2S connection.
master_s2m Input__| OCP Secondary (master) port S2M connection.

Table 77: ADB3 OCP Library adb3_ocp_retime_nb Component Interface

6.1.3.5.3 Description
TBD

Common HDL Components Page 141
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADMXRC Gen 3 SDK 1.3.0 User Guide
@ ALPHA DATA (V13- 0dth March 2011)

6.1.3.6 adb3_ocp_simple_bus_if
6.1.3.6.1 Introduction

This is a blocking component in the ADB3 OCP library. Its function is to convert a single ADB3 OCP channel to a
simple parallel interface.

6.1.3.6.2 Interface

The adb3_ocp_simple_bus_if component interface is shown in Figure 26 below and described in Table 78.

adb3_ocp_simple_bus_if

Figure 26: ADB3 OCP Library adb3_ocp_simple_bus_if Component Interface

Signal Type [Description

addr_width Generic | Width of the address output a.

data_width Generic | Width of the data input/output /g,

read_latency | Generic | Number of cycles delay before read data q is available.
OCP Interface

ocp_rst Input | OCP asynchronous reset.

ocp_clk Input_| OCP clock

ocp_m2s Input | OCP M2S connection.

ocp_s2m Output | OCP S2M connection.

Simple Bus Interface
d Output | Write data.
a Input | Read data.
a
w

Output_| Write/Read address.
Output | Write valid.
r Output_| Read valid
we Output_| Write data byte valid.

Table 78: ADB3 OCP Library adb3_ocp_simple_bus._if Component Interface

6.1.3.6.3 Description
8D

Page 142 Common HDL Components
Alpha Data Parallel Systems Ltd. AD-UG-0004

ADM-XRC Gen 3 SDK 130 User Guide
(v1.3 - 0ath March 2011) @ ALPHA DATA

6.1.3.7 adb3_ocp_split_b

6.1.3.7.1 Introduction
This is a blocking component in the ADB3 OCP library. Its function s to de-multiplex a single primary ADB3 OCP
channel into multiple secondary ADB3 OCP channels. The de-multiplex is controlled by the primary channel command
address.

6.1.3.7.2 Interface
The adb3_ocp_split_b component interface is shown in Figure 27 below and described in Table 79.

adb3_ocp_split_b

Figure 27: ADB3 OCP Library adb3_ocp_split_b Component Interface

signal Type | Description
addr_range_table | Generic | Table defining the address ranges to be used to control the split operation.
ocp_rst Input | ocp reset.
ocp_clk Input__| OCP port clock.

OCP Primary Port
slave_mz2s Input_| OCP Primary (slave) port M2S connection.
slave_s2m Output_| OCP Primary (slave) port S2M connection.

OCP Secondary Ports

masters_ m2s | Output | OCP Secondary (master) ports M2S connection.

masters_s2m__| Input__| OCP Secondary (master) ports S2M connection.

Table 79: ADB3 OCP Library adb3_ocp_split_b Component Interface

6.1.3.7.3 Description
8D

Common HDL Components Page 143
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide

@ALPHA DATA (v1.3 - 04th March 2011)

6.1.3.8 adb3_ocp_split_nb
6.1.3.8.1 Introduction
This is a non-blocking component in the ADB3 OCP library. Its function is to de-multiplex a single primary ADB3 OCP

channel into multiple secondary ADB3 OCP channels. The de-multiplex is controlled by the primary channel command
address.

6.1.3.8.2 Interface

t_nb component interface is shown in Figure 28 below and described in Table 80.

The adb3_ocp_spli

adb3_ocp_split_nb

Figure 28: ADB3 OCP Library adb3_ocp_split_nb Component Interface

Signal Type | Description
addr_range_table | Generic | Table defining the address ranges to be used to control the split operation.
error_data Generic | OCP Response Data to be returned if address is out of range.
ocp_rst Input__| OCP asynchronous reset.
ocp_clk Input | OCP port clock.
OCP Primary Port
slave_m2s Input__| OCP Primary (slave) port M2S connection.
slave_s2m Output | OCP Primary (slave) port S2M connection.
OCP Secondary Ports
masters_m2s | Output | OCP Secondary (master) ports M2S connection.
masters_s2m Input OCP Secondary (master) ports S2M connection.

Table 80: ADB3 OCP Library adb3_ocp_split_nb Component Interface

6.1.3.8.3 Description

The adb3_ocp_split_nb component block diagram is shown in Figure 29 below.

Page 144 Common HDL Components
Alpha Data Parallel Systems Ltd. AD-UG-0004

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(VL3 - 04th March 2011)

@ ALPHA DATA

adb3_ocp. mux_nb_fio

stave_mas
cma Tag g, —.
Burstenain

stave_som
Crasecept <

Siave FIFO

3 ocp_spi_T

Command patn

ad53_ocp_spinb_f0
s nas)
f— (cma. T
Slrsienghy

mastars_s2m(0)
F (cmanccenn)
Master FFO.
adb3_ocp_spli_nb_fto
s nzs)

{— (cna,
g

mastors_sam(e)
£ Cmdcionn

Master FF0

Fsu

Wie Data FSie

a3 ocp_spi

Stove FIFO

adb3_ocp_spii_n

Vinte Crd FIF0

wte data pth

ad03_ocp_spiiLnb_t0

masters_m2s(0)

L+ (Dasavais, Daa.
oaabyeen)

-

masters_s2m(0)
(ataaccept)

Master FF0.

ads3_ocp_spinb_f0
st nzs)

- o
ek

masters_sam(o)
[aanciepn)

Master FFO

Fsu

Read Resp FSM

a8b3_ocp_mux_ob_tio

save som |
osp, Dota, Tag) <

tave mas
(respaceepy |

Siave FIF0

db3_ocp_spi_nb_ito

Read Cmd FIFO

Read response patn

adb3_ocp_spinb_ 0

masters_m2s(0)
[Gospaczenn)

Master FFO

a083_ocp_spiiLnb 0

|, masters mzsco)

es

Master FF0

Figure 29: ADB3 OCP Library adb3_ocp_split_nb Block Diagram

masters_s2m(0)
esp, oota, Tag)

| mastors_samio)
(esp,Data, Tag)

Common HDL Components
AD-UG-0004

Alpha Data Parallel Systems Ltd.

Page 145

ADMXRC Gen 3 SDK 1.3.0 User Guide
@ ALPHA DATA (V13- 0dth March 2011)

6.1.3.8.3.1 Command Path
This consists of the Cmd, Tag, BurstLength, and Addr elements of the slaves_m2s/master_m2s signals, and the
CmdAccept element of the slaves_s2m/master_s2m signals.
Slave Command FIFO

« The slave_m2s port command elements are interfaced to the master command FIFOs via the slave command
FIFO

+ The slave_s2m port CmdAccept element is generated from the slave command FIFO not ful flag.

« The slave command FIFO write advance is generated from the slave_m2s port Cmd element and the slave
command FIFO not fullfiag.

« The slave command FIFO read advance is generated from the slave command FIFO not empty, slave
command select, and the master, write, and read command FIFO not full lags.

Address Selector

+ The slave command select is generated by comparison of the slave command FIFO Addr element with the
address ranges in the addr_range_table generic.

Master Command FIFOs

«+ The slave command FIFO is interfaced to the masters_m?2s ports command elements via the master
command FIFOs,

« The master command FIFOs write advances are generated from the slave command FIFO not empty, slave
command select, and the master, write, and read command FIFO not full flags.

« The master command FIFOs read advances are generated from the master_s2m port CmdAccept element
and the master command FIFOs not empty flags.

Write Command FIFO

« The slave command select and slave command FIFO output BurstLength element are interfaced to the write
data FSM via the write command FIFO.

+ The write command FIFO write advance is generated from the slave command FIFO write advance and slave
command FIFO Cmd element

. The write command FIFO read advance is generated from the write data FSM.

Read Command FIFO

+ The slave command select and slave command FIFO output BurstLength and Tag elements are interfaced to
the read data FSM via the read command FIFO.

+ The read command FIFO write advance is generated from the slave command FIFO write advance and slave
command FIFO Cmd element.

+ The read command FIFO read advance is generated from the read data FSM

6.1.3.8.3.2 Write Data Path

This consists of the DataValid, DataByteEn, and Data elements of the slaves_m2s/master_m2s signals, and the
DataAccept element of the slaves_s2m/master_s2m signals.

Slave Write Data FIFO

Page 146 Common HDL Components
Alpha Data Parallel Systems Ltd. AD-UG-0004

ADM-XRC Gen 3 SDK 1.3.0 User Guide

(V1.3 - 04ih March 2011) @ ALPHA DATA

« The slave_m2s port write data elements are interfaced to the master write data FIFOs via the slave write data
FIFO.

« The slave_s2m port DataAccept element is generated from the slave write data FIFO not full flag.

« The slave write data FIFO write advance is generated from the slave_m2s port DataValid element and the
slave write data FIFO not fullflag

+ The slave write data FIFO read advance is generated from the write data select, the slave write data FIFO not
empty flag, and the master write data FIFOs not full flags.

Master Write Data FIFOs

« The slave write data FIFO is interfaced to the masters_m2s ports write data elements via the master write
data FIFOs.

« The master write data FIFOs write advances are generated from the write data select, the slave write data
FIFO not empty flag, and the master write data FIFOS not full flags.

« The master write data FIFOs read advances are generated from the masters_s2m ports DataAccept
elements and the master write data FIFOs not empty flags.

Write Data FSM

+ Counts write data bursts for current entry in the write command FIFO.
+ The write data select is generated from the FSM state and write command FIFO output.
« The write command FIFO read advance is generated from the FSM state.

6.1.3.8.3.3 Read Response Path

This consists of the Resp, Tag, and Data elements of the master_s2m/slaves_s2m signals, and the RespAccept

element of the master_m2s/slaves_mz2s signals.

Master Read Response FIFOs

+ The masters_s2m ports read response elements are interfaced to the slave read response mux inputs via the
master read response FIFOS.

+ The masters_s2m ports CmdAccept elements are generated from the master read response FIFOs not full
flags

« The master read response FIFOs write advances are generated from the masters_s2m ports Resp elements
and the master read response FIFOs ot full lags.

« The master read response FIFOs read advances are generated from the read response select, slave read
response FIFO not fullflag, and the master read response FIFOs not empty flags.

Master Read Response Mux
+ The master read response mux select is generated from the master read response select

+ The master read response mux routes the selected master read response FIFO to the slave read response
FIFO.

Slave Read Response FIFO

« The master read response mux is interfaced to the slave_s2m port read response elements via the slave read
response FIFO.

+ The slave read response FIFO write advance is generated from the read response select, the slave read
response FIFO not full flag, and the master read response FIFOs not empty flags.

Common HDL Components Page 147
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADMXRC Gen 3 SDK 1.3.0 User Guide
’ALF“‘ DATA (v1.3 - 04th March 2011)

+ The slave read response FIFO read advance is generated from the slave_m2s port RespAccept element and
the slave read response FIFO not empty flag.

Read Response FSM
« Counts read response bursts for current entry in the read command FIFO.

« Theread response select is generated from the FSM state and read command FIFO output.
+ The read command FIFO read advance is generated from the FSM state.

Page 148 Common HDL Components
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.3.0 User Guide.
(V1.3 - 04th March 2011)

@ ALPHA DATA

6.2 MPTL Library
The MPTL library is located in the hdlivhdl/common/mptl directory and contains the following elements:

« MPTL library components
+ MPTL interface components

6.2.1 MPTL Library Components
6.2.1.1 Bridge MPTL Interface Wrapper (mptl_i
6.2.1.1.1 Introduction

F_bridge_wrap)

This is a component in the MPTL library. It is used by example FPGA testbenches to convert between stimulus OCP
transactions and Bridge MPTL interface data. It is located in the hdl/vhdi/common/mptl directory. The MPTL interface

that is instantiated depends on the board selected and the design use.

The board selected is indicated by the value of the BOARD_TYPE constant. The design use is indicated by the value

of the TARGET_USE constant. Both are defined in the adb3_target_inc_pkg package.
6.2.1.1.2 Interface
The mptl_if_bridge_wrap component interface is shown in Figure 30 below and described in Table 81.

mptl_if_bridge_wrap

—{ mptl_clk mptl_b2t —>
mptl_t2b k—

—{ gpio_b2t mptl_sb_b2t —>

<— gpio_t2b mptl_sb_t2b k—

—{ ocp_clk_in

—) direct_slave_m2s

< direct_slave_s2m

=) dma_channels_m2s

€~ dma_channels_s2m

4= direct_master_m2s

) direct_master_s2m

<— dma_abort

<— ocp_clk_out

Figure 30: MPTL Library mptl_if_bridge_wrap Component Interface

Common HDL Components
AD-UG-0004 Alpha Data Parallel Systems Ltd

Page 149

ADMXRC Gen 3 SDK 1.3.0 User Guide
’ALP“‘ DATA (v1.3 - 04th March 2011)

Signal Type | Description
OCP Interface
ocp_clk_in input | Independent OCP clock source (from testbench)

direct_slave_m2s | Input | Direct slave OCP channel master (Transferred to target via MPTL
interface).

direct_slave_s2m | Output | Direct slave OCP channel slave (Transferred from target via MPTL.
interface,

dma_channels m2s | Input | DMA OCP channels master (Transferred to target via MPTL interface).
dma_channels_s2m | Output_| DMA OCP channels slave (Transferred from target via MPTL interface)

direct_masters_m2s | Output | Direct mater OCP channels master (Transferred from target via MPTL

interface)
direct_masters_s2m | Input | Direct master OCP channels slave (Transferred to target via MPTL
interface).
dma_abort Output_| DMA abort request (to testbench)
acp_clk_out Output_| OCP clock (to testbench)
MPTL Interface
mptl_t2b Input__| MPTL interface data signals connected to target MPTL interface
mptl_b2t Output_| MPTL interface data signals connected to target MPTL interface.
mptl_clk Input__ | MPTL interface clock (from testbench)
mptl_sb_t2b Input__ | MPTL interface sideband signals connected to target MPTL interface.
mptl_sb_b2t Output_| MPTL interface sideband signals connected to target MPTL interface.
gpio_b2t Input | General purpose ifo (Transferred to target via MPTL interface).
gpio_t2b Output | General purpose ifo (Transferred from target via MPTL interface).

Table 81: MPTL Library mptl_if_bridge_wrap Component Interface

6.2.1.1.3 Description
6.2.1.1.3.1 OCP-Only Simulation

During OCP-only simulation (selected by TARGET_USE = SIM_OCP), the mptl_if_bridge_wrap component
instantiates the simulation MPTL interface mptl_if_bridge_sim.

Refer to Section 6.2.2.1 for a functional description.

6.2.1.1.3.2 Full MPTL Simulation

During full MPTL simulation (selected by TARGET_USE = SIM_MPTL), the mptl_if_bridge_wrap component
instantiates the full MPTL interface appropriate to the board in use. The MPTL interface consists of the actual wrapped
logic supplied as a Xilinx™ HDL netiist file (vhd).

Refer to Section 6.2.2.3 for a functional description.

Page 150 Common HDL Components
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.3.0 User Guide.

(V1.3 - 04th March 2011)

@ ALPHA DATA

6.2.1.2 Target MPTL Interface Wrapper (mptl_if_target_wrap)
6.2.1.2.1 Introduction

This is a component in the MPTL library. It is used by the example FPGA designs to convert between Target MPTL
interface data and OCP transactions. It is located in the hdl/vhdl/common/mptl directory. The type of Target MPTL
interface that is instantiated depends upon which variant of the adb3_target_inc_pkg is in use, through the
BOARD_TYPE and TARGET_USE constants.

6.2.1.2.2 Interface

The mptl_if_target_wrap component interface is shown in Figure 31 below and described in Table 82.

mptl_if_target_wrap

—3 mpti_b2t mptl_clk
< mpti_t2b mpt_clk_out
—{ mptl_sh_b2t gpio_b2t
< mptl_sb_tzb gpio_tzb

ocp_clk

direct_slave_m2s
direct_slave_s2m
dma_channels_m2s
dma_channels_s2m
direct_master_m2s

direct_master_s2m

TITTITIT TUIT

dma_abort

Figure 31: MPTL Library mptl_if_target_wrap Component Interface

Signal Type | Description
OCP Interface
ocp_ck input__| OCP clock (from target FPGA).
direct_slave_m2s | Output | Direct slave OCP channel master (Transferred from bridge via MPTL
interface).
direct_slave_s2m | Input | Direct slave OCP channel slave (Transferred to bridge via MPTL interface).
dma_channels m2s | Output | DMA OCP channels master (Transferred from bridge via MPTL interface).
dma_channels_s2m | Input | DMA OCP channels slave (Transferred to bridge via MPTL interface).
direct_masters_m2s | Input | Direct mater OCP channels master (Transferred to bridge via MPTL
interface)
direct_masters_s2m | Output | Direct master OCP channels slave (Transferred from bridge via MPTL

interface).

Table 82: MPTL Library mptl_if_target_wrap Component Interface (continued on next page)

Common HDL Components
AD-UG-0004

Alpha Data Parallel Systems Ltd

Page 151

ADM-XRC Gen 3 SDK 1.3.0 User Guide

@ALPHA DATA (v1.3 - 04th March 2011)

signal Type | Description
dma_abort Input__| DMA abort request (from target FPGA).

MPTL Interface
mptl_t2b Output | MPTL interface data signals connected to bridge MPTL interface.
mpt_b2t Input__| MPTL interface data signals connected to bridge MPTL interface.
mptl_clk Input__| MPTL interface clock (from target FPGA)
mptl_clk_out Output | Unused.
ocp_ready Input__| OCP channels ready (from target FPGA).
mptl_sb_2b Output | MPTL interface sideband signals connected to bridge MPTL interface:
mpt_sb_b2t Input__| MPTL interface sideband signals connected to bridge MPTL interface.
gpio_b2t Output | General purpose o (Transferred from bridge via MPTL interface).
gpio_t2b Input__| General purpose i/o (Transferred to bridge via MPTL interface).

Table 82: MPTL Library mptl_if_target_wrap Component Interface

6.2.1.2.3 Description

6.2.1.2.3.1 OCP-Only Simulation
During OCP-only simulation (selected by TARGET_USE = SIM_OCP), the mptl_if_target_wrap component
instantiates the simulation MPTL interface mptl_if_target_sim
Refer to Section 6.2.2.2 for a functional description.

6.2.1.2.3.2 Full MPTL Simulation

During full MPTL simulation (selected by TARGET_USE = SIM_MPTL), the mptl_if_target_wrap component
instantiates the full MPTL interface appropriate to the board in use. The MPTL interface consists of the actual wrapped
logic supplied as a Xilinx™ HDL netlist file (.vhd)

Refer to Section 6.2.2.4 for a functional description.

6.2.1.2.3.3 Synthesis

During synthesis (selected by TARGET_USE = SYN_NGC), the mptl_if_target_wrap component instantiates the full
MPTL interface appropriate to the board in use. The MPTL interface consists of the actual wrapped logic supplied as a
Xilinx™ ISE netlist file (.ngc).

Refer to Section 6.2.2.5 for a functional description.

Page 152 Common HDL Components
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.3.0 User Guide.

(V1.3 - 04ih March 2011) @ALPHA DATA

6.2.2 MPTL Interface Components
6.2.2.1 Bridge MPTL Interface For OCP-Only Simulation (mptl_if_bridge_sim)

6.2.2.1.1 Introduction
This component consists of an OCP-only simulation version of the bridge MPTL interface.
6.2.2.1.2 Interface

This component's interface is the sames as the mptl_if_bridge_wrap component. Refer to Figure 30 and Table 81.

6.2.2.1.3 Description

The MPTL interface signals mptl_t2b and mptl_b2t connect the bridge and target MPTL interface blocks. They are of

type mptl_pins_t which is defined in the adb3_target_inc_pkg package appropriate for OCP-only simulation of the

board in use. For example adb3_target_inc_sim_ocp_6t1_pkg.vhd located in hdlivhdl/common/adb3_target/

admxrc6tl/ for the ADM-XRC-6T1. During OCP-only simulation these signals transfer OCP transactions directly

between the bridge and target MPTL interface blocks.

Clock Generation

« During OCP-only simulation, the bridge MPTL interface OCP clock must be the same as the target MPTL
interface OCP clock. This is accomplished by connecting the target clock to the bridge clock via the
mptl_t2b.target_ocp_clk signal.

« The ocp_clk_in input is unused.

« The ocp_clk_out output s driven by mpti_t2b.target_ocp_clk

Initialisation

« Atpower-up, an online delay counter produces the mptl_sb_b2t.mptl_bridge_gtp_online_I output.
« The mptl_sb_t2b.mptl_target_configured_l input is ignored.
« The mptl_sb_t2b.mptl_target_gtp_online_l input is ignored.

MPTL Interface

« The direct slave OCP channel master input direct_slave_m2s drives the mptl_b2t.direct_slave_m2s output
1o the target MPTL interface. The mptl_t2b direct_slave_s2m input from the target MPTL interface drives the
direct slave OCP channel slave output direct_slave_s2m.

« The DMA OCP channels master input dma_channels_m2s drives the mptl_b2t.dma_channels_m2s output
10 the target MPTL interface. The mptl_t2b.dma_channels_s2m input from the target MPTL interface drives
the DMA OCP channels slave output dma_channels_s2m.

« The direct master OCP channels slave input direct_masters_s2m drives the mptl_b2t.direct_masters_s2m
output to the target MPTL interface. The mpti_t2b.direct_masters_m2s input from the target MPTL interface
drives the direct master OCP channels master output direct_masters_m2s,

« The general purpose i/o bus gpio_b2t input drives the mpti_b2t.gpio_b2t output to the target MPTL interface.
The mpti_t2b.gpio_t2b input from the target MPTL interface drives the general purpose o bus output
gpio_tzb.

DMA Abort

+ Onthe ADM-XRC-6T1 board, the mpti_t2b.dma_abort input from the target MPTL interface drives the DMA
abort request output dma_abort.

Common HDL Components Page 153
AD-UG-0004 Alpha Data Parallel Systems Ltd

ADM-XRC Gen 3 SDK 1.3.0 User Guide

@ALPHA DATA (v1.3 - 04th March 2011)

+ Onthe ADM-XRC-6TL board, the inverted mpti_sb_t2b.mptl_dma_abort_l input from the target MPTL.
interface drives the DMA abort request output dma_abort.

Page 154 Common HDL Components
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.3.0 User Guide.

(V1.3 - 04ih March 2011) @ALPHA DATA

6.2.2.2 Target MPTL Interface For OCP-Only Simulation (mptl

f_target_sim)

6.2.2.2.1 Introduction
This component consists of an OCP-only simulation version of the target MPTL interface.
6.2.2.2.2 Interface
This component's interface is the sames as the mptl_if_target_wrap component. Refer to Figure 31 and Table 82.
6.2.2.2.3 Description
The MPTL interface signals mpti_t2b and mpti_b2t connect the bridge and target MPTL interface blocks. They are of
type mpti_pins_t which is defined in the adb3_target_inc_pkg package appropriate for OCP-only simulation of the
board in use. For example adb3_target_inc_sim_ocp_6t1_pkg.vhd located in hdlivhdlicommon/adb3_target/

admxrc6tl/ for the ADM-XRC-6TL. During OCP-only simulation these signals transfer OCP transactions directly
between the bridge and target MPTL interface blocks.

Clock Generation

« During OCP-only simulation, the bridge MPTL interface OCP clock must be the same as the target MPTL
interface OCP clock. This is accomplished by connecting the target clock to the bridge clock via the
mptl_t2b target_ocp_clk signal.

« The ocp_clk input drives the mptl_t2b.target_ocp_clk signal

Initialisation

« Atpower-up, an online delay counter produces the mptl_sb_t2b.mptl_target_gtp_online_l output using the
mptl_sb_b2t.mptl_bridge_gtp_online_l input.

« Themptl_sb_t2b.mptl_target_configured_| output is generated using the OCP channels ready ocp_ready
input

MPTL Interface

« Thedirect slave OCP channel master output direct_slave_m2s is driven by the mpti_b2t.direct_slave_m2s
input from the bridge MPTL interface. The mptl_t2b direct_slave_s2m output to the bridge MPTL interface is
driven by the direct slave OCP channel slave input direct_slave_s2m.

+ The DMA OCP channels master output dma_channels_m2s is driven by the mptl_b2t.dma_channels_m2s
input from the bridge MPTL interface. The mptl_t2b.dma_channels_s2m output to the bridge MPTL interface
is driven by the DMA OCP channels slave input dma_channels_s2m

« The direct master OCP channels slave output direct_masters_s2m is driven by the
mptl_b2t.direct_masters_s2m input from the bridge MPTL interface. The mptl_t2b direct_masters_m2s
output to the bridge MPTL interface is driven by the direct master OCP channels master input
direct_masters_m2s.

« The general purpose i/o bus gpio_t2b input drives the mptl_t2b.gpio_t2b output to the bridge MPTL interface.
The mptl_b2t.gpio_b2t input from the bridge MPTL interface drives the general purpose ifo bus output
gpio_bat

DMA Abort

+ Onthe ADM-XRC-6T1 board, the dma_abort input from the target FPGA drives the DMA abort request output
mptl_t2b.dma_abort.

Common HDL Components Page 155
AD-UG-0004 Alpha Data Parallel Systems Ltd

ADM-XRC Gen 3 SDK 1.3.0 User Guide

@ALPHA DATA (v1.3 - 04th March 2011)

+ Onthe ADM-XRC-6TL board, the inverted dma_abort input from the target FPGS drives the DMA abort
request output mptl_sb_t2b.mptl_dma_abort_|

Page 156 Common HDL Components
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.3.0 User Guide.

(V1.3 - 04ih March 2011) @ALPHA DATA

6.2.2.3 Bridge MPTL Interface For Full MPTL Simulation
6.2.2.3.1 Introduction
This component instantiates an HDL netlist of the bridge MPTL interface during full MPTL simulation. The component
used depends on the board selected for simulation. For example, for the ADM-XRC-6T1, the block hierarchy is:
+ MPTL interface wrapper (mptl128_interface_bridge_6t1_top)
« MPTL interface top level (mptl128_interface_bridge_6t1)
+ MPTL interface netlist (mptl128_interface_bridge_6t1_slv)

These components can be found in the following locations:
« hdiivhdlicommon/mpti/admxrc6tl/mptl128_interface_bridge_6t1_top.vhd
« hdivhdiicommon/mpti/admxrc6tl/mpti128_interface_bridge_6t1_sim.vhd
« hdivhdlicommon/mpti/admxrc6ti/mpti128_interface_bridge_6t1_slv.vhd

6.2.2.3.2 Interface

This component's interface is the sames as the mptl_if_bridge_wrap component. Refer to Figure 30 and Table 81.

6.2.2.3.3 Description
The MPTL interface signals mptl_t2b and mpt_b2t connect the bridge and target MPTL interface blocks. They are of
type mptl_pins_t which is defined in the adb3_target_inc_pkg package appropriate for full MPTL simulation of the
board in use. For example adb3_target_inc_sim_mptl_6t1_pkg.vhd located in hdiivhdlicommon/adb3_target/
admxrc6ty/ for the ADM-XRC-6T1. During full MPTL simulation these signals transfer MPTL data between the bridge
and target MPTL interface blocks.
Clock Generation
. During full MPTL simulation, the bridge MPTL interface OCP clock may be independent of the target MPTL.

interface OCP clock

« The ocp_clk_in input provides the independent OCP clock generated by the testbench.
+ The ocp_clk_out output s driven by the ocp_clk_in signal.

OCP Interface

« The MPTL interface wrapper direct master OCP channels input (direct_masters_s2m) is processed by the
make_defined_s2m function to ensure that it only contains ‘0’ or '1' data. Other data values may cause the
simulation of the MPTL interface to fail

The remainder of the MPTL interface wrapper signals are connected to their equivalents on the MPTL interface top
level.

Common HDL Components Page 157
AD-UG-0004 Alpha Data Parallel Systems Ltd

ADMXRC Gen 3 SDK 1.3.0 User Guide
’ALF“‘ DATA (v1.3 - 04th March 2011)

6.2.2.4 Target MPTL Interface For Full MPTL Simulation
6.2.2.4.1 Introduction

This component instantiates an HDL netlist of the target MPTL interface during Full MPTL simulation. The component
used depends on the board selected for simulation. For example, for the ADM-XRC-6TL, the block hierarchy is

« MPTL interface wrapper (mptl128_interface_target_6t1_top)

« MPTL interface top level (mpti128_interface_target_6t1)

+ MPTL interface netlist (mptl128_interface_target_6t1_siv)

These components can be found in the following locations:

« hdiivhdlicommon/mpti/admxrc6tl/mpt128_interface_target_6t1_top.vhd

« hdiivhdiicommon/mpti/admxrc6tl/mpii128_interface_target_6t1_sim.vhd

« hdiivhdlicommon/mpti/admxrc6ti/mpti128_interface_target_6t1_sv.vhd

6.2.2.4.2 Interface

This component's interface is the sames as the mptl_if_target_wrap component. Refer to Figure 31 and Table 82.

6.2.2.4.3 Description

The MPTL interface signals mptl_t2b and mpt_b2t connect the bridge and target MPTL interface blocks. They are of
type mptl_pins_t which is defined in the adb3_target_inc_pkg package appropriate for full MPTL simulation of the
board in use. For example adb3_target_inc_sim_mptl_6t1_pkg.vhd located in hdiivhdlicommon/adb3_target/
admxrc6ty/ for the ADM-XRC-6T1. During full MPTL simulation these signals transfer MPTL data between the bridge
and target MPTL interface blocks.

OCP Interface

+ The MPTL interface wrapper direct slave OCP channel input (direct_slave_s2m) and DMA OCP chammels
input (dma_channels_s2m) are processed by the make_defined_s2m function to ensure that they only
contain ‘0" or ‘1" data. Other data values may cause the simulation of the MPTL interface to fail.

The remainder of the MPTL interface wrapper signals are connected to their equivalents on the MPTL interface top
level.

Page 158 Common HDL Components
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.3.0 User Guide.

(V1.3 - 04ih March 2011) @ALPHA DATA

6.2.2.5 Target MPTL Interface For Synthesis
6.2.2.5.1 Introduction
This component instantiates a target MPTL interface core during synthesis. The component used depends on the board
selected for synthesis. For example, for the ADM-XRC-6T1, the block hierarchy is:
+ MPTL interface wrapper (mptl128_interface_target_6t1_top)
« MPTL interface top level (mpti128_interface_target_6t1)
These components can be found in the following locations:
+ hdiivhdlicommon/mptl/admxrc6t1/mpti128_interface_target_6t1_top.vhd
. 8_interface_target_6t1.ngc

6.2.2.5.2 Interface

This component's interface is the sames as the mptl_if_target_wrap component. Refer to Figure 31 and Table 82.

6.2.2.5.3 Description

The MPTL interface signals mptl_t2b and mptl_b2t connect the bridge and target MPTL interface blocks. They are of
type mptl_pins_t which is defined in the adb3_target_inc_pkg package appropriate for synthesis of the board in use.
For example adb3_target_inc_syn_ngc_6t1_pkg.vhd located in hdlivhdi/common/adb3_target/admxrc6tl! for the
ADM-XRC-6T1. During synthesis these signals transfer MPTL data between the bridge and target MPTL interface
blocks.

The MPTL interface wrapper signals are connected to their equivalents on the MPTL interface top level.

Common HDL Components Page 159
AD-UG-0004 Alpha Data Parallel Systems Ltd

ADMXRC Gen 3 SDK 1.3.0 User Guide
’ALF“‘ DATA (v1.3 - 04th March 2011)

6.3 ADB3 Target Library
The ADB3 target library is located in hdl/ivhdl/common/adb3_target/ and contains the following elements:
+ ADBS target types definition package (adb3_target_types_pkg)
« ADBS3 target include package (adb3_target_inc_pkg)
« ADB3 target package (adb3_target_pkg)
+ ADBS target testbench package (adb3_target_tb_pkg)

6.3.1 ADB3 Target Types Definition Package (adb3_target_types_pkg)

The adb3_target_types_pkg package defines constants and types which are used by the ADB3 target include

packages

Types are defined s follows:

+ board_type_t. An enumerated type containing an element for each board supported by the SDK, for example
ADM_XRC_6T1 for the ADM-XRC-6T1 board.

+ target_use_t An enumerated type containing an element for each end use supported by the SDK, for example
SIM_OCP for OCP-only simulation.

Maximum value constants (covering all boards supported by the SDK) are defined as follows:
+ MAX_DS_CHANNELS: direct slave OCP channels,

+ MAX_DMA_CHANNELS: DMA OCP channels.

+ MAX_DM_CHANNELS: direct master OCP channels.

+ MAX_MEM_BANKS: on-board memory banks.

+ MAX_MPTL_SER_WIDTH: width of MPTL serial data interface.
+ MAX_XRM_GPIO_WIDTH: width of the XRM GPIO interface.

+ MAX_XRM_MGT_WIDTH: width of the XRM MGT interface.

« MAX_PN4_GPIO_WIDTH: width of the Pnd GPIO interface.

« MAX_PN6_GPIO_WIDTH: width of the Pn6 GPIO interface,

+ MAX_PN6_MGT_WIDTH: width of the Pné MGT interface.

Page 160 Common HDL Components
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(V1.3 - 04ih March 2011) @ALPHA DATA

6.3.2 ADB3 Target Include Package (adb3_target_inc_pkg)

The adb3_target_inc_pkg package defines constants and types which characterise the board selected, and whether
synthesis or simulation is being performed. This enables a simulation to perform "lightweight" versions of certain
lengthy initialisation sequence. Without these aids, rapid development of code would be unfeasible due to the length of
real time required for simulations.

The adb3_target_inc_pkg package exists in several variants, one for each supported combination of board and
usage. For example, the package for OCP-only simulation of the ADM-XRC-6T1 board is contained in hdlivhdl/
common/adb3_target/adb3_target_inc_sim_ocp_6t1_pkg.vhd. Table 83 lists the available variants of the
adb3_target_inc_pkg package:

Model TARGET_USE | Filename relative to _target/
SIM_MPTL | admxre6tl/adb3_target_inc_sim_mpt_6tl_pkg.vhd

ADM-XRC-6TL | SIM_OCP admxre6ti/adb3_target_inc_sim_ocp_6t_pkg.vhd
SYN_NGC admxrcsti/adb3_target_inc_syn_ngc_6tl_pkg.vhd
SIM_MPTL | admxreeti/adb3_target_inc_sim_mpt_6t1_pkg.vhd

ADM-XRC-6T1 | SIM_OCP admxre6ti/adb3_target_inc_sim_ocp_6t1_pkg.vhd
SYN_NGC admxrc6tl/adb3_target_inc_syn_ngc_6tL_pkg.vhd

Table 83: Available variants of the adb3_target_inc_pkg package

The following definitions are available in this package:

Usage Definitions

+ BOARD_TYPE. Defines the board in use according to the board_type_t enumerated type; for example,
ADM_XRC_6T1 for the ADM-XRC-6T1 board.

« TARGET_USE. Defines the usage according to the target_use_t enumerated type; for example, SIM_OCP for
OCP-only simulation.

Clock Definitions

+ CLKS_IN_REF_CLK_VALID. Indicates presence of ref_clk clock input on this board.

+ CLKS_IN_LCLK_VALID. Indicates presence of Iclk clock input on this board.

+ CLKS_IN_XRM_GCLK_M2C_VALID. Indicates presence of xrm_gclk_m2c clock input on this board.

+ CLKS_OUT_XRM_MGTCLK_C2M_VALID. Indicates presence of xrm_mgtclk_c2m clock outputput on this
board

+ REF_CLK_FREQ_HZ. The frequency in Hz of the reference clock input used by the target FPGA design.

GPIO Definitions

+ XRM_GPIO_VALID. Indicates the presence of the XRM GPIO interface on this board.
« XRM_GPIO_WIDTH. Indicates the width of the XRM GPIO interface on this board.

+ XRM_MGT_WIDTH. Indicates the width of the XRM MGT interface on this board.

+ PN4_GPIO_VALID. Indicates the presence of the Pnd GPIO interface on this board.
« PN4_GPIO_WIDTH. Indicates the width of the Pn4 GPIO interface on this board

+ PN6_GPIO_VALID. Indicates the presence of the Pn6 GPIO interface on this board.
+ PN6_GPIO_WIDTH. Indicates the width of the Pn6 GPIO interface on this board.

« PN6_MGT_WIDTH. Indicates the width of the Pné MGT interface on this board.

On-Board Memory Definitions

Common HDL Components Page 161
AD-UG-0004 Alpha Data Parallel Systems Ltd

e

ADM-XRC Gen 3 SDK 1.3.0 User Guide

HA DATA (v1.3- 04th March 2011)

DDR3_VALID. Indicates the presence of DDR3 SDRAM on this board.
DDR3_BANKS. Indicates the number of banks of DDR3 SDRAM on this board.
DDR3_BANK_ROW_WIDTH. Indicates the width of the DDR3 SDRAM row address interface on this board.
DDR3_BANK_DATA_WIDTH. Indicates the width of the DDR3 SDRAM data interface on this board
DDR3_BYTE_ADDR_WIDTH. Indicates the width of the DDR3 SDRAM byte address interface on this board.
DDR3_16_BYTE_ADDR_WIDTH. Indicates the width of the DDR3 SDRAM 16-byte address interface on this
board.

MEM_VALID. Indicates the presence of on-board memory on this board.

MEM_BANKS. Indicates the number of banks of on-board memory on this board.

MPTL Interface Definitions

DS_CHANNELS. Indicates the number of direct slave OCP channels on this board.

DMA_CHANNELS. Indicates the number of dma OCP channels on this board

DM_CHANNELS. Indicates the number of direct master OCP channels on this board.

DS_ADDR_WIDTH. Indicates the address space size for a direct slave OCP channel on this board.
DMA_ADDR_WIDTH. Indicates the address space size for a dma OCP channel on this board.
DM_ADDR_WIDTH. Indicates the address space size for a direct master OCP channel on this board.
MPTL_SER_WIDTH. Indicates the width of the MPTL serial data interface that exists on this board.
std_logic_dbl_t. Type defining a general-purpose differential std_logic signal

mptl_pins_t. Type defining the MPTL interface signals between the bridge and target FPGAS. Definition
depends on board and end use.

mpti_sb_b2t_t. Type defining the MPTL sideband interface signals from the bridge to the target. Definition
depends on board and end use.

mptl_sb_t2b_t. Type defining the MPTL sideband interface signals from the target to the bridge. Definition
depends on board and end use.

Page 162

Common HDL Components
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.3.0 User Guide.
(V1.3 - 04th March 2011)

@ ALPHA DATA

6.3.3 ADB3 Target Package (adb3_target_pkg)
The package adb3_target_pkg defines functions and components which relate to target example FPGAS
Function definitions
« ds_base_conv.
+ ds_mask_conv.
+ dma_base_conv.
« dma_mask_conv.
« mask_vec_width
+ make_defined.
« make_defined_s2m.

Component definitions

« mptl_if_target_wrap

« mptl_if_target_sim

« mpti6par_interface_target_6tl_top
+ mpti128_interface_target 6t1_top

« mptlsdpar_interface_target_6tl

« mptl128_interface_target_6t1

Common HDL Components
AD-UG-0004 Alpha Data Parallel Systems Ltd

Page 163

ADM-XRC Gen 3 SDK 1.3.0 User Guide

@ALPHA DATA (v1.3 - 04th March 2011)

6.3.4 ADB3 Target Testbench Package (adb3_target_tb_pkg)
The package adb3_target_tb_pkg defines functions, procedures, and components which relate to target example
FPGA testbenches.
Function definitions

« conv_byte_vector.
« conv_byte_enable.
« conv_vector.

« conv_string_hex.

« conv_string.

Procedure definitions

« adb3_target_sim_read_reg32.
« adb3_target_sim_read_reg64.
« adb3_target sim_read.

« adb3_target_sim_read_cmd.

« adb3_target_sim_read_resp.

« adb3_target_sim_write_reg32.
« adb3_target_sim_write_reg6a.
« adb3_target_sim_write.

« adb3_wait_cycles

Component definitions
« mptl_if_bridge_wrap

+ mptl_if_bridge_sim

« mptidpar_interface_bridge_6tl_top
« mpti6dpar_interface_bridge_6tl

« mptl128_interface_bridge_6t1_top

+ mpti128_interface_bridge_6t1

Page 164 Common HDL Components
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.3.0 User Guide.

(V1.3 - 04th March 2011)

@ ALPHA DATA

6.4 ADB3 Probe Library

The ADB3 Probe library is located in the hdl/vhdlicommon/adb3_probe! directory and contains the following

elements:

« ADB3 probe library package (adb3_probe_pkg)
« ADBS probe library components.

6.4.1 ADB3 Probe Library Package (adb3_probe_pkg)

The package adb3_probe_pkg defines constants and types which are used by the ADB3 probe library components.

6.4.2 ADB3 Probe Library Components
6.4.2.1 adb3_ocp_transaction_probe
6.4.2.1.1 Introduction

This is a component in the ADB3 probe library. Its function is to monitor an OCP channel and produce warningsferrors if
specific conditions occur. It is used by target example FPGA testbenches.

6.4.2.1.2 Interface

The adb3_ocp_transaction_probe component interface is shown in Figure 32 below and described in Table 84,

adb3_ocp_transaction_probe

— ocp_clk
— ocp_m2s
— ocp_s2m status [—>

Figure 32: ADB3 Probe Library adb3_ocp_transaction_probe Component Interface

Signal [Type [Description

Generics

enable_logging | Generic | Enable use of log file for info/warnings/errors.
sel_int_log_fle | Generic | Select between intemal name and external name for log file.
int_log_filename | Generic | Internal filename for log fil i selected and enabled.
addr_align_bits | Generic | Set number of unused address LSBs for checking.
addr_width_max | Generic | Set maximum address width for checking

data_burst_max | Generic | Set maximum burst length for checking

enable_tag_check | Generic | Enable checking of OCP_CMD_READ tag with read data tag.
OCP Port

ocp_clk input_| OCP clock.

ocp_m2s Input ‘OCP port M2S monitor connection.

ocp_szm Input | OCP port S2M monitor connection.

Status.

status [output | Probe status.

Table 84: ADB3 Probe Library adb3_ocp_transaction_probe Component Interface

Common HDL Components
AD-UG-0004

Alpha Data Parallel Systems Ltd

Page 165

@ALPHA DATA

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(1.3 - 04th March 2011)

6.4.2.1.3 Description

‘This component checks for the following conditions:

Read data with incorrect tag for active read command (enable_tag_check generic).
Read data for read command which has completed.

Write data for write command which has completed.

Write data with invalid DataByteEn value.

Invalid command detection.

Invalid address detection (addr_width_max generic).

Invalid burst length detection (data_burst_max generic).

Non-valid response detection.

Page 166

Common HDL Components
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.3.0 User Guide.

(V1.3 - 04ih March 2011) @ALPHA DATA

6.5 Memory Interface Library
The Memory interface library is located in the hdl/vhdl/common/mem_if/ directory and contains the following
elements:
« Memory interface library package (mem_if_pkg)
« Memory interface library components

6.5.1 Memory Interface Library Package (mem_if_pkg)
The package mem_if_pkg defines types, constants, and functions which are used by the memory interface library
components
Defininitions are as follows:
DDR3 SDRAM bank physical interface types
+ ddr3_addr_out_t. A record type containing address elements (outputs).
+ ddr3_ctrl_out_t. Arecord type containing control elements (outputs).
« ddr3_data_inout_t. A record type containing data elements (bi-dir).
+ ddr3_clk_out_t. Arecord type containing clock elements (outputs)

Memory physical interface types
+ mem_addr_out_t. A record type containing address elements for all memory banks (outputs).

« mem_ctrl_out_t. A record type containing bank control elements for all memory banks (outputs).
+ mem_data_inout_t. A record type containing data elements for all memory banks (bi-cir).

+ mem_clk_out_t. Arecord type containing clock elements for all memory banks (outpus).

Memory interface functions

« conv_sim_bypass_init_cal. Returs the value of sim_bypass._init_cal that is appropriate for the
TARGET_USE value in the variant of the adb3_target_inc_pkg that has been selected.

« conv_sim_init_option. Returns the value of sim_init_option that is appropriate for the TARGET_USE value
in the variant of the adb3_target_inc_pkg that has been selected.

« conv_sim_cal_option. Returns the value of sim_cal_option that is appropriate for the TARGET_USE value
in the variant of the adb3_target_inc_pkg that has been selected.

DDR3 SDRAM MIG V3.6 core types

« mig_v3_6_clocks_t Arecord type containing MIG core clock generic elements.
+ mig_v3_6_common_t. A record type containing MIG core bank generic elements.

« mig_v3_6_bank01_t. Arecord type containing MIG core bank 0 and 1 generic elements.
« mig_v3_6_bank2_t. A record type containing MIG core bank 2 generic elements.

+ mig_v3_6_bank3_t. Arecord type containing MIG core bank 3 generic elements.

Component definitions
+ ddr3_if_bank_v3_6

Common HDL Components Page 167
AD-UG-0004 Alpha Data Parallel Systems Ltd

@ALPHA DATA

ADM-XRC Gen 3 SDK 1.3.0 User Guide

(v1.3 - 04th March 2011)

6.5.2 Memory Interface Library Components
6.5.2.1 DDR3 SDRAM Memory Interface Bank (ddr3_if_bank_v3_6)
6.5.2.1.1 Introduction

This is a component in the memory interface library. lts function is to convert on-board memory bank OCP channel
transactions to DDR3 SDRAM MIG core user interface transactions and instantiate a single bank Xilinx™ DDR3

SDRAM MIG core.

6.5.2.1.2 Interface

The ddr3_if_bank_v3_6 component interface is shown in Figure 33 below and described in Table 85,

ddr3_if_bank_v3_6

Figure 33: Memory Interface Library ddr3_if_bank_v3_6 Component Interface

Signal Type | Description
bank Generic | Bank select.
OCP Port
ocp_rst Input | OCP reset.
ocp_ck input__| OCP clock
ocp_m2s Input | OCP port M2S connection
ocp_s2m Output | OCP port S2M connection.
DDR3 SDRAM MIG Core Bank Control/Status
ddr3_rst Input | MIG core asynchronous reset.
ddr3_clk Input | MIG core clock.
ddr3_ref_clk input | MIG core reference clock.
dd‘;a_\adelay_clrlr Input | MIG core IO delay ready.
_rdy

Table 85: Memory Interface Library ddr3_if_bank_v3_6 Component Interface (continued on next page)

Page 168

Alpha Data Parallel Systems Ltd.

‘Common HDL Cor
AD-UG-0004

mponents

ADM-XRC Gen 3 SDK 1.3.0 User Guide.

(V1.3 - 04ih March 2011) @ALPHA DATA

signal Type | Description

ddr3_if_rdy Output | MIG core ready.
ddr3_if_stat Output | MIG core status
ddr3_if_err Output | MIG core error.

DDR3 SDRAM Bank Physical Interface
ddr3_addr_out Output | Bank address.

ddr3_ctrl_out Output | Bank control
ddr3_data_inout | Bi-dir | Bank data.
ddr3_clk_out Output | Bank clocks.

Table 85: Memory Interface Library ddr3_if_bank_v3_6 Component Interface

6.5.2.1.3 Description

This component converts on-board memory bank OCP channel transactions to DDR3 SDRAM MIG core user interface
transactions and instantiates a single bank Xilinx™ DDR3 SDRAM MIG core. Itis implemented in
ddr3_if_bank_v3_6.vhd which is located in hdiivhdi/common/mem_if/ddr3_sdram. It includes the following
components:

« OCPto DDR3 SDRAM MIG core (adb3_ocp_ocp2ddr3_nb)

« Xilinx™ DDR3 SDRAM MIG core

6.5.2.1.3.1 OCP To DDR3 SDRAM MIG Core (adb3_ocp_ocp2ddr3_nb)

This component converts ADB3 OCP transactions to DDR3 SDRAM MIG core user interface transactions. It is
implemented using the ADB3 OCP library component adb3_ocp_ocp2ddr3_nb.

6.5.2.1.3.2 Xilinx™ DDR3 SDRAM MIG Core

‘This component instantiates a single bank Xilinx™ DDR3 SDRAM MIG core which has been generated using the
Xilinx™ Core Generator MIG tool. Refer to Section 6.5.2.1.4 for details of the generation procedure.

Note: Currently version 3.6 of the Xilinx™ DDR3 SDRAM MIG core is supported. This is available in ISE
version 12.3 or 12.

The component instantiated depends on the bank selected by the bank generic. For example cO_memc_ui_top.vhd
located in hdiivhdl/common/mem_ifiddr3_sdramimig_v3_6/rtifip_top! is used for bank 0,

6.5.2.1.4 Xilinx™ DDR3 SDRAM MIG Core Generation
Prior to the initial simulation or bitstream build of a design using a Xilinx™ DDR3 SDRAM MIG core, its HDL files will
need to be generated using the gen_mem_if script. Examples are as follow:
To generate HDL files for Virtex-6 6VLX240T devices using Windows, start a shell and issue the following commands:

cd /d %ADNXRC3_SDK#\hdT\vhdI\conmon\en_i f\ddr3_sdram\nig_v3_6
gen_nen_if.bat 6vIx240t

To generate HDL files for Virtex-6 6vsx315t devices using Linux, start a shell and issue the following commands:

v3_6

cd SADUXRE3_SDK/Mal/uhd1/conmon/en_¥1/ddrd,_sdran/n
if.bash 6vsxal:

Common HDL Components Page 169
AD-UG-0004 Alpha Data Parallel Systems Ltd

ADMXRC Gen 3 SDK 1.3.0 User Guide
’ALF“‘ DATA (v1.3 - 04th March 2011)

For further information, refer to the Xilinx™ documentation included with the generated Xilinx™ DDR3 SDRAM MIG
core. After generation of the core, the documentation can be found in hdlivhdl/common/mem_ifiddr3_sdram/
mig_v3_6/mig_temp/mig_v3_6/docs/

The VHDL source files can be found in hdlivhdlicommon/menm_if/ddr3_sdram/mig_v3_6/rtl

Page 170 Common HDL Components
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 130 User Guide
(v1.3 - 0ath March 2011) @ ALPHA DATA

6.6 Memory Application Library

The memory application library is located in the hdi/vhdi/common/mem_apps/ directory and contains the following
elements:

« Memory application library components

6.6.1 Memory Application Library Components
6.6.1.1 Memory Test Block (blk_mem_test)
6.6.1.1.1 Introduction

This is a component in the memory application library. Its function s to generate test stimulus, and analyse test
responses on a single ADB3 OCP channel.

6.6.1.1.2 Interface
The blk_mem_test component interface is shown in Figure 34 below and described in Table 86.

blk_mem_test

Figure 34: Memory Application Library blk_mem_test Component Interface

Signal Type | Description
a_width Generic | Number of logical address bits in memory port.
d_width Generic | Number of logical bits in a memory port word.
rd_width Generic | Number of physical data pins on memory bank.
tag_base Generic | Tag base value.
tag_incr Generic | Tag value increment
tag_mask Generic | Tag check mask bits.

OCP Port
ocp_rst Input_| OCP asynchronous reset.
ocp_clk Input | OCP clock.

Table 86: Memory Application Library bik_mem_test Component Interface (continued on next page)

Common HDL Components Page 171
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADMXRC Gen 3 SDK 1.3.0 User Guide
’ALPN‘ DATA (v1.3 - 04th March 2011)

signal Type | Description
ocp_m2s Input__| OCP port M2S connection.
ocp_s2m Input | OCP port S2M connection.
Memory Test Control/Status
90 Input_| Initiate test.
offset Input | Test start (16-byte words).
length Input_| Test length-1 (16-byte words).
done Input_| Test finishedlidle.
error Input_| Error has occurred (qualified by done).
eaddr Input_| First error address (16-byte by done and error).
ephase Input_| First error phase (qualified by done and error).

Table 86: Memory Application Library blk_mem_test Component Interface

6.6.1.1.3 Description

TBD

Page 172 Common HDL Components
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.3.0 User Guide.

(V1.3 - 04ih March 2011) @ALPHA DATA

6.7 Memory Model Library
The Memory model library is located in the hdl/ivhdl/common/mem_tb/ directory and contains the following elements:
. DDR3 SDRAM memory model

6.7.1 DDR3 SDRAM Memory Model

The DDR3 SDRAM Memory model is located in the hdl/ivhdl/common/mem_tb/ddr3_sdram/ directory and contains
the following elements:

+ DDR3 SDRAM model package (ddr3_sdram_pkg)
- DDR3 SDRAM model components

6.7.1.1 DDR3 SDRAM Model Package (ddr3_sdram_pkg)

The package ddr3_sdram_pkg defines types, constants, and components which are used by the DDR3 SDRAM
model.

Defininitions are as follows:
DDR3 SDRAM part types

« part_size_t. Record type for different part sizes.

« speed_grade_cl_cwi_t. Array type for timing parameters which vary with speed grade, CL, and CWL.
« speed_grade_t. Record type for timing parameters which vary with speed grade.

« part_t Record type for overall part used by generic model.

Supported part_size_t constants,

+ MB8_X_B8_X_D16. 8Mb Array x 8 banks x 16 data bits = 1Gib part.
+ M16_X_BB_X_D16. 16Mb Array x 8 banks x 16 data bits = 2Gib part.

Supported speed_grade_cl_cwl_t constants

+ MT41J_187E_CL_CWL_MIN. Micron MT41J64M16_187E (minimum values).
+ MT413_187E_CL_CWL_MAX. Micron MT41J64M16_187E (maximum values).

Supported speed_grade_t constants

+ MT41J_187E. Micron MT41)64M16_187E.

Supported part_t constants
+ MT41J64M16_187E. Micron MT41J64M16_187E (1Gib part).
+ MT47J128M16_187E. Micron MT47J128M16_187E (2Gib par).

Component definitions

+ ddr3_sdram

Common HDL Components Page 173
AD-UG-0004 Alpha Data Parallel Systems Ltd

@ALPHA DATA

ADM-XRC Gen 3 SDK 1.3.0 User Guide

(v1.3 - 04th March 2011)

6.7.1.2 DDR3 SDRAM Model Components
6.7.1.2.1 DDR3 SDRAM Model (ddr3_sdram)
6.7.1.2.1.1 Introduction

This is a component in the memory model library. Its function is to provide a generic simulation model which may be
customised to represent specific DDR3 SDRAM parts.

6.7.1.2.1.2 Interface

The ddr3_sdram component interface is shown in Figure 35 below and described in Table 87.

ddr3_sdram

Figure 35: Memory Model Library ddr3_sdram Component Interface
Signal Type | Description
message_level | Generic | Select message reporting level.
part Generic | Select component part.
short_init_dly | Generic | Select shortened initialisation sequence.
Control/Data
ckrck | Input_| Clock (differential).
reset_| Input_| Reset (active low).
cke Input_| Clock enable.
cs | Input_| Chip select (active low).
ras_| Input | Row access strobe (active low).
cas_| Input_| Column active strobe (active low),
we_l Input_| Write enable (active low).
odt Input_| On-die termination.
dm Input | Input data mask.

Table 87: Memory Model Library ddr3_sdram Component Interface (continued on next page)

Page 174

Alpha Data Parallel Systems Ltd.

Common HDL Components
AD-UG-0004

ADM-XRC Gen 3 SDK 1.3.0 User Guide.
(V1.3 - 04th March 2011)

@ ALPHA DATA

signal Type | Description
ba Input | Bank address.
a Input | Address.
dg Bi-dir | Data
das+das_| Bi-dir | Data strobe (differential)
Init/Log files
init_start Input_| Load data initialisation file
init_filename Input_| Initialisation file name (default “init.txt").
log_start Input_| Save data log file
log_filename | Input_| Log file name (default "log.xt").

Table 87: Memory Model Library ddr3_sdram Component Interface

6.7.1.2.1.3 Description
TBD

6.7.1.2.1.3.1 Message Reporting

The generic message_level controls the type of ‘note’ level messages reported by the model. ‘warning’,‘error’, and

“failure’ level messages are always reported. Options are as follows:
0~ No additional messages.

+ 1-Write additional messages only.

« 2-Read additional messages only.

+ 3~ Info additional messages only.

« 4-write and read additional messages.

. 5 - Write and info additional messages.

+ 6-Read and info additional messages.

« 7-Wiite and read and info additional messages.

6.7.1.2.1.3.2 Part Selection

The generic part selects the DDR3 SDRAM part to be simulated by the model

6.7.1.2.1.3.3 Initialisation Delay Selection

The generic short_init_dly controls the DDR3 SDRAM nitialisation sequence. The length of this sequence may be

reduced during simulation by setting this generic to ‘true*

6.7.1.2.1.3.4 Memory Contents Initalisation

Loading of data from file into the model is initiated by a ‘true’ value on the init_start input signal.

The format of each line in the init file should be as follows:
+ Start BANK (decimal 0-7).

« Start ROW (decimal 0..8191 1Gib/0..16383 2Gib),

+ Start COL (decimal 0-1023).

Common HDL Components
AD-UG-0004 Alpha Data Parallel Systems Ltd

Page 175

ADM-XRC Gen 3 SDK 1.3.0 User Guide

@ALPHA DATA (v1.3 - 04th March 2011)

« Start data BYTE (decimal 0-1),
+ Data Bytes from starting byte.

An example it ile is shown beloy

2 1 5110 0XU0 0x00 0X00 OXOU x5S
2 1 514 1 055 0x04 0x00 0x05 0x00 OXD6 0X00 0x03 OX00 0x08 00O 0X09 0x00 OXDA 0x00 0XO7
2 1 522 1000 OXOC 0x00 OXOD Ox00 OXDE 0x00 0xOE Ox0O Ox10 00O OXLL 0x0O OX12 0X00 OXOF
2 1 530 1000 Ox14 0x00 OXL5 Ox00 OX16 0X00 0x13 OX0O Ox18 00O 0X19 0XDO OXLA 0X00 OX17
2 1 538 10x00 OXIC 0x00 OXID Ox00 OXLE 0x00 Ox1B OX0O 0x20 00O OX2L OXDO OX22 0X00 OXIF
2 1 5461 0x00

2 11023 0 0x77 017

2 2 000x99 0xe9

2 2 5110 0XUD OX66 0xG5 OXOU OxAA

2 2 5141 OXAA <05 0x00 OXO7 0x00 OXDB 0X00 0x05 OXOO Ox0A 00O DX0B 0X0O OXOC <00 009
2 2 522 1 0X00 OXOE 0X00 DXOF 0x00 010 0X00 0XOD OXOD Ox12 00O DX13 OXDO OX14 0X00 011
2 2 530 1000 16 0x00 OxI7 0x00 0x1 0X0D OXIS 00O OX1A 0x00 OIS 0X00 OxIC 0x00 Ox19.
2 2 533 10x00 OXIE 0x00 OXIF 0x00 0x20 0x00 0xID Ox00 0x22 00O 0x23 0x00 0x24 0X00 0x21
2 2 5861 0x0

2 21023 0 0xB8 Oxe8

6.7.1.2.1.3.5 Memory Contents Logging

Saving of data to a file from the model is initiated by a ‘true’ value on the log_start input signal. Only memory data that
has been modified is output to the log file.

The format of each line in the log file is as follows:

+ Start BANK (decimal 0-7).

« Start ROW (decimal 0..8191 1Gib/0..16383 2Gib),
+ Start COL (decimal 0-1023)

+ Start data BYTE (decimal 0-1).

« Data Bytes from starting byte.

An example log file is shown below:

512 0 0x04 OX00 0x05 0x00 OX0G 0x00 003 0X00 OXDB OX00 0x09 0X00 OXOA 0XDO OXO7 0x00
OXOC 0X00 0x0D 0x00 OXOE 000 OXDB 0x00 0x10 0X00 Ox11 0XDD OX12 0xDO OXOF 0x00

0X08 0X00 0x09 0x00 OXOA 00O OXD7 0x00 OXOC OX00 0X0D 0XDD OXOE 0xDO OX0B 0x00

0X10 0X00 OX11 0x00 OXL2 00O OXOF 0x00 0x14 OX00 0x15 0XDD OXL6 0XDO OX13 0x00

XU 0X00 0x00 0x0U 055

0x55 0X04 0x00 0x05 OXOD 006 OXDO 0x03 0X0O OX08 0x00 0x09 <00 OXDA 0X00 0x07

0X00 OXOC 0x00 0xOD OX0D OXOE 000 0x0B 0X0O OX10 0x00 OL1 0x00 Ox12 0X00 OXOF

0x00

0x77 0x77

0x99 0x99

XD 066 0x66 00U OxAA

OxAR 0X06 0x00 0x07 0x00 0x08 0x00 0x05 0xDO OXDA 0x00 0DB 0x00 0XOC 0x00 0x08

0x00 OXOE 0x00 0XOF 0x00 0x10 Ox00 0x0D 0x00 Ox12 0x00 013 0x00 Ox14 0x00 Ox11

@8
0x02 0X00 0x03 000 0x04 0X00 OXDL 0X00 0XD6 OX00 0x07 00D OX0B 0XDO OX05 0x00
0x0A 0X00 0x0B 0x00 OXOC 0x00 009 0x00 OXDE 0X00 0XOF 00D OXL0 0xBO OXOD 0x00
0x02 0X00 0x03 0x00 0x04 0X00 OXDL 0x00 0XD6 OX00 0X07 00D OX0B 0XDO OX05 0x00
0x0A 0X00 0x0B 0x00 OXOC 0x0O OX09 0x00 OXDE OX00 0XOF 00D OX10 0xBO OXOD 0x00
0x02 0X00 0x03 0x00 0x04 0X00 OXDL 0x00 0XD6 OX00 0x07 00D OX08 0XDO OX05 0x00
0XDA 0X00 0x0B 0X00 OXOC 0X0O D09 0x00 OXDE 0X00 OXOF 000 OXL0 0XDO OX0D 0x00

Page 176 Common HDL Components
Alpha Data Parallel Systems Ltd. AD-UG-0004

ADM-XRC Gen 3 SDK 130 User Guide
(v1.3 - 0ath March 2011) @ ALPHA DATA

6.8 Clock Frequency Measurement Library

The clock frequency measurement library is located in the hdl/vhdl/examples/uber/commony directory and contains
the following elements:

+ Clock frequency measurement library components

6.8.1 Clock Frequency Measurement Library Components
6.8.1.1 Clock Frequency Measurement Block (blk_clock_freq)
6.8.1.1.1 Introduction

This is a component i the clock frequency measurement library. Its function is to count the number of edges present
on a sample clock in a measurement period.

6.8.1.1.2 Interface
The blk_clock_freq component interface is shown in Figure 36 below and described in Table 88.

bik_clock_freq

Figure 36: Clock Frequency Measurement Library blk_clock_freq Component Interface

Common HDL Components Page 177
AD-UG-0004 Alpha Data Parallel Systems Ltd.

@ALPHA DATA

ADM-XRC Gen 3 SDK 1.3.0 User Guide

(1.3 - 04th March 2011)

signal Type | Description
ref_clk_toval Generic | Measurement period in ref_clk cycles.
smp_clk_div_stages | Generic | Number of ripple-divide stages for smp_clk.
Reset/Clocks
st Input_| Asynchronous reset
ref_clk Input | Reference clock
smp_clk input__| Sample clock (to be measured)
Read Clock Domain
read_clk Input__| Read clock
do Input | Start a measurement.
count Output | Number of smp_clk cycles counted (qualified by valid)
running Output | smp_clk is running (qualified by valid).
valid Output | count and running are valid,
done Output | Measurement completed (Active for 1 cycle).
idle Output | Measurement not in progress.

Table 88: Clock Frequency Measurement Library blk_clock_freq Component Interface

6.8.1.1.3 Description

TBD

6.8.1.1.3.1 Clock Frequency Measurement Block Constraints

This block works by prescaling the clock whose frequency is being measured (input via the smp_clk port) by a power
of 2, sampling it, and counting rising edges during a certain number of ref_clk cycles. Thus, in order to prevent
incorrect measurements resulting from aliasing of the sampled clock, the following relationship must hold between the
frequencies of ref_clk and smp_clk, and the number of divider stages (the smp_clk_div_stages generic) used in
each blk_clock_freq instance:

« ref_ck frequency > smp_clk frequency * 2/ (2+*smp_clk_div_stages)

For small values of smp_clk_div_stages, the accuracy of a measured clock frequency is approximately equal to the

accuracy of ref_clk.

Page 178

Alpha Data Parallel Systems Ltd

Common HDL Components
AD-UG-0004

ADM-XRC Gen 3 SDK 1.3.0 User Guide.

(V1.3 - 04ih March 2011) @ALPHA DATA

6.9 ChipScope™ Library
The ChipScope™ library is located in the hdl/vhdl/common/ChipScope™/ directory and contains the following
elements:
« Xilinx™ ChipScope™ interface (ICON/ILA)
« ChipScope™ library components

6.9.1 Xilinx™ ChipScope™ Interface (ICON/ILA)
Prior to the initial bitstream build of a design using a Xilinx™ ChipScope™ interface, its .NGC files will need to be
generated using the gen_ChipScope™ script. Examples are as follows:
To generate .NGC files for Virtex-6 6VLX240T devices using Windows, start a shell and issue the following commands:

cd /d %ADMXRC3_SDK#\hdI\vhdI\common\ChipScope™
gen_ChipScope™-bat 6vIx240t

To generate .NGC files for a Virtex-6 6VSX315T device using Linux, start a shell and issue the following commands:

od SADUXRCS._SDK/mdl/vhdll/comon/Chipscope™
~/gen_Chipscope™.bash 6vsx315¢

Once generated, the Xilin™ ChipScope™ interface .NGC files are located in hdl/vhdi/common/ChipScope™icgpl.

Common HDL Components Page 179
AD-UG-0004 Alpha Data Parallel Systems Ltd

ADMXRC Gen 3 SDK 1.3.0 User Guide
@ ALPHA DATA (V13- 0dth March 2011)

6.9.2 ChipScope™ Library Components
6.9.2.1 ChipScope™ Block (blk_ChipScope™)
6.9.2.1.1 Introduction

This is a component in the ChipScope™ library. Its function is to instantiate up to 3 Xilinx™ ChipScope™ interfaces,
each connected to an ADB3 OCP channel.

6.9.2.1.2 Interface
The blk_ChipScope™ component interface is shown in Figure 37 below and described in Table 89.

blk_chipscope

Figure 37: ChipScope™ Library blk_ChipScope™ Component Interface

Signal Type | Description

instantiate Generic | Enables generation of this component.
ChipScope™ 0

ocp_cho_clk Input | OCP port clock

ocp_cho_m2s | Input_| OCP port M2S.
ocp_cho_s2m | Input | OCP port S2M.

ocp_ch0_trig Input | Trigger.
ChipScope™ 1
ocp_ch1_ck Input_| OCP port clock

ocp_chl_m2s | Input | OCP port M2s.
ocp_ch1_szm | Input | OCP port S2M.

Table 89: ChipScope™ Library blk_ChipScope™ Component Interface (continued on next page)

Page 180 Common HDL Components
Alpha Data Parallel Systems Ltd. AD-UG-0004

ADM-XRC Gen 3 SDK 1.3.0 User Guide.

(V1.3 - 04ih March 2011) @ALPHA DATA

Signal Type | Description

ocp_chi_trig Input__| Trigger.
ChipScope™ 2

ocp_ch2_ck Input__| OCP port clock.

ocp_ch2_m2s | Input__| OCP port M2s
ocp_ch2_s2m | Input | OCP port S2M.
ocp_ch2_trig Input_| Trigger.

Table 89: ChipScope™ Library blk_ChipScope™ Component Interface

6.9.2.1.3 Description

For each ChipScope™ channel, a Xilinx™ chipscope_ila component is instantiated with connections as follows (when
instantiate = true):

ILA clk input
« OCP port clock

ILA data input

« OCP port M2S: Addr(39:0), Data, BurstLength, DataByteEn, Tag.
+ OCP port S2M: Data, Tag.

© ILAigO.

« ILAigL

ILA trig0 input

+ OCP port M2S: RespAccept, DataValid, Cmd(1:0).

« OCP port S2M: Resp, DataAccept, CmdAccept.

ILA trigl input

« Trigger input

ILA trig_out output

+ Unconnected

AXilinx™ chipscope_icon component is also instantiated (when instantiate = true).
6.9.2.2 ChipScope™ Simulation Block (blk_chipscope_sim)
6.9.2.2.1 Introduction

This is a component i the ChipScope™ library. Its function is to instantiate a simulation only version of the
blk_ChipScope™ component.

6.9.2.2.2 Interface

This component's interface is the sames as the blk_ChipScope™ component. Refer to Figure 37 and Table 89.

Common HDL Components Page 181
AD-UG-0004 Alpha Data Parallel Systems Ltd

ADM-XRC Gen 3 SDK 1.3.0 User Guide

@ALPHA DATA (v1.3 - 04th March 2011)

6.9.2.2.3 Description

Signals are generated as for the blk_ChipScope™ component, but no chipscope_ila and chipscope_icon
components are instantiated.

Page 182 Common HDL Components
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(V1.3 - 04ih March 2011) @ALPHA DATA

7 FPGA design guide

This section provides guidelines for FPGA designs targeting third generation Alpha Data hardware.

7.1 ADB3 OCP Protocol Reference
7.1.1 Introduction

OCP-IP Protocols in general allow interfacing between two modules, with one module the master (in control of the
transactions) and one module the slave. Each OCP-IP Protocol must have at least a command (Cmd) signal however
the definition of other sideband signals is fairly flexible. The main groupings of signals used in the ADB3 OCP protocol
are a Command Group, synchronous to the Cmd signal, and Data transfer groups both from Master to Slave (Write)
and Slave to Master (Read Response). Each of these groupings is acknowledged independently allowing the flow to
be controlled.

The MPTL interface provides the user with a bank of OCP ports through which the data is passed as Read or Write
transactions.

+ Master Port - instigates all transfers, can have multiple requests active at any one time if the slave can also
handle multiple requests.

Slave Port - responds to Master request, does not instigate any requests

The MPTL Interface in the User FPGA provides an OCP Master Port for direct reads and writes from the Host via Bars
2/3 and 4/5 (64 bit bars) and a Master Port for each DMA engine in the Bridge.

Each OCP Link operates as follows:
1) The Master Port outputs a command along with the address, byte enables and burst length for the transaction.
2) The Slave port responds by accepting the command (and the other information).
3) For write transactions:
1) The Master Port outputs the data to be written along with a data valid flag.

1) The Slave Port accepts the data as and when it is able to. Responding with a data accept flag for each
data transfer.

1) Once all the data has been transferred the Master may start the next transaction.
For Read transactions:
1) The Slave Port retrieves the data that has been requested.
Il) The Slave Port outputs the data as and when it is available along with a data valid flag,
11l) The Master Port accepts the data . Responding with a data accept flag for each data transfer.
1) Once all the data has been transferred the Master Portis free to start the next transaction.
All OCP ports operate independently and with multiple DMA engines the user can instigate multiple data streams into
and out of the application design.
For advanced systems where the user application has a requirement for direct access from the Application to the Host

an MPTL interface can be provided that has an extra Slave Port. This allows the application to make memory access
requests direct to the Host System.

7.1.2 ADB3 OCP Signal Definitions

FPGA design guide Page 183
AD-UG-0004 Alpha Data Parallel Systems Ltd

@ALPHA DATA

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(1.3 - 04th March 2011)

Signal Group Type Description
cmd Command ocP cmd Idle Write or Read
Addr Command 64 bit std_logic_vector Address

BurstLength Command 12 bit std_logic_vector Length of transfer
Data Data 128 bit std_logic_vector Write Data to Slave
DataByteEn Data 16 bit std_logic_vector Byte Enables for Data
Datavalid Data std_logic Qualifier for Data
RespAccept Response std_logic Flow Control for response
Tag Command 8 bit std_logic_vector Tag for Read response data
Table 90: ADB3 OCP Master Signals
Signal Group Type Description
CmdAccept Command std_logic Flow Control for commands
DataAccept Data std_logic Flow Control for write Data
Data Response 128 bit std_logic_vector Response Data to Master
Resp Response OCP Resp Qualifier for Response Data
Tag Response 8 bit std_logic_vector Tag for Read response data

Table 91: ADB3 OCP Slave Signals

7.1.3 Example OCP Transfer Waveform Diagrams

This section contains timing diagrams for most common transactions and highlight the main operation of the protocol.

Note: These waveforms show different transfer sequences, all are valid OCP requests. This is to show the
different timing sequences of commands and data transfers. Figure 42 shows how a single OCP slave port
handles the two different write requests as shown in Figure 38.

Page 184

Alpha Data Parallel Systems Ltd

FPGA design guide

ADM-XRC Gen 3 SDK 1.3.0 User Guide

(v1.3 - 0ath March 2011) @ ALPHA DATA

w7 aValat

MASTER

cwo | ToE R Yo R e

Adar I AL

BurstLength

Data T

DataByteEn BEO =

Datavalid

Resphccept

Tag i L

SLAVE

CmdAccept

DataAccept

Figure 38: Single Beat Write

Figure 38 shows 2 single beat write commands. The address, burst length and tag are all presented at the same time
as the Cmd is set to Write. The Cmd is acknowledged within 1 clock cycle in the first case and so the Cmd is returned
to Idie after a single clock cycle. I the first case, the Data and Byte Enables are asserted and accepted also in the
same clock cycle. In the second case, the Write command is not accepted until the 4th cycle after it is asserted
(possible due to the Slave being busy). The master in this case also does not assert the Data Valid signal unti after the
Cmd. The data accept is also not accepted immediately and therefore the Data Valid must remain high until the data
beat is accepted. All these cases constitute legal OCP transfers with the protocol.

FPGA design guide Page 185
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide

@ALPHA DATA (v1.3 - 04th March 2011)

(BURWAWRE

MASTER

owo | ToE Yo 5 e

Adar I AL

BurstLength

Data

DataByteEn

Datavalid

Resphccept

Tag i L

SLAVE

CmdAccept

DataAccept

Figure 39: Single Beat Read

Figure 39 shows 2 single beat read commands. in the first case the read request is immediately accepted. The slave
responds with a response (Q0) on the following clock cycle. The Tag send with the read command is returned with the
response. The second example shows a delayed command accept, a delayed response and a delayed response
accept, all of which are legal with the protocol.

Page 186 FPGA design guide
Alpha Data Parallel Systems Ltd. AD-UG-0004

ADM-XRC Gen 3 SDK 1.3.0 User Guide

(v1.3 - 0ath March 2011) @ ALPHA DATA

ava o

MASTER

oo | ToE)R e R e

Adar I AL

BurstLength

Data)02 7 3

DataByteEn

Datavalid

Resphccept

Tag i L TOLE

SLAVE

CmdAccept

DataAccept

Figure 40: Burst Write

Figure 40 shows 2 burst writes. A single command is issued for multiple data word transfers. The command protocol
operates in exactly the same manner as for single beat transfers. Multiple data transfers occur for each command.
Data transfers only occur when both DataValid and DataAccept are asserted. The master must wait on DataAccept
being asserted before presenting the next data word. The slave must check that Datavalid is asserted when receiving
data. The slave may assert DataAccept even if Datavalid is not asserted.

FPGA design guide Page 187
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADMXRC Gen 3 SDK 1.3.0 User Guide
@ ALPHA DATA (V13- 0dth March 2011)

(BURWAWRE

ok [\

MASTER

cmp iBLE TOLE

3

Addr I

BurstLength

Data

DataByteEn

Datavalid

Respacoept .

Tag 7

SLAVE

Cnascoept [}

DataAccept

Resp NONE AT

Tag T
Figure 41: Burst Read

Figure 41 shows a read burst. The response should be held valid and the read tag returned by the slave for all data
transfers. Each data transfer required the Response to be Valid and RespAccect to be asserted.

Page 188 FPGA design guide
Alpha Data Parallel Systems Ltd. AD-UG-0004

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(VL3 - 04th March 2011)

@ALPHA DATA

MASTER

ok

e

U

I

o

SLAVE

cMp
Adar
BurstLength
Data
DataByteEn
Datavalid
Resphccept

Tag

TOLE

R TOLE R

TOLE

CmdAccept

DataAccept

Figure 42: OCP Slave Controlled Transfers

Figure 42 shows the OCP slave port delaying accepting the write data until it has accepted the write command, notice
how the OCP master port must keep the data valid during this time. Compare this to the original sequence in Figure

38.

FPGA design guide

AD-UG-0004

Alpha Data Parallel Systems Ltd.

Page 189

ADM-XRC Gen 3 SDK 1.3.0 User Guide

@ALPHA DATA (v1.3 - 04th March 2011)

8 The ADMXRC3 API

The ADMXRC3 API is the application programming interface that applications, including the ones in this SDK, use to
communicate with third generation Alpha Data hardware. This API is documented in the ADMXRC3 API Specification

Page 190 The ADMXRC3 API
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.3.0 User Guide

(V1.3 - 04ih March 2011) @ ALPHA DATA

Page Intentionally left blank.

The ADMXRC3 API Page 191
AD-UG-0004 Alpha Data Parallel Systems Ltd

@ALPHA DATA

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(1.3 - 04th March 2011)

Revision History:

Date Revision Nature of Change
20/05/2010 10 Initial version
Updated for release 1.1.0
26/07/2010 11 Added SDK structure diagram.
Added information about example applications.
Updated for release 1.2.0
21/09/2010 12 Added section for getting started in VxWorks.
Documented VxWorks example applications.
Updated for release 1.3.0
Documented new MEMTESTH example application.
Documented new options in existing example applications and utilities.
04/03/2011 13 Documented DDR3 memory interface additions to UBER design.

‘Added outiines of common HDL components provided by SDK.
Corrected error in DEBUG column of table showing naming conventions for
VxWorks example binaries.

©2011 Alpha Data Parallel Systems Ltd. Al rights reserved. All other trademarks and registered trademarks are the

property of their respective owners.

Adress: 4 West Sikermills Lane.
Egnburg, 13 300, Uc

Tlephone: 1413

ekt
Sales@apha i

bt T A dermcom

Adiess. 3507 Ringeby Coun e 105
Derver, CO B0Z11
Toptons: (69 808768

Fax) 820 9956 - ol ree:
Ghal aleagapnaaiacom
website: i alpha-data.com

	1 Introduction
	1.1 Document conventions
	1.2 Supported operating systems
	1.3 Supported Alpha Data hardware
	1.4 Installation
	1.4.1 Installation in Windows
	1.4.2 Installation in Linux
	1.4.3 Installation in VxWorks

	1.5 Structure of this SDK

	2 Getting started
	2.1 Getting started in Windows 2000 / XP / Server 2003
	2.2 Getting started in Windows Vista and later
	2.3 Getting started in Linux
	2.4 Getting started in VxWorks

	3 Example applications for Windows and Linux
	3.1 Building the example applications in Windows
	3.2 Building the example applications in Linux
	3.3 DUMP utility
	3.4 FLASH utility
	3.4.1 Failsafe bitstream mechanism

	3.5 INFO utility
	3.6 ITEST example
	3.7 MEMTESTH example
	3.8 MONITOR utility
	3.9 SIMPLE example
	3.10 SYSMON utility
	3.10.1 Building SYSMON in Linux

	3.11 VPD utility

	4 Example applications for VxWorks
	4.1 Building the example VxWorks applications in Windows
	4.2 Building the example VxWorks applications in Linux
	4.3 MAKE options for the example VxWorks applications
	4.4 FLASH utility (VxWorks)
	4.4.1 Failsafe bitstream mechanism (VxWorks)

	4.5 INFO utility (VxWorks)
	4.6 ITEST example (VxWorks)
	4.7 MEMTESTH example (VxWorks)
	4.8 MONITOR utility (VxWorks)
	4.9 SIMPLE example (VxWorks)
	4.10 VPD utility (VxWorks)

	5 Example HDL FPGA Designs
	5.1 Introduction
	5.2 Design Simulation Using Modelsim
	5.2.1 Full MPTL Simulation (TARGET_USE = SIM_MPTL)
	5.2.2 OCP-Only Simulation (TARGET_USE = SIM_OCP)

	5.3 Bitstream Build Using Xilinx™ ISE
	5.3.1 Building All Example Bitstreams for Windows
	5.3.2 Building All Example Bitstreams for Linux
	5.3.3 Building Specific Example/Board/Device Bitstreams

	5.4 Simple Example FPGA Design
	5.4.1 Board Support
	5.4.2 Source Location
	5.4.2.1 VHDL Source Files for Simulation
	5.4.2.2 VHDL Source Files for Synthesis
	5.4.2.3 XST Files
	5.4.2.4 Implementation Constraint Files

	5.4.3 Design Synthesis and Bitstream Build
	5.4.4 Design Description
	5.4.4.1 Clock Generation
	5.4.4.1.1 OCP Clock
	5.4.4.1.2 Target MPTL Interface Clock

	5.4.4.2 Target MPTL Interface
	5.4.4.3 OCP to Simple Bus Interface Block
	5.4.4.4 Simple Test Registers
	5.4.4.4.1 Register Description

	5.4.5 Testbench Description
	5.4.5.1 Clock Generation
	5.4.5.2 Bridge MPTL Interface
	5.4.5.3 Direct Slave OCP Channel Probe
	5.4.5.4 Stimulus Generation and Verification
	5.4.5.4.1 Direct Slave OCP Channel
	5.4.5.4.1.1 Simple Test

	5.4.6 Design Simulation
	5.4.6.1 Initialisation Results
	5.4.6.2 Direct Slave OCP Channel Results
	5.4.6.3 Completion Results

	5.5 Uber Example FPGA Design
	5.5.1 Board Support
	5.5.2 Source Location
	5.5.2.1 VHDL Source Files for Simulation
	5.5.2.2 VHDL Source Files for Synthesis
	5.5.2.3 XST Files
	5.5.2.4 Implementation Constraint Files

	5.5.3 Design Synthesis and Bitstream Build
	5.5.3.1 Date/Time Package Generation

	5.5.4 Design Description
	5.5.4.1 Clock Generation Block
	5.5.4.1.1 Internal Clock Generation (MMCM)
	5.5.4.1.2 Internal Reset Generation (MMCM)
	5.5.4.1.3 MPTL Interface Clock Generation
	5.5.4.1.4 Input Clock Buffering
	5.5.4.1.5 Input Clock Extraction (MGT Sourced)
	5.5.4.1.6 Output Clock Generation

	5.5.4.2 Target MPTL Interface
	5.5.4.3 OCP Direct Slave Block
	5.5.4.3.1 OCP Cross-Clock Domain Block
	5.5.4.3.2 Direct Slave Address Space Splitter Block
	5.5.4.3.3 Simple Test Register Block
	5.5.4.3.3.1 Description
	5.5.4.3.3.2 Register Description

	5.5.4.3.4 Clock Frequency Measurement Register Block
	5.5.4.3.4.1 Description
	5.5.4.3.4.2 Register Description

	5.5.4.3.5 Interrupt Test Register Block
	5.5.4.3.5.1 Description
	5.5.4.3.5.2 Register Description

	5.5.4.3.6 Informational Register Block
	5.5.4.3.6.1 Description
	5.5.4.3.6.2 Register Description

	5.5.4.3.7 GPIO Test Register Block
	5.5.4.3.7.1 Description
	5.5.4.3.7.2 Register Description

	5.5.4.3.8 On-Board Memory Register Block
	5.5.4.3.8.1 Description
	5.5.4.3.8.2 Register Description

	5.5.4.3.9 Direct Slave BRAM Access Block
	5.5.4.3.9.1 Description
	5.5.4.3.9.2 Direct Slave BRAM Access Window

	5.5.4.3.10 Direct Slave On-Board Memory Access Block
	5.5.4.3.10.1 Description
	5.5.4.3.10.2 Direct Slave On-Board Memory Access Window

	5.5.4.4 OCP Switching Block
	5.5.4.4.1 Direct Slave On-Board Memory OCP Address Space Splitter Block
	5.5.4.4.2 BRAM OCP Multiplexor Block
	5.5.4.4.3 DMA Channel 0 OCP Address Space Splitter Block
	5.5.4.4.4 On-Board Memory Bank OCP Multiplexors

	5.5.4.5 BRAM Block
	5.5.4.6 On-Board Memory Interface Block
	5.5.4.7 On-Board Memory Application Block
	5.5.4.8 ChipScope™ Connection Block (optional)
	5.5.4.9 Design Package

	5.5.5 Testbench Description
	5.5.5.1 Clock Generation
	5.5.5.2 Bridge MPTL Interface
	5.5.5.3 OCP Channel Probes
	5.5.5.4 Stimulus Generation and Verification
	5.5.5.4.1 Non-OCP Functions
	5.5.5.4.1.1 Clock Output Test
	5.5.5.4.1.2 MPTL GPIO Bus Test
	5.5.5.4.1.3 DMA Abort Bus Test

	5.5.5.4.2 Direct Slave OCP Channel
	5.5.5.4.2.1 Simple Test
	5.5.5.4.2.2 Clock Frequency Measurement Test
	5.5.5.4.2.3 XRM GPIO Test
	5.5.5.4.2.4 Pn4/Pn6 GPIO Test
	5.5.5.4.2.5 Interrupt Test
	5.5.5.4.2.6 Informational Register Test
	5.5.5.4.2.7 BRAM Test
	5.5.5.4.2.8 On-Board Memory Test

	5.5.5.4.3 DMA OCP Channels
	5.5.5.4.3.1 DMA OCP Command and Write Data Process
	5.5.5.4.3.2 DMA OCP Response Process

	5.5.5.5 Memory Device Simulation Models
	5.5.5.6 Testbench Package

	5.5.6 Design Simulation
	5.5.6.1 Date/Time Package Generation
	5.5.6.2 Initialisation Results
	5.5.6.2.1 DDR3 SDRAM MIG Core MMCM Status
	5.5.6.2.2 Testbench Status
	5.5.6.2.3 DDR3 SDRAM Initialisation

	5.5.6.3 Non-OCP Functions Results
	5.5.6.3.1 Clock Output Test Results
	5.5.6.3.2 MPTL GPIO Bus Test Results
	5.5.6.3.3 DMA Abort Bus Test Results

	5.5.6.4 Direct Slave OCP Channel Results
	5.5.6.4.1 Simple Test Results
	5.5.6.4.2 Clock Frequency Measurement Test Results
	5.5.6.4.3 XRM GPIO Test Results
	5.5.6.4.4 Pn4/Pn6 GPIO Test Results
	5.5.6.4.5 Interrupt Test Results
	5.5.6.4.6 Informational Register Test Results
	5.5.6.4.7 BRAM Test Results
	5.5.6.4.8 On-Board Memory Test Results

	5.5.6.5 DMA OCP Channels Results
	5.5.6.6 Completion Results

	6 Common HDL Components
	6.1 ADB3 OCP Library
	6.1.1 ADB3 OCP Profile Definition Package (adb3_ocp)
	6.1.2 ADB3 OCP Library Component Declaration Package (adb3_ocp_comp)
	6.1.3 ADB3 OCP Library Components
	6.1.3.1 adb3_ocp_cross_clk_dom
	6.1.3.1.1 Introduction
	6.1.3.1.2 Interface
	6.1.3.1.3 Description
	6.1.3.1.3.1 Command Path
	6.1.3.1.3.2 Write Data Path
	6.1.3.1.3.3 Read Response Path

	6.1.3.2 adb3_ocp_mux_b
	6.1.3.2.1 Introduction
	6.1.3.2.2 Interface
	6.1.3.2.3 Description

	6.1.3.3 adb3_ocp_mux_nb
	6.1.3.3.1 Introduction
	6.1.3.3.2 Interface
	6.1.3.3.3 Description
	6.1.3.3.3.1 Command Path
	6.1.3.3.3.2 Write Data Path
	6.1.3.3.3.3 Read Response Path

	6.1.3.4 adb3_ocp_ocp2ddr3_nb
	6.1.3.4.1 Introduction
	6.1.3.4.2 Interface
	6.1.3.4.3 Description
	6.1.3.4.3.1 Command Path
	6.1.3.4.3.2 Write Data Path
	6.1.3.4.3.3 Read Response Path

	6.1.3.5 adb3_ocp_retime_nb
	6.1.3.5.1 Introduction
	6.1.3.5.2 Interface
	6.1.3.5.3 Description

	6.1.3.6 adb3_ocp_simple_bus_if
	6.1.3.6.1 Introduction
	6.1.3.6.2 Interface
	6.1.3.6.3 Description

	6.1.3.7 adb3_ocp_split_b
	6.1.3.7.1 Introduction
	6.1.3.7.2 Interface
	6.1.3.7.3 Description

	6.1.3.8 adb3_ocp_split_nb
	6.1.3.8.1 Introduction
	6.1.3.8.2 Interface
	6.1.3.8.3 Description
	6.1.3.8.3.1 Command Path
	6.1.3.8.3.2 Write Data Path
	6.1.3.8.3.3 Read Response Path

	6.2 MPTL Library
	6.2.1 MPTL Library Components
	6.2.1.1 Bridge MPTL Interface Wrapper (mptl_if_bridge_wrap)
	6.2.1.1.1 Introduction
	6.2.1.1.2 Interface
	6.2.1.1.3 Description
	6.2.1.1.3.1 OCP-Only Simulation
	6.2.1.1.3.2 Full MPTL Simulation

	6.2.1.2 Target MPTL Interface Wrapper (mptl_if_target_wrap)
	6.2.1.2.1 Introduction
	6.2.1.2.2 Interface
	6.2.1.2.3 Description
	6.2.1.2.3.1 OCP-Only Simulation
	6.2.1.2.3.2 Full MPTL Simulation
	6.2.1.2.3.3 Synthesis

	6.2.2 MPTL Interface Components
	6.2.2.1 Bridge MPTL Interface For OCP-Only Simulation (mptl_if_bridge_sim)
	6.2.2.1.1 Introduction
	6.2.2.1.2 Interface
	6.2.2.1.3 Description

	6.2.2.2 Target MPTL Interface For OCP-Only Simulation (mptl_if_target_sim)
	6.2.2.2.1 Introduction
	6.2.2.2.2 Interface
	6.2.2.2.3 Description

	6.2.2.3 Bridge MPTL Interface For Full MPTL Simulation
	6.2.2.3.1 Introduction
	6.2.2.3.2 Interface
	6.2.2.3.3 Description

	6.2.2.4 Target MPTL Interface For Full MPTL Simulation
	6.2.2.4.1 Introduction
	6.2.2.4.2 Interface
	6.2.2.4.3 Description

	6.2.2.5 Target MPTL Interface For Synthesis
	6.2.2.5.1 Introduction
	6.2.2.5.2 Interface
	6.2.2.5.3 Description

	6.3 ADB3 Target Library
	6.3.1 ADB3 Target Types Definition Package (adb3_target_types_pkg)
	6.3.2 ADB3 Target Include Package (adb3_target_inc_pkg)
	6.3.3 ADB3 Target Package (adb3_target_pkg)
	6.3.4 ADB3 Target Testbench Package (adb3_target_tb_pkg)

	6.4 ADB3 Probe Library
	6.4.1 ADB3 Probe Library Package (adb3_probe_pkg)
	6.4.2 ADB3 Probe Library Components
	6.4.2.1 adb3_ocp_transaction_probe
	6.4.2.1.1 Introduction
	6.4.2.1.2 Interface
	6.4.2.1.3 Description

	6.5 Memory Interface Library
	6.5.1 Memory Interface Library Package (mem_if_pkg)
	6.5.2 Memory Interface Library Components
	6.5.2.1 DDR3 SDRAM Memory Interface Bank (ddr3_if_bank_v3_6)
	6.5.2.1.1 Introduction
	6.5.2.1.2 Interface
	6.5.2.1.3 Description
	6.5.2.1.3.1 OCP To DDR3 SDRAM MIG Core (adb3_ocp_ocp2ddr3_nb)
	6.5.2.1.3.2 Xilinx™ DDR3 SDRAM MIG Core

	6.5.2.1.4 Xilinx™ DDR3 SDRAM MIG Core Generation

	6.6 Memory Application Library
	6.6.1 Memory Application Library Components
	6.6.1.1 Memory Test Block (blk_mem_test)
	6.6.1.1.1 Introduction
	6.6.1.1.2 Interface
	6.6.1.1.3 Description

	6.7 Memory Model Library
	6.7.1 DDR3 SDRAM Memory Model
	6.7.1.1 DDR3 SDRAM Model Package (ddr3_sdram_pkg)
	6.7.1.2 DDR3 SDRAM Model Components
	6.7.1.2.1 DDR3 SDRAM Model (ddr3_sdram)
	6.7.1.2.1.1 Introduction
	6.7.1.2.1.2 Interface
	6.7.1.2.1.3 Description
	6.7.1.2.1.3.1 Message Reporting
	6.7.1.2.1.3.2 Part Selection
	6.7.1.2.1.3.3 Initialisation Delay Selection
	6.7.1.2.1.3.4 Memory Contents Initalisation
	6.7.1.2.1.3.5 Memory Contents Logging

	6.8 Clock Frequency Measurement Library
	6.8.1 Clock Frequency Measurement Library Components
	6.8.1.1 Clock Frequency Measurement Block (blk_clock_freq)
	6.8.1.1.1 Introduction
	6.8.1.1.2 Interface
	6.8.1.1.3 Description
	6.8.1.1.3.1 Clock Frequency Measurement Block Constraints

	6.9 ChipScope™ Library
	6.9.1 Xilinx™ ChipScope™ Interface (ICON/ILA)
	6.9.2 ChipScope™ Library Components
	6.9.2.1 ChipScope™ Block (blk_ChipScope™)
	6.9.2.1.1 Introduction
	6.9.2.1.2 Interface
	6.9.2.1.3 Description

	6.9.2.2 ChipScope™ Simulation Block (blk_chipscope_sim)
	6.9.2.2.1 Introduction
	6.9.2.2.2 Interface
	6.9.2.2.3 Description

	7 FPGA design guide
	7.1 ADB3 OCP Protocol Reference
	7.1.1 Introduction
	7.1.2 ADB3 OCP Signal Definitions
	7.1.3 Example OCP Transfer Waveform Diagrams

	8 The ADMXRC3 API
	Tables
	Table 1: Example applications for Windows and Linux
	Table 2: Naming conventions for VxWorks examples binary
	Table 3: Example HDL FPGA Designs
	Table 4: Simple Design Makefile Targets
	Table 5: Simple Design Direct Slave Address Map
	Table 6: Simple Design, DATA Register (0x000000)
	Table 7: Uber Design Makefile Targets
	Table 8: Uber Design Direct Slave Address Map
	Table 9: Simple Test Register Block Address Map
	Table 10: Simple Test Register Block, DATA Register (0x000000)
	Table 11: Clock Frequency Measurement Register Block Address Map
	Table 12: Clock Frequency Measurement Register Block, SEL Register (0x000040)
	Table 13: Clock Frequency Measurement Register Block, CTRL/STAT Register (0x000044)
	Table 14: Clock Frequency Measurement Register Block, FREQ Register (0x000048)
	Table 15: Interrupt Test Register Block Address Map
	Table 16: Interrupt Test Register Block, SET Register (0x0000C0)
	Table 17: Interrupt Test Register Block, CLEAR/STAT Register (0x0000C4)
	Table 18: Interrupt Test Register Block, MASK Register (0x0000C8)
	Table 19: Interrupt Test Register Block, ARM Register (0x0000CC)
	Table 20: Interrupt Test Register Block, COUNT Register (0x0000D0)
	Table 21: Informational Register Block Address Map
	Table 22: Informational Register Block, DATE Register (0x000140)
	Table 23: Informational Register Block, TIME Register (0x000144)
	Table 24: Informational Register Block, SPLIT Register (0x000148)
	Table 25: Informational Register Block, BRAM_BASE Register (0x00014C)
	Table 26: Informational Register Block, BRAM_MASK Register (0x000150)
	Table 27: Informational Register Block, MEM_BASE Register (0x000154)
	Table 28: Informational Register Block, MEM_MASK Register (0x000158)
	Table 29: Informational Register Block, MEM_BANKS Register (0x00015C)
	Table 30: GPIO Test Register Block Address Map
	Table 31: GPIO Test Register Block, XRM_GPIO_DA_DATAO Register (0x000200)
	Table 32: GPIO Test Register Block, XRM_GPIO_DA_DATAI Register (0x000204)
	Table 33: GPIO Test Register Block, XRM_GPIO_DA_TRI Register (0x000208)
	Table 34: GPIO Test Register Block, XRM_GPIO_DB_DATAO Register (0x00020C)
	Table 35: GPIO Test Register Block, XRM_GPIO_DB_DATAI Register (0x000210)
	Table 36: GPIO Test Register Block, XRM_GPIO_DB_TRI Register (0x000214)
	Table 37: GPIO Test Register Block, XRM_GPIO_DC_DATAO Register (0x000218)
	Table 38: GPIO Test Register Block, XRM_GPIO_DC_DATAI Register (0x00021C)
	Table 39: GPIO Test Register Block, XRM_GPIO_DC_TRI Register (0x000220)
	Table 40: GPIO Test Register Block, XRM_GPIO_DD_DATAO Register (0x000224)
	Table 41: GPIO Test Register Block, XRM_GPIO_DD_DATAI Register (0x000228)
	Table 42: GPIO Test Register Block, XRM_GPIO_DD_TRI Register (0x00022C)
	Table 43: GPIO Test Register Block, XRM_GPIO_CS_DATAO Register (0x000230)
	Table 44: GPIO Test Register Block, XRM_GPIO_CS_DATAI Register (0x000234)
	Table 45: GPIO Test Register Block, XRM_GPIO_CS_TRI Register (0x000238)
	Table 46: GPIO Test Register Block, PN4_GPIO_P_DATAO Register (0x00023C)
	Table 47: GPIO Test Register Block, PN4_GPIO_P_DATAI Register (0x000240)
	Table 48: GPIO Test Register Block, PN4_GPIO_P_TRI Register (0x000244)
	Table 49: GPIO Test Register Block, PN4_GPIO_N_DATAO Register (0x000248)
	Table 50: GPIO Test Register Block, PN4_GPIO_N_DATAI Register (0x00024C)
	Table 51: GPIO Test Register Block, PN4_GPIO_N_TRI Register (0x000250)
	Table 52: GPIO Test Register Block, PN6_GPIO_MS_DATAO Register (0x000254)
	Table 53: GPIO Test Register Block, PN6_GPIO_MS_DATAI Register (0x000258)
	Table 54: GPIO Test Register Block, PN6_GPIO_MS_TRI Register (0x00025C)
	Table 55: GPIO Test Register Block, PN6_GPIO_LS_DATAO Register (0x000260)
	Table 56: GPIO Test Register Block, PN6_GPIO_LS_DATAI Register (0x000264)
	Table 57: GPIO Test Register Block, PN6_GPIO_LS_TRI Register (0x000268)
	Table 58: On-Board Memory Register Block Address Map
	Table 59: On-Board Memory Register Block, DS_BANK Register (0x000300)
	Table 60: On-Board Memory Register Block, DS_PAGE Register (0x000304)
	Table 61: On-Board Memory Register Block, BANKx_CTRL Register (0x000320, 0x000340, ...)
	Table 62: On-Board Memory Register Block, BANKx_OFFSET Register (0x000324, 0x000344, ...)
	Table 63: On-Board Memory Register Block, BANKx_LENGTH Register (0x000328, 0x000348, ...)
	Table 64: On-Board Memory Register Block, BANKx_INFO Register (0x00032C, 0x00034C, ...)
	Table 65: On-Board Memory Register Block, BANKx_STAT Register (0x000330, 0x000350, ...)
	Table 66: On-Board Memory Register Block, BANKx_APP_ERR_ADDR Register (0x000334, 0x000354, ...)
	Table 67: On-Board Memory Register Block, BANKx_MUX_ERR Register (0x000338, 0x000358, ...)
	Table 68: On-Board Memory Register Block, BANKx_DDR3_ERR Register (0x00033C, 0x00035C, ...)
	Table 69: Direct Slave BRAM Access Window
	Table 70: Direct Slave On-Board Memory Access Window
	Table 71: Uber Design Direct Slave On-Board Memory Address Map
	Table 72: Uber Design DMA Channel 0 Address Map
	Table 73: ADB3 OCP Library adb3_ocp_cross_clk_dom Component Interface
	Table 74: ADB3 OCP Library adb3_ocp_mux_b Component Interface
	Table 75: ADB3 OCP Library adb3_ocp_mux_nb Component Interface
	Table 76: ADB3 OCP Library adb3_ocp_ocp2ddr3_nb Component Interface
	Table 77: ADB3 OCP Library adb3_ocp_retime_nb Component Interface
	Table 78: ADB3 OCP Library adb3_ocp_simple_bus_if Component Interface
	Table 79: ADB3 OCP Library adb3_ocp_split_b Component Interface
	Table 80: ADB3 OCP Library adb3_ocp_split_nb Component Interface
	Table 81: MPTL Library mptl_if_bridge_wrap Component Interface
	Table 82: MPTL Library mptl_if_target_wrap Component Interface
	Table 83: Available variants of the adb3_target_inc_pkg package
	Table 84: ADB3 Probe Library adb3_ocp_transaction_probe Component Interface
	Table 85: Memory Interface Library ddr3_if_bank_v3_6 Component Interface
	Table 86: Memory Application Library blk_mem_test Component Interface
	Table 87: Memory Model Library ddr3_sdram Component Interface
	Table 88: Clock Frequency Measurement Library blk_clock_freq Component Interface
	Table 89: ChipScope™ Library blk_ChipScope™ Component Interface
	Table 90: ADB3 OCP Master Signals
	Table 91: ADB3 OCP Slave Signals

	Figures
	Figure 1: Structure of the ADM-XRC Gen 3 SDK
	Figure 2: SYSMON user interface - device information
	Figure 3: SYSMON user interface - sensor readings
	Figure 4: SYSMON user interface - sensor display
	Figure 5: Simple Design Block Diagram
	Figure 6: Simple Design Testbench Block Diagram
	Figure 7: Uber Design Top Level Block Diagram
	Figure 8: Uber Design Top Level Hierarchy
	Figure 9: Uber Design Package Dependencies
	Figure 10: Uber Design Internal Clock Generation (MMCM)
	Figure 11: Uber Design Clock Buffering/Extraction
	Figure 12: Uber Direct Slave Block Diagram
	Figure 13: Uber OCP Switching Block
	Figure 14: Uber BRAM Block Diagram
	Figure 15: Uber Memory Interface Block Diagram
	Figure 16: Uber Design Testbench And Top Level Block Diagram
	Figure 17: Uber Design Testbench Hierarchy
	Figure 18: ADB3 OCP Library adb3_ocp_cross_clk_dom Component Interface
	Figure 19: ADB3 OCP Library adb3_ocp_cross_clk_dom Block Diagram
	Figure 20: ADB3 OCP Library adb3_ocp_mux_b Component Interface
	Figure 21: ADB3 OCP Library adb3_ocp_mux_nb Component Interface
	Figure 22: ADB3 OCP Library adb3_ocp_mux_nb Block Diagram
	Figure 23: ADB3 OCP Library adb3_ocp_ocp2ddr3_nb Component Interface
	Figure 24: ADB3 OCP Library adb3_ocp_ocp2ddr3_nb Block Diagram
	Figure 25: ADB3 OCP Library adb3_ocp_retime_nb Component Interface
	Figure 26: ADB3 OCP Library adb3_ocp_simple_bus_if Component Interface
	Figure 27: ADB3 OCP Library adb3_ocp_split_b Component Interface
	Figure 28: ADB3 OCP Library adb3_ocp_split_nb Component Interface
	Figure 29: ADB3 OCP Library adb3_ocp_split_nb Block Diagram
	Figure 30: MPTL Library mptl_if_bridge_wrap Component Interface
	Figure 31: MPTL Library mptl_if_target_wrap Component Interface
	Figure 32: ADB3 Probe Library adb3_ocp_transaction_probe Component Interface
	Figure 33: Memory Interface Library ddr3_if_bank_v3_6 Component Interface
	Figure 34: Memory Application Library blk_mem_test Component Interface
	Figure 35: Memory Model Library ddr3_sdram Component Interface
	Figure 36: Clock Frequency Measurement Library blk_clock_freq Component Interface
	Figure 37: ChipScope™ Library blk_ChipScope™ Component Interface
	Figure 38: Single Beat Write
	Figure 39: Single Beat Read
	Figure 40: Burst Write
	Figure 41: Burst Read
	Figure 42: OCP Slave Controlled Transfers

	Alpha Data Website

