
ADM-XRC Gen 3
SDK 1.3.0 User

Guide
Revision: 1.3

Date: 04th March 2011

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

©2011 Copyright Alpha Data Parallel Systems Ltd.
All rights reserved.

This publication is protected by Copyright Law, with all rights reserved. No
part of this publication may be reproduced, in any shape or form, without

prior written consent from Alpha Data Parallel Systems Limited.

Head Office US Office

Address 4 West Silvermills Lane,
Edinburgh, EH3 5BD, UK

3507 Ringsby Court Suite 105
 Denver, CO 80216

Telephone +44 131 558 2600 (303) 954 8768
Fax +44 131 558 2700 (866) 820 9956 - toll free
email sales@alpha-data.com sales@alpha-data.com
website http://www.alpha-data.com http://www.alpha-data.com

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

Table Of Contents
1 Introduction ... 1
 1.1 Document conventions... 1
 1.2 Supported operating systems... 1
 1.3 Supported Alpha Data hardware .. 1
 1.4 Installation .. 2
 1.4.1 Installation in Windows.. 2
 1.4.2 Installation in Linux.. 2
 1.4.3 Installation in VxWorks .. 2
 1.5 Structure of this SDK.. 2
2 Getting started... 4
 2.1 Getting started in Windows 2000 / XP / Server 2003 ... 4
 2.2 Getting started in Windows Vista and later .. 5
 2.3 Getting started in Linux .. 7
 2.4 Getting started in VxWorks... 8
3 Example applications for Windows and Linux... 11
 3.1 Building the example applications in Windows... 11
 3.2 Building the example applications in Linux... 11
 3.3 DUMP utility.. 12
 3.4 FLASH utility... 15
 3.4.1 Failsafe bitstream mechanism... 16
 3.5 INFO utility.. 18
 3.6 ITEST example... 20
 3.7 MEMTESTH example... 22
 3.8 MONITOR utility ... 23
 3.9 SIMPLE example.. 24
 3.10 SYSMON utility... 25
 3.10.1 Building SYSMON in Linux.. 27
 3.11 VPD utility ... 28
4 Example applications for VxWorks ... 32
 4.1 Building the example VxWorks applications in Windows ... 32
 4.2 Building the example VxWorks applications in Linux ... 32
 4.3 MAKE options for the example VxWorks applications ... 32
 4.4 FLASH utility (VxWorks)... 35
 4.4.1 Failsafe bitstream mechanism (VxWorks)... 36
 4.5 INFO utility (VxWorks).. 38
 4.6 ITEST example (VxWorks)... 40
 4.7 MEMTESTH example (VxWorks)... 42
 4.8 MONITOR utility (VxWorks) ... 43
 4.9 SIMPLE example (VxWorks).. 44
 4.10 VPD utility (VxWorks) ... 45
5 Example HDL FPGA Designs ... 49
 5.1 Introduction... 49
 5.2 Design Simulation Using Modelsim.. 49

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

 5.2.1 Full MPTL Simulation (TARGET_USE = SIM_MPTL) ... 49
 5.2.2 OCP-Only Simulation (TARGET_USE = SIM_OCP)... 50
 5.3 Bitstream Build Using Xilinx™ ISE ... 50
 5.3.1 Building All Example Bitstreams for Windows ... 50
 5.3.2 Building All Example Bitstreams for Linux ... 51
 5.3.3 Building Specific Example/Board/Device Bitstreams .. 51
 5.4 Simple Example FPGA Design... 52
 5.4.1 Board Support ... 52
 5.4.2 Source Location .. 52
 5.4.2.1 VHDL Source Files for Simulation.. 52
 5.4.2.2 VHDL Source Files for Synthesis ... 52
 5.4.2.3 XST Files.. 52
 5.4.2.4 Implementation Constraint Files... 52
 5.4.3 Design Synthesis and Bitstream Build .. 52
 5.4.4 Design Description .. 54
 5.4.4.1 Clock Generation.. 56
 5.4.4.1.1 OCP Clock... 56
 5.4.4.1.2 Target MPTL Interface Clock... 56
 5.4.4.2 Target MPTL Interface.. 56
 5.4.4.3 OCP to Simple Bus Interface Block.. 56
 5.4.4.4 Simple Test Registers... 56
 5.4.4.4.1 Register Description .. 56
 5.4.5 Testbench Description... 57
 5.4.5.1 Clock Generation.. 59
 5.4.5.2 Bridge MPTL Interface ... 59
 5.4.5.3 Direct Slave OCP Channel Probe .. 59
 5.4.5.4 Stimulus Generation and Verification ... 59
 5.4.5.4.1 Direct Slave OCP Channel .. 59
 5.4.5.4.1.1 Simple Test... 60
 5.4.6 Design Simulation ... 60
 5.4.6.1 Initialisation Results.. 60
 5.4.6.2 Direct Slave OCP Channel Results .. 61
 5.4.6.3 Completion Results .. 61
 5.5 Uber Example FPGA Design.. 62
 5.5.1 Board Support ... 62
 5.5.2 Source Location .. 62
 5.5.2.1 VHDL Source Files for Simulation.. 62
 5.5.2.2 VHDL Source Files for Synthesis ... 62
 5.5.2.3 XST Files.. 62
 5.5.2.4 Implementation Constraint Files... 62
 5.5.3 Design Synthesis and Bitstream Build .. 62
 5.5.3.1 Date/Time Package Generation ... 64
 5.5.4 Design Description .. 65
 5.5.4.1 Clock Generation Block.. 69
 5.5.4.1.1 Internal Clock Generation (MMCM)... 69

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

 5.5.4.1.2 Internal Reset Generation (MMCM) .. 69
 5.5.4.1.3 MPTL Interface Clock Generation ... 69
 5.5.4.1.4 Input Clock Buffering ... 70
 5.5.4.1.5 Input Clock Extraction (MGT Sourced).. 70
 5.5.4.1.6 Output Clock Generation... 70
 5.5.4.2 Target MPTL Interface.. 73
 5.5.4.3 OCP Direct Slave Block.. 73
 5.5.4.3.1 OCP Cross-Clock Domain Block ... 75
 5.5.4.3.2 Direct Slave Address Space Splitter Block.. 75
 5.5.4.3.3 Simple Test Register Block.. 76
 5.5.4.3.3.1 Description ... 76
 5.5.4.3.3.2 Register Description ... 76
 5.5.4.3.4 Clock Frequency Measurement Register Block .. 76
 5.5.4.3.4.1 Description ... 76
 5.5.4.3.4.2 Register Description ... 77
 5.5.4.3.5 Interrupt Test Register Block ... 78
 5.5.4.3.5.1 Description ... 78
 5.5.4.3.5.2 Register Description ... 79
 5.5.4.3.6 Informational Register Block ... 80
 5.5.4.3.6.1 Description ... 80
 5.5.4.3.6.2 Register Description ... 80
 5.5.4.3.7 GPIO Test Register Block.. 82
 5.5.4.3.7.1 Description ... 82
 5.5.4.3.7.2 Register Description ... 82
 5.5.4.3.8 On-Board Memory Register Block... 89
 5.5.4.3.8.1 Description ... 89
 5.5.4.3.8.2 Register Description ... 89
 5.5.4.3.9 Direct Slave BRAM Access Block ... 93
 5.5.4.3.9.1 Description ... 93
 5.5.4.3.9.2 Direct Slave BRAM Access Window .. 93
 5.5.4.3.10 Direct Slave On-Board Memory Access Block .. 93
 5.5.4.3.10.1 Description ... 93
 5.5.4.3.10.2 Direct Slave On-Board Memory Access Window ... 93
 5.5.4.4 OCP Switching Block.. 94
 5.5.4.4.1 Direct Slave On-Board Memory OCP Address Space Splitter Block .. 96
 5.5.4.4.2 BRAM OCP Multiplexor Block ... 96
 5.5.4.4.3 DMA Channel 0 OCP Address Space Splitter Block ... 96
 5.5.4.4.4 On-Board Memory Bank OCP Multiplexors... 97
 5.5.4.5 BRAM Block ... 97
 5.5.4.6 On-Board Memory Interface Block ... 99
 5.5.4.7 On-Board Memory Application Block..101
 5.5.4.8 ChipScope™ Connection Block (optional) ...101
 5.5.4.9 Design Package ...101
 5.5.5 Testbench Description...103
 5.5.5.1 Clock Generation..107

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

 5.5.5.2 Bridge MPTL Interface ...107
 5.5.5.3 OCP Channel Probes...107
 5.5.5.4 Stimulus Generation and Verification ...107
 5.5.5.4.1 Non-OCP Functions ..108
 5.5.5.4.1.1 Clock Output Test ...108
 5.5.5.4.1.2 MPTL GPIO Bus Test ...108
 5.5.5.4.1.3 DMA Abort Bus Test ...108
 5.5.5.4.2 Direct Slave OCP Channel ..108
 5.5.5.4.2.1 Simple Test...109
 5.5.5.4.2.2 Clock Frequency Measurement Test..109
 5.5.5.4.2.3 XRM GPIO Test..110
 5.5.5.4.2.4 Pn4/Pn6 GPIO Test ..110
 5.5.5.4.2.5 Interrupt Test ..111
 5.5.5.4.2.6 Informational Register Test...111
 5.5.5.4.2.7 BRAM Test ...112
 5.5.5.4.2.8 On-Board Memory Test ..113
 5.5.5.4.3 DMA OCP Channels..114
 5.5.5.4.3.1 DMA OCP Command and Write Data Process ..114
 5.5.5.4.3.2 DMA OCP Response Process..115
 5.5.5.5 Memory Device Simulation Models ..115
 5.5.5.6 Testbench Package..116
 5.5.6 Design Simulation ...117
 5.5.6.1 Date/Time Package Generation ...117
 5.5.6.2 Initialisation Results..117
 5.5.6.2.1 DDR3 SDRAM MIG Core MMCM Status ..117
 5.5.6.2.2 Testbench Status...118
 5.5.6.2.3 DDR3 SDRAM Initialisation...118
 5.5.6.3 Non-OCP Functions Results ..118
 5.5.6.3.1 Clock Output Test Results ...118
 5.5.6.3.2 MPTL GPIO Bus Test Results ...118
 5.5.6.3.3 DMA Abort Bus Test Results ...119
 5.5.6.4 Direct Slave OCP Channel Results ..119
 5.5.6.4.1 Simple Test Results...119
 5.5.6.4.2 Clock Frequency Measurement Test Results..119
 5.5.6.4.3 XRM GPIO Test Results..119
 5.5.6.4.4 Pn4/Pn6 GPIO Test Results ..120
 5.5.6.4.5 Interrupt Test Results ..120
 5.5.6.4.6 Informational Register Test Results...121
 5.5.6.4.7 BRAM Test Results ...121
 5.5.6.4.8 On-Board Memory Test Results ..121
 5.5.6.5 DMA OCP Channels Results..123
 5.5.6.6 Completion Results ..123
6 Common HDL Components ...124
 6.1 ADB3 OCP Library ...125
 6.1.1 ADB3 OCP Profile Definition Package (adb3_ocp) ...125

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

 6.1.2 ADB3 OCP Library Component Declaration Package (adb3_ocp_comp)...126
 6.1.3 ADB3 OCP Library Components ...127
 6.1.3.1 adb3_ocp_cross_clk_dom..127
 6.1.3.1.1 Introduction..127
 6.1.3.1.2 Interface ..127
 6.1.3.1.3 Description ..127
 6.1.3.1.3.1 Command Path ..129
 6.1.3.1.3.2 Write Data Path ..129
 6.1.3.1.3.3 Read Response Path ...129
 6.1.3.2 adb3_ocp_mux_b...130
 6.1.3.2.1 Introduction..130
 6.1.3.2.2 Interface ..130
 6.1.3.2.3 Description ..130
 6.1.3.3 adb3_ocp_mux_nb...131
 6.1.3.3.1 Introduction..131
 6.1.3.3.2 Interface ..131
 6.1.3.3.3 Description ..131
 6.1.3.3.3.1 Command Path ..133
 6.1.3.3.3.2 Write Data Path ..133
 6.1.3.3.3.3 Read Response Path ...134
 6.1.3.4 adb3_ocp_ocp2ddr3_nb...136
 6.1.3.4.1 Introduction..136
 6.1.3.4.2 Interface ..136
 6.1.3.4.3 Description ..137
 6.1.3.4.3.1 Command Path ..139
 6.1.3.4.3.2 Write Data Path ..139
 6.1.3.4.3.3 Read Response Path ...140
 6.1.3.5 adb3_ocp_retime_nb..141
 6.1.3.5.1 Introduction..141
 6.1.3.5.2 Interface ..141
 6.1.3.5.3 Description ..141
 6.1.3.6 adb3_ocp_simple_bus_if..142
 6.1.3.6.1 Introduction..142
 6.1.3.6.2 Interface ..142
 6.1.3.6.3 Description ..142
 6.1.3.7 adb3_ocp_split_b ...143
 6.1.3.7.1 Introduction..143
 6.1.3.7.2 Interface ..143
 6.1.3.7.3 Description ..143
 6.1.3.8 adb3_ocp_split_nb ...144
 6.1.3.8.1 Introduction..144
 6.1.3.8.2 Interface ..144
 6.1.3.8.3 Description ..144
 6.1.3.8.3.1 Command Path ..146
 6.1.3.8.3.2 Write Data Path ..146

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

 6.1.3.8.3.3 Read Response Path ...147
 6.2 MPTL Library..149
 6.2.1 MPTL Library Components ...149
 6.2.1.1 Bridge MPTL Interface Wrapper (mptl_if_bridge_wrap)...149
 6.2.1.1.1 Introduction..149
 6.2.1.1.2 Interface ..149
 6.2.1.1.3 Description ..150
 6.2.1.1.3.1 OCP-Only Simulation ...150
 6.2.1.1.3.2 Full MPTL Simulation ...150
 6.2.1.2 Target MPTL Interface Wrapper (mptl_if_target_wrap) ..151
 6.2.1.2.1 Introduction..151
 6.2.1.2.2 Interface ..151
 6.2.1.2.3 Description ..152
 6.2.1.2.3.1 OCP-Only Simulation ...152
 6.2.1.2.3.2 Full MPTL Simulation ...152
 6.2.1.2.3.3 Synthesis..152
 6.2.2 MPTL Interface Components ..153
 6.2.2.1 Bridge MPTL Interface For OCP-Only Simulation (mptl_if_bridge_sim) ..153
 6.2.2.1.1 Introduction..153
 6.2.2.1.2 Interface ..153
 6.2.2.1.3 Description ..153
 6.2.2.2 Target MPTL Interface For OCP-Only Simulation (mptl_if_target_sim) ...155
 6.2.2.2.1 Introduction..155
 6.2.2.2.2 Interface ..155
 6.2.2.2.3 Description ..155
 6.2.2.3 Bridge MPTL Interface For Full MPTL Simulation ..157
 6.2.2.3.1 Introduction..157
 6.2.2.3.2 Interface ..157
 6.2.2.3.3 Description ..157
 6.2.2.4 Target MPTL Interface For Full MPTL Simulation ..158
 6.2.2.4.1 Introduction..158
 6.2.2.4.2 Interface ..158
 6.2.2.4.3 Description ..158
 6.2.2.5 Target MPTL Interface For Synthesis...159
 6.2.2.5.1 Introduction..159
 6.2.2.5.2 Interface ..159
 6.2.2.5.3 Description ..159
 6.3 ADB3 Target Library ...160
 6.3.1 ADB3 Target Types Definition Package (adb3_target_types_pkg)..160
 6.3.2 ADB3 Target Include Package (adb3_target_inc_pkg) ...161
 6.3.3 ADB3 Target Package (adb3_target_pkg)...163
 6.3.4 ADB3 Target Testbench Package (adb3_target_tb_pkg) ..164
 6.4 ADB3 Probe Library..165
 6.4.1 ADB3 Probe Library Package (adb3_probe_pkg) ...165
 6.4.2 ADB3 Probe Library Components ...165

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

 6.4.2.1 adb3_ocp_transaction_probe...165
 6.4.2.1.1 Introduction..165
 6.4.2.1.2 Interface ..165
 6.4.2.1.3 Description ..166
 6.5 Memory Interface Library ...167
 6.5.1 Memory Interface Library Package (mem_if_pkg) ..167
 6.5.2 Memory Interface Library Components ...168
 6.5.2.1 DDR3 SDRAM Memory Interface Bank (ddr3_if_bank_v3_6) ...168
 6.5.2.1.1 Introduction..168
 6.5.2.1.2 Interface ..168
 6.5.2.1.3 Description ..169
 6.5.2.1.3.1 OCP To DDR3 SDRAM MIG Core (adb3_ocp_ocp2ddr3_nb) ...169
 6.5.2.1.3.2 Xilinx™ DDR3 SDRAM MIG Core..169
 6.5.2.1.4 Xilinx™ DDR3 SDRAM MIG Core Generation ..169
 6.6 Memory Application Library ..171
 6.6.1 Memory Application Library Components..171
 6.6.1.1 Memory Test Block (blk_mem_test) ...171
 6.6.1.1.1 Introduction..171
 6.6.1.1.2 Interface ..171
 6.6.1.1.3 Description ..172
 6.7 Memory Model Library..173
 6.7.1 DDR3 SDRAM Memory Model..173
 6.7.1.1 DDR3 SDRAM Model Package (ddr3_sdram_pkg) ...173
 6.7.1.2 DDR3 SDRAM Model Components ...174
 6.7.1.2.1 DDR3 SDRAM Model (ddr3_sdram) ...174
 6.7.1.2.1.1 Introduction...174
 6.7.1.2.1.2 Interface ...174
 6.7.1.2.1.3 Description ...175
 6.7.1.2.1.3.1 Message Reporting ...175
 6.7.1.2.1.3.2 Part Selection ..175
 6.7.1.2.1.3.3 Initialisation Delay Selection..175
 6.7.1.2.1.3.4 Memory Contents Initalisation ...175
 6.7.1.2.1.3.5 Memory Contents Logging ..176
 6.8 Clock Frequency Measurement Library ...177
 6.8.1 Clock Frequency Measurement Library Components ...177
 6.8.1.1 Clock Frequency Measurement Block (blk_clock_freq) ...177
 6.8.1.1.1 Introduction..177
 6.8.1.1.2 Interface ..177
 6.8.1.1.3 Description ..178
 6.8.1.1.3.1 Clock Frequency Measurement Block Constraints ..178
 6.9 ChipScope™ Library ..179
 6.9.1 Xilinx™ ChipScope™ Interface (ICON/ILA) ..179
 6.9.2 ChipScope™ Library Components..180
 6.9.2.1 ChipScope™ Block (blk_ChipScope™) ...180
 6.9.2.1.1 Introduction..180

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

 6.9.2.1.2 Interface ..180
 6.9.2.1.3 Description ..181
 6.9.2.2 ChipScope™ Simulation Block (blk_chipscope_sim)...181
 6.9.2.2.1 Introduction..181
 6.9.2.2.2 Interface ..181
 6.9.2.2.3 Description ..182
7 FPGA design guide ...183
 7.1 ADB3 OCP Protocol Reference..183
 7.1.1 Introduction..183
 7.1.2 ADB3 OCP Signal Definitions..183
 7.1.3 Example OCP Transfer Waveform Diagrams..184
8 The ADMXRC3 API ..190

Tables
Table 1: Example applications for Windows and Linux ... 11
Table 2: Naming conventions for VxWorks examples binary .. 34
Table 3: Example HDL FPGA Designs .. 49
Table 4: Simple Design Makefile Targets .. 52
Table 5: Simple Design Direct Slave Address Map ... 57
Table 6: Simple Design, DATA Register (0x000000) ... 57
Table 7: Uber Design Makefile Targets.. 63
Table 8: Uber Design Direct Slave Address Map .. 75
Table 9: Simple Test Register Block Address Map.. 76
Table 10: Simple Test Register Block, DATA Register (0x000000) ... 76
Table 11: Clock Frequency Measurement Register Block Address Map... 77
Table 12: Clock Frequency Measurement Register Block, SEL Register (0x000040) .. 77
Table 13: Clock Frequency Measurement Register Block, CTRL/STAT Register (0x000044) 78
Table 14: Clock Frequency Measurement Register Block, FREQ Register (0x000048) 78
Table 15: Interrupt Test Register Block Address Map ... 79
Table 16: Interrupt Test Register Block, SET Register (0x0000C0) .. 79
Table 17: Interrupt Test Register Block, CLEAR/STAT Register (0x0000C4).. 79
Table 18: Interrupt Test Register Block, MASK Register (0x0000C8) ... 79
Table 19: Interrupt Test Register Block, ARM Register (0x0000CC)... 79
Table 20: Interrupt Test Register Block, COUNT Register (0x0000D0)... 79
Table 21: Informational Register Block Address Map.. 80
Table 22: Informational Register Block, DATE Register (0x000140) ... 80
Table 23: Informational Register Block, TIME Register (0x000144).. 81
Table 24: Informational Register Block, SPLIT Register (0x000148) .. 81
Table 25: Informational Register Block, BRAM_BASE Register (0x00014C).. 81
Table 26: Informational Register Block, BRAM_MASK Register (0x000150).. 81
Table 27: Informational Register Block, MEM_BASE Register (0x000154) .. 81
Table 28: Informational Register Block, MEM_MASK Register (0x000158).. 81
Table 29: Informational Register Block, MEM_BANKS Register (0x00015C) ... 81
Table 30: GPIO Test Register Block Address Map.. 82

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

Table 31: GPIO Test Register Block, XRM_GPIO_DA_DATAO Register (0x000200)... 83
Table 32: GPIO Test Register Block, XRM_GPIO_DA_DATAI Register (0x000204) .. 83
Table 33: GPIO Test Register Block, XRM_GPIO_DA_TRI Register (0x000208)... 83
Table 34: GPIO Test Register Block, XRM_GPIO_DB_DATAO Register (0x00020C) .. 83
Table 35: GPIO Test Register Block, XRM_GPIO_DB_DATAI Register (0x000210) .. 83
Table 36: GPIO Test Register Block, XRM_GPIO_DB_TRI Register (0x000214)... 84
Table 37: GPIO Test Register Block, XRM_GPIO_DC_DATAO Register (0x000218) .. 84
Table 38: GPIO Test Register Block, XRM_GPIO_DC_DATAI Register (0x00021C).. 84
Table 39: GPIO Test Register Block, XRM_GPIO_DC_TRI Register (0x000220) .. 84
Table 40: GPIO Test Register Block, XRM_GPIO_DD_DATAO Register (0x000224) .. 84
Table 41: GPIO Test Register Block, XRM_GPIO_DD_DATAI Register (0x000228) .. 84
Table 42: GPIO Test Register Block, XRM_GPIO_DD_TRI Register (0x00022C).. 84
Table 43: GPIO Test Register Block, XRM_GPIO_CS_DATAO Register (0x000230)... 85
Table 44: GPIO Test Register Block, XRM_GPIO_CS_DATAI Register (0x000234) .. 85
Table 45: GPIO Test Register Block, XRM_GPIO_CS_TRI Register (0x000238)... 86
Table 46: GPIO Test Register Block, PN4_GPIO_P_DATAO Register (0x00023C).. 87
Table 47: GPIO Test Register Block, PN4_GPIO_P_DATAI Register (0x000240) .. 87
Table 48: GPIO Test Register Block, PN4_GPIO_P_TRI Register (0x000244) .. 87
Table 49: GPIO Test Register Block, PN4_GPIO_N_DATAO Register (0x000248) .. 87
Table 50: GPIO Test Register Block, PN4_GPIO_N_DATAI Register (0x00024C) ... 87
Table 51: GPIO Test Register Block, PN4_GPIO_N_TRI Register (0x000250) .. 87
Table 52: GPIO Test Register Block, PN6_GPIO_MS_DATAO Register (0x000254) ... 88
Table 53: GPIO Test Register Block, PN6_GPIO_MS_DATAI Register (0x000258) ... 88
Table 54: GPIO Test Register Block, PN6_GPIO_MS_TRI Register (0x00025C)... 88
Table 55: GPIO Test Register Block, PN6_GPIO_LS_DATAO Register (0x000260) .. 88
Table 56: GPIO Test Register Block, PN6_GPIO_LS_DATAI Register (0x000264) .. 89
Table 57: GPIO Test Register Block, PN6_GPIO_LS_TRI Register (0x000268) .. 89
Table 58: On-Board Memory Register Block Address Map ... 89
Table 59: On-Board Memory Register Block, DS_BANK Register (0x000300)... 90
Table 60: On-Board Memory Register Block, DS_PAGE Register (0x000304)... 90
Table 61: On-Board Memory Register Block, BANKx_CTRL Register (0x000320, 0x000340, ...)........................ 90
Table 62: On-Board Memory Register Block, BANKx_OFFSET Register (0x000324, 0x000344, ...) 91
Table 63: On-Board Memory Register Block, BANKx_LENGTH Register (0x000328, 0x000348, ...) 91
Table 64: On-Board Memory Register Block, BANKx_INFO Register (0x00032C, 0x00034C, ...) 91
Table 65: On-Board Memory Register Block, BANKx_STAT Register (0x000330, 0x000350, ...) 91
Table 66: On-Board Memory Register Block, BANKx_APP_ERR_ADDR Register (0x000334, 0x000354, ...) 92
Table 67: On-Board Memory Register Block, BANKx_MUX_ERR Register (0x000338, 0x000358, ...) 92
Table 68: On-Board Memory Register Block, BANKx_DDR3_ERR Register (0x00033C, 0x00035C, ...) 92
Table 69: Direct Slave BRAM Access Window.. 93
Table 70: Direct Slave On-Board Memory Access Window... 93
Table 71: Uber Design Direct Slave On-Board Memory Address Map.. 96
Table 72: Uber Design DMA Channel 0 Address Map .. 96
Table 73: ADB3 OCP Library adb3_ocp_cross_clk_dom Component Interface ...127
Table 74: ADB3 OCP Library adb3_ocp_mux_b Component Interface...130
Table 75: ADB3 OCP Library adb3_ocp_mux_nb Component Interface...131

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

Table 76: ADB3 OCP Library adb3_ocp_ocp2ddr3_nb Component Interface ..136
Table 77: ADB3 OCP Library adb3_ocp_retime_nb Component Interface ...141
Table 78: ADB3 OCP Library adb3_ocp_simple_bus_if Component Interface ...142
Table 79: ADB3 OCP Library adb3_ocp_split_b Component Interface ...143
Table 80: ADB3 OCP Library adb3_ocp_split_nb Component Interface ...144
Table 81: MPTL Library mptl_if_bridge_wrap Component Interface ...149
Table 82: MPTL Library mptl_if_target_wrap Component Interface ..151
Table 83: Available variants of the adb3_target_inc_pkg package ...161
Table 84: ADB3 Probe Library adb3_ocp_transaction_probe Component Interface...165
Table 85: Memory Interface Library ddr3_if_bank_v3_6 Component Interface...168
Table 86: Memory Application Library blk_mem_test Component Interface ...171
Table 87: Memory Model Library ddr3_sdram Component Interface ..174
Table 88: Clock Frequency Measurement Library blk_clock_freq Component Interface177
Table 89: ChipScope™ Library blk_ChipScope™ Component Interface ..180
Table 90: ADB3 OCP Master Signals ..183
Table 91: ADB3 OCP Slave Signals ..184

Figures
Figure 1: Structure of the ADM-XRC Gen 3 SDK ... 3
Figure 2: SYSMON user interface - device information .. 25
Figure 3: SYSMON user interface - sensor readings.. 26
Figure 4: SYSMON user interface - sensor display .. 26
Figure 5: Simple Design Block Diagram ... 55
Figure 6: Simple Design Testbench Block Diagram.. 58
Figure 7: Uber Design Top Level Block Diagram.. 66
Figure 8: Uber Design Top Level Hierarchy .. 67
Figure 9: Uber Design Package Dependencies.. 68
Figure 10: Uber Design Internal Clock Generation (MMCM) .. 71
Figure 11: Uber Design Clock Buffering/Extraction .. 72
Figure 12: Uber Direct Slave Block Diagram .. 74
Figure 13: Uber OCP Switching Block .. 95
Figure 14: Uber BRAM Block Diagram ... 98
Figure 15: Uber Memory Interface Block Diagram..100
Figure 16: Uber Design Testbench And Top Level Block Diagram ...104
Figure 17: Uber Design Testbench Hierarchy ...106
Figure 18: ADB3 OCP Library adb3_ocp_cross_clk_dom Component Interface ...127
Figure 19: ADB3 OCP Library adb3_ocp_cross_clk_dom Block Diagram..128
Figure 20: ADB3 OCP Library adb3_ocp_mux_b Component Interface...130
Figure 21: ADB3 OCP Library adb3_ocp_mux_nb Component Interface...131
Figure 22: ADB3 OCP Library adb3_ocp_mux_nb Block Diagram...132
Figure 23: ADB3 OCP Library adb3_ocp_ocp2ddr3_nb Component Interface ..136
Figure 24: ADB3 OCP Library adb3_ocp_ocp2ddr3_nb Block Diagram...138
Figure 25: ADB3 OCP Library adb3_ocp_retime_nb Component Interface ...141
Figure 26: ADB3 OCP Library adb3_ocp_simple_bus_if Component Interface ...142

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

Figure 27: ADB3 OCP Library adb3_ocp_split_b Component Interface ...143
Figure 28: ADB3 OCP Library adb3_ocp_split_nb Component Interface ...144
Figure 29: ADB3 OCP Library adb3_ocp_split_nb Block Diagram ...145
Figure 30: MPTL Library mptl_if_bridge_wrap Component Interface ...149
Figure 31: MPTL Library mptl_if_target_wrap Component Interface ..151
Figure 32: ADB3 Probe Library adb3_ocp_transaction_probe Component Interface...165
Figure 33: Memory Interface Library ddr3_if_bank_v3_6 Component Interface...168
Figure 34: Memory Application Library blk_mem_test Component Interface ...171
Figure 35: Memory Model Library ddr3_sdram Component Interface ..174
Figure 36: Clock Frequency Measurement Library blk_clock_freq Component Interface177
Figure 37: ChipScope™ Library blk_ChipScope™ Component Interface ..180
Figure 38: Single Beat Write ...185
Figure 39: Single Beat Read...186
Figure 40: Burst Write ...187
Figure 41: Burst Read...188
Figure 42: OCP Slave Controlled Transfers..189

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

Page Intentionally left blank.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

1 Introduction
This document describes the ADM-XRC Gen 3 Software Development Kit (SDK), which provides resources for
developers working with the third generation of reconfigurable computing hardware from Alpha Data. The key features
of the SDK are:

Example applications that use the ADMXRC3 API.•
Example HDL FPGA designs that target third generation Alpha Data hardware such as the ADM-XRC-6TL.
These designs are built from a number of HDL components that are also provided in this SDK.

•

Utilities for working with third generation Alpha Data hardware.•

1.1 Document conventions
In order to avoid unnecessary repetition of information pertaining to both Windows and Linux environments, the
directory separator character for pathnames in this document is the forward slash (/). A pathname or directory name in
a Windows environment has forward slashes replaced by backslashes. For example, the path hdl/vhdl is also hdl/vhdl
in a Linux environment, but is hdl\vhdl in a Windows environment.

A pathname ending in a forward slash implies that the pathname refers to a directory as opposed to a file. For example,
apps/src/ is the name of a directory.

Unless stated otherwise or preceded by a forward slash or a Windows drive letter, pathnames and filenames in this
document are relative to where this SDK has been installed on the development or host machine. For example:

C:/Program Files/Alpha Data/ is an absolute pathname that translates to the directory C:\Program
Files\Alpha Data\ in a Windows environment.

•

apps/src/itest/itest.c is a pathname relative to the root of the SDK that translates to the file /opt/
admxrcg3sdk-1.3.0/apps/src/itest/itest.c in a Linux environment, assuming that the root of the SDK is /opt/
admxrcg3sdk-1.3.0/.

•

It is assumed that the environment variable ADMXRC3_SDK is set to point to the root of the SDK. This environment
variable is referenced in Linux shell commands as $ADMXRC3_SDK and as %ADMXRC3_SDK% in Windows shell
commands. The installer for the Windows SDK normally sets this environment variable automatically so that it is
present in the user's environment, but in Linux a user must manually add this variable to his or her environment.

1.2 Supported operating systems
This SDK supports the following operating systems:

Windows NT-based operating systems beginning with Windows 2000. Both 32-bit and 64-bit editions are
supported.

•

Linux distributions running a 2.6.x kernel.•

Beginning with release 1.2.0, this SDK includes header files and example code for VxWorks. For VxWorks
development, it is assumed that a host / development machine is available that runs one of the above operating
systems.

1.3 Supported Alpha Data hardware
The example applications and HDL code in this SDK support the following models in Alpha Data's range of
reconfigurable computing hardware:

ADM-XRC-6TL•
ADM-XRC-6T1•

Page 1Introduction
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

1.4 Installation
1.4.1 Installation in Windows

The default installation location depends upon whether the operating system is a 32-bit or 64-bit edition of Windows:

%ProgramFiles%/ADMXRCG3SDK-1.3.0/ in 32-bit editions of Windows.•
%ProgramFiles(x86)%/ADMXRCG3SDK-1.3.0/ in 64-bit editions of Windows.•

During installation, the installer automatically creates an environment variable ADMXRC3_SDK that points to where the
SDK is installed. Certain example applications use this environment variable to locate FPGA bitstream (.BIT) files. A
user need not manually set this variable, but if using several versions of the SDK, it can be set manually according to
which version of the SDK is in use.

1.4.2 Installation in Linux
This SDK is supplied as a tarball (.tar.gz extension) that should normally be extracted to the /opt/ directory, which
places the root of the SDK at/opt/admxrcg3sdk-1.3.0/.

After installation, an environment variable ADMXRC3_SDK must be defined that points to where the SDK is installed.
Certain example applications use this environment variable to locate FPGA bitstream (.BIT) files. A convenient way to
permanently define this variable for a given user is to add the following to the user's .bash_profile:

ADMXRC3_SDK=/opt/admxrcg3sdk-1.3.0
export ADMXRC3_SDK

1.4.3 Installation in VxWorks
Since VxWorks normally requires a Windows, Linux or UNIX host, this SDK must be installed on a Windows or Linux
host as described in Section 1.4.1 or Section 1.4.2.

1.5 Structure of this SDK

Page 2 Introduction
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

apps

linux

win32

src

common
platform

linux
win32

dump

dump

dump

bin
win32

x64
x86

bit

doc

hdl

include

lib
win32

x64
x86

simple

vhdl
common

examples

simple

uber

adb3_ocp

flash

flash

flash

uber

adb3_probe

admxrc6tl
admxrc6t1

common

admxrc6tl
admxrc6t1

common

(root)

Example applications and utilities

Makefiles and project files for Linux

Project files for Windows

Source code for example applications

Linux-specific portability source code
Windows-specific portability source code

Prebuilt binaries for x64 editions of Windows
Prebuilt binaries for x86 editions of Windows

Prebuilt bitstreams for example FPGA designs

Source code shared by multiple example applications

Documentation for SDK; contains this document

Example VHDL FPGA designs

Prebuilt binaries for example applications

Common VHDL libraries; shared by multiple example FPGA designs

API header files

API library files

DLL import libraries for x64 editions of Windows
DLL import libraries for x86 editions of Windows

SIMPLE example FPGA design

UBER example FPGA design

Model-independent code for SIMPLE example FPGA design

ADM-XRC-6TL-specific code for SIMPLE example FPGA design
ADM-XRC-6T1-specific code for SIMPLE example FPGA design

Model-independent code for UBER example FPGA design

ADM-XRC-6TL-specific code for UBER example FPGA design
ADM-XRC-6T1-specific code for UBER example FPGA design

The root of the SDK, e.g. /opt/admxrcg3sdk-1.1.0

Source code for DUMP utility
Source code for FLASH utility

Figure 1: Structure of the ADM-XRC Gen 3 SDK

Page 3Introduction
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

2 Getting started
2.1 Getting started in Windows 2000 / XP / Server 2003

Note: This section also applies to Windows Vista and later when User Account Control (UAC) is disabled.

This section describes how to run a basic confidence test on Alpha Data hardware, in Windows 2000 / XP / Server
2003. This confidence test assumes the following:

All features of the SDK were installed, as described in Section 1.4.1.
Any model from Alpha Data's reconfigurable computing range that is supported by this SDK is installed in the
machine. For a list of hardware supported, refer to Section 1.3.

2.

The ADB3 driver is installed. The ADB3 driver for Windows is available from Alpha Data's public FTP site: ftp://
ftp.alpha-data.com/pub/admxrcg3/windows.

3.

You are logged on as a user that is a member of the Administrators group.4.

First, start an SDK command prompt by clicking on the 'SDK Command Prompt' shortcut from the 'ADM-XRC Gen 3
SDK' group on the Windows start menu. This command prompt automatically starts with the working directory set to the
bin/win32/x86/ folder of the SDK and also ensures that the ADMXRC3_SDK environment variable is set correctly.

Next, run the info utility. The output looks like this:

API information
API library version 1.1.2
Driver version 1.1.2

Card information
Model ADM-XRC-6TL
Serial number 106(0x6A)
Number of programmable clocks 1
Number of DMA channels 2
Number of target FPGAs 1
Number of local bus windows 4
Number of sensors 10
Number of I/O module sites 1
Number of local bus windows 4
Number of memory banks 4
Bank presence bitmap 0xF

Target FPGA information
FPGA 0 xc6vlx365tff1759-2C stepping ES

Memory bank information
Bank 0 SDRAM, DDR3, 65536(0x10000) kiW x 32+0 bits
 303.0 MHz - 533.3 MHz
 Connectivity mask 0x1
Bank 1 SDRAM, DDR3, 65536(0x10000) kiW x 32+0 bits
 303.0 MHz - 533.3 MHz
 Connectivity mask 0x1
Bank 2 SDRAM, DDR3, 65536(0x10000) kiW x 32+0 bits
 303.0 MHz - 533.3 MHz
 Connectivity mask 0x1
Bank 3 SDRAM, DDR3, 65536(0x10000) kiW x 32+0 bits
 303.0 MHz - 533.3 MHz
 Connectivity mask 0x1

Local bus window information
Window 0 (Target FPGA 0 pre Bus base 0xF5800000 size 0x400000
 Local base 0x0 size 0x400000
 Virtual size 0x400000
Window 1 (Target FPGA 0 non Bus base 0xFB400000 size 0x400000
 Local base 0x0 size 0x400000
 Virtual size 0x400000
Window 2 (ADM-XRC-6TL-speci Bus base 0xFB2FF000 size 0x1000
 Local base 0x0 size 0x0

Page 4 Getting started
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

 Virtual size 0x1000
Window 3 (ADB3 bridge regis Bus base 0xFB2FE000 size 0x1000
 Local base 0x0 size 0x0
 Virtual size 0x1000

Now run the simple example application. It prompts the user to enter hexadecimal values (up to 32 bits), and displays
these value nibble-reversed. The nibble-reversal is performed by the target FPGA. Pressing CTRL-Z exits this example.
The output looks like this:

=========================
Enter values for I/O
(CTRL-D / CTRL-Z to exit)
=========================
1234abcd
OUT = 0x1234abcd, IN = 0xdcba4321
deadbeef
OUT = 0xdeadbeef, IN = 0xfeebdaed
cafeface
OUT = 0xcafeface, IN = 0xecafefac

If everything works as described above, then the hardware, driver and SDK are all correctly installed and substantially
working. Possible next steps are:

Experiment with modifying and rebuilding the simple example application in order to become familiar with the
basics of the ADMXRC3 API.

•

Experiment with modifying and rebuilding the simple example FPGA design in order to become familiar with
creating FPGA designs for Alpha Data hardware.

•

2.2 Getting started in Windows Vista and later

Note: If User Account Control is disabled, please refer instead to the instructions in Section 2.1.

This section describes how to run a basic confidence test on Alpha Data hardware, in versions of Windows that have
User Account Control (UAC) such as Windows Vista and later. This confidence test assumes the following:

All features of the SDK were installed, as described in Section 1.4.1.
Any model from Alpha Data's reconfigurable computing range that is supported by this SDK is installed in the
machine. For a list of hardware supported, refer to section Section 1.3.

2.

The ADB3 driver is installed. The ADB3 driver for Windows is available from Alpha Data's public FTP site: ftp://
ftp.alpha-data.com/pub/admxrcg3/windows.

3.

You are logged on as a user that is a member of the Administrators group.4.

Because of User Account Control (UAC), it is not possible to make use of the 'SDK Command Prompt' shortcut that is
installed along with the SDK. Instead, start a command prompt by right-clicking on the 'Command Prompt' shortcut in
the 'Accessories' program group and selecting 'Run as administrator'. This will typically incur a UAC confirmation
prompt. Then, enter the following command (do not omit the double quotes):

"%ADMXRC3_SDK%\env.bat"

This executes the env.bat batch file, which sets up the environment and changes to the folder containing the prebuilt
example application binaries. In order for this to work correctly, the ADMXRC3_SDK system environment variable must
be correctly defined. The installer normally sets this variable, but if not, it must be set using the Windows Control Panel
as a system environment variable to point to where the SDK is installed.

Next, run the info utility. The output looks like this:

API information
API library version 1.1.2
Driver version 1.1.2

Page 5Getting started
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

Card information
Model ADM-XRC-6TL
Serial number 106(0x6A)
Number of programmable clocks 1
Number of DMA channels 2
Number of target FPGAs 1
Number of local bus windows 4
Number of sensors 10
Number of I/O module sites 1
Number of local bus windows 4
Number of memory banks 4
Bank presence bitmap 0xF

Target FPGA information
FPGA 0 xc6vlx365tff1759-2C stepping ES

Memory bank information
Bank 0 SDRAM, DDR3, 65536(0x10000) kiW x 32+0 bits
 303.0 MHz - 533.3 MHz
 Connectivity mask 0x1
Bank 1 SDRAM, DDR3, 65536(0x10000) kiW x 32+0 bits
 303.0 MHz - 533.3 MHz
 Connectivity mask 0x1
Bank 2 SDRAM, DDR3, 65536(0x10000) kiW x 32+0 bits
 303.0 MHz - 533.3 MHz
 Connectivity mask 0x1
Bank 3 SDRAM, DDR3, 65536(0x10000) kiW x 32+0 bits
 303.0 MHz - 533.3 MHz
 Connectivity mask 0x1

Local bus window information
Window 0 (Target FPGA 0 pre Bus base 0xF5800000 size 0x400000
 Local base 0x0 size 0x400000
 Virtual size 0x400000
Window 1 (Target FPGA 0 non Bus base 0xFB400000 size 0x400000
 Local base 0x0 size 0x400000
 Virtual size 0x400000
Window 2 (ADM-XRC-6TL-speci Bus base 0xFB2FF000 size 0x1000
 Local base 0x0 size 0x0
 Virtual size 0x1000
Window 3 (ADB3 bridge regis Bus base 0xFB2FE000 size 0x1000
 Local base 0x0 size 0x0
 Virtual size 0x1000

Now run the simple example application. It prompts the user to enter hexadecimal values (up to 32 bits), and displays
these value nibble-reversed. The nibble-reversal is performed by the target FPGA. Pressing CTRL-Z exits this example.
The output looks like this:

=========================
Enter values for I/O
(CTRL-D / CTRL-Z to exit)
=========================
1234abcd
OUT = 0x1234abcd, IN = 0xdcba4321
deadbeef
OUT = 0xdeadbeef, IN = 0xfeebdaed
cafeface
OUT = 0xcafeface, IN = 0xecafefac

If everything works as described above, then the hardware, driver and SDK are all correctly installed and substantially
working. Possible next steps are:

Make a copy of the SDK in your own filespace, and use the copy to experiment with modifying and rebuilding
the simple example application in order to become familiar with the basics of the ADMXRC3 API.

•

Make a copy of the SDK in your own filespace, and use the copy to experiment with modifying and rebuilding
the simple example FPGA design in order to become familiar with creating FPGA designs for Alpha Data
hardware.

•

Page 6 Getting started
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

2.3 Getting started in Linux
This section describes how to run a basic confidence test on Alpha Data hardware, in Linux. This confidence test
assumes the following:

This SDK is installed as described in Section 1.4, and the ADMXRC3_SDK environment variable is set to
point to where the SDK has been installed.

1.

Any model from Alpha Data's reconfigurable computing range that is supported by this SDK is installed in the
machine. For a list of hardware supported, refer to Section 1.3.

2.

The ADB3 driver is installed. The ADB3 driver for Linux is available from Alpha Data's public FTP site: ftp://
ftp.alpha-data.com/pub/admxrcg3/linux.

3.

Note: In the following text, it is assumed that it is possible to log in as 'root'. If a Linux distribution is used
where users are expected to use 'sudo' rather than logging in as root, then in all of the following
instructions, commands should be prefixed with 'sudo' so that the effect is the same as 'su' to 'root'.

Log in as root (if possible), change directory to where the SDK has been installed, and then run the configure script:

$ cd $ADMXRC3_SDK
$./configure

This detects certain features of the operating system environment so that the example applications can be built. Next,
change directory to the Linux application directory:

$ cd apps/linux
$ make clean all

Having built the example applications, run the info utility:

$ info/info

The output looks like this:

API information
API library version 1.1.2
Driver version 1.1.2

Card information
Model ADM-XRC-6TL
Serial number 106(0x6A)
Number of programmable clocks 1
Number of DMA channels 2
Number of target FPGAs 1
Number of local bus windows 4
Number of sensors 10
Number of I/O module sites 1
Number of local bus windows 4
Number of memory banks 4
Bank presence bitmap 0xF

Target FPGA information
FPGA 0 xc6vlx365tff1759-2C stepping ES

Memory bank information
Bank 0 SDRAM, DDR3, 65536(0x10000) kiW x 32+0 bits
 303.0 MHz - 533.3 MHz
 Connectivity mask 0x1
Bank 1 SDRAM, DDR3, 65536(0x10000) kiW x 32+0 bits
 303.0 MHz - 533.3 MHz
 Connectivity mask 0x1
Bank 2 SDRAM, DDR3, 65536(0x10000) kiW x 32+0 bits
 303.0 MHz - 533.3 MHz
 Connectivity mask 0x1
Bank 3 SDRAM, DDR3, 65536(0x10000) kiW x 32+0 bits

Page 7Getting started
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

 303.0 MHz - 533.3 MHz
 Connectivity mask 0x1

Local bus window information
Window 0 (Target FPGA 0 pre Bus base 0xF5800000 size 0x400000
 Local base 0x0 size 0x400000
 Virtual size 0x400000
Window 1 (Target FPGA 0 non Bus base 0xFB400000 size 0x400000
 Local base 0x0 size 0x400000
 Virtual size 0x400000
Window 2 (ADM-XRC-6TL-speci Bus base 0xFB2FF000 size 0x1000
 Local base 0x0 size 0x0
 Virtual size 0x1000
Window 3 (ADB3 bridge regis Bus base 0xFB2FE000 size 0x1000
 Local base 0x0 size 0x0
 Virtual size 0x1000

Now run the simple example application:

$ simple/simple

It prompts the user to enter hexadecimal values (up to 32 bits), and displays these value nibble-reversed. The
nibble-reversal is performed by the target FPGA. Pressing CTRL-D exits this example. The output looks like this:

=========================
Enter values for I/O
(CTRL-D / CTRL-Z to exit)
=========================
1234abcd
OUT = 0x1234abcd, IN = 0xdcba4321
deadbeef
OUT = 0xdeadbeef, IN = 0xfeebdaed
cafeface
OUT = 0xcafeface, IN = 0xecafefac

If everything works as described above, then the hardware, driver and SDK are all correctly installed and substantially
working. Possible next steps are:

Experiment with modifying and rebuilding the simple example application in order to become familiar with the
basics of the ADMXRC3 API.

•

Experiment with modifying and rebuilding the simple example FPGA design in order to become familiar with
creating FPGA designs for Alpha Data hardware.

•

2.4 Getting started in VxWorks

Note: Before attempting to follow the instructions in this section, we recommend first building the ADB3
Driver for VxWorks and following the instructions for getting started, verifying that the driver appears to
start correctly on the target system. For details, please refer to the release notes for the ADB3 Driver for
VxWorks.

The example VxWorks applications in this SDK are supplied only in source code form because it is impractical to
provide binaries for the near-infinite number of possible VxWorks configurations. As a result, a downloadable module
binary for the examples must be built using one of the supported Wind River VxWorks toolchains (DIAB or GNU).

A second consideration is how the target system will access the downloadable module that you build. In the following
discussion, the term staging area refers to the some location on the development machine's filesystem(s) that the
target system can access via FTP, NFS, or whatever other method the target system uses for host file access. There
are two main approaches:

Page 8 Getting started
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

Copy the entire SDK into the staging area, and build the examples there into a downloadable module. The
target system can then access the downloadable module from the staging area. This approach is convenient
as no manual copying of files is required after building, but may be problematic on some host operating
systems if file permissions in the staging area do not permit the execution of build commands in the staging
area.

•

Copy the SDK to an arbitrary location (e.g. your personal folder on the development machine) and build the
examples there into a downloadable module. The downloadble module must then be copied to the staging
area, and the target system can then access it. This approach is compatible with restrictive file permissions in
the staging area, but the downside is the inconvenience of manually copying of the downloadable module into
the staging area each time it is built.

•

Whichever approach is chosen, the next step is build the example applications as described in Section 4.1 or Section
4.2. This yields a file admxrc3Apps.out containing all of the examples that can be downloaded to the target system.
The location of this file is as shown in Table 2.

To download the file onto the target system, use the target system's console or a VxWorks host shell on the target
system in order to enter the following command:

-> ld <host:/path/to/admxrc3Apps.out

where host:/path/to/ is replaced by the host and folder that contains admxrc3Apps.out.

Now the INFO utility can be run as a basic confidence test that the applications were built correctly. Enter the following
command:

-> admxrc3Info

The output looks like this:

API information
API library version 1.1.2
Driver version 1.1.2

Card information
Model ADM-XRC-6TL
Serial number 106(0x6A)
Number of programmable clocks 1
Number of DMA channels 2
Number of target FPGAs 1
Number of local bus windows 4
Number of sensors 10
Number of I/O module sites 1
Number of local bus windows 4
Number of memory banks 4
Bank presence bitmap 0xF

Target FPGA information
FPGA 0 xc6vlx365tff1759-2C step ES

Memory bank information
Bank 0 SDRAM, DDR3, 65536 kiWord x 32+0 bits
 303.0 MHz - 533.3 MHz
 Connectivity mask 0x1
Bank 1 SDRAM, DDR3, 65536 kiWord x 32+0 bits
 303.0 MHz - 533.3 MHz
 Connectivity mask 0x1
Bank 2 SDRAM, DDR3, 65536 kiWord x 32+0 bits
 303.0 MHz - 533.3 MHz
 Connectivity mask 0x1
Bank 3 SDRAM, DDR3, 65536 kiWord x 32+0 bits
 303.0 MHz - 533.3 MHz
 Connectivity mask 0x1

Local bus window information
Window 0 (Target FPGA 0 pre Bus base 0xF1400000 size 0x400000
 Local base 0x0 size 0x400000

Page 9Getting started
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

 Virtual size 0x400000
Window 1 (Target FPGA 0 non Bus base 0xF0400000 size 0x400000
 Local base 0x0 size 0x400000
 Virtual size 0x400000
Window 2 (ADM-XRC-6TL-speci Bus base 0xF0800000 size 0x1000
 Local base 0x0 size 0x0
 Virtual size 0x1000
Window 3 (ADB3 bridge regis Bus base 0xF0801000 size 0x1000
 Local base 0x0 size 0x0
 Virtual size 0x1000

Now run the simple example:

-> admxrc3Simple

It prompts the user to enter hexadecimal values (up to 32 bits), and displays these value nibble-reversed. The
nibble-reversal is performed by the target FPGA. Pressing CTRL-D exits this example. The output looks like this:

=========================
Enter values for I/O
(CTRL-D / CTRL-Z to exit)
=========================
1234abcd
OUT = 0x1234abcd, IN = 0xdcba4321
deadbeef
OUT = 0xdeadbeef, IN = 0xfeebdaed
cafeface
OUT = 0xcafeface, IN = 0xecafefac

If everything works as described above, then the hardware, driver and SDK are all correctly installed and substantially
working. Possible next steps are:

Experiment with modifying and rebuilding the simple example application in order to become familiar with the
basics of the ADMXRC3 API.

•

Experiment with modifying and rebuilding the simple example FPGA design in order to become familiar with
creating FPGA designs for Alpha Data hardware.

•

Page 10 Getting started
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

3 Example applications for Windows and Linux
The example applications and utilities are described in the following subsections.

DUMP Utility for reading and writing memory access windows
FLASH Utility for programming FPGA bitstream (.BIT) files in user-programmable Flash memory
INFO Utility for displaying information about a reconfigurable computing device

ITEST Example demonstrating how to consume target FPGA interrupt notifications in an
application

MEMTESTH Example demonstrating host-driven memory test
MONITOR Utility that displays sensor readings
SIMPLE Example demonstrating how to read and write registers in a target FPGA

SYSMON Utility that combines the functionality of the INFO and MONITOR utilities in a graphical
user interface

VPD Utility that allows the Vital Product Data of a reconfigurable computing device to be read
or written

Table 1: Example applications for Windows and Linux

Source code for the example Windows and Linux applications is provided in the apps/src directory, relative to the root
of the SDK.

3.1 Building the example applications in Windows
A Microsoft Visual Studio 2008 solution apps/win32/apps.sln is provided, containing all of the Windows examples. To
build all of the examples, use the "Batch Build" command in Visual Studio.

3.2 Building the example applications in Linux
To build all of the example applications, excluding the SYSMON utility, at once, enter the following shell commands in a
BASH shell:

$ cd $ADMXRC3_SDK/apps/linux
$./configure
$ make clean all

When compiling on 64-bit bi-architecture machine such as x86_64, two executables are built for each example
application: a 64-bit native version and a 32-bit version. For example, the native version of INFO is named info, and the
32-bit version is info32. For machines that are not bi-architecture, only the native version is built. The configure script
determines whether or not to build bi-architecture versions of the example applications.

The SYSMON utility must be built separately, because it depends upon certain packages being present in the system.
For further details, refer to Section 3.10.1.

Page 11Example applications for Windows and Linux
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

3.3 DUMP utility

Command line
dump [option ...] rb window offset [n]
dump [option ...] rw window offset [n]
dump [option ...] rd window offset [n]
dump [option ...] rq window offset [n]
dump [option ...] wb window offset [n] [data ...]
dump [option ...] ww window offset [n] [data ...]
dump [option ...] wd window offset [n] [data ...]
dump [option ...] wq window offset [n] [data ...]

where

window is the memory window to read or write.
offset is the offset into the window at which to begin reading or writing.
n is the number of bytes to read or write.
data is an optional data item, valid for write commands.

and the following options are accepted:

-index <index> Specifies the index of the card to open (default 0).
-sn <#> Specifies the serial number of the card to open.
-be Causes the data to be read or written to be treated as little-endian (default).
+be Causes the data to be read or written to be treated as big-endian.

-hex Causes write values to be interpreted as decimal unless prefixed by '0x'
(default).

+hex Causes write values to be interpreted as hexadecimal always.

Summary
Displays data read from a memory access window, or writes data to a memory access window.

Description
The DUMP utility operates in of two modes:

Reading data from a memory access window and displaying it; for this mode, use the rb, rw, rd or rq
commands.

•

Writing data to a memory access window; for this mode, use the wb, ww, wd or wq commands.•

In either mode, the option +be may be passed, before the command. This causes the DUMP utility to adopt big-endian
byte ordering convention as opposed to little-endian (the default).

Read mode
The read command implies the radix for displaying data:

rb
Byte (8-bit) reads; data is displayed as bytes.

•

Page 12 Example applications for Windows and Linux
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

rw
Word (16-bit) reads; data is displayed as words.

•

rd
Doubleword (32-bit) reads; data is displayed as doublewords.

•

rq
Quadword (64-bit) reads; data is displayed as quadwords.

•

After the read command, a window index and an offset must be supplied, in that order. This specifies the memory
access window to be read, and where in that window to begin reading data. An optional length parameter, in bytes, can
also be supplied. If omitted, the length is equal to the radix implied by the read command. If present, the length
parameter specifies how many bytes to read and display. The length should be an integer multiple of the width; if not,
the length is rounded down.

For example, the command

dump rw 0 0x80000 0x60

produces output of the form

Window 0 offset 0x80000 mapped @ 0x00150000
Dump of memory at 0x00150000 + 96(0x60) bytes:
 00 02 04 06 08 0a 0c 0e
0x00150000: 000e 000f 000c b456 c567 d678 5a5a eeeeV.g.x.ZZ..
0x00150010: eeee eeee ee22 eeee eeee eeee eeee eeee"...........
0x00150020: eeee eeee eeee eeee eeee eeee eeee eeee
0x00150030: afa7 f596 445d 8232 163f 8414 1d1e 171b]D2.?.......
0x00150040: c294 fa5c cd61 d464 d39d 1eed 69f8 f13d ..\.a.d......i=.
0x00150050: 5858 f489 20ff b77b ef92 a43a 6a27 e620 XX... {...:.'j .

Write mode
The write command implies the radix (that is, word size) to be used when performing writes:

wb
Data is written as bytes (8-bit).

•

ww
Data is written as words (16-bit).

•

wd
Data is written as doublewords (32-bit).

•

wq
Data is written as quadwords (64-bit).

•

After the write command, a window index and an offset must be supplied, in that order. This specifies the memory
access window to be read, and where in that window to begin writing data. An optional length parameter, in bytes, can
also be supplied. If omitted, the length is equal to the radix implied by the write command. If present, the length
parameter specifies how many bytes to write. The length should be an integer multiple of the width; if not, the length is
rounded down.

The program obtains the values to be written in two ways: from any additional parameters on the command line after
the length parameter, and then from the standard input stream (stdin). This works as follows:

Any remaining command line arguments, if present after the length parameter, are interpreted as data values
to be written. These values are assumed to be of the radix implied by the command, and are written to the
memory window, incrementing the offset with each word written. If there are enough values passed on the
command line to satisfy the byte count, the program terminates.

1.

Page 13Example applications for Windows and Linux
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

If there are insufficient data values passed on the command line, the program waits for values to be entered on
the standard input stream. Values entered this way are also assumed to be of the radix implied by the
command, and are written to the memory window, incrementing the offset with each word written. When the
entire byte count that was specified in the length parameter has been satisfied or end-of-file is encountered,
the program terminates.

2.

An example session looks like this:

C>dump rd 0 0x80000 0x40
Window 0 offset 0x80000 mapped @ 0x002D0000
Dump of memory at 0x002D0000 + 80(0x40) bytes:
 00 04 08 0c
0x002d0000: 00000000 00000000 00000000 00000000
0x002d0010: 00000000 00000000 00000000 00000000
0x002d0020: 00000000 00000000 00000000 00000000
0x002d0030: 00000000 00000000 00000000 00000000

C>dump wd 0 0x80004 0x8 0xdeadbeef
Window 0 offset 0x80004 mapped @ 0x00110004
0x80004: 0xDEADBEEF
0x80008: 0xcafeface

C>dump rd 0 0x80000 0x40
Window 0 offset 0x80000 mapped @ 0x00110000
Dump of memory at 0x00110000 + 64(0x40) bytes:
 00 04 08 0c
0x00110000: 00000000 deadbeef cafeface 00000000
0x00110010: 00000000 00000000 00000000 00000000
0x00110020: 00000000 00000000 00000000 00000000
0x00110030: 00000000 00000000 00000000 00000000

Remarks
When entering data for write commands, values are expressed in decimal by default. To express data as hexadecimal,
prefix it with '0x' or use the +hex option.

The DUMP utility uses store instructions for writes that are equal to the width specified on the command line, if
possible. This is not possible if the CPU architecture in use does not have store instructions of the required width or if
the offset specified on the command line would result in unaligned stores. In the case of an unaligned offset, writes are
performed as a sequence of byte stores, because unaligned stores are illegal on some CPU architectures.

Page 14 Example applications for Windows and Linux
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

3.4 FLASH utility

WARNING: Incorrect use of the +failsafe option may impact long-term reliability of a reconfigurable
computing card. Please refer to Section 3.4.1 below for an explanation of the +failsafe option and how it
may be used.

Command line
flash [option ...] info
flash [option ...] chkblank target-index
flash [option ...] erase target-index
flash [option ...] program target-index filename
flash [option ...] verify target-index filename

where

target-index is the index of a target FPGA.
filename is the name of a .BIT file (program or verify commands only).

and the following options are accepted:

-index <index> Specifies the index of the card to open (default 0).
-sn <#> Specifies the serial number of the card to open.
-failsafe Causes the default image to be erased / programmed / verified (default).

+failsafe Causes the failsafe image to be erased / programmed / verified; see
Failsafe bitstream mechanism below.

-force Causes a mismatch between the target FPGA device and the .BIT file device
to result in an error (default).

+force Causes a mismatch between the target FPGA device and the .BIT file device
to be ignored.

Summary
Blank-checks, erases, programs or verifies a target FPGA bitstream image in the user-programmable Flash memory of
a device.

Description
The FLASH utility has five commands:

chkblank <target-index>
Verifies that an image is blank, i.e. all bytes are 0xFF.

•

erase <target-index>
Erases an image so that it becomes blank, i.e. all bytes are 0xFF.

•

info
Displays information about the Flash memory.

•

program <target-index> <filename>
Programs the specified bitstream (.BIT) file into an image so that the target FPGA is configured from the image
at power-on or reset.

•

Page 15Example applications for Windows and Linux
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

verify <target-index> <filename>
Verifies that an image contains the specified bitstream (.BIT) file.

•

chkblank command
The chkblank command verifies that a target FPGA image is blank, i.e. all bytes are 0xFF, but does not modify the
Flash memory bank. Following the command, an index of a target FPGA in the device must be specified. The index of
the target FPGA is normally zero but may be nonzero in models with multiple target FPGAs.

For example, to blank-check the default image for target FPGA 0:

flash program 0 /path/to/my_design.bit

erase command
The erase command erases a target FPGA image so that it becomes blank, i.e. all bytes are 0xFF. It automatically
performs a blank-check after erasing. Following the command, an index of a target FPGA in the device must be
specified. The index of the target FPGA is normally zero but may be nonzero in models with multiple target FPGAs.

For example, to erase the default image for target FPGA 0:

flash erase 0

info command
The info command displays information about the Flash memory and then exits, without doing anything else.

program command
The program command programs a target FPGA image with the data in the specified bitstream (.BIT) file. Following
the command, an index of a target FPGA in the device and the name of a bitstream (.BIT) filename must be specified.
The index of the target FPGA is normally zero but may be nonzero in models with multiple target FPGAs.

If the device in the .BIT file does not match the target FPGA, this command fails with an error and does not program the
target FPGA image, unless the +force option is passed. Verification is automatically performed after programming.

For example, to program the default image for target FPGA 0 with a bitstream file called my_design.bit:

flash program 0 /path/to/my_design.bit

verify command
The verify command verifies that a target FPGA image contains the data in the specified bitstream (.BIT) file, but does
not modify the Flash memory bank. Following the command, an index of a target FPGA in the device and the name of a
bitstream (.BIT) filename must be specified. The index of the target FPGA is normally zero but may be nonzero in in
models with multiple target FPGAs.

If the device in the .BIT file does not match the target FPGA, this command fails with an error unless the +force option
is passed. If discrepancies between the target FPGA image and the data in the .BIT file are found, they are displayed
(up to a certain number of erroneous bytes), followed by a failure message.

For example, to verify that the default image for target FPGA 0 contains the data in a bitstream file called
my_design.bit:

flash verify 0 /path/to/my_design.bit

3.4.1 Failsafe bitstream mechanism
Due to errata in certain Xilinx™ FPGA families, the following Gen 3 models have a "failsafe bitstream" mechanism:

Page 16 Example applications for Windows and Linux
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

ADM-XRC-6TL•
ADM-XRC-6T1•

In the above models, each target FPGA has two images: a default image, and a failsafe image. Alpha Data
factory-programs a known-good "null bitstream" into the failsafe image. When power is applied to a card, the firmware
on the card first looks for a valid bitstream in the default image. If no bitstream is found, the firmware uses the null
bitstream in the failsafe image to configure the target FPGA. In this way, the firmware ensures that the target FPGA is
always configured with something when it is powered-on.

Because the purpose of the failsafe image is to protect the target FPGA from sub-micron effects that would otherwise
degrade the performance of the target FPGA over time, Alpha Data recommends that the failsafe image should never
be erased. If overwritten, a customer must ensure that the bitstream is valid, known-good and satisfies the
requirements for protecting the target FPGA from sub-micron effects.

Xilinx™ answer record 35055 elaborates on protecting Virtex-6 GTX transceivers from performance degradation over
time.

Page 17Example applications for Windows and Linux
AD-UG-0004 Alpha Data Parallel Systems Ltd.

http://www.xilinx.com/support/answers/35055.htm

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

3.5 INFO utility

Command line
info [option ...]

where the following options are accepted:

-flash Causes Flash bank information not to be shown (default).
+flash Causes Flash bank information to be shown.
-index <index> Specifies the index of the card to open (default 0).
-io Causes I/O module information not to be shown (default).
+io Causes I/O module information to be shown.
-sensor Causes sensor information not to be shown (default).
+sensor Causes sensor information to be shown.
-sn <#> Specifies the serial number of the card to open.

Summary
Displays information about a reconfigurable computing device.

Description
The INFO utility demonstrates the use of most of the informational functions in the ADMXRC3 API. It uses
ADMXRC3_OpenEx to open a device in passive mode, meaning that an unprivileged user can successfully run it. The
output consists of several sections, the first of which is obtained using ADMXRC3_GetVersionInfo:

API information
API library version 1.1.1
Driver version 1.1.1

The second section shows information obtained using ADMXRC3_GetCardInfoEx, and shows the information in the
ADMXRC3_CARD_INFOEX structure:

Card information
Model ADM-XRC-6TL
Serial number 101(0x65)
Number of programmable clocks 1
Number of DMA channels 1
Number of target FPGAs 1
Number of local bus windows 4
Number of sensors 10
Number of I/O module sites 1
Number of local bus windows 4
Number of memory banks 4
Bank presence bitmap 0xF

The third section uses the NumTargetFpga member of the ADMXRC3_CARD_INFOEX structure and
ADMXRC3_GetFpgaInfo to enumerate the target FPGAs in the device:

Target FPGA information
FPGA 0 xc6vlx240tff1759

The fourth section uses the NumMemoryBank member of the ADMXRC3_CARD_INFOEX structure and
ADMXRC3_GetBankInfo to enumerate the memory banks (non-Flash) in the device:

Memory bank information
Bank 0 SDRAM, DDR3, 65536 kiWord x 32+0 bits

Page 18 Example applications for Windows and Linux
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

 303.0 MHz - 533.3 MHz
 Connectivity mask 0x1
Bank 1 SDRAM, DDR3, 65536 kiWord x 32+0 bits
 303.0 MHz - 533.3 MHz
 Connectivity mask 0x1
Bank 2 SDRAM, DDR3, 65536 kiWord x 32+0 bits
 303.0 MHz - 533.3 MHz
 Connectivity mask 0x1
Bank 3 SDRAM, DDR3, 65536 kiWord x 32+0 bits
 303.0 MHz - 533.3 MHz
 Connectivity mask 0x1

The fourth section uses the NumWindow member of the ADMXRC3_CARD_INFOEX structure and
ADMXRC3_GetWindowInfo to enumerate the memory access windows in the device:

Local bus window information
Window 0 (Target FPGA 0 pre Bus base 0xF5400000 size 0x400000
 Local base 0x0 size 0x400000
 Virtual size 0x400000
Window 1 (Target FPGA 0 non Bus base 0xFAC00000 size 0x400000
 Local base 0x0 size 0x400000
 Virtual size 0x400000
Window 2 (ADM-XRC-6TL-speci Bus base 0xFAAFF000 size 0x1000
 Local base 0x0 size 0x0
 Virtual size 0x1000
Window 3 (ADB3 bridge regis Bus base 0xFAAFE000 size 0x1000
 Local base 0x0 size 0x0
 Virtual size 0x1000

The next section appears if the +flash option is passed on the command line. It uses the NumFlashBank member of
the ADMXRC3_CARD_INFOEX structure and ADMXRC3_GetFlashInfo to enumerate the Flash memory banks in the
device:

Flash bank information
Bank 0 Intel 28F256P30, 65536(0x10000) kiB
 Useable area 0x1200000-0x3FFFFFF

The next section appears if the +io option is passed on the command line. It uses the NumModuleSite member of the
ADMXRC3_CARD_INFOEX structure and ADMXRC3_GetModuleInfo to enumerate the I/O module sites in the device
and show what is fitted, if anything:

I/O module information
Module 0 Not present

The final section appears if the +sensor option is passed on the command line. It uses the NumSensor member of the
ADMXRC3_CARD_INFOEX structure and ADMXRC3_GetSensorInfo to enumerate the sensors in the device:

Sensor information
Sensor 0 1V supply rail
 V, double, exponent 0, error 0.0
Sensor 1 1.5V supply rail
 V, double, exponent 0, error 0.0
Sensor 2 1.8V supply rail
 V, double, exponent 0, error 0.0
Sensor 3 2.5V supply rail
 V, double, exponent 0, error 0.1
Sensor 4 3.3V supply rail
 V, double, exponent 0, error 0.1
Sensor 5 5V supply rail
 V, double, exponent 0, error 0.1
Sensor 6 XMC variable power rail
 V, double, exponent 0, error 0.2
Sensor 7 XRM I/O voltage
 V, double, exponent 0, error 0.1
Sensor 8 LM87 internal temperature
 deg. C, double, exponent 0, error 3.0
Sensor 9 Target FPGA temperature
 deg. C, double, exponent 0, error 4.0

Page 19Example applications for Windows and Linux
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

3.6 ITEST example

Command line
itest [option ...]

where the following options are accepted:

-index <index> Specifies the index of the card to open (default 0).
-sn <#> Specifies the serial number of the card to open.

Summary
Demonstrates consumption of FPGA interrupt notifications.

Description
This example demonstrates how to consume FPGA interrupt notifications in an application. It uses the interrupt test
register block of the Uber example FPGA design, described in Section 5.5.4.3.5 as a means of generating FPGA
interrupt notifications, and starts a thread whose purpose is to wait for and acknowledge interrupts from the target
FPGA.

When ITEST is started, the main thread first configures target FPGA 0 with the bitstream (.bit file) for the Uber example
FPGA design. The main thread then launches an interrupt thread that waits for notifications, in a loop. The main thread
then proceeds to wait for input, also in a loop. At this point, the user may press RETURN to generate an interrupt, or
enter 'q' to terminate the program. On termination, the program displays the number of FPGA interrupt notifications that
the interrupt thread consumed during execution.

A sample session looks like this:

Enter 'q' to quit, or anything else to generate an interrupt:
Interrupt thread started

Enter 'q' to quit, or anything else to generate an interrupt:

Enter 'q' to quit, or anything else to generate an interrupt:

Enter 'q' to quit, or anything else to generate an interrupt:

Enter 'q' to quit, or anything else to generate an interrupt:

Enter 'q' to quit, or anything else to generate an interrupt:
q
Generated 5 interrupts
Interrupt thread saw 5 interrupt(s)

The blank lines in the above session are simply empty lines where the user has pressed return. As can be seen, each
of the 5 interrupts generated results in the interrupt thread consuming a notification.

Remarks
As noted in the ADMXRC3 API Specification (see functions ADMXRC3_RegisterWin32Event,
ADMXRC3_RegisterVxwSem and ADMXRC3_StartNotificationWait), the ADMXRC3 API does not queue each type
of notification. Therefore, this example works as expected as long as the frequency of target FPGA interrupt
notifications is not too fast for the interrupt thread. Since the rate of generation of notifications in this example is limited
the user's keyboard input rate, the interrupt thread should be able to keep up (as long as the machine is not heavily
loaded with other processes). Nevertheless, it is important to note that in this simple example, there is no mechanism
for throttling the rate of notifications so that notifications cannot be lost. In a real application, the preferred design
approaches are:

Page 20 Example applications for Windows and Linux
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

Architect the FPGA design and host application so that they tolerate out-of-date notifications being missed. For
example, if the target FPGA generates an interrupt when data arrives via an I/O interface, it does not matter if
the host application does not succeed in consuming every target FPGA interrupt notification, because the
notifications before the latest one are considered out-of-date. When the host application handles a notification,
it reads a register in the target FPGA to determine the amount of new data rather than using the number of
notifications consumed. What matters is that regardless of how many times the target FPGA generates an
interrupt, the host application is guaranteed to eventually wake up and check for new data.

1.

Use a fully handshaked system, where the host application must positively acknowledge a target FPGA
interrupt before the target FPGA generates a new interrupt.

2.

In fact, the above two approaches are best used together, because minimizing the number of FPGA interrupts
minimizes unnecessary context switches in the operating system.

Page 21Example applications for Windows and Linux
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

3.7 MEMTESTH example

Command line
memtesth [option ...]

where the following options are accepted:

-banks <bitmask> Specifies which banks to test, as a bitmask (default all banks).

-dma
Use CPU-initiated data transfer instead of DMA data transfer during the test;
this is relatively slow and may increase runtime to minutes instead of
seconds.

+dma Use DMA transfers for transferring data between host memory and the target
FPGA (default).

-index <index> Specifies the index of the card to open (default 0).

-maxerror <#>
Specifies the maximum number of data verification errors to display; note
that further errors are still counted and a total is displayed at the end of the
test (default 20).

-repeat <#> Specifies the number of times to repeat the data test; 0 means "for ever"
(default 1).

-sn <#> Specifies the serial number of the card to open.

Summary
Performs a host-driven test of the memory banks on a reconfigurable computing card.

Description
The MEMTESTH example demonstrates the transfer of data between host memory and on-board memory devices (for
example, DDR3 SDRAM on the ADM-XRC-6T1), via the target FPGA. A number of test phases are performed, each
with a different data generation method, such as alternating an 55 / AA pattern, "own address" etc. In each phase, each
bank is tested by first filling the bank with data and then reading it back in order to verify that data transfers are
error-free.

This example makes use of the Uber example FPGA design. Assuming no errors are detected, running it produces
output of the form:

Bank 00: DDR-3 SDRAM, 262144 (0x40000) kiB
Bank 01: DDR-3 SDRAM, 262144 (0x40000) kiB
Bank 02: DDR-3 SDRAM, 262144 (0x40000) kiB
Bank 03: DDR-3 SDRAM, 262144 (0x40000) kiB
Bank test mask is 0x000f
Performing host-driven memory test...
Phase 1 - 0x55 pattern
Phase 2 - 0xAA pattern
Phase 3 - own address pattern
Phase 4 - pseudorandom data
Measuring throughput...
Throughput from host to memory is 439.7 MiB/s
Throughput from memory to host is 1009.6 MiB/s
PASSED

Page 22 Example applications for Windows and Linux
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

3.8 MONITOR utility

Command line
monitor [option ...]

where the following options are accepted:

-index <index> Specifies the index of the card to open (default 0).
-period <delay> Specifies the update period, in seconds.

-repeat <n> Specifies the number of updates to perform (default 0); a value of zero
means "repeat for ever".

-sn <#> Specifies the serial number of the card to open.

Summary
Displays readings from all sensors.

Description
The MONITOR utility repeatedly displays sensor readings in the command shell at the interval specified by the -period
option. The number of updates to perform before terminating can be specified on the command line using the -repeat
option, but by default, the program runs until interrupted with CTRL-C.

It makes use of the ADMXRC3_GetSensorInfo and ADMXRC3_ReadSensor functions from the ADMXRC3 API, and
because it opens a device in passive mode using ADMXRC3_OpenEx, it can run alongside other reconfigurable
computing applications without disturbing them.

The output looks like this:

Model: 257 (0x101) => ADM-XRC-6TL
Serial number: 101 (0x65)
Number of sensors: 10
 Sensor 0 1V supply rail: 0.987000 V
 Sensor 1 1.5V supply rail: 1.509186 V
 Sensor 2 1.8V supply rail: 1.803192 V
 Sensor 3 2.5V supply rail: 2.508896 V
 Sensor 4 3.3V supply rail: 3.268082 V
 Sensor 5 5V supply rail: 5.017990 V
 Sensor 6 XMC variable power rail: 12.000000 V
 Sensor 7 XRM I/O voltage: 2.495712 V
 Sensor 8 LM87 internal temperature: 49.000000 deg C
 Sensor 9 Target FPGA temperature: 57.000000 deg C

Page 23Example applications for Windows and Linux
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

3.9 SIMPLE example

Command line
simple [option ...]

where the following options are accepted:

-index <index> Specifies the index of the card to open (default 0).
-sn <#> Specifies the serial number of the card to open.
-uber Uses SIMPLE FPGA design (default).
+uber Uses UBER FPGA design.

Summary
Demonstrates access to target FPGA registers.

Description
The SIMPLE example application demonstrates accessing FPGA registers in its simplest form. It first configures target
FPGA 0 with the Simple example FPGA design, or the Uber example FPGA design if the +uber option is specified.
It then waits for input from the user. The user enters hexadecimal values (up to 32 bits in length), and for each value:

The program writes the value to a register in the target FPGA.1.
The target FPGA nibble-reverses the value and makes the reversed value available to be read via a register.
Here, nibble-reversing means that the FPGA swaps bits 31:28 with 3:0, 27:24 with 7:4 etc.

2.

The program reads back and displays the nibble-reversed value.3.

The program terminates on CTRL-D (Linux) or CTRL-Z (Windows). A sample session looks like this:

=========================
Enter values for I/O
(CTRL-D / CTRL-Z to exit)
=========================
1234abcd
OUT = 0x1234abcd, IN = 0xdcba4321
deadbeef
OUT = 0xdeadbeef, IN = 0xfeebdaed
cafeface
OUT = 0xcafeface, IN = 0xecafefac

Page 24 Example applications for Windows and Linux
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

3.10 SYSMON utility

Command line
sysmon

Summary
Utility presenting device information and hardware sensors in a graphical user interface.

Description
The SYSMON utility combines the information shown by the INFO and MONITOR utilities with a graphical user
interface. Its main function is graphical display of hardware sensor data, and it can be minimized to the notification area
of the desktop (the "System Tray" in Windows) in order to run unobtrusively.

It makes use of the ADMXRC3_GetSensorInfo and ADMXRC3_ReadSensor functions from the ADMXRC3 API, and
because it opens a device in passive mode using ADMXRC3_OpenEx, it can run alongside other reconfigurable
computing applications without disturbing them.

The user interface of the Linux version of SYSMON is as follows upon starting the utility:

Figure 2: SYSMON user interface - device information

The Windows version of SYSMON offers equivalent functionality, but uses a different GUI technology to that of the
Linux version. The second tab shows sensor readings in tabular form:

Page 25Example applications for Windows and Linux
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

Figure 3: SYSMON user interface - sensor readings

The third tab displays sensor readings in graphical form:

Figure 4: SYSMON user interface - sensor display

Initially, the 'scope is empty and displays no sensors. The above figure shows the effect of clicking the voltage button,
labelled 2 in the above figure. The user interface elements of the 'scope toolbar are as follows:

Page 26 Example applications for Windows and Linux
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

The temperature button sets the 'scope to display all temperature sensors in the device. Once some sensors
are displayed, updates begin.

1.

The voltage button sets the 'scope to display all voltage sensors in the device. Once some sensors are
displayed, updates begin.

2.

The current button sets the 'scope to display all current sensors in the device. Once some sensors are
displayed, updates begin.

3.

Mouse over the key to see which sensor corresponds to which colored trace.4.
The pause / resume button can be used to pause and resume update of the 'scope.5.
Item 6 is a button that adds another 'scope when clicked, to a maximum of 4, so that various types of sensor
can be viewed at the same time.

6.

Item 7 is a button that destroys a 'scope when clicked. If there is only one 'scope, the button is disabled.7.

3.10.1 Building SYSMON in Linux
The Linux version of the SYSMON utility uses GTKMM-2.4. This package is present in recent Linux distributions such
as Fedora Core 13, but may not be present in all Linux distributions. For this reason, SYSMON is built separately from
the other example applications. A non-exhaustive list of the packages that are required to build SYSMON is as follows:

gtkmm24-devel cairomm-devel
libsigc++20-devel glibmm24-devel
pangomm-devel pkgconfig

To run SYSMON, the corresponding runtime packages are required:

gtkmm24 cairomm
libsigc++20 glibmm24
pangomm

To build the "Release" configuration of SYSMON, enter the following commands in a BASH shell:

$ cd $ADMXRC3_SDK/apps/linux
$./configure
$ cd sysmon
$ make CONFIG=Release clean all

The executable's path is then apps/linux/sysmon/bin/Release/sysmon.

Page 27Example applications for Windows and Linux
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

3.11 VPD utility

Command line
vpd [option ...] fb address n [data]
vpd [option ...] fw address n [data]
vpd [option ...] fd address n [data]
vpd [option ...] fq address n [data]
vpd [option ...] fs address n [string]
vpd [option ...] rb address [n]
vpd [option ...] rw address [n]
vpd [option ...] rd address [n]
vpd [option ...] rq address [n]
vpd [option ...] wb address [n] [data ...]
vpd [option ...] ww address [n] [data ...]
vpd [option ...] wd address [n] [data ...]
vpd [option ...] wq address [n] [data ...]
vpd [option ...] ws address [n] [string ...]

where

address is the address in VPD memory at which to begin reading or writing.
n is the number of bytes to read or write.
data is a numeric data item, valid for fill and write commands.
string is a string data item, valid for fill and write commands.

and the following options are accepted:

-index <index> Specifies the index of the card to open (default 0).
-sn <#> Specifies the serial number of the card to open.

-hex Causes numeric data values to be interpreted as decimal unless prefixed by
'0x' (default).

+hex Causes numeric data values to be interpreted as hexadecimal always.

Summary
Displays data read from VPD memory, or writes data to VPD memory.

Description
The VPD utility operates in one of three modes:

Filling a region of VPD memory with a value or string; for this mode, use the fb, fw, fd, fq or fs commands.•
Reading data from VPD memory and displaying it; for this mode, use the rb, rw, rd or rq commands.•
Writing numeric or string data to a region of VPD memory; for this mode, use the wb, ww, wd, wq or ws
commands.

•

Fill mode
When filling a region of VPD memory with data, the fill command specifies whether the data is numeric or string data. In
the case of numeric data, the command also implies the radix (i.e. word size) of the data. The available fill commands
are:

Page 28 Example applications for Windows and Linux
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

fb
Fill value is a byte (8-bit).

•

fw
Fill value is a word (16-bit).

•

fd
Fill value is a doubleword (32-bit).

•

fq
Fill value is a quadword (64-bit).

•

fs
Fill value is an ASCII string (8-bit characters).

•

The next 3 arguments after the fill command must be:

address - the byte address within VPD memory at which to begin filling(a)
n - byte count; the number of bytes of VPD memory to fill(b)
data or string - the numeric or string value to place in the specified region of VPD memory(c)

If the command is fs and the string value is shorter than the byte count n, the string is repeated until the byte count is
satisfied. If the string is longer than the byte count n, only the first n characters are used. If a string contains spaces, it
must be quoted on the command line so that it is not interpreted by the shell as two or more separate arguments.

For the numeric fill commands fb, fw, fd and fq, the numeric value is repeated until the byte count is satisfied.

Read mode
The read command implies the radix (i.e. word size) used for displaying the data:

rb
Byte (8-bit) reads; data is displayed as bytes.

•

rw
Word (16-bit) reads; data is displayed as words.

•

rd
Doubleword (32-bit) reads; data is displayed as doublewords.

•

rq
Quadword (64-bit) reads; data is displayed as quadwords.

•

After the read command, an address must be supplied, which specifies where in VPD memory to begin reading. An
optional length parameter, in bytes, can also be supplied. If omitted, the length is equal to the radix implied by the read
command. If present, the length parameter specifies how many bytes to read and display. The length should be an
integer multiple of the width; if not, the length is rounded down.

Write mode
The write command specifies whether the data is numeric or string data. In the case of numeric data, the command
also implies the radix (i.e. word size) of the data. The available write commands are:

wb
Data is written as bytes (8-bit).

•

ww
Data is written as words (16-bit).

•

wd
Data is written as doublewords (32-bit).

•

Page 29Example applications for Windows and Linux
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

wq
Data is written as quadwords (64-bit).

•

ws
Data is supplied as one or more ASCII strings (8-bit characters).

•

After the write command, an address must be supplied, which specifies where in VPD memory to begin writing data. An
optional length parameter, in bytes, can also be supplied. If omitted, the length is equal to the radix implied by the write
command. If present, the length parameter specifies how many bytes to write. The length should be an integer multiple
of the width; if not, the length is rounded down.

The program obtains the values to be written in two ways: from any additional parameters on the command line after
the length parameter, and then from the standard input stream (stdin). This works as follows:

Any remaining command line arguments, if present after the length parameter, are interpreted as data values
to be written. Numeric values are assumed to be of the radix implied by the command parameter. As each
value it written to VPD memory, the address is incremented. If there are enough values passed on the
command line to satisfy the byte count, the program terminates.

1.

If there are insufficient data values passed on the command line, the program waits for values to be entered on
the standard input stream. Numeric values entered this way are also assumed to be of the radix implied by the
command. As each value it written to VPD memory, the address is incremented. When the entire byte count
that was specified in the length parameter has been satisfied or end-of-file is encountered, the program
terminates.

2.

Example session
The following session was captured under Linux using an ADM-XRC-6TL. The base address 0x100000 is used
because that is the VPD-space address of the user-definable area of VPD memory in the ADM-XRC-6TL.

$./vpd rb 0x100000 0x60
Dump of VPD at 0x100000 + 96(0x60) bytes:
 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
0x00100000: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
0x00100010: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
0x00100020: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
0x00100030: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
0x00100040: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
0x00100050: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
$./vpd fs 0x100008 20 'hello world!'
$./vpd wd 0x100020 12
0x00100020: 0xdeadbeef
0x00100024: 0xcafeface
0x00100028: 0x12345678
$./vpd fw 0x100031 10 0xa55a
$./vpd rb 0x100000 0x60
Dump of VPD at 0x100000 + 96(0x60) bytes:
 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
0x00100000: ff ff ff ff ff ff ff ff 68 65 6c 6c 6f 20 77 6fhello wo
0x00100010: 72 6c 64 21 68 65 6c 6c 6f 20 77 6f ff ff ff ff rld!hello wo....
0x00100020: ef be ad de ce fa fe ca 78 56 34 12 ff ff ff ffxV4.....
0x00100030: ff 5a a5 5a a5 5a a5 5a a5 5a a5 ff ff ff ff ff .Z.Z.Z.Z.Z......
0x00100040: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
0x00100050: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff

NOTE: the above sesssion assumes that VPD write protection has been disabled as described in the release notes for
the ADB3 Driver for Linux or Windows (as appropriate).

Remarks
When entering data for fill or write commands, values are expressed in decimal by default. To express data as
hexadecimal, prefix it with '0x' or use the +hex option.

Page 30 Example applications for Windows and Linux
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

In the current version of the VPD utility, data is always read from and written to VPD memory in little-endian byte order.

Page 31Example applications for Windows and Linux
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

4 Example applications for VxWorks
The example applications and utilities are described in the following subsections.

FLASH Utility for programming FPGA bitstream (.BIT) files in user-programmable Flash
memory

INFO Utility for displaying information about a reconfigurable computing device

ITEST Example demonstrating how to consume target FPGA interrupt notifications in an
application

MEMTESTH Example demonstrating host-driven memory test
MONITOR Utility that displays sensor readings
SIMPLE Example demonstrating how to read and write registers in a target FPGA

VPD Utility that allows the Vital Product Data of a reconfigurable computing device to
be read or written

Source code for the example VxWorks and Linux applications is provided in the apps/vxworks/src directory, relative to
the root of the SDK.

4.1 Building the example VxWorks applications in Windows
If using a Windows machine for VxWorks hosting and development, follow these steps:

Make a copy of the SDK according to the discussion in Section 2.4.1.
Start a VxWorks Development Shell via the shortcut on the Windows Start Menu. It is important to use this
shortcut in order to obtain the correct environment for performing command-line builds using the Wind River
VxWorks toolchains.

2.

Change directory to3.
$(ADMXRC3_SDK)/apps/vxworks

where $(ADMXRC3_SDK) is the root of the copy of the SDK that you have made.
Execute the following command, replacing <config> with the name of the configuration that is appropriate for
your target system:

4.

make CONFIG=<config> clean all

For example, the Pentium 4 configuration for VxWorks 6.7 is p4-6.7, and the PowerPC 604 configuration for
VxWorks 6.7 is ppc604-6.7. The configuration that you use depends on the target system. Alpha Data supplies
several predefined configurations, but it is possible that none of these are exactly what is required for your
target system. Refer to Section 4.3 for a discussion of configurations and how to create a new configuration.

The full path, by default, of the binary downloadable module is:
$(ADMXRC3_SDK)/apps/vxworks/<config>/debug/admxrc3Apps.out

However, the DEBUG and VSB options can modify this path as shown in Table 2.

4.2 Building the example VxWorks applications in Linux
TBA

4.3 MAKE options for the example VxWorks applications

Page 32 Example applications for VxWorks
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

The top-level Makefile for the VxWorks examples accepts a number of options which are passed on the MAKE
command line. These are:

CONFIG=<configuration>
Specifies a predefined configuration defined by the file rules.<configuration>, located in the same folder as
the Makefile. This option affects the directory where the binary is placed; see Table 2 below for details.

•

The rules file may contain any of the following options; for an example, see rules.p4-6.7.
CPU=<cpu>
Specifies the CPU being targetted; for example PPC604 or PENTIUM4 (default). Must be appropriate for the
TARGET option.

•

DEBUG=<false|true>
Specifies a release (false) or debug (true, default) build. This option affects the directory where the binary is
placed; see Table 2 below for details.

•

EXTRA_CCOPTS=<extra compiler options>
Specifies extra C compiler options.

•

EXTRA_LDOPTS=<extra linker options>
Specifies extra linker options.

•

TARGET=<target spec>
Defines the target specification, which must be appropriate for the CPU option. Examples of valid target
specifications for the DIAB toolchain are -tPPC604FH:vxworks55 (PowerPC 604 VxWorks 5.5) and
-tPENTIUM4LH:vxworks67 (default, Pentium 4 VxWorks 6.7). Examples of valid target specifications for the
GNU toolchain are -mcpu=604 (PowerPC 604) and -mtune=pentium4 -march=pentium4 (Pentium 4).

•

TOOLCHAIN=<diab|gnu>
Specifies the toolchain to be used to build the driver; legal values are diab (default) or gnu. If the gnu
toolchain is selected, the following additional options must be specified (which can be in the rules file specified
by the CONFIG option, for convenience):

•

CC=<compiler>
Specifies the C compiler; must be appropriate for the CPU and TARGET options. For example, ccppc
selects the PowerPC GNU compiler.

•

LD=<linker>
Specifies the linker; must be appropriate for the CPU and TARGET options. For example, ldppc selects
the PowerPC GNU linker.

•

NM=<object dumper>
Specifies object dumper; must be appropriate for the CPU and TARGET options. For example, nmppc
selects the PowerPC GNU object dump utility.

•

VSB=<variant>
Specifies VxWorks source build (VSB) variant libraries, if required. If omitted, the normal libraries are used.
The most common value for this option is smp. This option affects the directory where the binary is placed; see
Table 2 below for details.

•

When the CONFIG option is specified, the SDK's build system reads a rules file that contains values for the other
options. For example, the configuration ppc604-6.7 has a rules file rules.ppc604-6.7. This configuration targets a
PowerPC 604 CPU running VxWorks 6.7. and by way of illustration, the rules file contains:

CPU=PPC604
ifeq ($(TOOLCHAIN),diab)
EXTRA_CCOPTS=-Xcode-absolute-far -Xdata-absolute-far
TARGET=-tPPC604FH:vxworks67
else
ifeq ($(TOOLCHAIN),gnu)
EXTRA_CCOPTS=-mlongcall
CC=ccppc
LD=ldppc

Page 33Example applications for VxWorks
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

NM=nmppc
TARGET=-mcpu=604
else
$(error "TOOLCHAIN $(TOOLCHAIN) not recognized.")
endif
endif

If no CONFIG option is specified, the default configuration is default. The rules.default file contains:

CPU=PENTIUM4
ifeq ($(TOOLCHAIN),diab)
TARGET=-tPENTIUM4LH:vxworks67
else
ifeq ($(TOOLCHAIN),gnu)
CC=ccpentium
LD=ldpentium
NM=nmpentium
TARGET=-mtune=pentium4 -march=pentium4
else
$(error "TOOLCHAIN $(TOOLCHAIN) not recognized.")
endif
endif

It is possible that none of the predefined configurations supplied by Alpha Data is appropriate for your hardware
platform. If that is the case, a new configuration can be created by using one of the existing rules files as a template
and modifying it appropriately.

Several options affect the location where the resulting binary is placed, assuming that a build is successful. The naming
conventions are as follows:

DEBUG option VSB option Path to binary
false not defined $(ADMXRC3_SDK)/apps/vxworks/<config>/release/admxrc3Apps.out
true not defined $(ADMXRC3_SDK)/apps/vxworks/<config>/debug/admxrc3Apps.out

false defined $(ADMXRC3_SDK)/apps/vxworks/<config>/release_<VSB value>/
admxrc3Apps.out

true defined $(ADMXRC3_SDK)/apps/vxworks/<config>/debug_<VSB value>/
admxrc3Apps.out

Table 2: Naming conventions for VxWorks examples binary

For example, if DEBUG=true and VSB=smp, the path to the binary is

$(ADMXRC3_SDK)/apps/vxworks/<config>/debug_smp/admxrc3Apps.out

Page 34 Example applications for VxWorks
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

4.4 FLASH utility (VxWorks)

WARNING: Incorrect use of the FLAG_FAILSAFE value (0x100) for the flags parameter may impact
long-term reliability of a reconfigurable computing card. Please refer to Section 4.4.1 below for an
explanation of the failsafe bitstream mechanism and how it may be used.

Invocation in VxWorks shell
admxrc3Flash <index>, <flags>, "info"
admxrc3Flash <index>, <flags>, "chkblank", <target-index>
admxrc3Flash <index>, <flags>, "erase", <target-index>
admxrc3Flash <index>, <flags>, "program", <target-index>, <"filename">
admxrc3Flash <index>, <flags>, "verify", <target-index>, <"filename">

where

index
is normally the index of reconfigurable computing device (default 0).
However, this may be interpreted as a serial number instead of an index if
flags contains 0x1.

flags

is the bitwise OR of zero or more of the following flags (default 0):
FLAG_BYSERIAL (0x1) => index is interpreted as a serial number rather
than a device index
FLAG_FORCE (0x10) => a program or verify command proceeds even if the
FPGA type in the .BIT file device does not match the FPGA type in the
device
FLAG_FAILSAFE (0x100) => performs the operation on the the failsafe
image instead of the default image

target-index is the index of a target FPGA (default 0).

"filename" is a string containing the name of a .BIT file (program or verify commands
only).

The FLASH utility requires one of the following commands to be passed as a string argument in the third parameter:

chkblank
Verifies that an image is blank, i.e. all bytes are 0xFF.

•

erase
Erases an image so that it becomes blank, i.e. all bytes are 0xFF.

•

info
Displays information about the Flash memory.

•

program
Programs the specified bitstream (.BIT) file into an image so that the target FPGA is configured from the image
at power-on or reset.

•

verify
Verifies that an image contains the specified bitstream (.BIT) file.

•

chkblank command
The chkblank command verifies that a target FPGA image is blank, i.e. all bytes are 0xFF, but does not modify the
Flash memory bank. Following the command, an index of a target FPGA in the device must be specified. The index of
the target FPGA is normally zero but may be nonzero in models with multiple target FPGAs.

Page 35Example applications for VxWorks
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

For example, to blank-check the default image for target FPGA 0 in the reconfigurable computing device whose index is
0:

-> admxrc3Flash 0,0,"chkblank",0

erase command
The erase command erases a target FPGA image so that it becomes blank, i.e. all bytes are 0xFF. It automatically
performs a blank-check after erasing. Following the command, an index of a target FPGA in the device must be
specified. The index of the target FPGA is normally zero but may be nonzero in models with multiple target FPGAs.

For example, to erase the default image for target FPGA 0 in the reconfigurable computing device whose index is 0:

-> admxrc3Flash 0,0,"erase",0

info command
The info command displays information about the Flash memory and then exits, without doing anything else.

program command
The program command programs a target FPGA image with the data in the specified bitstream (.BIT) file. Following
the command, an index of a target FPGA in the device and the name of a bitstream (.BIT) filename must be specified.
The index of the target FPGA is normally zero but may be nonzero in models with multiple target FPGAs.

If the device in the .BIT file does not match the target FPGA, this command fails with an error and does not program the
target FPGA image, unless the +force option is passed. Verification is automatically performed after programming.

For example, to program the default image for target FPGA 0, in the reconfigurable computing device whose index is 0,
with a bitstream file called my_design.bit:

-> admxrc3Flash 0,0,"program",0,"host:/path/to/my_design.bit"

verify command
The verify command verifies that a target FPGA image contains the data in the specified bitstream (.BIT) file, but does
not modify the Flash memory bank. Following the command, an index of a target FPGA in the device and the name of a
bitstream (.BIT) filename must be specified. The index of the target FPGA is normally zero but may be nonzero in
models with multiple target FPGAs.

If the device in the .BIT file does not match the target FPGA, this command fails with an error unless the +force option
is passed. If discrepancies between the target FPGA image and the data in the .BIT file are found, they are displayed
(up to a certain number of erroneous bytes), followed by a failure message.

For example, to verify that the default image for target FPGA 0, in the reconfigurable computing device whose index is
0, contains the data in a bitstream file called my_design.bit:

-> admxrc3Flash 0,0,"verify",0,"host:/path/to/my_design.bit"

4.4.1 Failsafe bitstream mechanism (VxWorks)
Due to errata in certain Xilinx™ FPGA families, the following Gen 3 models have a "failsafe bitstream" mechanism:

ADM-XRC-6TL•
ADM-XRC-6T1•

Page 36 Example applications for VxWorks
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

In the above models, each target FPGA has two images: a default image, and a failsafe image. Alpha Data
factory-programs a known-good "null bitstream" into the failsafe image. When power is applied to a card, the firmware
on the card first looks for a valid bitstream in the default image. If no bitstream is found, the firmware uses the null
bitstream in the failsafe image to configure the target FPGA. In this way, the firmware ensures that the target FPGA is
always configured with something when it is powered-on.

Because the purpose of the failsafe image is to protect the target FPGA from sub-micron effects that would otherwise
degrade the performance of the target FPGA over time, Alpha Data recommends that the failsafe image should never
be erased. If overwritten, a customer must ensure that the bitstream is valid, known-good and satisfies the
requirements for protecting the target FPGA from sub-micron effects.

Xilinx™ answer record 35055 elaborates on protecting Virtex-6 GTX transceivers from performance degradation over
time.

Page 37Example applications for VxWorks
AD-UG-0004 Alpha Data Parallel Systems Ltd.

http://www.xilinx.com/support/answers/35055.htm

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

4.5 INFO utility (VxWorks)

Invocation in VxWorks shell
admxrc3Info <index>, <flags>

where

index specifies the index of the card to open (default 0).

flags

is the bitwise OR of zero or more of the following flags (default 0):
FLAG_SHOWFLASHINFO (0x10) => show Flash bank information.
FLAG_SHOWMODULEINFO (0x20) => show I/O module information.
FLAG_SHOWSENSORINFO (0x40) => show sensor information.

Summary
Displays information about a reconfigurable computing device.

Description
The INFO utility demonstrates the use of most of the informational functions in the ADMXRC3 API. It uses
ADMXRC3_OpenEx to open a device in passive mode, meaning that an unprivileged user can successfully run it. The
output consists of several sections, the first of which is obtained using ADMXRC3_GetVersionInfo:

API information
API library version 1.1.2
Driver version 1.1.2

The second section shows information obtained using ADMXRC3_GetCardInfoEx, and shows the information in the
ADMXRC3_CARD_INFOEX structure:

Card information
Model ADM-XRC-6TL
Serial number 106(0x6A)
Number of programmable clocks 1
Number of DMA channels 2
Number of target FPGAs 1
Number of local bus windows 4
Number of sensors 10
Number of I/O module sites 1
Number of local bus windows 4
Number of memory banks 4
Bank presence bitmap 0xF

The third section uses the NumTargetFpga member of the ADMXRC3_CARD_INFOEX structure and
ADMXRC3_GetFpgaInfo to enumerate the target FPGAs in the device:

Target FPGA information
FPGA 0 xc6vlx365tff1759-2C stepping ES

The fourth section uses the NumMemoryBank member of the ADMXRC3_CARD_INFOEX structure and
ADMXRC3_GetBankInfo to enumerate the memory banks (non-Flash) in the device:

Memory bank information
Bank 0 SDRAM, DDR3, 65536 kiWord x 32+0 bits
 303.0 MHz - 533.3 MHz
 Connectivity mask 0x1
Bank 1 SDRAM, DDR3, 65536 kiWord x 32+0 bits
 303.0 MHz - 533.3 MHz
 Connectivity mask 0x1
Bank 2 SDRAM, DDR3, 65536 kiWord x 32+0 bits
 303.0 MHz - 533.3 MHz

Page 38 Example applications for VxWorks
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

 Connectivity mask 0x1
Bank 3 SDRAM, DDR3, 65536 kiWord x 32+0 bits
 303.0 MHz - 533.3 MHz
 Connectivity mask 0x1

The fourth section uses the NumWindow member of the ADMXRC3_CARD_INFOEX structure and
ADMXRC3_GetWindowInfo to enumerate the memory access windows in the device:

Local bus window information
Window 0 (Target FPGA 0 pre Bus base 0xF5800000 size 0x400000
 Local base 0x0 size 0x400000
 Virtual size 0x400000
Window 1 (Target FPGA 0 non Bus base 0xFB400000 size 0x400000
 Local base 0x0 size 0x400000
 Virtual size 0x400000
Window 2 (ADM-XRC-6TL-speci Bus base 0xFB2FF000 size 0x1000
 Local base 0x0 size 0x0
 Virtual size 0x1000
Window 3 (ADB3 bridge regis Bus base 0xFB2FE000 size 0x1000
 Local base 0x0 size 0x0
 Virtual size 0x1000

The next section appears if the FLAG_SHOWFLASHINFO (0x10) flag is used. It uses the NumFlashBank member of
the ADMXRC3_CARD_INFOEX structure and ADMXRC3_GetFlashInfo to enumerate the Flash memory banks in the
device:

Flash bank information
Bank 0 Intel 28F256P30, 65536(0x10000) kiB
 Useable area 0x1200000-0x3FFFFFF

The next section appears if the FLAG_SHOWMODULEINFO (0x20) flag is used. It uses the NumModuleSite member
of the ADMXRC3_CARD_INFOEX structure and ADMXRC3_GetModuleInfo to enumerate the I/O module sites in the
device and show what is fitted, if anything:

I/O module information
Module 0 Not present

The final optional section appears if the FLAG_SHOWSENSORINFO (0x40) flag is used. It uses the NumSensor
member of the ADMXRC3_CARD_INFOEX structure and ADMXRC3_GetSensorInfo to enumerate the sensors in the
device:

Sensor information
Sensor 0 1V supply rail
 V, double, exponent 0, error 0.0
Sensor 1 1.5V supply rail
 V, double, exponent 0, error 0.0
Sensor 2 1.8V supply rail
 V, double, exponent 0, error 0.0
Sensor 3 2.5V supply rail
 V, double, exponent 0, error 0.1
Sensor 4 3.3V supply rail
 V, double, exponent 0, error 0.1
Sensor 5 5V supply rail
 V, double, exponent 0, error 0.1
Sensor 6 XMC variable power rail
 V, double, exponent 0, error 0.2
Sensor 7 XRM I/O voltage
 V, double, exponent 0, error 0.1
Sensor 8 LM87 internal temperature
 deg. C, double, exponent 0, error 3.0
Sensor 9 Target FPGA temperature
 deg. C, double, exponent 0, error 4.0

Page 39Example applications for VxWorks
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

4.6 ITEST example (VxWorks)

Invocation in VxWorks shell
admxrc3ITest <index>

where

index specifies the index of the card to open (default 0).

Summary
Demonstrates consumption of FPGA interrupt notifications.

Description
This example demonstrates how to consume FPGA interrupt notifications in an application. It uses the interrupt register
test block of the Uber example FPGA design, described in Section 5.5.4.3.5 as a means of generating FPGA interrupt
notifications, and starts a thread whose purpose is to wait for and acknowledge interrupts from the target FPGA.

When ITEST is started, the main thread first configures target FPGA 0 with the bitstream (.bit file) for the Uber example
FPGA design. The main thread then launches an interrupt thread that waits for notifications, in a loop. The main thread
then proceeds to wait for input, also in a loop. At this point, the user may press RETURN to generate an interrupt, or
enter 'q' to terminate the program. On termination, the program displays the number of FPGA interrupt notifications that
the interrupt thread consumed during execution.

A sample session looks like this:

Enter 'q' to quit, or anything else to generate an interrupt:
Interrupt thread started

Enter 'q' to quit, or anything else to generate an interrupt:

Enter 'q' to quit, or anything else to generate an interrupt:

Enter 'q' to quit, or anything else to generate an interrupt:

Enter 'q' to quit, or anything else to generate an interrupt:

Enter 'q' to quit, or anything else to generate an interrupt:
q
Generated 5 interrupts
Interrupt thread saw 5 interrupt(s)

The blank lines in the above session are simply empty lines where the user has pressed return. As can be seen, each
of the 5 interrupts generated results in the interrupt thread consuming a notification.

Remarks
As noted in the ADMXRC3 API Specification (see functions ADMXRC3_RegisterWin32Event,
ADMXRC3_RegisterVxwSem and ADMXRC3_StartNotificationWait), the ADMXRC3 API does not queue each type
of notification. Therefore, this example works as expected as long as the frequency of target FPGA interrupt
notifications is not too fast for the interrupt thread. Since the rate of generation of notifications in this example is limited
the user's keyboard input rate, the interrupt thread should be able to keep up (as long as the machine is not heavily
loaded with other processes). Nevertheless, it is important to note that in this simple example, there is no mechanism
for throttling the rate of notifications so that notifications cannot be lost. In a real application, the preferred design
approaches are:

Page 40 Example applications for VxWorks
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

Architect the FPGA design and host application so that they tolerate out-of-date notifications being missed. For
example, if the target FPGA generates an interrupt when data arrives via an I/O interface, it does not matter if
the host application does not succeed in consuming every target FPGA interrupt notification, because the
notifications before the latest one are considered out-of-date. When the host application handles a notification,
it reads a register in the target FPGA to determine the amount of new data rather than using the number of
notifications consumed. What matters is that regardless of how many times the target FPGA generates an
interrupt, the host application is guaranteed to eventually wake up and check for new data.

1.

Use a fully handshaked system, where the host application must positively acknowledge a target FPGA
interrupt before the target FPGA generates a new interrupt.

2.

In fact, the above two approaches are best used together, because minimizing the number of FPGA interrupts
minimizes unnecessary context switches in the operating system.

Page 41Example applications for VxWorks
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

4.7 MEMTESTH example (VxWorks)

Invocation in VxWorks shell
admxrc3MemTestH <index>, <bankmask>, <bNoDma>, <numRep>, <maxError>

where

index specifies the index of the card to open (default 0).
bankmask is a bitmask specifying which banks to test (0 => all).

bNoDma
should be nonzero to use CPU-initiated data transfer instead of DMA data
transfer during the test; this is relatively slow and may increase runtime to
minutes instead of seconds.

numRep is the number of repetitions of the test to perform, minus 1 (0 => 1 repetition,
-1 => for ever).

maxError
is the maximum number of data verification errors to display; note that
further errors are still counted and a total is displayed at the end of the test
(0 => default of 20).

Summary
Performs a host-driven test of the memory banks on a reconfigurable computing card.

Description
The MEMTESTH example demonstrates the transfer of data between host memory and on-board memory devices (for
example, DDR3 SDRAM on the ADM-XRC-6T1), via the target FPGA. A number of test phases are performed, each
with a different data generation method, such as alternating an 55 / AA pattern, "own address" etc. In each phase, each
bank is tested by first filling the bank with data and then reading it back in order to verify that data transfers are
error-free.

This example makes use of the Uber example FPGA design. Assuming no errors are detected, running it produces
output of the form:

Bank 00: DDR-3 SDRAM, 262144 (0x40000) kiB
Bank 01: DDR-3 SDRAM, 262144 (0x40000) kiB
Bank 02: DDR-3 SDRAM, 262144 (0x40000) kiB
Bank 03: DDR-3 SDRAM, 262144 (0x40000) kiB
Bank test mask is 0x000f
Performing host-driven memory test...
Phase 1 - 0x55 pattern
Phase 2 - 0xAA pattern
Phase 3 - own address pattern
Phase 4 - pseudorandom data
Measuring throughput...
Throughput from host to memory is 439.7 MiB/s
Throughput from memory to host is 1009.6 MiB/s
PASSED

Page 42 Example applications for VxWorks
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

4.8 MONITOR utility (VxWorks)

Invocation in VxWorks shell
admxrc3Monitor <index>, <flags>, <period>, <numberOfUpdates>

where

index specifies the index of the card to open (default 0).

flags is a bitwise OR of flags that modify the behavior of this utility (default 0);
must be 0 as there are currently no flags defined.

period is the update period, in seconds.

numberOfUpdates specifies the number of updates to perform (default 0); a value of zero
means "repeat for ever".

Summary
Displays readings from all sensors.

Description
The MONITOR utility repeatedly displays sensor readings in the VxWorks shell at the interval specified by the period
parameter. The number of updates to perform before terminating is specified by the number of updates parameter. If
not specified, the default is 0, which means that the example runs for ever.

This utility makes use of the ADMXRC3_GetSensorInfo and ADMXRC3_ReadSensor functions from the ADMXRC3
API, and because it opens a device in passive mode using ADMXRC3_OpenEx, it can run alongside other
reconfigurable computing applications without disturbing them.

The output looks like this:

Model: 257 (0x101) => ADM-XRC-6TL
Serial number: 101 (0x65)
Number of sensors: 10
 Sensor 0 1V supply rail: 0.987000 V
 Sensor 1 1.5V supply rail: 1.509186 V
 Sensor 2 1.8V supply rail: 1.803192 V
 Sensor 3 2.5V supply rail: 2.508896 V
 Sensor 4 3.3V supply rail: 3.268082 V
 Sensor 5 5V supply rail: 5.017990 V
 Sensor 6 XMC variable power rail: 12.000000 V
 Sensor 7 XRM I/O voltage: 2.495712 V
 Sensor 8 LM87 internal temperature: 49.000000 deg C
 Sensor 9 Target FPGA temperature: 57.000000 deg C

Page 43Example applications for VxWorks
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

4.9 SIMPLE example (VxWorks)

Invocation in VxWorks shell
admxrc3Simple <index>, <flags>

where

index specifies the index of the card to open (default 0).

flags
is the bitwise OR of zero or more of the following flags (default 0):
FLAG_USEUBER (0x10) => use UBER bitstream instead of SIMPLE
bitstream.

Summary
Demonstrates access to target FPGA registers.

Description
The SIMPLE example application demonstrates accessing FPGA registers in its simplest form. It first configures target
FPGA 0 with the Simple example FPGA design, or the Uber example FPGA design if the flags parameter includes
FLAG_USEUBER (0x10). It then waits for input from the user. The user enters hexadecimal values (up to 32 bits in
length), and for each value:

The program writes the value to a register in the target FPGA.1.
The target FPGA nibble-reverses the value and makes the reversed value available to be read via a register.
Here, nibble-reversing means that the FPGA swaps bits 31:28 with 3:0, 27:24 with 7:4 etc.

2.

The program reads back and displays the nibble-reversed value.3.

The program terminates on CTRL-D (Linux) or CTRL-Z (Windows). A sample session looks like this:

=========================
Enter values for I/O
(CTRL-D / CTRL-Z to exit)
=========================
1234abcd
OUT = 0x1234abcd, IN = 0xdcba4321
deadbeef
OUT = 0xdeadbeef, IN = 0xfeebdaed
cafeface
OUT = 0xcafeface, IN = 0xecafefac

Page 44 Example applications for VxWorks
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

4.10 VPD utility (VxWorks)

Invocation in VxWorks shell
admxrc3Vpd <index>, <flags>, "fb", <address>, <n>, "num-arg"
admxrc3Vpd <index>, <flags>, "fw", <address>, <n>, "num-arg"
admxrc3Vpd <index>, <flags>, "fd", <address>, <n>, "num-arg"
admxrc3Vpd <index>, <flags>, "fq", <address>, <n>, "num-arg"
admxrc3Vpd <index>, <flags>, "fs", <address>, <n>, "str-arg"
admxrc3Vpd <index>, <flags>, "rb", <address>, <n>
admxrc3Vpd <index>, <flags>, "rw", <address>, <n>
admxrc3Vpd <index>, <flags>, "rd", <address>, <n>
admxrc3Vpd <index>, <flags>, "rq", <address>, <n>
admxrc3Vpd <index>, <flags>, "wb", <address>, <n>[, "num-arg"]
admxrc3Vpd <index>, <flags>, "ww", <address>, <n>[, "num-arg"]
admxrc3Vpd <index>, <flags>, "wd", <address>, <n>[, "num-arg"]
admxrc3Vpd <index>, <flags>, "wq", <address>, <n>[, "num-arg"]
admxrc3Vpd <index>, <flags>, "ws", <address>, <n>[, "str-arg"]

where

index specifies the index of the card to open (default 0).

flags

is the bitwise OR of zero or more of the following flags (default 0):
FLAG_BYSERIAL (0x1) => index is interpreted as a serial number rather
than a device index.
FLAG_HEX (0x10) => causes the utility to interpret all numeric data values
as hexadecimal.

address is the address in VPD memory at which to begin reading or writing.
n is the number of bytes to read or write.

"num-arg" is a string containing a numeric data argument; required for the fb, fw, fd &
fq commands and optional for the wb, ww, wd & wq commands.

"str-arg" is a string argument; required for the fs command and optional for the ws
command.

Summary
Displays data read from VPD memory, or writes data to VPD memory.

Description
The VPD utility operates in one of three modes:

Filling a region of VPD memory with a value or string; for this mode, use the fb, fw, fd, fq or fs commands.•
Reading data from VPD memory and displaying it; for this mode, use the rb, rw, rd or rq commands.•
Writing numeric or string data to a region of VPD memory; for this mode, use the wb, ww, wd, wq or ws
commands.

•

Fill mode
When filling a region of VPD memory with data, the fill command specifies whether the data is numeric or string data. In
the case of numeric data, the command also implies the radix (i.e. word size) of the data. The available fill commands
are:

Page 45Example applications for VxWorks
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

fb
Fill value is a byte (8-bit).

•

fw
Fill value is a word (16-bit).

•

fd
Fill value is a doubleword (32-bit).

•

fq
Fill value is a quadword (64-bit).

•

fs
Fill value is an ASCII string (8-bit characters).

•

The next 3 arguments after the fill command must be:

address - the byte address within VPD memory at which to begin filling(a)
n - byte count; the number of bytes of VPD memory to fill(b)
data or string - the numeric or string value to place in the specified region of VPD memory(c)

If the command is fs and the string value is shorter than the byte count n, the string is repeated until the byte count is
satisfied. If the string is longer than the byte count n, only the first n characters are used. If a string contains spaces, it
must be quoted on the command line so that it is not interpreted by the shell as two or more separate arguments.

For the numeric fill commands fb, fw, fd and fq, the numeric value is repeated until the byte count is satisfied.

Read mode
The read command implies the radix (i.e. word size) used for displaying the data:

rb
Byte (8-bit) reads; data is displayed as bytes.

•

rw
Word (16-bit) reads; data is displayed as words.

•

rd
Doubleword (32-bit) reads; data is displayed as doublewords.

•

rq
Quadword (64-bit) reads; data is displayed as quadwords.

•

After the read command, an address must be supplied, which specifies where in VPD memory to begin reading. An
optional length parameter, in bytes, can also be supplied. If omitted, the length is equal to the radix implied by the read
command. If present, the length parameter specifies how many bytes to read and display. The length should be an
integer multiple of the width; if not, the length is rounded down.

Write mode
The write command specifies whether the data is numeric or string data. In the case of numeric data, the command
also implies the radix (i.e. word size) of the data. The available write commands are:

wb
Data is written as bytes (8-bit).

•

ww
Data is written as words (16-bit).

•

wd
Data is written as doublewords (32-bit).

•

Page 46 Example applications for VxWorks
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

wq
Data is written as quadwords (64-bit).

•

ws
Data is supplied as one or more ASCII strings (8-bit characters).

•

After the write command, an address must be supplied, which specifies where in VPD memory to begin writing data. An
optional length parameter, in bytes, can also be supplied. If omitted, the length is equal to the radix implied by the write
command. If present, the length parameter specifies how many bytes to write. The length should be an integer multiple
of the width; if not, the length is rounded down.

The program obtains the values to be written in two ways: from any additional parameters on the command line after
the length parameter, and then from the standard input stream (stdin). This works as follows:

Any remaining command line arguments, if present after the length parameter, are interpreted as data values
to be written. Numeric values are assumed to be of the radix implied by the command parameter. As each
value it written to VPD memory, the address is incremented. If there are enough values passed on the
command line to satisfy the byte count, the program terminates.

1.

If there are insufficient data values passed on the command line, the program waits for values to be entered on
the standard input stream. Numeric values entered this way are also assumed to be of the radix implied by the
command. As each value it written to VPD memory, the address is incremented. When the entire byte count
that was specified in the length parameter has been satisfied or end-of-file is encountered, the program
terminates.

2.

Example session
The following session was captured using an ADM-XRC-6TL. The base address 0x100000 is used because that is the
VPD-space address of the user-definable area of VPD memory in the ADM-XRC-6TL.

-> admxrc3Vpd 0,0,"rb",0x100000,0x60
Dump of VPD at 0x100000 + 96(0x60) bytes:
 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
0x00100000: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
0x00100010: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
0x00100020: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
0x00100030: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
0x00100040: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
0x00100050: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
value = 0 = 0x0
-> admxrc3Vpd 0,0,"fs",0x100008,20,"hello world!"
value = 0 = 0x0
-> admxrc3Vpd 0,0,"wd",0x100020,12
0x00100020: 0xdeadbeef
0x00100024: 0xcafeface
0x00100028: 0x12345678
value = 0 = 0x0
-> admxrc3Vpd 0,0,"fw",0x100031,10,"0xa55a"
value = 0 = 0x0
-> admxrc3Vpd 0,0,"rb",0x100000,0x60
Dump of VPD at 0x100000 + 96(0x60) bytes:
 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
0x00100000: ff ff ff ff ff ff ff ff 68 65 6c 6c 6f 20 77 6fhello wo
0x00100010: 72 6c 64 21 68 65 6c 6c 6f 20 77 6f ff ff ff ff rld!hello wo....
0x00100020: ef be ad de ce fa fe ca 78 56 34 12 ff ff ff ffxV4.....
0x00100030: ff 5a a5 5a a5 5a a5 5a a5 5a a5 ff ff ff ff ff .Z.Z.Z.Z.Z......
0x00100040: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
0x00100050: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
value = 0 = 0x0

NOTE: the above sesssion assumes that VPD write protection has been disabled as described in the release notes for
the ADB3 Driver for VxWorks.

Remarks

Page 47Example applications for VxWorks
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

When entering data for fill or write commands, values are expressed in decimal by default. To express data as
hexadecimal, prefix it with '0x' or use the FLAG_HEX (0x10) flag.

In the current version of the VPD utility, data is always read from and written to VPD memory in little-endian byte order.

Page 48 Example applications for VxWorks
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

5 Example HDL FPGA Designs
5.1 Introduction

A number of example FPGA designs are included with the SDK. The purpose of these is to demonstrate functionality
available on the Virtex-6 based ADM-XRC series of cards and also to serve as customisable starting points for
user-developed designs. A testbench and simulation/build scripts are also included with each example design.

The example applications use these example designs to demonstrate how software running on the host CPU can
interact with an FPGA design.

The table below lists the example FPGA designs and their related applications:

Simple Minimal design that demonstrates implementation of host-accessible registers. The
SIMPLE example application (Windows and Linux / VxWorks) uses this design.

Uber

Demonstrates implementation of host-accessible registers. The SIMPLE example
application (Windows and Linux / VxWorks) uses this design when the +uber option is
passed on the command line.
Demonstrates generation of host interrupts by the target FPGA. The ITEST example
application (Windows and Linux / VxWorks) uses this design.
Demonstrates interfaces to on-board memory such as DDR3 SDRAM. The MEMTESTH
example application (Windows and Linux / VxWorks) uses this design.

Table 3: Example HDL FPGA Designs

These example designs are located in the hdl/vhdl/examples/ directory.

5.2 Design Simulation Using Modelsim
Testbench code and macro files compatible with Modelsim are provided for simulation of each example FPGA design.
For details specific to each example design, refer to its Design Simulation section. VHDL source code is compiled for
simulation using the 1993 standard.

Two types of simulation are currently available, termed "Full MPTL" and "OCP-only". They are selected by the
TARGET_USE constant in the package adb3_target_inc_pkg. There are several variants of the
adb3_target_inc_pkg package. Refer to Table 83.

5.2.1 Full MPTL Simulation (TARGET_USE = SIM_MPTL)
This simulates the actual MPTL interface core between the Bridge and Target FPGAs as follows:

OCP transactions are converted to MPTL data by the example design testbench MPTL interface.•
The example design testbench MPTL interface is connected to the example FPGA design MPTL interface.•
The example FPGA design MPTL interface converts MPTL data back to OCP transactions.•

HDL source files are used to simulate the example testbench and example FPGA designs. HDL netlists are used to
simulate the MPTL interface.

Advantages

Simulates the actual MPTL interface core.•

Disadvantages

Requires full initialisation period before MPTL interface is available for OCP transactions.•

Page 49Example HDL FPGA Designs
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

Runs more slowly than OCP-only simulation.•

In most cases this level of simulation detail is not required and the OCP-only simulation should be used.

5.2.2 OCP-Only Simulation (TARGET_USE = SIM_OCP)
This replaces the MPTL interface core between the Bridge and Target FPGAs with a direct OCP connection as follows:

OCP transactions are transferred to a simulation version of the example design testbench MPTL interface.•
The example design testbench simulation MPTL interface is connected to the example FPGA design simulation
MPTL interface.

•

The example FPGA design simulation MPTL interface transfers the OCP transactions.•

HDL source files are used to simulate the example testbench and example FPGA designs. OCP-only simulation HDL
source files are used to simulate the MPTL interface.

Advantages

Requires minimal initialisation period before MPTL interface is available for OCP transactions.•
Runs more quickly than full MPTL simulation.•

Disadvantages

Does not simulate the actual MPTL interface core.•

In most cases this type of simulation should be used.

5.3 Bitstream Build Using Xilinx™ ISE

Note: Xilinx™ ISE version 12.3 or 12.4 is required by this version of the SDK.

Bitstreams for all supported combinations of example FPGA design, board, and device are supplied pre-built in the bit/
directory of the SDK. This directory is the HDL equivalent of the bin/ directory for the example C/C++ applications. The
source files required to re-build all bitstreams are supplied in the hdl/ directory. Bitstream build in the Windows
environment uses the Microsoft Visual Studio NMAKE utility. Bitstream build in the Linux environment uses GNU Make.

5.3.1 Building All Example Bitstreams for Windows
An Makefile compatible with NMAKE is provided for building all bitstreams for all example FPGA designs in Windows. It
is located in the hdl/vhdl/examples/ directory. As many bitstream files are generated, it may take from minutes to
hours to run to completion. To perform the build, start a shell and issue the following commands:

cd /d %ADMXRC3_SDK%\hdl\vhdl\examples
nmake all

To completely rebuild all example bitstreams, issue the commands:

cd /d %ADMXRC3_SDK%\hdl\vhdl\examples
nmake clean all

To install the resulting bitstream files in the bit/ directory, start a shell and issue the following commands:

cd /d %ADMXRC3_SDK%\hdl\vhdl\examples
nmake install

Note: The above commands build the bitstream files, if necessary, before installing them.

Page 50 Example HDL FPGA Designs
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

5.3.2 Building All Example Bitstreams for Linux
A Makefile compatible with GNU Make is provided for building all bitstreams for all example FPGA designs in Linux. It is
located in the hdl/vhdl/examples directory. As many bitstream files are generated, it may take from minutes to hours to
run to completion. To perform the build, start a shell and issue the following commands:

cd $ADMXRC3_SDK/hdl/vhdl/examples
make all

To completely rebuild all example bitstreams, issue the commands:

cd $ADMXRC3_SDK/hdl/vhdl/examples
make clean all

To install the resulting bitstream files in the bit/ directory, start a shell and issue the following commands:

cd $ADMXRC3_SDK/hdl/vhdl/examples
make install

Note: The above commands build the bitstream files, if necessary, before installing them.

5.3.3 Building Specific Example/Board/Device Bitstreams
For each example FPGA design, a Makefile is provided for building all its bitstreams, or a specific board/device
bitstream. For details specific to each example design, refer to its Design Synthesis and Bitstream Build section.

Page 51Example HDL FPGA Designs
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

5.4 Simple Example FPGA Design
5.4.1 Board Support

The Simple FPGA design is compatible with all Virtex-6 based boards.

5.4.2 Source Location
The Simple FPGA design is located in hdl/vhdl/examples/simple/. Source files common to all boards are located in
the hdl/vhdl/examples/simple/common/ directory. These include the design and testbench top levels.

5.4.2.1 VHDL Source Files for Simulation
For a complete list of the source files used during simulation, refer to the appropriate Modelsim macro file located in the
board design directory; for example, hdl/vhdl/examples/simple/admxrc6t1/simple-admxrc6t1.do for OCP-only
simulation of the ADM-XRC-6T1.

5.4.2.2 VHDL Source Files for Synthesis
For a complete list of the source files used during synthesis, refer to the appropriate XST project file located in the
board design directory; for example, hdl/vhdl/examples/simple/admxrc6t1/simple-admxrc6t1-6vlx240t.prj for an
ADM-XRC-6T1 fitted with a 6VLX240T device.

5.4.2.3 XST Files
XST Project files (.prj) are located in the board design directory; for example, hdl/vhdl/examples/simple/admxrc6t1/
simple-admxrc6t1-6vlx240t.prj for an ADM-XRC-6T1 fitted with a 6VLX240T device.

XST Script files (.scr) are located in the board design directory; for example, hdl/vhdl/examples/simple/admxrc6t1/
simple-admxrc6t1-6vlx240t.scr for an ADM-XRC-6T1 fitted with a 6VLX240T device.

XST constraint files (.xcf) are located in the board design directory; for example, hdl/vhdl/examples/simple/
admxrc6t1/simple-admxrc6t1.xcf for an ADM-XRC-6T1.

5.4.2.4 Implementation Constraint Files
Implementation constraint files (.ucf) are located in the board design directory; for example, hdl/vhdl/examples/
simple/admxrc6t1/simple-admxrc6t1.ucf for the ADM-XRC-6T1.

5.4.3 Design Synthesis and Bitstream Build
A Makefile is provided for building the Simple design bitstreams (.bit files). Depending on the target passed to NMAKE
or GNU Make, for Windows and Linux hosts respectively, bitstreams can be built for a specific board-device
combination, or bitstreams can be built for all supported board-device combinations.

When a .bit file is built, it is not automatically used by the example applications unless it is copied into the bit/simple/
directory. This can be done manually, or by using the Makefile.

The Makefile also be used to delete .bit files and intermediate files, so that the next time the design is built, it is
guaranteed to be built from VHDL sources as opposed to beginning at some intermediate step.

The Makefile for the Simple design has the following targets:

Page 52 Example HDL FPGA Designs
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

Target Class Effect
all

build
Builds all .bit files for all supported board and device combinations.

bit_<model>_<device> Builds the .bit file for the board specified by <model> with a device
specified by <device>.

install
install

Builds and installs all .bit files for all supported board and device
combinations in the directory bit/simple/.

inst_<model>_<device> Builds the .bit file for the board specified by <model> with a device
specified by <device> and copies it to the directory bit/simple/.

clean

clean

Deletes all .bit files and intermediate build files for all supported
board and device combinations (but does not delete any files from
bit/simple/).

clean_<model>_<device>
Deletes the .bit file and intermediate build files for the board
specified by <model> with a device specified by <device> (but
does not delete any files from bit/simple/).

Table 4: Simple Design Makefile Targets

Files that are considered intermediate files of the build process are placed in the directories hdl/vhdl/examples/
simple/build/ and hdl/vhdl/examples/simple/edif/. Output files, including .bit files, are placed in hdl/vhdl/examples/
simple/output/. Filenames of any bitstreams built are thus of the form hdl/vhdl/examples/simple/output/simple-<
board>-<device>.bit. When a target of class "clean" is executed, output and intermediate files are deleted, but files in
bit/simple/ are unaffected.

Before a bitstream can be used by one of the example applications, it must be copied to bit/simple/ by executing a
target of class "install", or by manually copying the .bit file.

Some example make commands follow:

To perform a build of all Simple design bitstreams using Windows, start a shell and issue the following
commands:

1.

cd /d %ADMXRC3_SDK%\hdl\vhdl\examples\simple
nmake all

Similarly using Linux, start a shell and issue the following commands:
cd $ADMXRC3_SDK/hdl/vhdl/examples/simple
make all

To perform a build and install the resulting bitstreams using Windows, start a shell and issue the following
commands:

2.

cd /d %ADMXRC3_SDK%\hdl\vhdl\examples\simple
nmake install

Similarly using Linux, start a shell and issue the following commands:
cd $ADMXRC3_SDK/hdl/vhdl/examples/simple
make install

To perform a build for an ADM-XRC-6T1 board fitted with an 6VLX240T device using Windows, start a shell
and issue the following commands:

3.

cd /d %ADMXRC3_SDK%\hdl\vhdl\examples\simple
nmake bit_admxrc6t1_6vlx240t

Similarly using Linux, start a shell and issue the following commands:
cd $ADMXRC3_SDK/hdl/vhdl/examples/simple
make bit_admxrc6t1_6vlx240t

Page 53Example HDL FPGA Designs
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

To perform a build and install for an ADM-XRC-6T1 board fitted with an 6VLX240T device using Windows, start
a shell and issue the following commands:

4.

cd /d %ADMXRC3_SDK%\hdl\vhdl\examples\simple
nmake inst_admxrc6t1_6vlx240t

Similarly using Linux, start a shell and issue the following commands:
cd $ADMXRC3_SDK/hdl/vhdl/examples/simple
make inst_admxrc6t1_6vlx240t

To delete all .bit files and intermediate build files in Windows, start a shell and issue the following commands:5.
cd /d %ADMXRC3_SDK%\hdl\vhdl\examples\simple
nmake clean

Similarly using Linux, start a shell and issue the following commands:
cd $ADMXRC3_SDK/hdl/vhdl/examples/simple
make clean

To delete the .bit file and intermediate build files for an ADM-XRC-6T1 board fitted with an 6VLX240T device
using Windows, start a shell and issue the following commands:

6.

cd /d %ADMXRC3_SDK%\hdl\vhdl\examples\simple
nmake clean_admxrc6t1_6vlx240t

Similarly using Linux, start a shell and issue the following commands:
cd $ADMXRC3_SDK/hdl/vhdl/examples/simple
make clean_admxrc6t1_6vlx240t

5.4.4 Design Description
The Simple example FPGA design demonstrates register access on the Virtex-6 series of ADM-XRC boards. The
design consists of:

Clock Generation•
Target MPTL interface block, using an instance of mptl_if_target_wrap•
OCP to simple bus interface block, using an instance of adb3_ocp_simple_bus_if•
Simple test registers implemented using VHDL processes.•

Figure 5 below shows the main elements of the Simple design:

Page 54 Example HDL FPGA Designs
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

simple_l

MPTL clk

Reference clk
usr_clk

adb3_ocp_simple_bus_if

r

OCP we

w

a

d

q

Simple

Test

Registers

mptl_if_target_wrap

DS OCP

MPTL B2T

DMA OCPn

MPTL T2B

MPTL Sideband

Key:
IO with VHDL record type defined in adb3_target_inc_pkg

(depends on BOARD_TYPE and TARGET_USE)

DMA OCP

Direct Slave OCP

MPTL Bridge to Target

MPTL Target to Bridge

MPTL Sideband

Figure 5: Simple Design Block Diagram

Page 55Example HDL FPGA Designs
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

5.4.4.1 Clock Generation
5.4.4.1.1 OCP Clock

The Simple example design is driven by an OCP clock named usr_clk. This is a buffered version of the differential
reference clock that is input via the top level ref_clk port. The actual source of the clock in the hardware depends upon
the board selected, and is defined in the constraints file located in the board-specific design directory; for example, hdl/
vhdl/examples/simple/admxrc6t1/simple-admxrc6t1.ucf for the ADM-XRC-6T1.

5.4.4.1.2 Target MPTL Interface Clock
The target MPTL interface block requires a clock to be input via its mptl_clk port. The actual source of the clock in the
hardware depends upon the board selected, and is defined in the constraints file located in the board-specific design
directory; for example, hdl/vhdl/examples/simple/admxrc6t1/simple-admxrc6t1.ucf for the ADM-XRC-6T1. It is
differential and buffered within the MPTL interface block.

5.4.4.2 Target MPTL Interface
This block wraps up the target MPTL interface core, instantiating an MPTL to OCP interface appropriate to the board in
use. The purpose of the block is to connect the MPTL (the data channel between the Bridge and Target FPGAs) to the
Direct Slave and DMA OCP channels within the FPGA design. Refer to the component mptl_if_target_wrap for details.

Note: The Direct Slave address space supported by the Bridge is smaller than the full ADB3 OCP address
space. For the board in use, it is indicated by the DS_ADDR_WIDTH constant in the package
adb3_target_inc_pkg.

Note: The DMA address space supported by the Bridge is smaller than the full ADB3 OCP address space.
For the board in use, it is indicated by the DMA_ADDR_WIDTH constant in the package
adb3_target_inc_pkg.

5.4.4.3 OCP to Simple Bus Interface Block
An instance of adb3_ocp_simple_bus_if terminates the Direct Slave OCP channel with the Simple test registers,
driving a small bus whose signals are as follows:

ds_a - The register address, derived from some low order bits of the Direct Slave OCP address. This is used to
select the correct register for writes, and to control a multiplexor that drives ds_q for reads.

1.

ds_w - Indicates that write data is valid on the signal ds_d and write byte enables are valid on the signal
ds_we.

2.

ds_we - Byte write enables; qualified by ds_w.3.
ds_d - Write data; qualified by ds_w.4.
ds_r - Indicates that valid data must be presented on ds_q on the following clock cycle.5.
ds_q - Driven with read data by a multiplexor controlled by ds_a. The registers of the FPGA design are inputs
to the multiplexor.

6.

5.4.4.4 Simple Test Registers
A set of VHDL processes uses the signals ds_a, ds_w etc. described above to implement a single register. Although
there is a single register in this example, in principle as many registers can be created as are required.

5.4.4.4.1 Register Description

Page 56 Example HDL FPGA Designs
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

The Simple FPGA design implements registers in the Direct Slave OCP address space as follows:

Name Type Address
DATA RW 0x000000

Table 5: Simple Design Direct Slave Address Map

Bits Mnemonic Type Function
31:0 DATA RW Indicates the nibble-reversed version of the last data written.

Table 6: Simple Design, DATA Register (0x000000)

Note: there is no address decoding, so this register appears aliased everywhere in the Direct Slave OCP address
space.

5.4.5 Testbench Description
The testbench for the Simple example FPGA design is implemented in hdl/vhdl/examples/simple/common/
test_simple.vhd. Figure 6 below shows the testbench, with the simple_l FPGA design embedded in it.

Page 57Example HDL FPGA Designs
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

uut(simple)

test_simple

OCP Stimulus

mptl_clk

ref_clk

ocp_clk_full

usr_clk

adb3_ocp_simple_bus_if

r

OCP we

w

a

d

q

mptl_if_target_wrap

DS OCP

MPTL B2T

DMA OCPn

MPTL T2B

MPTL Sideband

Clock

Generation

Key:
IO with VHDL record type defined in adb3_target_inc_pkg (depends

on BOARD_TYPE and TARGET_USE) DMA OCP

Direct Slave OCP

MPTL B2T

MPTL T2B

MPTL Sideband

DS OCP

DMA OCP

mptl_if_bridge_wrap

DM OCP

ocp_clk_out

adb3_ocp_transaction_probe

OCP DS

Simple

Test

Registers

2

1

3

5

4

ocp_clk

Figure 6: Simple Design Testbench Block Diagram

Page 58 Example HDL FPGA Designs
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

The Simple example FPGA design testbench consists of the following functions:

Clock generation for the testbench and the Unit Under Test (UUT).•
The Unit Under Test (UUT), which is the one-and-only instance of the simple_l block.•
The Bridge MPTL interface block, using an instance of mptl_if_bridge_wrap.•
Direct Slave OCP channel probe, using an instance of adb3_ocp_transaction_probe.•
Stimulus Generation and Verification.•

5.4.5.1 Clock Generation
The testbench generates the clocks ref_clk and mptl_clk according to which board is selected, in order to model the
hardware, and these drive the unit under test (simple_l).

The testbench also feeds mptl_clk into the Bridge MPTL Interface (an instance of mptl_if_bridge_wrap).

The Bridge MPTL Interface mptl_if_bridge_wrap port ocp_clk_out drives the OCP clock ocp_clk that is used within
the testbench for monitoring OCP transactions. This is generated depending on the type of simulation selected by the
TARGET_USE constant in the package adb3_target_inc_pkg:

In OCP-only simulation (TARGET_USE = SIM_OCP), the UUT's main OCP clock (usr_clk in this case) is
routed out of the UUT (simple_l) via the mptl_if_target_wrap instance and into the testbench's instance of
mptl_if_bridge_wrap. The mptl_if_bridge_wrap instance outputs this signal as ocp_clk. This route is shown
in Figure 6 as the route consisting of points 1, 2, 3 and 5.

•

In full MPTL simulation (TARGET_USE = SIM_MPTL), ocp_clk is entirely independent of any clock within the
UUT, and the testbench's mptl_if_bridge_wrap instance passes ocp_clk_full through to ocp_clk. This is
shown in Figure 6 as the route consisting of points 4 and 5.

•

5.4.5.2 Bridge MPTL Interface
The testbench contains an instance of mptl_if_bridge_wrap, which translates Direct Slave and DMA OCP transactions
in the testbench to MPTL data. mptl_if_bridge_wrap wraps up the Bridge MPTL interface core, instantiating an OCP
to MPTL core appropriate for the BOARD_TYPE and TARGET_USE constants from the package
adb3_target_inc_pkg.

The mptl_if_bridge_wrap output mptl_sb_b2t.mptl_bridge_gtp_online_l is combined with the Simple example
FPGA design output mptl_sb_t2b.mptl_target_gtp_online_l to produce the mptl_online_long signal. This indicates
that the MPTL interface is active and stable.

Note: The testbench monitors mptl_online_long and will terminate the simulation with an error message if it becomes
inactive. This may occur if, for example, a protocol error arises on the MPTL signals during a full MPTL simulation.

5.4.5.3 Direct Slave OCP Channel Probe
This function monitors the Direct Slave OCP channel for addressing/transaction problems. It generates warnings/errors
if it detects an illegal OCP operation. A probe error will result in a 'FAILED' Simple simulation result. It uses the
component adb3_ocp_transaction_probe.

5.4.5.4 Stimulus Generation and Verification
This function consists of a set of processes that generate stimulus and verify the results of the simulation via the
mptl_if_bridge_wrap instance. There is one test section:

5.4.5.4.1 Direct Slave OCP Channel
Note: all filenames mentioned in this section are relative to the path hdl/vhdl/examples/simple/common/.

Page 59Example HDL FPGA Designs
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

The test_simple testbench, implemented in test_simple.vhd, provides test stimulus to and verifies test results from
the UUT's OCP Direct Slave channel. The stimulus is actually applied in the form of OCP commands and data to the
Bridge MPTL interface, but apart from the packetisation, multiplexing and demultiplexing that occurs in the MPTL
interfaces (both Bridge and Target), the arrangement is transparent. In other words, it behaves as if the stimulus were
applied directly to the Target FPGA's Direct Slave OCP channels:

The Bridge MPTL interface converts OCP commands and write data originating in test_simple to MPTL
protocol. Within the target FPGA, the Target MPTL interface converts MPTL protocol back into OCP
commands and data. Thus, neither test_simple nor the UUT (simple) is aware that OCP stimulus passes
through the MPTL.

•

Responses originating in the Target FPGA are correspondingly converted to MPTL protocol by the Target
MPTL interface, and converted back into OCP responses by the Bridge MPTL interface}. Thus, neither
test_simple nor the UUT (simple) is aware that OCP responses pass through the MPTL.

•

Tests performed are detailed in the following subsections.

5.4.5.4.1.1 Simple Test
This test exercises the Simple Test Registers as follows:

Writes the 32-bit value 0xCAFEFACE to the DATA register.1.
Reads back the DATA register and compares it with the expected value 0xECAFEFAC. If the expected and
actual values do not match, the test is considered a failure.

2.

Test complete and pass/fail indications are returned using the simple_complete and simple_passed signals
respectively in test_simple.vhd.

Example results from this test are documented in direct slave OCP channel results.

5.4.6 Design Simulation
Modelsim macro files are located in each of the board-specific design directories. The macro file that should be used
depends upon the type of simulation required:

OCP-only: hdl/vhdl/examples/simple/<model>/simple-<model>.do•
Full MPTL: hdl/vhdl/examples/simple/<model>/simple-<model>-mptl.do•

where <model> corresponds to the board in use; for example admxrc6t1 for the ADM-XRC-6T1.

Modelsim simulation is initiated using the vsim command with the appropriate macro file; for example, to perform an
OCP-only Modelsim simulation in Windows for the ADM-XRC-6T1, start a shell and issue the following commands:

cd /d %ADMXRC3_SDK%\hdl\vhdl\examples\simple\admxrc6t1
vsim -do "simple-admxrc6t1.do"

In Linux, the commands are:

cd $ADMXRC3_SDK%/hdl/vhdl/examples/simple/admxrc6t1
vsim -do "simple-admxrc6t1.do"

Note: The Modelsim macro files always delete any previously compiled data before compiling the Simple
design.

Expected simulation results are shown below.

5.4.6.1 Initialisation Results
Modelsim output during initialisation of simulation is of the form:

** Note: Board Type : adm_xrc_6t1

Page 60 Example HDL FPGA Designs
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

Time: 0 ps Iteration: 0 Instance: /test_simple
** Note: Target Use : sim_ocp
Time: 0 ps Iteration: 0 Instance: /test_simple
** Note: Waiting for MPTL online....
Time: 0 ps Iteration: 0 Instance: /test_simple

5.4.6.2 Direct Slave OCP Channel Results
Modelsim output during simulation is of the form:

** Note: Wrote simple DATA 4 bytes 0xCAFEFACE with enable 0b1111 to byte address 0x000000
Time: 1625 ns Iteration: 6 Instance: /test_simple
** Note: Read simple DATA 4 bytes 0xECAFEFAC from byte address 0x000000
Time: 1687500 ps Iteration: 7 Instance: /test_simple
** Note: Test Simple completed: PASSED.
Time: 1687500 ps Iteration: 7 Instance: /test_simple

5.4.6.3 Completion Results
Assuming that all tests passed, Modelsim transcript output on successful completion of simulation is of the form:

** Failure: Test of design SIMPLE completed: PASSED.
Time: 1687500 ps Iteration: 9 Process: /test_simple/test_results_p File: ../common/test_simple.vhd
Break in Process test_results_p at ../common/test_simple.vhd line 230
Simulation Breakpoint: Break in Process test_results_p at ../common/test_simple.vhd line 230
MACRO ./simple-admxrc6t1.do PAUSED at line 71

Page 61Example HDL FPGA Designs
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

5.5 Uber Example FPGA Design
5.5.1 Board Support

The Uber FPGA design is compatible with all Virtex-6 based boards.

5.5.2 Source Location
The Uber FPGA design is located in hdl/vhdl/examples/uber/. Source files common to all boards are located in the
hdl/vhdl/examples/uber/common/ directory. These include the design and testbench top levels.

5.5.2.1 VHDL Source Files for Simulation
For a complete list of the source files used during simulation, refer to the appropriate Modelsim macro file located in the
board design directory; for example, hdl/vhdl/examples/uber/admxrc6t1/uber-admxrc6t1.do for OCP-only simulation
of the ADM-XRC-6T1.

5.5.2.2 VHDL Source Files for Synthesis
For a complete list of the source files used during synthesis, refer to the appropriate XST project file located in the
board design directory; for example, hdl/vhdl/examples/uber/admxrc6t1/uber-admxrc6t1-6vlx240t.prj for an
ADM-XRC-6T1 fitted with a 6VLX240T device.

5.5.2.3 XST Files
XST Project files (.prj) are located in the board design directory; for example, hdl/vhdl/examples/uber/admxrc6t1/
uber-admxrc6t1-6vlx240t.prj for an ADM-XRC-6T1 fitted with a 6VLX240T device.

XST Script files (.scr) are located in the board design directory; for example, hdl/vhdl/examples/uber/admxrc6t1/
uber-admxrc6t1-6vlx240t.scr for an ADM-XRC-6T1 fitted with a 6VLX240T device.

XST constraint files (.xcf) are located in the board design directory; for example, hdl/vhdl/examples/uber/admxrc6t1/
uber-admxrc6t1.xcf for an ADM-XRC-6T1.

5.5.2.4 Implementation Constraint Files
Implementation constraint files (.ucf) are located in the board design directory; for example, hdl/vhdl/examples/uber/
admxrc6t1/uber-admxrc6t1-6vlx240t.ucf for the ADM-XRC-6T1 with a 6VLX240T device.

5.5.3 Design Synthesis and Bitstream Build
A Makefile is provided for building the Uber design bitstreams (.bit files). Depending on the target passed to NMAKE or
GNU Make, for Windows and Linux hosts respectively, bitstreams can be built for a specific board-device combination,
or bitstreams can be built for all supported board-device combinations.

When a .bit file is built, it is not automatically used by the example applications unless it is copied into the bit/uber/
directory. This can be done manually, or by using the Makefile.

The Makefile also be used to delete .bit files and intermediate files, so that the next time the design is built, it is
guaranteed to be built from VHDL sources as opposed to beginning at some intermediate step.

Page 62 Example HDL FPGA Designs
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

Note: Before performing the first bitstream build of Uber, HDL files for the Xilinx™ DDR3 SDRAM Memory
Interface Generator (MIG) core must be generated using the script gen_mem_if.bat (Windows) or
gen_mem_if.bash (Linux) in hdl/vhdl/common/mem_if/ddr3_sdram/mig_v3_6/. Refer to Section 6.5 for
details.

Note: Changing the constant CHIPSCOPE_ON in hdl/vhdl/examples/uber/common/uber.vhd from false
to true causes a ChipScope™ block to be included when building the Uber design. If CHIPSCOPE_ON is
true, the ChipScope™ ILA core chipscope_ila.ngc and ICON core chipscope_icon.ngc must be
generated using the gen_ChipScope™.bat (Windows) or gen_ChipScope™.bat (Linux) script in hdl/vhdl/
common/ChipScope™/. Refer to Section 6.9 for details.

The Makefile for the Uber design has the following targets:

Target Class Effect
all

build
Builds all .bit files for all supported board and device combinations.

bit_<model>_<device> Builds the .bit file for the board specified by <model> with a device
specified by <device>.

install
install

Builds and installs all .bit files for all supported board and device
combinations in the directory bit/uber/.

inst_<model>_<device> Builds the .bit file for the board specified by <model> with a device
specified by <device> and copies it to the directory bit/uber/.

clean

clean

Deletes all .bit files and intermediate build files for all supported
board and device combinations (but does not delete any files from
bit/uber/).

clean_<model>_<device>
Deletes the .bit file and intermediate build files for the board
specified by <model> with a device specified by <device> (but
does not delete any files from bit/uber/).

Table 7: Uber Design Makefile Targets

Files that are considered intermediate files of the build process are placed in the directories hdl/vhdl/examples/uber/
build/ and hdl/vhdl/examples/uber/edif/. Output files, including .bit files, are placed in hdl/vhdl/examples/uber/
output/. Filenames of any bitstreams built are thus of the form hdl/vhdl/examples/uber/output/uber-<board>-<
device>.bit. When a target of class "clean" is executed, output and intermediate files are deleted, but files in bit/uber/
are unaffected.

Before a bitstream can be used by one of the example applications, it must be copied to bit/uber/ by executing a target
of class "install", or by manually copying the .bit file.

Some example make commands follow:

To perform a build of all Uber design bitstreams using Windows, start a shell and issue the following
commands:

1.

cd /d %ADMXRC3_SDK%\hdl\vhdl\examples\uber
nmake all

Similarly using Linux, start a shell and issue the following commands:
cd $ADMXRC3_SDK/hdl/vhdl/examples/uber
make all

To perform a build and install the resulting bitstreams using Windows, start a shell and issue the following
commands:

2.

cd /d %ADMXRC3_SDK%\hdl\vhdl\examples\uber
nmake install

Page 63Example HDL FPGA Designs
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

Similarly using Linux, start a shell and issue the following commands:
cd $ADMXRC3_SDK/hdl/vhdl/examples/uber
make install

To perform a build for an ADM-XRC-6T1 board fitted with an 6VLX240T device using Windows, start a shell
and issue the following commands:

3.

cd /d %ADMXRC3_SDK%\hdl\vhdl\examples\uber
nmake bit_admxrc6t1_6vlx240t

Similarly using Linux, start a shell and issue the following commands:
cd $ADMXRC3_SDK/hdl/vhdl/examples/uber
make bit_admxrc6t1_6vlx240t

To perform a build and install for an ADM-XRC-6T1 board fitted with an 6VLX240T device using Windows, start
a shell and issue the following commands:

4.

cd /d %ADMXRC3_SDK%\hdl\vhdl\examples\uber
nmake inst_admxrc6t1_6vlx240t

Similarly using Linux, start a shell and issue the following commands:
cd $ADMXRC3_SDK/hdl/vhdl/examples/uber
make inst_admxrc6t1_6vlx240t

To delete all .bit files and intermediate build files in Windows, start a shell and issue the following commands:5.
cd /d %ADMXRC3_SDK%\hdl\vhdl\examples\uber
nmake clean

Similarly using Linux, start a shell and issue the following commands:
cd $ADMXRC3_SDK/hdl/vhdl/examples/uber
make clean

To delete the .bit file and intermediate build files for an ADM-XRC-6T1 board fitted with an 6VLX240T device
using Windows, start a shell and issue the following commands:

6.

cd /d %ADMXRC3_SDK%\hdl\vhdl\examples\uber
nmake clean_admxrc6t1_6vlx240t

Similarly using Linux, start a shell and issue the following commands:
cd $ADMXRC3_SDK/hdl/vhdl/examples/uber
make clean_admxrc6t1_6vlx240t

5.5.3.1 Date/Time Package Generation
If XST is required to be run during bitstream build, the Makefile will run the TCL script hdl/vhdl/examples/uber/
gen_today_pkg.tcl to generate a file containing the today_pkg package. This package defines HDL constants
containing the date and time at which the script was run. The name of the generated file depends upon the board
selected and is located in the board design directory; for example, hdl/vhdl/examples/uber/admxrc6t1/
today_pkg_admxrc6t1_6vlx240t.vhd for the ADM-XRC-6T1 with a 6VLX240T device. Script output is of the form:

--
-- today_pkg_admxrc6t1_6vlx240t.vhd
-- This file was generated automatically using the file gen_today_pkg.bat
--

library ieee;
use ieee.std_logic_1164.all;

package today_pkg is

 constant TODAYS_DATE : std_logic_vector(31 downto 0) := X"06102010";
 constant TODAYS_TIME : std_logic_vector(31 downto 0) := X"11043305";

end package today_pkg;

Page 64 Example HDL FPGA Designs
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

5.5.4 Design Description
The Uber example FPGA design demonstrates functionality available in Gen 3 Alpha Data reconfigurable computing
hardware such as the ADM-XRC-6T1.

The design includes the following functional areas:

Clock generation block (blk_clocks)•
MPTL interface block (mptl_if_target_wrap)•
OCP Direct Slave block (blk_direct_slave), which includes:•

Connection between clock domains, between the pll_pri_clk domain and the relatively low frequency
pll_reg_clk domain.

•

Direct Slave address space splitter block•
Simple test register block (blk_ds_simple_test)•
Clock frequency measurement register block (blk_ds_clk_read)•
GPIO test register block (blk_ds_io_test)•
Interrupt test register block (blk_ds_int_test)•
Informational register block (blk_ds_info), including build datestamp and build timestamp•
On-board memory control and status register block (blk_ds_mem_reg)•
Direct Slave access to BRAM•
Direct Slave access to on-board memory•

OCP switching block (blk_dma_switch)•
BRAM block (blk_bram)•
On-board memory interface block (blk_mem_if)•
On-board memory application block (blk_mem_app)•
Optional ChipScope™ connection block (blk_ChipScope™)•

The top-level VHDL source file of Uber is hdl/vhdl/examples/uber/common/uber.vhd. Figure 7 shows its main
elements. Figure 8 shows the hierarchy of the design.

The design includes the following packages:

ADB3 OCP profile definition package (adb3_ocp)•
ADB3 OCP library component declaration package (adb3_ocp_comp)•
ADB3 target types definition package (adb3_target_types_pkg)•
ADB3 target include package (adb3_target_inc_pkg)•
ADB3 target package (adb3_target_pkg)•
Memory interface library package (mem_if_pkg)•
Design package (uber_pkg)•

Figure 9 shows the design package dependencies.

Page 65Example HDL FPGA Designs
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

uber

gpio_inout

finti_l

Key:

IO with VHDL record type defined in

adb3_target_inc_pkg and/or uber_pkg

(depends on BOARD_TYPE and

TARGET_USE) DMA OCP

Direct Slave OCP

On-board memory OCP

blk_bram

OCP

blk_dma_switch

DS BRAM OCP

RAM OCP

BRAM OCP

DMA OCP

Mem App OCP

DS RAM OCP

mptl_if_target_wrap

DS OCP

MPTL B2T

DMA OCP

MPTL T2B

MPTL Sideband

blk_clocks

clks_mgt_in

clks_out

pll_reg_clk

pll_ref_clk

clk_vecmptl_clk

pll_mem_clk

clks_in

pll_pri_clk

blk_mem_app

OCP ctrl

stat

blk_mem_if

OCP

BANKn

BANK0

- - -

BANK1

ctrl

stat

blk_direct_slave

DS OCP

pll_reg_clk

gpio_inout

interrupt_l

DS RAM OCP

DS BRAM OCP

pll_ref_clk

clk_vec

ctrl

stat

pll_mem_clk

MPTL Bridge to Target

MPTL Target to Bridge

MPTL Sideband

MPTL clk & reference clock

(board specific)

MGT reference clocks (board

specific)

Figure 7: Uber Design Top Level Block Diagram

Page 66 Example HDL FPGA Designs
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

uber

uut

<Board MPTL interface>

<Board MPTL interface>_i

mptl_if_target_sim

mptl_if_target_sim_i

<Board MPTL interface>_top

<Board MPTL interface>_top_i

OCP only simulation

Direct Slave OCP blocks

DMA OCP blocks Alpha Data MPTL Interface Core

Key:

blk_ds_simple_test

blk_ds_simple_test_i

blk_ds_clk_read

blk_ds_clk_read_i

blk_ds_int_test

blk_ds_int_test_i

blk_ds_io_test

blk_ds_io_test_i

blk_ds_info

blk_ds_info_i

mptl_if_target_wrap

mptl_if_target_wrap_i

blk_clocks

blk_clocks_i

blk_mem_if

blk_mem_if_i

blk_mem_app

blk_mem_app_i

blk_direct_slave

blk_direct_slave_i

On-Board memory OCP blocks

blk_dma_switch

blk_dma_switch_i

blk_bram

blk_bram_i

blk_ds_mem_reg

blk_ds_mem_reg_i

ddr3_if_bank

ddr3_if_bank_i

DDR3 MIG core x banks

blk_mem_test_i

blk_mem_test

Memory test x banks

<Board MPTL interface>

<Board MPTL interface>_i

Bitstream build (.ngc core)

<Board MPTL interface>_slv

Full MPTL simulation

VHDL netlist

<Board MPTL interface>_slv_i

Alpha Data MPTL interface IP

Figure 8: Uber Design Top Level Hierarchy

Page 67Example HDL FPGA Designs
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

adb3_target_types_pkg.vhd

adb3_target_inc_sim_ocp_6t1_pkg.vhd

adb3_target_inc_syn_ngc_6t1_pkg.vhd

adb3_target_pkg.vhdadb3_target_tb_pkg.vhd

uber_pkg.vhduber_tb_pkg.vhd

Board-Specific Packages (ADM-XRC-6T1)

Example Design-Specific Packages (Uber)

Example Design Top Level (Uber)

uber.vhdtest_uber.vhd

ubertest_uber

uber_pkguber_tb_pkg

adb3_target_pkgadb3_target_tb_pkg

adb3_target_inc_pkg

adb3_target_types_pkg

adb3_target_inc_sim_mptl_6t1_pkg.vhd

Figure 9: Uber Design Package Dependencies

Page 68 Example HDL FPGA Designs
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

5.5.4.1 Clock Generation Block
The clock and reset generation block is implemented by hdl/vhdl/examples/uber/common/blk_clocks.vhd. It
includes the following functional areas:

Internal clock generation (MMCM)•
Internal reset generation (MMCM)•
MPTL interface clock generation•
Input clock buffering•
Input clock extraction (MGT sourced)•
Output clock generation•

5.5.4.1.1 Internal Clock Generation (MMCM)
This consists of an Xilinx™ MMCM block driven by the clks_in.ref_clk global clock input. It generates three output
clocks: pll_pri_clk, pll_reg_clk, and pll_mem_clk. Refer to Figure 10.

pll_ref_clk

This is used as a reference clock by the design.•
It is fixed at 200 MHz and used to measure the frequencies of the other clocks in the clock frequency
measurement section, as well as being the reference clock for the IODELAYCTRL instances used in the DDR3
SDRAM interfaces. The three clocks immediately below are derived from this clock.

•

The source of this clock is the clks_in.ref_clk global clock input.•

pll_pri_clk

This clock is used as the primary OCP clock by the design.•
It is derived from pll_ref_clk and set to 200 MHz. It drives much of the OCP logic in the Uber design, including
the DMA OCP section.

•

pll_reg_clk

This is used as a low frequency clock by the design.•
It is derived from pll_ref_clk and set to 80 MHz. It drives the low-frequency OCP Direct Slave register section.•
Its frequency need not be related to any of the other clocks.•

pll_mem_clk

This is used as the clock for the DDR3 SDRAM memory interfaces in the design.•
It is derived from pll_ref_clk and set to 400 MHz. It drives the on-board memory interface section.•

5.5.4.1.2 Internal Reset Generation (MMCM)
An active high asynchronous user reset pll_rst is generated from the MMCM locked signal. Refer to Figure 10.

5.5.4.1.3 MPTL Interface Clock Generation
The MPTL interface block requires a differential mptl_clk clock input. Its source is dependent on the board selected.

Refer to Figure 11.

Page 69Example HDL FPGA Designs
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

5.5.4.1.4 Input Clock Buffering
Clocks are input on the clks_in signal of type clks_in_t and are buffered. Clock support is dependent on the board
selected. Type clks_in_t is defined in the uber_pkg package which is located in hdl/vhdl/examples/uber/common/.
Refer to Figure 11.

5.5.4.1.5 Input Clock Extraction (MGT Sourced)
MGT sourced clocks are input on the clks_mgt_in signal of type clks_mgt_in_t and are converted from double-ended
to single-ended and then buffered. The buffered clocks are connected to the clk_vec signal. The connection order is
defined by the clk_vec_t type in the uber_pkg package. MGT sourced clock support is dependent on the board
selected. Type clks_mgt_in_t is defined in the uber_pkg package which is located in hdl/vhdl/examples/uber/
common/. Refer to Figure 11.

5.5.4.1.6 Output Clock Generation
Clocks are generated and output on the clks_out signal of type clks_out_t. Clock support is dependent on the board
selected. Type clks_out_t is defined in the uber_pkg package which is located in hdl/vhdl/examples/uber/common/.
Refer to Figure 11.

Page 70 Example HDL FPGA Designs
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

MMCM_BASE

RST

PWRDN

CLKFBIN

CLKIN1

LOCKED

CLKOUT0

CLKFBOUT

CLKFBOUTB

CLKOUT0B

CLKOUT1

CLKOUT1B

CLKOUT2

CLKOUT2B

CLKOUT3

CLKOUT3B

CLKOUT4

CLKOUT5

CLKOUT6

BUFG

BUFG

BUFG

clks_in.ref_clk.p

clks_in.ref_clk.n

ref_clk_ibuf

‘0’

pll_reset

fb_clk

fb_clk_bufg

pll_reg_clk

pll_pri_clk

pll_rst

BUFG pll_mem_clk
CLKIN1_PERIOD = 5.000 ns

DIVCLK_DIVIDE = 3

CLKFBOUT_MULT_F = 12.000

CLKOUT0_DIVIDE_F = 4.000

CLKOUT1_DIVIDE = 10

CLKFBOUT = CLKIN1*CLKFBOUT_MULT_F/DIVCLK_DIVIDE = 200*12.000/3 = 800 MHz

CLKOUT0 = CLKFBOUT/CLKOUT0_DIVIDE_F = 800/4.000 = 200 MHz

CLKOUT1 = CLKFBOUT/CLKOUT1_DIVIDE = 800/10 = 80 MHz

MMCM Generic Input Values

MMCM Clock Output Frequency Values

CLKOUT2 = CLKFBOUT/CLKOUT2_DIVIDE = 800/2 = 400 MHz

CLKOUT2_DIVIDE = 2
pll_ref_clkBUFG

IBUFGDS

Figure 10: Uber Design Internal Clock Generation (MMCM)

Page 71Example HDL FPGA Designs
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

BUFG

clks_in.xrm_gclk_m2c.p

clks_in.xrm_gclk_m2c.n

mgt_clk_buf(MGT112_CLK0_NUM)

clk_vec

IBUFDS

GTXE1
I

IB

O

ODIV2

CEB

BUFG

clks_mgt_in.mgt112_clk0.p

clks_mgt_in.mgt112_clk0.n

BUFGclks_in.lclk

IBUFDS

GTXE1
I

IB

O

ODIV2

CEB

BUFG

clks_mgt_in.mgt113_clk0.p

clks_mgt_in.mgt113_clk0.n

IBUFDS

GTXE1
I

IB

O

ODIV2

CEB

clks_mgt_in.mgt117_clk0.p

clks_mgt_in.mgt117_clk0.n

BUFG

mgt_clk_buf(MGT113_CLK0_NUM)

mgt_clk_buf(MGT117_CLK0_NUM)

... ...

clk_vec_bufg(MGT112_CLK0_NUM)

clk_vec_bufg(MGT113_CLK0_NUM)

clk_vec_bufg(MGT117_CLK0_NUM)

clk_vec_bufg(LCLK_NUM)

clk_vec_bufg(XRM_CLKIN_NUM)

clks_mgt_in.mgt115_clk0.p mptl_clk.p

mptl_clk.nclks_mgt_in.mgt115_clk0.n
ADM-XRC-6T1 mptl_clk generation

ADM-XRC-6TL mptl_clk generation

IBUF

ADM-XRC-6TL

clks_mgt_in.mgt114_clk0.p mptl_clk.p

mptl_clk.nclks_mgt_in.mgt114_clk0.n

OBUFDS

clks_out.xrm_mgtclk_c2m.p

clks_out.xrm_mgtclk_c2m.n

pll_reg_clk

‘0’

‘0’

‘0’

IBUFGDS

Figure 11: Uber Design Clock Buffering/Extraction

Page 72 Example HDL FPGA Designs
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

5.5.4.2 Target MPTL Interface
This block wraps up the target MPTL interface core, instantiating an MPTL to OCP interface appropriate to the board in
use. The purpose of the block is to connect the MPTL (the data channel between the Bridge and Target FPGAs) to the
Direct Slave and DMA OCP channels within the FPGA design. Refer to the component mptl_if_target_wrap for details.

The Uber design output signal mptl_sb_t2b.mptl_target_configured_l indicates that the FPGA OCP based blocks
are ready to communicate with the bridge via the MPTL interface. This output is generated using the
mptl_if_target_wrap input ocp_ready. In the case of the Uber design, this ocp_ready input is driven by a signal
derived from the LOCKED flag of the design's main MMCM (i.e. the one generating pll_pri_clk etc.). This holds off
MPTL intitialisation until after the MMCM is locked.

The reason for holding off MPTL initialisation is to prevent a race condition that might otherwise occur between (a)
software attempting to read or write Target FPGA registers after configuration and (b) the main MMCM in the design
achieving lock. Holding off MPTL initialisation between the Bridge and Target until the design's main MMCM has
achieved lock causes a call to ADMXRC3_ConfigureFromFile to wait until MPTL communication has been completed,
thus guaranteeing that the Target FPGA is in the proper state for software on the host to communicate with it.

Note: The Direct Slave address space supported by the Bridge is smaller than the full ADB3 OCP address
space. For the board in use, it is indicated by the DS_ADDR_WIDTH constant in the package
adb3_target_inc_pkg.

Note: The DMA address space supported by the Bridge is smaller than the full ADB3 OCP address space.
For the board in use, it is indicated by the DMA_ADDR_WIDTH constant in the package
adb3_target_inc_pkg.

5.5.4.3 OCP Direct Slave Block
This block is implemented by hdl/vhdl/examples/uber/common/blk_direct_slave.vhd, and connects the Direct Slave
OCP channel to various register blocks and a couple of memory access windows via an OCP address space splitter.
Most of the logic in this block is in the relatively low frequency (80 MHz) pll_reg_clk domain. Therefore, a secondary
function of this block is to connect the high speed pll_pri_clk domain to the pll_reg_clk domain. The main elements
are:

Connection between clock domains, between the pll_pri_clk domain and the relatively low frequency
pll_reg_clk domain.

•

Direct Slave address space splitter block•
Simple test register block (blk_ds_simple_test)•
Clock frequency measurement register block (blk_ds_clk_read)•
Interrupt test register block (blk_ds_int_test)•
Informational register block (blk_ds_info), including build datestamp and build timestamp•
GPIO test register block (blk_ds_io_test)•
On-board memory control and status register block (blk_ds_mem_reg)•
Direct Slave access to BRAM•
Direct Slave access to on-board memory•

A block diagram of the OCP Direct Slave block is shown in Figure 12.

Page 73Example HDL FPGA Designs
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

blk_direct_slave

pll_pri_clk

pll_reg_clk

adb3_ocp_cross_clk_dom

OCP OCPDS OCP

OCP DS

blk_ds_info

pll_ref_clk

clk_vec

adb3_ocp_split_b

OCP3

OCP OCP2

OCP1

OCP0

OCP4

OCP5

OCP6

OCP7

OCP DS

gpio_inout

blk_ds_io_test

OCP DS

Interrupt_l

blk_ds_int_test

ctrl

ctrl

stat

stat

Interupt_l

gpio_inout

adb3_ocp_cross_clk_dom

OCP OCP

adb3_ocp_cross_clk_dom

OCP OCPDS BRAM OCP

DS RAM OCP

OCP DS

blk_ds_simple_test

OCP DS

blk_ds_mem_reg

Mem I/f ctrl

Mem I/f stat

Mem App stat

Mem App ctrl

pll_mem_clk

OCP DS

pll_ref_clk

pll_mem_clk

blk_ds_clk_read

clk_vec

pll_pri_clk

DS PAGE and DS BANK

Address augmented by

DS PAGE and DS BANK

registers

Figure 12: Uber Direct Slave Block Diagram

Page 74 Example HDL FPGA Designs
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

5.5.4.3.1 OCP Cross-Clock Domain Block
This connects the Direct Slave OCP channel from the higher speed clock domain (pll_pri_clk) to the lower speed
register clock domain (pll_reg_clk), using an instance of the ADB3 OCP library component
adb3_ocp_cross_clk_dom.

5.5.4.3.2 Direct Slave Address Space Splitter Block
An instance of the ADB3 OCP library component adb3_ocp_split_b splits the Direct Slave OCP channel into multiple
secondary OCP channels, which are then routed to their appropriate blocks.

The split is defined by the Direct Slave address space ranges defined in the DS_ADDR_RANGE_TABLE constant in
the uber_pkg package. The constant DS_ADDR_RANGE_TABLE consists of pairs of { base address, mask } for each
address range that the splitter recognises. For each range, the lower address is identified by the base address, and the
upper address is identified by (base address + mask).

Note: In each mask value, a 1 bit causes the corresponding bit of the incoming OCP address to be ignored when the
splitter determines which address range, if any, the incoming OCP address hits. As an optimisation, the
DS_ADDR_RANGE_TABLE constant in the uber_pkg package uses the function ds_mask_conv from the package
adb3_target_pkg to ensure that the topmost DS_ADDR_WIDTH bits of the mask values are all ones, since these bits
will never be anything but zero in incoming OCP addresses. The following example illustrates how an address is
determined to hit a given address range.

First, we note that address range 1 has the following base and mask information as defined in
DS_ADDR_RANGE_TABLE:

Address range 1 base = ds_base_conv(X"0000C0") = 0x00000000_000000C0
Address range 1 mask = ds_mask_conv(X"00003F") = 0xFFFFFFFF_FFC0003F
=> Address bits used in comparison = 0x00000000_003FFFC0

When an incoming OCP address must be decoded, decoding is performed as follows for address range 1:

Incoming OCP address (for example) = 0x00000000_000000D0
=> Masked incoming OCP address = 0x00000000_000000C0
=> Hits address range 1, since masked incoming OCP address = address range 1 base

Table Table 8 below shows the information in DS_ADDR_RANGE_TABLE and which functional area each index
corresponds to:

Address
range index

Address Range Function

0 0x000000-0x00003F Simple test registers
1 0x000040-0x00007F Clock frequency measurement registers
2 0x0000C0-0x0000FF Interrupt test registers
3 0x000140-0x00017F Informational registers
4 0x000200-0x00027F GPIO test registers
5 0x000300-0x0003FF On-board memory control and status registers
6 0x080000-0x0FFFFF Direct Slave access to BRAM
7 0x200000-0x3FFFFF Direct Slave access to on-board memory

Table 8: Uber Design Direct Slave Address Map

Page 75Example HDL FPGA Designs
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

Note: Reads of undefined areas of the address space return data consisting of 0xDEADC0DE. Writes to
undefined areas have no effect.

5.5.4.3.3 Simple Test Register Block
5.5.4.3.3.1 Description

The Simple Test Register block contains a register that returns the nibble-reversed value of anything written to it. It is
implemented by hdl/vhdl/examples/uber/common/blk_ds_simple_test.vhd. It consists of an instance of the ADB3
OCP library component adb3_ocp_simple_bus_if and a set of VHDL processes that implement the nibble-reversal
register.

The adb3_ocp_simple_bus_if instance drives a simple parallel bus with the following signals:

ds_a - The register address, derived from some low order bits of the Direct Slave OCP address. This is used to
select the correct register for writes, and to control a multiplexor that drives ds_q for reads.

1.

ds_w - Indicates that write data is valid on the signal ds_d and write byte enables are valid on the signal
ds_we.

2.

ds_we - Byte write enables; qualified by ds_w.3.
ds_d - Write data; qualified by ds_w.4.
ds_r - Indicates that valid data must be presented on ds_q on the following clock cycle.5.
ds_q - Driven with read data by a multiplexor controlled by ds_a. The registers of the FPGA design are inputs
to the multiplexor.

6.

5.5.4.3.3.2 Register Description
A set of VHDL processes in uses the signals ds_a, ds_w etc. described above to implement a single register. Although
there is a single register in this example, in principle as many registers can be created as are required. The registers
appear in the Direct Slave OCP address space as follows:

Name Address
DATA 0x000000

Table 9: Simple Test Register Block Address Map

Bits Mnemonic Type Function
31:0 DATA RW Returns the nibble-reversed version of the last data written.

Table 10: Simple Test Register Block, DATA Register (0x000000)

5.5.4.3.4 Clock Frequency Measurement Register Block
5.5.4.3.4.1 Description

The clock frequency measurement register block is implemented by hdl/vhdl/examples/uber/common/
blk_ds_clk_read.vhd and performs the following functions:

Measurement of frequencies of internally generated (MMCM) clocks.•
Measurement of frequencies of externally sourced clocks.•

Page 76 Example HDL FPGA Designs
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

It consists of an instance of adb3_ocp_simple_bus_if, multiple instances of the clock frequency measurement block
(blk_clock_freq), and a set of processes that implement the registers.

The clock frequency measurement component (blk_clock_freq) is instantiated for the main OCP clocks of the design,
enabling them to be measured:

pll_ref_clk•
pll_pri_clk•
pll_reg_clk•
pll_mem_clk•

blk_clock_freq is also instantiated for each board-dependent clock according to the CLKS_IN_VALID constant
defined in the uber_pkg package.

Within this block, a function conv_ref_clk_tcval returns the clock frequency measurement period, and hence the
measurement resolution, as a function of the TARGET_USE constant from the package adb3_target_pkg. The
REF_CLK_TCVAL constant defines the measurement period in pll_ref_clk cycles as follows:

OCP-only simlation (TARGET_USE = SIM_OCP)

Period = (REF_CLK_FREQ_HZ/1000000) ref_clk cycles = 1μs.•
Resolution = 1MHz.•

Full MPTL simlation (TARGET_USE = SIM_MPTL)

Period = (REF_CLK_FREQ_HZ/1000000) ref_clk cycles = 1μs.•
Resolution = 1MHz.•

Synthesis (TARGET_USE = SYN_NGC)

Period = (REF_CLK_FREQ_HZ) ref_clk cycles = 1s.•
Resolution = 1Hz.•

If the clocking infrastructure of the Uber design as described in Section 5.5.4.1 is modified to change the frequencies
of pll_pri_clk and/or pll_ref_clk, the values mapped to the smp_clk_div_stages generics may need to be changed to
ensure that the relationship defined in Section 6.8.1.1.3 still holds for every blk_clock_freq instance.

5.5.4.3.4.2 Register Description
As in the simple test register block, an instance of adb3_ocp_simple_bus_if together with some VHDL processes
implement the registers that control clock frequency measurement. These registers appear in the Direct Slave OCP
address space as follows:

Name Address
SEL 0x000040
CTRL/STAT 0x000044
FREQ 0x000048

Table 11: Clock Frequency Measurement Register Block Address Map

Page 77Example HDL FPGA Designs
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

Bits Mnemonic Type Function
31:5 (Reserved)
4:0 SEL_CLK M Selects which clock's measured frequency and flags are available in

the FREQ and STAT registers, respectively.
00000 => pll_reg_clk (Internal)
00001 => pll_pri_clk (Internal)
00010 => pll_ref_clk (Internal)
00011 => pll_mem_clk (Internal)
01100 => lclk (External)
01101 => xrm_clkin (External)
10010 => mgt112_clk0 (External MGT clock)
10100 => mgt113_clk0 (External MGT clock)
10101 => mgt113_clk1 (External MGT clock)
10110 => mgt114_clk0 (External MGT clock)
11000 => mgt115_clk0 (External MGT clock)
11010 => mgt116_clk0 (External MGT clock)
11100 => mgt117_clk0 (External MGT clock)

Table 12: Clock Frequency Measurement Register Block, SEL Register (0x000040)

Bits Mnemonic Type Function
31 CLR_UPDATE R/

W1C
Write: controls frequency measurement updated flags:
1 = Clear all measurement updated flags.
0 = No action.
Read: indicates selected frequency measurement update status:
1 = Measurement updated
0 = Measurement not updated.

30 CLK_VALID RO Indicates selected board clock valid status:
1 = Clock valid on this board.
0 = Clock not valid on this board.

29 CLK_RUNNING RO Indicates selected clock running status:
1 = Clock running
0 = Clock not running.

28:0 (Reserved)

Table 13: Clock Frequency Measurement Register Block, CTRL/STAT Register (0x000044)

Bits Mnemonic Type Function
31:0 FREQ RO Indicates selected clock frequency measurement in Hz.

Table 14: Clock Frequency Measurement Register Block, FREQ Register (0x000048)

5.5.4.3.5 Interrupt Test Register Block
5.5.4.3.5.1 Description

The interrupt test register block is implemented by hdl/vhdl/examples/uber/common/blk_ds_int_test.vhd and
performs the following functions:

Control of interrupt generation.•

It consists of an instance of adb3_ocp_simple_bus_if and a set of VHDL processes that implement the registers and
interrupt generation.

Page 78 Example HDL FPGA Designs
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

5.5.4.3.5.2 Register Description
As in the simple test register block, an instance of adb3_ocp_simple_bus_if together with some VHDL processes
implement a set of registers for generating interrupts on the host. These registers appear in the Direct Slave OCP
address space as follows:

Name Address
SET 0x0000C0
CLEAR/STAT 0x0000C4
MASK 0x0000C8
ARM 0x0000CC
COUNT 0x0000D0

Table 15: Interrupt Test Register Block Address Map

Bits Mnemonic Type Function
31:0 SET W1S Write: writing a 1 to a particular bit sets the corresponding bit in the

STAT register.
Read: returns undefined data.

Table 16: Interrupt Test Register Block, SET Register (0x0000C0)

Bits Mnemonic Type Function
31:0 CLEAR/STAT R/

W1C
The interrupt output is asserted whenever at least one bit in the
STAT register is 1 and not masked by the MASK register.
Write: writing a 1 to a particular bit clears the corresponding bit in
the STAT register.
Read: returns the current value of the STAT register.

Table 17: Interrupt Test Register Block, CLEAR/STAT Register (0x0000C4)

Bits Mnemonic Type Function
31:0 MASK M Controls/indicates the masking (1) or enabling (0) of individual bits

in the STAT register. When a bit is 0, the corresponding bit in the
STAT register is unmasked (i.e. allowed to assert the interrupt
output).

Table 18: Interrupt Test Register Block, MASK Register (0x0000C8)

Bits Mnemonic Type Function
31:0 ARM WO A write to this register will force the FPGA interrupt output to its

inactive state for one cycle of pll_reg_clk.

Table 19: Interrupt Test Register Block, ARM Register (0x0000CC)

Page 79Example HDL FPGA Designs
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

Bits Mnemonic Type Function
31:0 COUNT RW Write: if the STAT register is zero, then the COUNT register is set to

the value written. If the STAT register is non-zero, writes to the
COUNT register have no effect.
Read: indicates the number of clock cycles that have elapsed while
the STAT register is non-zero.

Table 20: Interrupt Test Register Block, COUNT Register (0x0000D0)

Since the COUNT register increments as long as at least one interrupt is active in the STAT register, the COUNT
register can be used by host software to measure the time taken to respond to and clear an interrupt.

5.5.4.3.6 Informational Register Block
5.5.4.3.6.1 Description

The informational register block is implemented by hdl/vhdl/examples/uber/common/blk_ds_info.vhd and contains
registers that indicate the following:

The date and time at which the design's .bit file was built.•
The status of Direct Slave OCP address splitter.•
The base address and size of the BRAM block (blk_bram).•
The status of the on-board memory interfaces.•

It consists of an instance of adb3_ocp_simple_bus_if and a set of VHDL processes that implement the registers.

5.5.4.3.6.2 Register Description
As in the simple test register block, an instance of adb3_ocp_simple_bus_if together with some VHDL processes
implement the informational registers. These registers appear in the Direct Slave OCP address space as follows:

Name Address
DATE 0x000140
TIME 0x000144
SPLIT 0x000148
BRAM_BASE 0x00014C
BRAM_MASK 0x000150
MEM_BASE 0x000154
MEM_MASK 0x000158
MEM_BANKS 0x00015C

Table 21: Informational Register Block Address Map

Bits Mnemonic Type Function
31:0 DATE RO Indicates date of build (DD/MM/YYYY) in BCD format where:

DD = Day of month
MM = Month of year
YYYY = Year.
This information is obtained from the TODAYS_DATE constant in
the today_pkg package.

Table 22: Informational Register Block, DATE Register (0x000140)

Page 80 Example HDL FPGA Designs
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

Bits Mnemonic Type Function
31:0 TIME RO Indicates time of build (HH/MM/SS/LL) in BCD format where:

HH = Hour of day
MM = Minute of hour
SS = Second of minute
LL = Millisecond of second.
This information is obtained from the TODAYS_TIME constant in
the today_pkg package.

Table 23: Informational Register Block, TIME Register (0x000144)

Bits Mnemonic Type Function
31:8 (Reserved).
7:0 SPLIT RO Indicates multiple split ports active error count.

Table 24: Informational Register Block, SPLIT Register (0x000148)

Bits Mnemonic Type Function
31:0 BASE RO Indicates the base address of the BRAM access window in the

Direct Slave OCP address space.
This information is obtained from the BRAM_ADDR_BASE
constant in the package uber.

Table 25: Informational Register Block, BRAM_BASE Register (0x00014C)

Bits Mnemonic Type Function
31:0 MASK RO Indicates the address mask of the BRAM access window in the

Direct Slave OCP address space.
This information is obtained from the BRAM_ADDR_MASK
constant in the package uber.

Table 26: Informational Register Block, BRAM_MASK Register (0x000150)

Bits Mnemonic Type Function
31:0 BASE RO Indicates the base address of the on-board memory access

window in the Direct Slave OCP address space.
This information is obtained from the RAM_WIN_ADDR_BASE
constant in the package uber.

Table 27: Informational Register Block, MEM_BASE Register (0x000154)

Bits Mnemonic Type Function
31:0 MASK RO Indicates the address mask of the on-board memory access

window in the Direct Slave OCP address space.
This information is obtained from the RAM_WIN_ADDR_MASK
constant in the package uber.

Table 28: Informational Register Block, MEM_MASK Register (0x000158)

Page 81Example HDL FPGA Designs
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

Bits Mnemonic Type Function
31:4 (Reserved).
3:0 MEM_BANKS RO Indicates number of on-board memory bank interfaces present in

the FPGA example design.
This information is obtained from the MEM_BANKS constant in the
adb3_target_inc_pkg package.

Table 29: Informational Register Block, MEM_BANKS Register (0x00015C)

5.5.4.3.7 GPIO Test Register Block
5.5.4.3.7.1 Description

The GPIO test register block is implemented by hdl/vhdl/examples/uber/common/blk_ds_io_test.vhd and performs
the following functions:

Control of XRM GPIO bi-directional interface in example design (if present)•
Control of Pn4 GPIO bi-directional interface in example design (if present)•
Control of Pn6 GPIO bi-directional interface in example design (if present)•

It consists of an instance of adb3_ocp_simple_bus_if and a set of processes that implement the registers that drive
and return the logic levels on the GPIO pins.

Note: This block implements a general scheme for driving/accepting data on the GPIO interfaces using
registers connected to the Direct Slave OCP channel. This scheme is known colloquially as "bit-banging",
and is not suitable for high speed communication, as the block contains no logic for sequencing signals as
required by a typical communications protocol. The user is encouraged to implement an I/O interface
scheme appropriate to their own application.

5.5.4.3.7.2 Register Description
As in the simple test register block, an instance of adb3_ocp_simple_bus_if together with some VHDL processes
implement the registers for the GPIO pins. These registers appear in the Direct Slave OCP address space as follows:

Name Address
XRM_GPIO_DA_DATAO 0x000200
XRM_GPIO_DA_DATAI 0x000204
XRM_GPIO_DA_TRI 0x000208
XRM_GPIO_DB_DATAO 0x00020C
XRM_GPIO_DB_DATAI 0x000210
XRM_GPIO_DB_TRI 0x000214
XRM_GPIO_DC_DATAO 0x000218
XRM_GPIO_DC_DATAI 0x00021C
XRM_GPIO_DC_TRI 0x000220
XRM_GPIO_DD_DATAO 0x000224
XRM_GPIO_DD_DATAI 0x000228
XRM_GPIO_DD_TRI 0x00022C
XRM_GPIO_CS_DATAO 0x000230

Table 30: GPIO Test Register Block Address Map (continued on next page)

Page 82 Example HDL FPGA Designs
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

Name Address
XRM_GPIO_CS_DATAI 0x000234
XRM_GPIO_CS_TRI 0x000238
PN4_GPIO_P_DATAO 0x00023C
PN4_GPIO_P_DATAI 0x000240
PN4_GPIO_P_TRI 0x000244
PN4_GPIO_N_DATAO 0x000248
PN4_GPIO_N_DATAI 0x00024C
PN4_GPIO_N_TRI 0x000250
PN6_GPIO_MS_DATAO 0x000254
PN6_GPIO_MS_DATAI 0x000258
PN6_GPIO_MS_TRI 0x00025C
PN6_GPIO_LS_DATAO 0x000260
PN6_GPIO_LS_DATAI 0x000264
PN6_GPIO_LS_TRI 0x000268

Table 30: GPIO Test Register Block Address Map

Bits Mnemonic Type Function
31:16 DA_P_OUT M Controls/indicates logic levels driven on the da_p(15:0) XRM GPIO pins.
15:0 DA_N_OUT M Controls/indicates logic levels driven on the da_n(15:0) XRM GPIO pins.

Table 31: GPIO Test Register Block, XRM_GPIO_DA_DATAO Register (0x000200)

Bits Mnemonic Type Function
31:16 DA_P_IN RO Indicates the actual logic levels on the da_p(15:0) XRM GPIO pins.
15:0 DA_N_IN RO Indicates the actual logic levels on the da_n(15:0) XRM GPIO pins.

Table 32: GPIO Test Register Block, XRM_GPIO_DA_DATAI Register (0x000204)

Bits Mnemonic Type Function
31:16 DA_P_TRI M Controls/indicates the tristate enables for the da_p(15:0) XRM GPIO pins.

If a bit is 1, the corresponding pin is tristated (high-impedance).
15:0 DA_N_TRI M Controls/indicates the tristate enables for the da_n(15:0) XRM GPIO pins.

If a bit is 1, the corresponding pin is tristated (high-impedance).

Table 33: GPIO Test Register Block, XRM_GPIO_DA_TRI Register (0x000208)

Bits Mnemonic Type Function
31:16 DB_P_OUT M Controls/indicates logic levels driven on the db_p(15:0) XRM GPIO pins.
15:0 DB_N_OUT M Controls/indicates logic levels driven on the db_n(15:0) XRM GPIO pins.

Table 34: GPIO Test Register Block, XRM_GPIO_DB_DATAO Register (0x00020C)

Page 83Example HDL FPGA Designs
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

Bits Mnemonic Type Function
31:16 DB_P_IN RO Indicates the actual logic levels on the db_p(15:0) XRM GPIO pins.
15:0 DB_N_IN RO Indicates the actual logic levels on the db_n(15:0) XRM GPIO pins.

Table 35: GPIO Test Register Block, XRM_GPIO_DB_DATAI Register (0x000210)

Bits Mnemonic Type Function
31:16 DB_P_TRI M Controls/indicates the tristate enables for the db_p(15:0) XRM GPIO pins.

If a bit is 1, the corresponding pin is tristated (high-impedance).
15:0 DB_N_TRI M Controls/indicates the tristate enables for the db_n(15:0) XRM GPIO pins.

If a bit is 1, the corresponding pin is tristated (high-impedance).

Table 36: GPIO Test Register Block, XRM_GPIO_DB_TRI Register (0x000214)

Bits Mnemonic Type Function
31:16 DC_P_OUT M Controls/indicates logic levels driven on the dc_p(15:0) XRM GPIO pins.
15:0 DC_N_OUT M Controls/indicates logic levels driven on the dc_n(15:0) XRM GPIO pins.

Table 37: GPIO Test Register Block, XRM_GPIO_DC_DATAO Register (0x000218)

Bits Mnemonic Type Function
31:16 DC_P_IN RO Indicates the actual logic levels on the dc_p(15:0) XRM GPIO pins.
15:0 DC_N_IN RO Indicates the actual logic levels on the dc_n(15:0) XRM GPIO pins.

Table 38: GPIO Test Register Block, XRM_GPIO_DC_DATAI Register (0x00021C)

Bits Mnemonic Type Function
31:16 DC_P_TRI M Controls/indicates the tristate enables for the dc_p(15:0) XRM GPIO pins.

If a bit is 1, the corresponding pin is tristated (high-impedance).
15:0 DC_N_TRI M Controls/indicates the tristate enables for the dc_n(15:0) XRM GPIO pins.

If a bit is 1, the corresponding pin is tristated (high-impedance).

Table 39: GPIO Test Register Block, XRM_GPIO_DC_TRI Register (0x000220)

Bits Mnemonic Type Function
31:16 DD_P_OUT M Controls/indicates logic levels driven on the dd_p(15:0) XRM GPIO pins.
15:0 DD_N_OUT M Controls/indicates logic levels driven on the dd_n(15:0) XRM GPIO pins.

Table 40: GPIO Test Register Block, XRM_GPIO_DD_DATAO Register (0x000224)

Bits Mnemonic Type Function
31:16 DD_P_IN RO Indicates the actual logic levels on the dd_p(15:0) XRM GPIO pins.
15:0 DD_N_IN RO Indicates the actual logic levels on the dd_n(15:0) XRM GPIO pins.

Table 41: GPIO Test Register Block, XRM_GPIO_DD_DATAI Register (0x000228)

Page 84 Example HDL FPGA Designs
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

Bits Mnemonic Type Function
31:16 DD_P_TRI M Controls/indicates the tristate enables for the dd_p(15:0) XRM GPIO pins.

If a bit is 1, the corresponding pin is tristated (high-impedance).
15:0 DD_N_TRI M Controls/indicates the tristate enables for the dd_n(15:0) XRM GPIO pins.

If a bit is 1, the corresponding pin is tristated (high-impedance).

Table 42: GPIO Test Register Block, XRM_GPIO_DD_TRI Register (0x00022C)

Bits Mnemonic Type Function
31:18 (Reserved)

17 DD_CC_P_OUT M Controls/indicates the logic level driven on the dd_cc_p XRM GPIO
pin.

16 DD_CC_N_OUT M Controls/indicates the logic level driven on the dd_cc_n XRM GPIO
pin.

15 DC_CC_P_OUT M Controls/indicates the logic level driven on the dc_cc_p XRM GPIO
pin.

14 DC_CC_N_OUT M Controls/indicates the logic level driven on the dc_cc_n XRM GPIO
pin.

13 DB_CC_P_OUT M Controls/indicates the logic level driven on the db_cc_p XRM GPIO
pin.

12 DB_CC_N_OUT M Controls/indicates the logic level driven on the db_cc_n XRM GPIO
pin.

11 DA_CC_P_OUT M Controls/indicates the logic level driven on the da_cc_p XRM GPIO
pin.

10 DA_CC_N_OUT M Controls/indicates the logic level driven on the da_cc_n XRM GPIO
pin.

9:6 SD_OUT M Controls/indicates the logic levels driven on the sd(3:0) XRM GPIO
pins.

5:4 SC_OUT M Controls/indicates the logic levels driven on the sc(1:0) XRM GPIO
pins.

3:2 SB_OUT M Controls/indicates the logic levels driven on the sb(1:0) XRM GPIO
pins.

1:0 SA_OUT M Controls/indicates the logic levels driven on the sa(1:0) XRM GPIO
pins.

Table 43: GPIO Test Register Block, XRM_GPIO_CS_DATAO Register (0x000230)

Page 85Example HDL FPGA Designs
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

Bits Mnemonic Type Function
31:18 (Reserved)

17 DD_CC_P_IN RO Indicates the actual logic level on the dd_cc_p XRM GPIO pin.
16 DD_CC_N_IN RO Indicates the actual logic level on the dd_cc_n XRM GPIO pin.
15 DC_CC_P_IN RO Indicates the actual logic level on the dc_cc_p XRM GPIO pin.
14 DC_CC_N_IN RO Indicates the actual logic level on the dc_cc_n XRM GPIO pin.
13 DB_CC_P_IN RO Indicates the actual logic level on the db_cc_p XRM GPIO pin.
12 DB_CC_N_IN RO Indicates the actual logic level on the db_cc_n XRM GPIO pin.
11 DA_CC_P_IN RO Indicates the actual logic level on the da_cc_p XRM GPIO pin.
10 DA_CC_N_IN RO Indicates the actual logic level on the da_cc_n XRM GPIO pin.
9:6 SD_IN RO Indicates the actual logic levels on the sd(3:0) XRM GPIO pins.
5:4 SC_IN RO Indicates the actual logic levels on the sc(1:0) XRM GPIO pins.
3:2 SB_IN RO Indicates the actual logic levels on the sb(1:0) XRM GPIO pins.
1:0 SA_IN RO Indicates the actual logic levels on the sa(1:0) XRM GPIO pins.

Table 44: GPIO Test Register Block, XRM_GPIO_CS_DATAI Register (0x000234)

Bits Mnemonic Type Function
31:18 (Reserved)

17 DD_CC_P_TRI M Controls/indicates the tristate enable for the dd_cc_p XRM GPIO pin.
If a bit is 1, the corresponding pin is tristated (high-impedance).

16 DD_CC_N_TRI M Controls/indicates the tristate enable for the dd_cc_n XRM GPIO pin.
If a bit is 1, the corresponding pin is tristated (high-impedance).

15 DC_CC_P_TRI M Controls/indicates the tristate enable for the dc_cc_p XRM GPIO pin.
If a bit is 1, the corresponding pin is tristated (high-impedance).

14 DC_CC_N_TRI M Controls/indicates the tristate enable for the dc_cc_n XRM GPIO pin.
If a bit is 1, the corresponding pin is tristated (high-impedance).

13 DB_CC_P_TRI M Controls/indicates the tristate enable for the db_cc_p XRM GPIO pin.
If a bit is 1, the corresponding pin is tristated (high-impedance).

12 DB_CC_N_TRI M Controls/indicates the tristate enable for the db_cc_n XRM GPIO pin.
If a bit is 1, the corresponding pin is tristated (high-impedance).

11 DA_CC_P_TRI M Controls/indicates the tristate enable for the da_cc_p XRM GPIO pin.
If a bit is 1, the corresponding pin is tristated (high-impedance).

10 DA_CC_N_TRI M Controls/indicates the tristate enable for the da_cc_n XRM GPIO pin.
If a bit is 1, the corresponding pin is tristated (high-impedance).

9:6 SD_TRI M Controls/indicates the tristate enables for the sd(3:0) XRM GPIO pins.
If a bit is 1, the corresponding pin is tristated (high-impedance).

5:4 SC_TRI M Controls/indicates the tristate enables for the sc(1:0) XRM GPIO pins.
If a bit is 1, the corresponding pin is tristated (high-impedance).

3:2 SB_TRI M Controls/indicates the tristate enables for the sb(1:0) XRM GPIO pins.
If a bit is 1, the corresponding pin is tristated (high-impedance).

1:0 SA_TRI M Controls/indicates the tristate enables for the sa(1:0) XRM GPIO pins.
If a bit is 1, the corresponding pin is tristated (high-impedance).

Table 45: GPIO Test Register Block, XRM_GPIO_CS_TRI Register (0x000238)

Page 86 Example HDL FPGA Designs
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

Bits Mnemonic Type Function
31:0 P_DATAO M Controls/indicates logic levels driven on the gpio_p

(PN4_GPIO_WIDTH-1:0) Pn4 GPIO pins. If PN4_GPIO_WIDTH is less
than 32, the top (32-PN4_GPIO_WIDTH) bits of this register are unused.
The constant PN4_GPIO_WIDTH is defined in the package
adb3_target_inc_pkg.

Table 46: GPIO Test Register Block, PN4_GPIO_P_DATAO Register (0x00023C)

Bits Mnemonic Type Function
31:0 P_DATAI RO Indicates the actual logic levels on the gpio_p(PN4_GPIO_WIDTH-1:0)

Pn4 GPIO pins. If PN4_GPIO_WIDTH is less than 32, the top
(32-PN4_GPIO_WIDTH) bits of this register are unused.
The constant PN4_GPIO_WIDTH is defined in the package
adb3_target_inc_pkg.

Table 47: GPIO Test Register Block, PN4_GPIO_P_DATAI Register (0x000240)

Bits Mnemonic Type Function
31:0 P_TRI M Controls/indicates the tristate enables for the gpio_p

(PN4_GPIO_WIDTH-1:0) Pn4 GPIO pins. If PN4_GPIO_WIDTH is less
than 32, the top (32-PN4_GPIO_WIDTH) bits of this register are unused.
If a bit is 1, the corresponding pin is tristated (high-impedance).
The constant PN4_GPIO_WIDTH is defined in the package
adb3_target_inc_pkg.

Table 48: GPIO Test Register Block, PN4_GPIO_P_TRI Register (0x000244)

Bits Mnemonic Type Function
31:0 N_DATAO M Controls/indicates logic levels driven on the gpio_n

(PN4_GPIO_WIDTH-1:0) Pn4 GPIO pins. If PN4_GPIO_WIDTH is less
than 32, the top (32-PN4_GPIO_WIDTH) bits of this register are unused.
The constant PN4_GPIO_WIDTH is defined in the package
adb3_target_inc_pkg.

Table 49: GPIO Test Register Block, PN4_GPIO_N_DATAO Register (0x000248)

Bits Mnemonic Type Function
31:0 N_DATAI RO Indicates the actual logic levels on the gpio_n(PN4_GPIO_WIDTH-1:0)

Pn4 GPIO pins. If PN4_GPIO_WIDTH is less than 32, the top
(32-PN4_GPIO_WIDTH) bits of this register are unused.
The constant PN4_GPIO_WIDTH is defined in the package
adb3_target_inc_pkg.

Table 50: GPIO Test Register Block, PN4_GPIO_N_DATAI Register (0x00024C)

Page 87Example HDL FPGA Designs
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

Bits Mnemonic Type Function
31:0 N_TRI M Controls/indicates the tristate enables for the gpio_n

(PN4_GPIO_WIDTH-1:0) Pn4 GPIO pins. If PN4_GPIO_WIDTH is less
than 32, the top (32-PN4_GPIO_WIDTH) bits of this register are unused.
If a bit is 1, the corresponding pin is tristated (high-impedance).
The constant PN4_GPIO_WIDTH is defined in the package
adb3_target_inc_pkg.

Table 51: GPIO Test Register Block, PN4_GPIO_N_TRI Register (0x000250)

Bits Mnemonic Type Function
31:0 MS_DATAO M If PN6_GPIO_WIDTH is less than or equal to 32, this register is ignored.

If PN6_GPIO_WIDTH is at least 32, this register controls/indicates logic
levels driven on the gpio(PN6_GPIO_WIDTH:32) PN6 GPIO pins. If
PN6_GPIO_WIDTH is less than 64, the top (64-PN6_GPIO_WIDTH) bits of
this register are unused.
The constant PN6_GPIO_WIDTH is defined in the package
adb3_target_inc_pkg

Table 52: GPIO Test Register Block, PN6_GPIO_MS_DATAO Register (0x000254)

Bits Mnemonic Type Function
31:0 MS_DATAI RO If PN6_GPIO_WIDTH is less than or equal to 32, this register is ignored.

If PN6_GPIO_WIDTH is at least 32, this register indicates the actual logic
levels on the gpio(PN6_GPIO_WIDTH:32) PN6 GPIO pins. If
PN6_GPIO_WIDTH is less than 64, the top (64-PN6_GPIO_WIDTH) bits of
this register are unused.
The constant PN6_GPIO_WIDTH is defined in the package
adb3_target_inc_pkg

Table 53: GPIO Test Register Block, PN6_GPIO_MS_DATAI Register (0x000258)

Bits Mnemonic Type Function
31:0 MS_TRI M If PN6_GPIO_WIDTH is less than or equal to 32, this register is ignored.

If PN6_GPIO_WIDTH is at least 32, this register controls/indicates the
tristate enables for the gpio(PN6_GPIO_WIDTH:32) Pn6 GPIO pins. If
PN6_GPIO_WIDTH is less than 64, the top (64-PN6_GPIO_WIDTH) bits of
this register are unused.
If a bit is 1, the corresponding pin is tristated (high-impedance).
The constant PN6_GPIO_WIDTH is defined in the package
adb3_target_inc_pkg

Table 54: GPIO Test Register Block, PN6_GPIO_MS_TRI Register (0x00025C)

Bits Mnemonic Type Function
31:0 LS_DATAO M If PN6_GPIO_WIDTH is at least 32, this register controls/indicates logic

levels driven on the gpio(31:0) Pn6 GPIO pins.
If PN6_GPIO_WIDTH is less than 32, this register controls/indicates logic
levels driven on the gpio(PN6_GPIO_WIDTH-1:0) Pn6 GPIO pins, and the
top (32-PN6_GPIO_WIDTH) bits of this register are unused.
The constant PN6_GPIO_WIDTH is defined in the package
adb3_target_inc_pkg

Table 55: GPIO Test Register Block, PN6_GPIO_LS_DATAO Register (0x000260)

Page 88 Example HDL FPGA Designs
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

Bits Mnemonic Type Function
31:0 LS_DATAI RO If PN6_GPIO_WIDTH is at least 32, this register indicates the actual logic

levels on the gpio(31:0) Pn6 GPIO pins
If PN6_GPIO_WIDTH is less than 32, this register indicates the actual logic
levels on the gpio(PN6_GPIO_WIDTH-1:0) Pn6 GPIO pins, and the top
(32-PN6_GPIO_WIDTH) bits of this register are unused.
The constant PN6_GPIO_WIDTH is defined in the package
adb3_target_inc_pkg

Table 56: GPIO Test Register Block, PN6_GPIO_LS_DATAI Register (0x000264)

Bits Mnemonic Type Function
31:0 LS_TRI M If PN6_GPIO_WIDTH is at least 32, this register controls/indicates the

tristate enables for the gpio(31:0) Pn6 GPIO pins
If PN6_GPIO_WIDTH is less than 32, this register controls/indicates the
tristate enables of the gpio(PN6_GPIO_WIDTH-1:0) Pn6 GPIO pins, and
the top (32-PN6_GPIO_WIDTH) bits of this register are unused.
If a bit is 1, the corresponding pin is tristated (high-impedance).
The constant PN6_GPIO_WIDTH is defined in the package
adb3_target_inc_pkg

Table 57: GPIO Test Register Block, PN6_GPIO_LS_TRI Register (0x000268)

5.5.4.3.8 On-Board Memory Register Block
5.5.4.3.8.1 Description

The on-board Memory register block is implemented in hdl/vhdl/examples/uber/common/blk_ds_mem_reg.vhd and
contains the following register groups:

Control of paging for the Direct Slave on-board memory access window via the DS_BANK and DS_PAGE
registers.

•

Status of the on-board memory interfaces.•
Control and status of the on-board memory application block (FPGA-driven on-board memory test).•

It consists of an instance of adb3_ocp_simple_bus_if and a set of VHDL processes that implement the memory
control and status registers.

5.5.4.3.8.2 Register Description
As in the simple test register block, an instance of adb3_ocp_simple_bus_if together with some VHDL processes
implement the memory control and status registers. These registers appear in the Direct Slave OCP address space as
follows:

Name Address
DS_BANK 0x000300
DS_PAGE 0x000304
BANK0_CTRL
BANK1_CTRL
...

0x000320
0x000340

...
BANK0_OFFSET
BANK1_OFFSET
...

0x000324
0x000344

...

Table 58: On-Board Memory Register Block Address Map (continued on next page)

Page 89Example HDL FPGA Designs
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

Name Address
BANK0_LENGTH
BANK1_LENGTH
...

0x000328
0x000348

...
BANK0_INFO
BANK1_INFO
...

0x00032C
0x00034C

...
BANK0_STAT
BANK1_STAT
...

0x000330
0x000350

...
BANK0_APP_ERR_ADDR
BANK1_APP_ERR_ADDR
...

0x000334
0x000354

...
BANK0_MUX_ERR
BANK1_MUX_ERR
...

0x000338
0x000358

...
BANK0_DDR3_ERR
BANK1_DDR3_ERR
...

0x00033C
0x00035C

...

Table 58: On-Board Memory Register Block Address Map

Bits Mnemonic Type Function
31:0 DS_BANK M Controls which on-board memory bank is accessed via the

Direct Slave OCP address window.
The number of bits of this field that are actually used is
controlled by the BANK_ADDR_WIDTH constant defined in
blk_direct_slave. Bits 31:BANK_ADDR_WIDTH are
ignored.
Refer to Table 70 for an explanation of how this register
affects access to on-board memory.

Table 59: On-Board Memory Register Block, DS_BANK Register (0x000300)

Bits Mnemonic Type Function
31:0 DS_PAGE M Controls which page of on-board memory bank selected by

the DS_BANKregister is accessed via the Direct Slave OCP
address window.
The number of bits of this field that are actually used is
controlled by the PAGE_ADDR_WIDTH_DDR3 constant
defined in blk_direct_slave. Bits 31:
PAGE_ADDR_WIDTH_DDR3 are ignored.
Refer to Table 70 for an explanation of how this register
affects access to on-board memory.

Table 60: On-Board Memory Register Block, DS_PAGE Register (0x000304)

Page 90 Example HDL FPGA Designs
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

Bits Mnemonic Type Function
31:9 (Reserved)

8 START_TEST WO On-board memory application control:
Write 1 to initiate the FPGA-driven on-board memory test for
bank x; has no effect unless
BANKx_STAT.MEM_APP_DONE is 1.

7:0 (Reserved)

Table 61: On-Board Memory Register Block, BANKx_CTRL Register (0x000320, 0x000340, ...)

Bits Mnemonic Type Function
31:0 MEM_APP_OFFSET M On-board memory application control:

Determines the starting address (in 16-byte words) for the
FPGA-driven on-board memory test for bank x.

Table 62: On-Board Memory Register Block, BANKx_OFFSET Register (0x000324, 0x000344, ...)

Bits Mnemonic Type Function
31:0 MEM_APP_LENGTH M On-board memory application control:

Determines the number of 16-byte words that are tested by
the FPGA-driven on-board memory test for bank x.

Table 63: On-Board Memory Register Block, BANKx_LENGTH Register (0x000328, 0x000348, ...)

Bits Mnemonic Type Function
31:28 DS_BANK_WIDTH RO Indicates the width in bits of the Direct Slave on-board

Memory bank select register. The value of this register is
determined by the constant BANK_ADDR_WIDTH. This is
defined in blk_direct_slave.

27:24 DS_PAGE_WIDTH RO Indicates the width in bits of the Direct Slave on-board
Memory page select register. The value of this register is
determined by the constant PAGE_ADDR_WIDTH_DDR3.
This is defined in blk_direct_slave.

23:16 DATA_BYTES RO Indicates the number of bytes in the on-board Memory
bank x OCP data word.

15:8 DDR3_16_BYTE_ADDR_­
WIDTH

RO Indicates the width in bits of the on-board memory bank x
address space using 16-byte addressing. The value of this
register is determined by the constant
DDR3_16_BYTE_ADDR_WIDTH. This is defined in the
package adb3_target_inc_pkg.

7:0 BYTE_ADDR_WIDTH RO Indicates the width in bits of the on-board Memory bank x
address space using byte addressing. The value of this
register is determined by the constant
DDR3_BYTE_ADDR_WIDTH. This is defined in the
package adb3_target_inc_pkg.

Table 64: On-Board Memory Register Block, BANKx_INFO Register (0x00032C, 0x00034C, ...)

Page 91Example HDL FPGA Designs
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

Bits Mnemonic Type Function
31:28 BANK_NUMBER RO The number of the bank this register applies to.
27:24 (Reserved)

23 MEM_APP_ERR RO On-board memory application status:
1 => An error occurred during the last FPGA-driven test of
memory bank x; valid if and only if MEM_APP_DONE is 1.

22:20 MEM_APP_ERR_PH RO On-board memory application status:
Indicates at which phase the last FPGA-driven test of
memory bank x failed; valid if and only if both
MEM_APP_DONE and MEM_APP_ERR are 1.

19:17 (Reserved)
16 MEM_APP_DONE RO On-board memory application status:

1 => The FPGA-driven test of memory bank x is idle/done.
15:12 (Reserved)
11:8 MEM_IF_ERR RO On-board memory interface bank x initialisation error status:

Bit (3): Reset (active high).
Bit (2:1): Read leveling error.
Bit (0): Write leveling error.

7:4 (Reserved)
3:0 MEM_IF_STAT RO On-board memory interface bank x initialisation status:

Bit (3): Init complete.
Bit (2:1): Read leveling complete.
Bit (0): Write leveling complete.

Table 65: On-Board Memory Register Block, BANKx_STAT Register (0x000330, 0x000350, ...)

Bits Mnemonic Type Function
31:25 (Reserved)
24:0 MEM_APP_ERR_ADDR RO On-board memory application status:

Returns the address (in 16-byte words) of the first error
detected in the last FPGA-driven test of memory bank x;
valid if and only if both BANKx_STAT.MEM_APP_DONE
and BANKx_STAT.MEM_APP_ERR are 1.

Table 66: On-Board Memory Register Block, BANKx_APP_ERR_ADDR Register (0x000334, 0x000354, ...)

Bits Mnemonic Type Function
31:0 MUX_ERR RO OCP switching bank x adb3_ocp_mux_nb block error

status. Refer to Section 6.1 for a description.

Table 67: On-Board Memory Register Block, BANKx_MUX_ERR Register (0x000338, 0x000358, ...)

Bits Mnemonic Type Function
31:0 MEM_IF_ERR RO On-board memory interface bank x

adb3_ocp_ocp2ddr3_nb block error status. Refer to
Section 6.1 for a description.

Table 68: On-Board Memory Register Block, BANKx_DDR3_ERR Register (0x00033C, 0x00035C, ...)

Page 92 Example HDL FPGA Designs
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

5.5.4.3.9 Direct Slave BRAM Access Block
5.5.4.3.9.1 Description

This block creates a window in the Direct Slave OCP address space through which the BRAM block can be read and
written. To do accomplish this, secondary port 6 of the Direct Slave address space splitter (in the pll_reg_clk
domain) is connected to the OCP switching block (in the pll_pri_clk domain) by an instance of the component
adb3_ocp_cross_clk_dom.

5.5.4.3.9.2 Direct Slave BRAM Access Window
The BRAM access window appears in the Direct Slave OCP address space as follows:

Name Address
BRAM access window 0x080000-0x0FFFFF

Table 69: Direct Slave BRAM Access Window

5.5.4.3.10 Direct Slave On-Board Memory Access Block
5.5.4.3.10.1 Description

This block creates a window in the Direct Slave OCP address through which the on-board memory interfaces can be
read and written. To do accomplish this, secondary port 7 of the Direct Slave address space splitter (in the
pll_reg_clk domain) is connected to the OCP switching block (in the pll_pri_clk domain) by an instance of the
component adb3_ocp_cross_clk_dom.

Since the Direct Slave channel has useable OCP address space of 4 MiB, which is not sufficient to access all banks of
on-board memory, Direct Slave OCP addresses are augmented by the values of the DS_BANK and DS_PAGE
registers as described in Table 59 and Table 60 respectively. The augmented OCP memory address, which is
generated in the pll_reg_clk domain, is then connected to the pll_pri_clk domain by an instance of the component
adb3_ocp_cross_clk_dom.

5.5.4.3.10.2 Direct Slave On-Board Memory Access Window
In the Direct Slave OCP address space, all on-board memory banks are accessed through a 2 MiB address window.
When a Direct Slave OCP address hits this window, it is augmented by the DS_BANK and DS_PAGE registers in order
to be able to access all banks of on-board memory.

The on-board memory access window appears in the Direct Slave OCP address space as follows:

Name Address
On-Board memory access window 0x200000-0x3FFFFF

Table 70: Direct Slave On-Board Memory Access Window

The conversion from Direct Slave OCP addresses to augmented OCP memory addresses works as follows:

Page 93Example HDL FPGA Designs
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

Augmented OCP memory address [20:0] = Direct Slave OCP address [20:0]
Augmented OCP memory address [DMA_ADDR_WIDTH-BANK_ADDR_WIDTH-1:21] = DS_PAGE
Augmented OCP memory address [DMA_ADDR_WIDTH-1:DMA_ADDR_WIDTH-BANK_ADDR_WIDTH] =
DS_BANK
Augmented OCP memory address [63:DMA_ADDR_WIDTH] = 0

where DMA_ADDR_WIDTH is defined in adb3_target_inc_pkg and BANK_ADDR_WIDTH is defined in
blk_direct_slave. For example, for the ADM-XRC-6T1, this yields:

Augmented OCP memory address [20:0] = Direct Slave OCP address [20:0]
Augmented OCP memory address [35:21] = DS_PAGE [14:0]
Augmented OCP memory address [38:36] = DS_BANK [2:0]
Augmented OCP memory address [63:39] = 0

This produces augmented OCP addresses which are compatible with the memory address decoding scheme defined in
Table 71.

5.5.4.4 OCP Switching Block
This block is implemented by hdl/vhdl/examples/uber/common/blk_dma_switch.vhd and its purpose is to connect
together the various OCP channels in the Uber design in a useful way. A block diagram of the OCP switching block is
shown in Figure 13.

Page 94 Example HDL FPGA Designs
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

DS BRAM OCP

DMA OCP0

DMA OCP1

DMA OCP2

DMA OCP3

BRAM OCP

adb3_ocp_split_nb

OCP0

OCP OCP2

OCP1

OCP3

OCP4

adb3_ocp_mux_nb

OCP0

OCPOCP2

OCP1

adb3_ocp_mux_nb

OCP0

OCPOCP2

OCP1

adb3_ocp_mux_nb

OCP0

OCPOCP2

OCP1

RAM OCP3

RAM OCP1

RAM OCP0

.

blk_dma_switch

DS RAM OCP

adb3_ocp_split_nb

OCP0

OCP

OCP2

OCP1

OCP3

adb3_ocp_mux_nb

OCP0

OCPOCP2

OCP1

OCP4

OCP3

Mem app OCP0

Mem app OCP3

Mem app OCP2

Mem app OCP1

1

2

3

4

5

6

7

Figure 13: Uber OCP Switching Block

Page 95Example HDL FPGA Designs
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

The OCP switching block makes connections between the various OCP channels in the design as follows:

Direct Slave on-board memory access OCP channel <=> On-board memory bank interface OCP channels•
Direct Slave BRAM access OCP channel <=> BRAM interface OCP channel•
Memory application <=> On-board memory bank interface OCP channels•
DMA OCP channel 0 <=> BRAM block OCP channel•
DMA OCP channel 0 <=> On-board memory bank interface OCP channels•
Other DMA OCP channels <=> BRAM block OCP channel•

5.5.4.4.1 Direct Slave On-Board Memory OCP Address Space Splitter Block
Referring to item 1 in Figure 13, this instance of adb3_ocp_split_nb splits the Direct Slave on-board memory OCP
channel into multiple secondary OCP channels, according to the address map in Table 71 below. The address map is
defined by the the constant DS_DDR3_ADDR_RANGE_TABLE in the uber_pkg package.

Index Block Type Address Range
0 On-board memory bank 0 Memory 0x1000000000-0x1FFFFFFFFF
1 On-board memory bank 1 Memory 0x2000000000-0x2FFFFFFFFF
2 On-board memory bank 2 Memory 0x3000000000-0x3FFFFFFFFF
3 On-board memory bank 3 Memory 0x4000000000-0x4FFFFFFFFF

Table 71: Uber Design Direct Slave On-Board Memory Address Map

Note: Reads of undefined areas of the address space return data consisting of 0xDEADC0DE. Writes to
undefined areas have no effect.

5.5.4.4.2 BRAM OCP Multiplexor Block
Referring to item 2 in Figure 13, this instance of adb3_ocp_mux_nb multiplexes all OCP channels which require to be
connected to the BRAM block:

Direct Slave BRAM access OCP channel •
DMA channel 0 splitter secondary OCP channel with index 0•
The other DMA OCP channels•

5.5.4.4.3 DMA Channel 0 OCP Address Space Splitter Block
Referring to item 3 in Figure 13, this instance of adb3_ocp_split_nb splits DMA OCP channel 0 into multiple
secondary OCP channels according to the address map in Table 72. The address map is defined by the constant
DMA_ADDR_RANGE_TABLE in the uber_pkg package.

Index Block Type Address Range
0 BRAM Memory 0x0000080000-0x00000FFFFF
1 On-board memory bank 0 Memory 0x1000000000-0x1FFFFFFFFF
2 On-board memory bank 1 Memory 0x2000000000-0x2FFFFFFFFF
3 On-board memory bank 2 Memory 0x3000000000-0x3FFFFFFFFF
4 On-board memory bank 3 Memory 0x4000000000-0x4FFFFFFFFF

Table 72: Uber Design DMA Channel 0 Address Map

Page 96 Example HDL FPGA Designs
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

Note: Reads of undefined areas of the address space return data consisting of 0xDEADC0DE. Writes to
undefined areas have no effect.

5.5.4.4.4 On-Board Memory Bank OCP Multiplexors
Items 4, 5, 6 and 7 in Figure 13 are instances of adb3_ocp_mux_nb whose purpose is to enable multiple OCP
channels to access the the on-board memory banks:

Direct Slave on-board memory splitter OCP channels with indices 0 to 3•
Memory application OCP channels (FPGA-driven memory test)•
DMA OCP channel 0 splitter indices 1 to 4•

5.5.4.5 BRAM Block
This block is implemented by hdl/vhdl/examples/uber/common/blk_bram.vhd and contains a RAM composed of
BlockRAM primitives that can be read and written via the OCP switching block (see Section 5.5.4.4) by:

The Direct Slave OCP channel, via the BRAM access window.•
DMA channel 0, according to the address map in Table 72.•
Any other DMA channel, where the BRAM block is aliased throughout the entire OCP address space.•

Figure 14 shows the BRAM block connected to the OCP switching block:

Page 97Example HDL FPGA Designs
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

blk_bram

DS BRAM OCP

DMA OCP0

pll_pri_clk

adb3_ocp_mux_nb

OCP0

OCPOCP2

OCP1

blk_dma_switch

DMA OCP1

DMA OCP2

DMA OCP3

OCP4

OCP3

DMA OCP0 RAM0

DMA OCP0 RAM1

DMA OCP0 RAM2

DMA OCP0 RAM3

BRAM

OCP

adb3_ocp_split_nb

OCP0

OCP OCP2

OCP1

OCP3

OCP4

blk_bram

OCP

Figure 14: Uber BRAM Block Diagram

Page 98 Example HDL FPGA Designs
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

An instance of adb3_ocp_simple_bus_if could have been used, together with BlockRAM primitives, to implement this
block. Although this would work, read and write performance would be unsatisfactory since adb3_ocp_simple_bus_if
is not designed for high data throughput.

Therefore, instead of the above arrangement, a state machine provides the OCP interface, implementing what is in
effect a high-throughput version of adb3_ocp_simple_bus_if. A wrapper for a Virtex-6 BlockRAM called
bram_single_wrap and implemented by hdl/vhdl/examples/uber/common/bram_single_wrap.vhd is instantiated
multiple times to create a 512 KiB RAM. A shallow FIFO buffers data read from this RAM, partly to mitigate the effect of
BlockRAM read latency on throughput and partly to make the implementation of the OCP interface state machine
simpler and faster.

5.5.4.6 On-Board Memory Interface Block
This block is implemented by hdl/vhdl/examples/uber/common/blk_mem_if.vhd and instantiates a memory interface
for each bank of on-board memory. This enables the following agents to read and write on-board memory banks via the
OCP switching block (see Section 5.5.4.4):

The Direct Slave OCP channel, via the on-board memory access window.•
DMA channel 0, according to the address map in Table 72.•
The memory application (see Section 5.5.4.7).•

The number of memory interfaces and the number of DDR3 SDRAM memory interfaces are defined by the
MEM_BANKS and DDR3_BANKS constants respectively in the adb3_target_inc_pkg package. For the
ADM-XRC-6TL and ADM-XRC-6T1, which are fitted only with DDR3 SDRAM memory, DDR3_BANKS is equal to
MEM_BANKS. This arrangement is subject to change, should support for models with on-board memory other than
DDR3 SDRAM be added to the SDK.

Figure 14 shows the on-board memory interface block connected to the OCP switching block:

Page 99Example HDL FPGA Designs
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

blk_mem_if

DS RAM OCP

DMA OCP0

pll_pri_clk

pll_ref_clk

BANK0

BANK1

BANK3

pll_mem_clk

adb3_ocp_mux_nb

OCP0

OCPOCP2

OCP1

adb3_ocp_mux_nb

OCP0

OCPOCP2

OCP1

adb3_ocp_mux_nb

OCP0

OCPOCP2

OCP1

blk_dma_switch

Mem app OCP0

Mem app OCP3

Mem app OCP2

Mem app OCP1

.

adb3_ocp_ocp2ddr3_nb

addr

OCP ctrl

cmd

wdata

rdata

adb3_ocp_ocp2ddr3_nb

addr

OCP ctrl

cmd

wdata

rdata

adb3_ocp_ocp2ddr3_nb

addr

OCP ctrl

cmd

wdata

rdata

DMA OCP0 BRAM

RAM

OCP3

RAM

OCP1

RAM

OCP0

adb3_ocp_split_nb

OCP0

OCP OCP2

OCP1

OCP3

OCP4

adb3_ocp_split_nb

OCP0

OCP

OCP2

OCP1

OCP3

DDR3 MIG core

addr

PHY_IFctrl

cmd

wdata

rdata

mig_clk

DDR3 MIG core

addr

PHY_IFctrl

cmd

wdata

rdata

mig_clk

DDR3 MIG core

addr

PHY_IFctrl

cmd

wdata

rdata

mig_clk

ddr3_if_bank

ddr3_if_bank

ddr3_if_bank

Figure 15: Uber Memory Interface Block Diagram

Page 100 Example HDL FPGA Designs
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

For each bank of on-board DDR3 SDRAM memory, this block instantiates a ddr3_mem_if_bank component (see
Section 6.5). In addition, this block contains some logic common to all banks of memory such as reset logic and an
IDELAYCTRL instance.

The status of the memory interfaces, which indicates whether or not training and initialisation was successful for each
bank, can be determined via the registers defined in Section 5.5.4.3.8.

5.5.4.7 On-Board Memory Application Block
This block is implemented by hdl/vhdl/examples/uber/common/blk_mem_app.vhd and is intended to contain code
that performs some useful function on the on-board memory banks.

In the Uber design as supplied by Alpha Data, the memory application is an FPGA-driven memory test. Therefore, it
instantiates one memory test module (blk_mem_test) per bank of on-board memory, allowing some or all of the
on-board memory banks to be simultaneously tested. The advantage of the FPGA-driven memory test, over a
host-driven memory test where test data is generated and verified on the host and transferred via the Bridge, is that the
FPGA-driven memory test is faster and able to stress-test the memory subsystem by operating all banks
simultaneously. Refer to Section 6.6 for a functional description of blk_mem_test.

Since this block has access to all banks of on-board memory, it is suitable for prototyping processing algorithms that
operate on large amounts of data. Users are therefore encouraged to replace the logic in this block with their own
application.

5.5.4.8 ChipScope™ Connection Block (optional)
This block optionally instantiates logic that enables several ADB3 OCP channels to be monitored using Xilinx™
ChipScope™. It is implemented by hdl/vhdl/common/ChipScope™/blk_ChipScope™.vhd.

When the CHIPSCOPE_ON constant in hdl/vhdl/common/ChipScope™/uber.vhd is true, ChipScope™ logic is
instantiated.

Note: For simulation, a dummy version of this block is used, implemented by hdl/vhdl/common/ChipScope™/
blk_chipscope_sim.vhd. Refer to Section 6.9 for a functional description.

Note: Prior to the initial bitstream build of a design using a Xilinx™ ChipScope™ interface, the
ChipScope™ core .ngc files must be generated. Refer to Section 6.9 for a description of the procedure.

5.5.4.9 Design Package
The package uber_pkg defines types, constants, and functions which are used by the Uber example FPGA design.

Defininitions are as follows:

Top level signal types

clks_in_t. A record type containing non-MGT based input clock elements.•
clks_mgt_in_t. A record type containing MGT based input clock elements.•
clks_out_t. A record type containing output clock elements.•
xrm_gpio_t. A record type containing XRM bi-directional GPIO elements.•
pn4_gpio_t. A record type containing PN4 bi-directional GPIO elements.•
pn6_gpio_t. A record type containing PN6 bi-directional GPIO elements.•
gpio_inout_t. A record type containing all bi-directional GPIO elements.•

Direct slave interface memory map constants

Direct slave memory map sections base address constants (type adb3_ocp_addr_s).•

Page 101Example HDL FPGA Designs
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

Direct slave memory map sections mask address constants (type adb3_ocp_addr_s).•
Direct slave memory map sections range constants (type addr_range_t).•
DS_ADDR_RANGE_TABLE. Direct slave memory map address range table constant (type
addr_range_table_t).

•

Memory map sections register offsets (type natural).•
Memory map sections register offset addresses (type adb3_ocp_addr_s).•

DMA interface memory map constants

DMA memory map sections base address constants (type adb3_ocp_addr_s).•
DMA memory map sections mask address constants (type adb3_ocp_addr_s).•
DMA memory map sections range constants (type addr_range_t).•
DMA_ADDR_RANGE_TABLE. DMA memory map address range table constant (type addr_range_table_t).•

Clock frequency measurement types

clk_vec_sel_t. Type definition for clock select index vector.•
clk_vec_range_t. Type definition for clock select index number.•
mgt_clk_pin_t. Type definition for all MGT double ended clock inputs.•
mgt_clk_buf_t. Type definition for all MGT single ended buffered clock inputs.•
clk_vec_t. Type definition for all internal clocks/external clock inputs.•
clk_vec_stat_t. Type definition for measurement status for all internal clocks/external clock inputs.•
clk_vec_freq_t. Type definition for measurement frequency for all internal clocks/external clock inputs.•

Clock frequency measurement constants

Assignment of an index vector (type clk_vec_sel_t) to all internal clocks/external clock inputs.•
Assignment of an index number (type clk_vec_range_t) to all internal clocks/external clock inputs.•
CLKS_IN_VALID Clock validity vector (type clk_vec_t) for all external clock inputs.•

Memory interface types

mem_if_stat_array_t. Array of all memory interface bank status vectors.•
mem_if_err_array_t. Array of all memory interface bank error vectors.•
mem_if_rdy_array_t. Array of all memory interface bank ready signals.•
mem_if_debug_array_t. Array of all memory interface bank debug vectors.•

Memory application types

mem_app_go_array_t. Array of all memory application bank go signals.•
mem_app_offset_array_t. Array of all memory application bank test offset vectors.•
mem_app_length_array_t. Array of all memory application bank test length vectors.•
mem_app_done_array_t. Array of all memory application bank done signals.•
mem_app_err_array_t. Array of all memory application bank error signals.•
mem_app_err_ph_array_t. Array of all memory application bank error phase vectors.•
mem_app_err_addr_array_t. Array of all memory application bank error address vectors.•

Component definitions

Page 102 Example HDL FPGA Designs
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

blk_clocks•
blk_direct_slave•
blk_ds_simple_test•
blk_ds_clk_read•
blk_ds_io_test•
blk_ds_int_test•
blk_ds_mem_reg•
blk_ds_info•
blk_dma_switch•
blk_bram•
blk_mem_if•
blk_mem_app•
blk_ChipScope™•
blk_clock_freq•

5.5.5 Testbench Description
The testbench for the Uber example FPGA design is implemented by hdl/vhdl/examples/uber/common/
test_uber.vhd. Figure Figure 16 shows the testbench, with the top level of uber embedded in it.

Page 103Example HDL FPGA Designs
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

uut(uber)test_uber

Clock

generation

and test

gpio_inout

finti_l

Key:
IO with VHDL record type defined in adb3_target_inc_pkg/uber_pkg.

IO used is dependent on board type and board use. DMA OCP DM OCP

Direct Slave OCP

BANK0

BANK1

- - -

DDR3 Models

BANKn

On-board memory OCP

blk_bram

OCP

blk_dma_switch

DS BRAM OCP

RAM OCP

BRAM OCP

DMA OCP

Mem App OCP

DS RAM OCP

mptl_if_target_wrap

DS OCP

MPTL B2T

DMA OCP

MPTL T2B

MPTL Sideband

blk_clocks

clks_mgt_in

clks_out

pll_reg_clk

pll_ref_clk

clk_vec

mptl_clk

pll_mem_clk

clks_in

pll_pri_clk

MPTL B2T

MPTL T2B

MPTL Sideband

DS OCP

DMA OCP

mptl_if_bridge_wrap

DM OCP

ocp_clk_out

test_uber_ds

DS OCP

ds_comp

ds_pass

test_uber_probes

DMA OCP

DM OCP

DS OCP

test_uber_dm

DM OCP

dm_comp

dm_pass

test_uber_dma

DMA OCP

dma_comp

dma_pass

blk_mem_app

OCP ctrl

stat

blk_mem_if

OCP

BANKn

BANK0

- - -

BANK1

ctrl

stat

blk_direct_slave

DS OCP

pll_reg_clk

gpio_inout

interrupt_l

DS RAM OCP

DS BRAM OCP

pll_ref_clk

clk_vec

ctrl

stat

pll_mem_clk

ocp_clk_full

1

34

5

6

mptl_clk

2

Figure 16: Uber Design Testbench And Top Level Block Diagram

Page 104 Example HDL FPGA Designs
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

The Uber example FPGA design testbench consists of the following functions:

Clock generation for the testbench and the Unit Under Test (UUT).•
The Unit Under Test (UUT), which is the one and only instance of the top-level uber block.•
The Bridge MPTL interface block, using an instance of mptl_if_bridge_wrap.•
OCP channel probes, using instances of adb3_ocp_transaction_probe.•
Stimulus Generation and Verification.•
Instances of the DDR3 SDRAM simulation model (ddr3_sdram).•

The hierarchical structure of the testbench is shown in Figure 17:

The testbench includes the following packages:

ADB3 OCP profile definition package (adb3_ocp)•
ADB3 target types definition package (adb3_target_types_pkg)•
ADB3 target include package (adb3_target_inc_pkg)•
ADB3 target testbench package (adb3_target_tb_pkg)•
Memory interface library package (mem_if_pkg)•
Design package (uber_pkg)•
Testbench package (uber_tb_pkg)•
DDR3 SDRAM model package (ddr3_sdram_pkg)•

Figure 9 shows the design package dependencies.

Page 105Example HDL FPGA Designs
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

adb3_ocp_transaction_probeadb3_ocp_transaction_probe

dma_probe_idm_probe_i

adb3_ocp_transaction_probe

ds_probe_i

uut

uber

test_uber

test_uber_dm

mptl_if_bridge_wrap

test_uber_ds test_uber_dma

test_uber_ds_itest_uber_dm_i

mptl_if_bridge_wrap_i

test_uber_dma_i

Uber example design and testbench

Direct Slave (DS) OCP test

Direct Master (DM) OCP test

Direct Memory Access (DMA) OCP test

Key:

Alpha Data MPTL interface IP

OCP transaction checking
<Board MPTL interface>

<Board MPTL interface>_i

mptl_if_bridge_sim

mptl_if_bridge_sim_i

<Board MPTL interface>_top

<Board MPTL interface>_top_i

<Board MPTL interface>

<Board MPTL interface>_i

Bitstream build (.ngc core)

<Board MPTL interface>_slv

Full MPTL simulation

VHDL netlist

<Board MPTL interface>_slv_i

test_uber_probes

test_uber_probes_i

OCP only simulation

Figure 17: Uber Design Testbench Hierarchy

Page 106 Example HDL FPGA Designs
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

5.5.5.1 Clock Generation
This function produces the clocks required by the Unit Under Test (uber) and the bridge MPTL interface block. Clock
generation is performed at the top level of the Uber testbench, in hdl/vhdl/examples/uber/common/test_uber.vhd.
The testbench generates the following clocks:

clks_in is a signal of record type that drives the UUT's top-level clks_in port. It is generated in a board-specific
way, depending upon the BOARD_TYPE constant in the package adb3_target_inc_pkg. Among others, it
contains the 200 MHz reference clock from which the main clocks in Uber are derived (see Section 5.5.4.1 for
details of clock generation in Uber).

•

clks_mgt_in is a signal of record type that drives the UUT's top-level clks_mgt_in port, and is a bundle of all
of the MGT-related clocks. It is generated in a board-specific way, depending on the BOARD_TYPE constant
in the package adb3_target_inc_pkg.

•

The testbench generates the clock mptl_clk with a frequency that depends upon the BOARD_TYPE constant
in the package adb3_target_inc_pkg, in order to model the hardware. This clock drives the Bridge MPTL
Interface (an instance of mptl_if_bridge_wrap) in the testbench.

•

ocp_clk is a clock driven by the Bridge MPTL Interface so that OCP transactions can be generated and
verified by the testbench.

•

The ocp_clk signal requires special explanation. This clock is driven by the Bridge MPTL Interface
mptl_if_bridge_wrap. It is used within the testbench for monitoring OCP transactions, and how it is generated
depends upon the type of simulation selected by the TARGET_USE constant in the package adb3_target_inc_pkg:

In OCP-only simulation (TARGET_USE = SIM_OCP), the UUT's main OCP clock (pll_pri_clk in this case) is
routed out of the UUT via the mptl_if_target_wrap instance and into the testbench's instance of
mptl_if_bridge_wrap. The mptl_if_bridge_wrap instance outputs this signal as ocp_clk. This route is shown
in Figure 16 as the route consisting of points 1, 2, 3, 4 and 6.

•

In full MPTL simulation (TARGET_USE = SIM_MPTL), ocp_clk is entirely independent of any clock within the
UUT, and the testbench's mptl_if_bridge_wrap instance passes ocp_clk_full through to ocp_clk. This is
shown in Figure 6 as the route consisting of points 5 and 6.

•

5.5.5.2 Bridge MPTL Interface
The testbench contains an instance of mptl_if_bridge_wrap, which translates Direct Slave and DMA OCP transactions
in the testbench to MPTL data. mptl_if_bridge_wrap wraps up the Bridge MPTL interface core, instantiating an OCP
to MPTL core appropriate for the BOARD_TYPE and TARGET_USE constants from the package
adb3_target_inc_pkg.

The mptl_if_bridge_wrap output mptl_sb_b2t.mptl_bridge_gtp_online_l is combined with the Simple example
FPGA design output mptl_sb_t2b.mptl_target_gtp_online_l to produce the mptl_online_long signal. This indicates
that the MPTL interface is active and stable.

Note: The testbench monitors mptl_online_long and will terminate the simulation with an error message if it becomes
inactive. This may occur if, for example, a protocol error arises on the MPTL signals during a full MPTL simulation.

5.5.5.3 OCP Channel Probes
This function monitors the Direct Slave and DMA OCP channels for addressing/transaction problems. It generates
warnings/errors if it detects an illegal OCP operation. A probe error will result in a 'FAILED' Uber simulation result. It
uses the component adb3_ocp_transaction_probe.

5.5.5.4 Stimulus Generation and Verification

Page 107Example HDL FPGA Designs
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

This function consists of a set of processes that generate stimulus and verify the results of the simulation via the
mptl_if_bridge_wrap instance.

5.5.5.4.1 Non-OCP Functions
The top level of the testbench, hdl/vhdl/examples/uber/common/test_uber.vhd, verifies a few features of the UUT
(the Uber design) that cannot be tested by application of OCP stimulus. These tests are explained in the next few
subsections.

5.5.5.4.1.1 Clock Output Test
Note: all filenames mentioned in this section are relative to the path hdl/vhdl/examples/uber/common/.

The process clk_out_p in test_uber.vhd measures the frequencies of the bundle of clocks clks_out driven by the
UUT and compares them with expected frequencies.

Test complete and pass/fail indications are returned using the top_comp.clk_out_complete and
top_pass.clk_out_passed signals respectively in test_uber.vhd.

Example results from this test are documented in clock output test results.

5.5.5.4.1.2 MPTL GPIO Bus Test
Note: all filenames mentioned in this section are relative to the path hdl/vhdl/examples/uber/common/.

The process mptl_gpio_p in test_uber.vhd verifies that the general purpose I/O (GPIO) pins between the Bridge and
Target FPGAs behave as expected. The UUT (top-level of uber) loops back these GPIO pins so that whatever value is
driven into the top-level port gpio_b2t in uber.vhd is driven out of the gpio_t2b port.

The testbench drives the constant value X"F1D0" onto the gpio_b2t port of the UUT, so the process mptl_gpio_p
verifies that the UUT drives the same value out of its gpio_t2b port.

Test complete and pass/fail indications are returned using the top_comp.mptl_gpio_complete and
top_pass.mptl_gpio_passed signals respectively in test_uber.vhd.

Example results from this test are documented in MPTL GPIO bus test results.

5.5.5.4.1.3 DMA Abort Bus Test
Note: all filenames mentioned in this section are relative to the path hdl/vhdl/examples/uber/common/.

The process dma_abort_p in test_uber.vhd verifies that the Target FPGA never attempts to abort a DMA transfer. If
any bit of the signal dma_abort driven by the mptl_if_bridge_wrap is asserted, it indicates that the UUT is attempting
to abort a DMA transfer. This should never happen by design. The process therefore verifies that all bits of the
dma_abort signal are always zero.

Test complete and pass/fail indications are returned using the top_comp.dma_abort_complete and
top_pass.dma_abort_passed signals respectively in test_uber.vhd.

Example results from this test are documented in DMA abort bus test results.

5.5.5.4.2 Direct Slave OCP Channel
Note: all filenames mentioned in this section are relative to the path hdl/vhdl/examples/uber/common/.

An instance of the test_uber_ds component, implemented in test_uber_ds.vhd, provides test stimulus to and verifies
test results from the UUT's OCP Direct Slave channel. The stimulus is actually applied in the form of OCP commands
and data to the Bridge MPTL interface, but apart from the packetisation, multiplexing and demultiplexing that occurs in
the MPTL interfaces (both Bridge and Target), the arrangement is transparent. In other words, it behaves as if the
stimulus were applied directly to the Target FPGA's Direct Slave OCP channels:

Page 108 Example HDL FPGA Designs
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

The Bridge MPTL interface converts OCP commands and write data originating in test_uber_ds to MPTL
protocol. Within the target FPGA, the Target MPTL interface converts MPTL protocol back into OCP
commands and data. Thus, neither test_uber_ds nor the UUT (uber) is aware that OCP stimulus passes
through the MPTL.

•

Responses originating in the Target FPGA are correspondingly converted to MPTL protocol by the Target
MPTL interface, and converted back into OCP responses by the Bridge MPTL interface}. Thus, neither
test_uber_ds nor the UUT (uber) is aware that OCP responses pass through the MPTL.

•

test_uber_ds performs several tests, which are detailed in the following subsections.

5.5.5.4.2.1 Simple Test
This test exercises the Simple Test Register Block as follows:

Writes the 32-bit value 0xCAFEFACE to the DATA register.1.
Reads back the DATA register and compares it with the expected value 0xECAFEFAC. If the expected and
actual values do not match, the test is considered a failure.

2.

Test complete and pass/fail indications are returned using the ds_comp.simple_complete and
ds_pass.simple_passed signals respectively in test_uber.vhd.

Example results from this test are documented in simple test results.

5.5.5.4.2.2 Clock Frequency Measurement Test
This test exercises the Clock Frequency Measurement Register Block as follows:

Clears the "measurement valid" flags for all clocks whose frequencies can be measured, by writing
0x80000000 to the CTRL/STAT register.

1.

Selects pll_reg_clk by writing 0 (corresponding to PLL_REG_CLK_SEL) to the SEL register.2.
Waits for a measurement to be completed, by polling until bit 31 of the CTRL/STAT register is 1.3.
Reads the FREQ register and compares it with the expected frequency for pll_reg_clk of 80 MHz.4.

The test then performs similar steps for pll_pri_clk, which is the main OCP clock in Uber:

Selects pll_pri_clk by writing 1 (corresponding to PLL_PRI_CLK_SEL) to the SEL register.5.
Waits for a measurement to be completed, by polling until bit 31 of the CTRL/STAT register is 1.6.
Reads the FREQ register and compares it with the expected frequency for pll_pri_clk of 200 MHz.7.

Lastly, the test checks the frequency of the MGT113_CLK0 clock:

Selects the MGT113_CLK0 clock by writing 20 (corresponding to MGT113_CLK0_SEL) to the SEL register.8.
Waits for a measurement to be completed, by polling until bit 31 of the CTRL/STAT register.9.
Reads the FREQ register (see Table 14) and compares it with the expected frequency for MGT113_CLK0. The
expected frequency of this clock depends upon the BOARD_TYPE constant from the package
adb3_target_inc_pkg.

10.

Note: When measured frequencies are compared with expected frequencies, they are permitted a small margin of error,
since they are subject to quantization error due to the small number of reference clock cycles over which the
measurement is performed (so that the simulation does not take excessive real time to complete). If the expected and
actual values do not match to within the error margin, the test is considered a failure.

Test complete and pass/fail indications are returned using the ds_comp.clock_complete and ds_pass.clock_passed
signals respectively.

Page 109Example HDL FPGA Designs
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

Example results from this test are documented in clock frequency measurement test results.

5.5.5.4.2.3 XRM GPIO Test
This test exercises with the XRM-related registers of the GPIO Test Register Block as follows:

Writes the 32-bit value 0x76543210 to the XRM_GPIO_DD_DATAO register. This sets the value to be driven
onto the dd_p(15:0) and dd_n(15:0) XRM GPIO pins, but at this point these pins are still tristated
(high-impedance).

1.

Writes the 32-bit value 0x00000000 to the XRM_GPIO_DD_TRI register. This allows the value written in the
previous step to be driven onto the dd_p(15:0) and dd_n(15:0) XRM GPIO pins.

2.

Reads the XRM_GPIO_DD_DATAI register, to get the actual logic levels on the dd_p(15:0) and dd_n(15:0)
XRM GPIO pins. It then compares the actual value with the expected value of 0x76543210. If the expected and
actual values do not match, the test is considered a failure.

3.

Writes the 32-bit value 0xFFFFFFFF to the XRM_GPIO_DD_TRI register in order to stop driving the dd_p
(15:0) and dd_n(15:0) XRM GPIO pins.

4.

Section complete and pass/fail indications are returned using the ds_comp.frontio_complete and
ds_pass.frontio_passed signals respectively.

Example results from this test are documented in XRM GPIO test results.

5.5.5.4.2.4 Pn4/Pn6 GPIO Test
This test exercises with the Pn4-related and Pn6-related registers of the GPIO Test Register Block. First, the
Pn4-related registers are exercised as follows:

Writes the 32-bit values 0xAABBCCDD and 0x55443322 to the PN4_GPIO_P_DATAO and
PN4_GPIO_N_DATAO registers, respectively. This sets the values to be driven onto the gpio_p and gpio_n
Pn4 GPIO pins, but at this point these pins are still tristated (high-impedance).

1.

Writes the 32-bit value 0x00000000 to both the PN4_GPIO_P_TRI and PN4_GPIO_N_TRI registers. This
allows the values written in the previous step to be driven onto the gpio_p and gpio_n Pn4 GPIO pins.

2.

Reads the PN4_GPIO_P_DATAI and PN4_GPIO_N_DATAI registers, to get the actual logic levels on the
gpio_p and gpio_n Pn4 GPIO pins. It then compares the actual values with the expected values of
0xAABBCCDD and 0x55443322 respectively. If the expected and actual values do not match, the test is
considered a failure.

3.

Note: If the constant PN4_GPIO_WIDTH from the package adb3_target_inc_pkg is less than 32, the top
32-PN4_GPIO_WIDTH bits of each value are not used in the comparison.
Writes the 32-bit value 0xFFFFFFFF to both the PN4_GPIO_P_TRI and PN4_GPIO_N_TRI registers in order
to stop driving gpio_p and gpio_n Pn4 GPIO pins.

4.

The second part exercises with the Pn6-related registers of the GPIO Test Register Block as follows:

Writes the 32-bit values 0xAAAABBBB and 0xCCCCDDDD to the PN6_GPIO_MS_DATAO and
PN6_GPIO_LS_DATAO registers, respectively. This sets the values to be driven onto the Pn6 GPIO pins, but
at this point these pins are still tristated (high-impedance).

5.

Writes the 32-bit value 0x00000000 to both the PN6_GPIO_MS_TRI and PN6_GPIO_LS_TRI registers. This
allows the values written in the previous step to be driven onto the Pn6 GPIO pins.

6.

Reads the PN6_GPIO_MS_DATAI and PN6_GPIO_LS_DATAI registers, to get the actual logic levels on the
Pn6 GPIO pins. It then compares the actual values with the expected values of 0xAAAABBBB and
0xCCCCDDDD respectively. If the expected and actual values do not match, the test is considered a failure.

7.

Page 110 Example HDL FPGA Designs
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

Note: Depending on the constant PN6_GPIO_WIDTH from the package adb3_target_inc_pkg some of the
bits of the actual and expected values may be unused in the comparison. For example, if PN6_GPIO_WIDTH
is 46, the top 18 bits of the value read from PN6_GPIO_MS_DATAI are unused.
Writes the 32-bit value 0xFFFFFFFF to both the PN6_GPIO_MS_TRI and PN6_GPIO_LS_TRI registers in
order to stop driving the Pn6 GPIO pins.

8.

Section complete and pass/fail indications are returned using the ds_comp.reario_complete and
ds_pass.reario_passed signals respectively.

Example results from this test are documented in Pn4/Pn6 GPIO test results.

5.5.5.4.2.5 Interrupt Test
This test exercises the Interrupt Test Register Block. Its operation can be expressed in pseudocode as the following
algorithm:

Unmask all interrupts by writing 0 to the MASK register.1.
Read back the MASK register and verify that it has the expected value of 0. If the expected and actual values
do not match, the test is considered a failure.

2.

Write the value 0xFFFFFFF to the COUNT register.3.
Verify that the COUNT register has the expected value 0xFFFFFFF.4.
For n in 0 to 31 do5.

Generate interrupt n, by writing the value 2^n to the SET register.a.
Wait for the interrupt signal linti_l to be asserted. This is a falling-edge sensitive signal in the testbench
that is driven low by the top-level port of the UUT whenever at least one interrupt is active in the CLEAR/
STAT register and also unmasked by the MASK register.

b.

Sample the CLEAR/STAT register to determine which interrupt bit/bits is/are active.c.
Clear the active interrupt(s) by writing the sampled value back to the CLEAR/STAT register.d.
Force the linti_l signal high (deasserted) for a clock cycle by writing a dummy value to the ARM register.e.

end do6.
Verify that the CLEAR/STAT register now has a value of 0, since all interrupts should have been cleared. If the
value is non-zero, the test is considered a failure.

7.

Steps c,d, and e model what an interrupt service routine (ISR) in a device driver might do. Step e is not strictly
necessary in this case, because this test exercises only one interrupt source at a time, but it is included to model what
an ISR would do. In a real application, multiple interrupt sources might become active at any time, including during the
time taken for an ISR to service an interrupt. Forcing linti_l high for one cycle ensures that the newly active interrupt
source results in another falling edge on linti_l.

Test complete and pass/fail indications are returned using the ds_comp.int_complete and ds_pass.int_passed
signals respectively.

Example results from this test are documented in Interrupt test results.

5.5.5.4.2.6 Informational Register Test
This test verifies that the Informational Register Block returns the expected values when read:

Reads the DATE register and verifies that it is equal to the constant TODAYS_DATE from the autogenerated
package today_pkg. If not, the test is considered a failure.

1.

Reads the TIME register and verifies that it is equal to the constant TODAYS_TIME from the autogenerated
package today_pkg. If not, the test is considered a failure.

2.

Page 111Example HDL FPGA Designs
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

Reads the BRAM_BASE register and verifies that it is equal to the constant BRAM_ADDR_BASE from the
package uber. If not, the test is considered a failure.

3.

Reads the BRAM_MASK register and verifies that it is equal to the constant BRAM_ADDR_MASK from the
package uber. If not, the test is considered a failure.

4.

Reads the MEM_BASE register and verifies that it is equal to the constant RAM_WIN_ADDR_BASE from the
package uber. If not, the test is considered a failure.

5.

Reads the MEM_MASK register and verifies that it is equal to the constant RAM_WIN_ADDR_MASK from the
package uber. If not, the test is considered a failure.

6.

Reads the MEM_BANKS register and verifies that it is equal to the constant MEM_BANKS from the package
adb3_target_inc_pkg. If not, the test is considered a failure.

7.

Test complete and pass/fail indications are returned using the ds_comp.info_complete and ds_pass.info_passed
signals respectively.

Example results from this test are documented in informational register test results.

5.5.5.4.2.7 BRAM Test
This section exercises the BRAM Block by writing various values to it and reading them back. In the following test
cases, if the actual value read back is not equal to the expected value, the test is considered a failure:

Writes the 32-bit word 0x2389EF45 to the lowest address in the BRAM Block. This address is the value of the
constant BRAM_ADDR_BASE in the uber_pkg package. This value is then read back and compared with the
expected value (the same data that was written).

1.

Writes 16 bytes consisting of the 32-bit words { 0xEF123456, ... etc. ..., 0x56789ABC } to the lowest address in
the BRAM Block, i.e. BRAM_ADDR_BASE. This value is then read back and compared with the expected
value (the same data that was written).

2.

Writes 32 bytes consisting of the 32-bit words { 0xABCDEF12, ... etc. ..., 0xFEDCBA98 } to the lowest address
in the BRAM Block, i.e. BRAM_ADDR_BASE. This value is then read back and compared with the expected
value (the same data that was written).

3.

Writes the 32-bit word 0x369CF258 to an address that is 4 bytes below the lowest address in the BRAM Block,
i.e. BRAM_ADDR_BASE-4. This value is then read back and compared with the expected value, which is
0xDEADC0DE (since the address used does not belong to any Direct Slave address range decoded by the
Uber design). This verifies that the lower address boundary of the BRAM Block is as expected.

4.

Writes the 32-bit word 0x258BE147 to an address that is just above the highest address in the BRAM Block,
i.e. BRAM_ADDR_BASE+BRAM_ADDR_MASK+1. This value is then read back and compared with the
expected value, which is 0xDEADC0DE (since the address used does not belong to any Direct Slave address
range decoded by the Uber design). This verifies that the upper address boundary of the BRAM Block is as
expected.

5.

Writes 32 bytes consisting of the 32-bit words { 0xABCDEF12, ... etc. ..., 0xFEDCBA98 } to an address that is
just above the highest address in the BRAM Block, i.e. BRAM_ADDR_BASE+BRAM_ADDR_MASK+1. This
value is then read back and compared with the expected value, which is 8 32-bit words of 0xDEADC0DE
(since the address used does not belong to any Direct Slave address range decoded by the Uber design). This
verifies that the upper address boundary of the BRAM Block is as expected.

6.

Writes the 32-bit word 0x147AD036 to an address that is 4 bytes below the highest address in the BRAM
Block, i.e. BRAM_ADDR_BASE+BRAM_ADDR_MASK-3. This value is then read back and compared with
the expected value (the same data that was written).

7.

Test complete and pass/fail indications are returned using the ds_comp.bram_complete and ds_pass.bram_passed
signals respectively.

Example results from this test are documented in BRAM test results.

Page 112 Example HDL FPGA Designs
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

5.5.5.4.2.8 On-Board Memory Test
This test exercises several subsystems of the Uber design, including Direct Slave on-board memory access, the
memory application and on-board memory. To exercise the on-board memory bank OCP multiplexors, the test
programs the memory application to perform a short test of memory bank 1, while the test itself concurrently reads
and writes memory locations in a different region of bank 1.

The steps performed by this test can be expressed in pseudocode as the following algorithm:

Poll the BANK1_STAT register until it indicates (via bit 3) that initialisation of memory bank 1 is complete.1.
Display the value of the BANK1_STAT register on the simulator console.2.
Set the BANK1_OFFSET register to 0x00FFFEFF, which is the value of the constant RAM_TEST_OFF in
test_uber_ds.vhd. This is the address in bank 1 (as a 16-byte word index) at which the FPGA-driven memory
test will begin testing.

3.

Display the value of the BANK1_OFFSET register on the simulator console.4.
Set the BANK1_LENGTH register to 0x0000FF, which is the value of the constant RAM_TEST_LEN in
test_uber_ds.vhd. This is the number of 16-byte words, beginning at the BANK1_OFFSET address in bank 1,
that the FPGA-driven memory test will test during each phase, minus 1. The value 0x0000FF therefore results
in 256 16-byte words being tested.

5.

Display the value of the BANK1_LENGTH register on the simulator console.6.
Write 0x00000100 to the BANK1_CTRL, which initiates the FPGA-driven memory test for bank 1.7.
Set the memory access window for accessing memory bank 1, by writing 1 to the DS_BANK register.8.
Set the memory access window for accessing the bottom 2 MiB page of memory bank 1, by writing 0 to the
DS_PAGE register.

9.

Write the 32-bit word 0x349AF056 to the bottom of the memory access window (the constant
RAM_WIN_ADDR_BASE in the uber_pkg package).

10.

Read back the value just written, and compare it to the expected value of 0x349AF056. If the expected and
actual values are not equal, the test is considered a failure.

11.

Set the memory access window for accessing page 127, by writing 0x0000007F to the DS_PAGE register.
0x0000007F is the value of the constant DS_WIN_RAM_PAGE_TOP in test_uber_ds.vhd.

12.

Write the 32-bit word 0x47AD0369 to the top of the memory access window (RAM_WIN_ADDR_BASE+
RAM_WIN_ADDR_MASK-3).

13.

Read back the value just written, and compare it to the expected value of 0x47AD0369. If the expected and
actual values are not equal, the test is considered a failure.

14.

Set the memory access window for accessing the bottom 2 MiB page, by writing 0 to the DS_PAGE register.15.
Write 32 bytes consisting of the 32-bit words { 0xABCDEF12, ... etc. ..., 0xFEDCBA98 } to the bottom of the
memory access window. This is the case of an even-length burst (two 16-byte words) at an even address (bit
4 of the OCP address is 0).

16.

Read back the data just written, and compare it to the expected value (the same data that was written). If the
expected and actual values are not equal, the test is considered a failure.

17.

Write 48 bytes consisting of the 32-bit words { 0xBCDEF123, ... etc. ..., 0x3456789A } to the bottom of the
memory access window. This is the case of an odd-length burst (three 16-byte words) at an even address (bit
4 of the OCP address is 0).

18.

Read back the data just written, and compare it to the expected value (the same data that was written). If the
expected and actual values are not equal, the test is considered a failure.

19.

Write 32 bytes consisting of the 32-bit words { 0xDEF12345, ... etc. ..., 0xDCBA9876 } to 16 bytes above the
bottom of the memory access window (RAM_WIN_ADDR_BASE+16). This is the case of an even-length
burst (two 16-byte words) at an odd address (bit 4 of the OCP address is 1).

20.

Page 113Example HDL FPGA Designs
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

Read back the data just written, and compare it to the expected value (the same data that was written). If the
expected and actual values are not equal, the test is considered a failure.

21.

Write 48 bytes consisting of the 32-bit words { 0xEF123456, ... etc. ..., 0x6789ABCD } to 16 bytes above the
bottom of the memory access window (RAM_WIN_ADDR_BASE+16). This is the case of an odd-length
burst (three 16-byte words) at an odd address (bit 4 of the OCP address is 1).

22.

Read back the data just written, and compare it to the expected value (the same data that was written). If the
expected and actual values are not equal, the test is considered a failure.

23.

Write the 32-bit word 0x45000000 to the bottom of the memory access window with byte enables 1000. This
exercises writing data on byte lane 3 (only) of the memory bank.

24.

Write the 32-bit word 0x00AB0000 to the bottom of the memory access window with byte enables 0100. This
exercises writing data on byte lane 2 (only) of the memory bank.

25.

Write the 32-bit word 0x00000100 to the bottom of the memory access window with byte enables 0010. This
exercises writing data on byte lane 1 (only) of the memory bank.

26.

Write the 32-bit word 0x00000067 to the bottom of the memory access window with byte enables 0001. This
exercises writing data on byte lane 0 (only) of the memory bank.

27.

Read back the 32-bit word just written, and compare it to the expected value of 0x45AB0167. If the expected
and actual values are not equal, the test is considered a failure.

28.

Poll the BANK1_STAT register until it indicates (via bit 16) that the FPGA-driven memory test of bank 1 is
complete. If the last value read from BANK1_STAT indicates (via bit 23) that the FPGA-driven memory test
encountered an error, the test is considered a failure.

29.

Test complete and pass/fail indications are returned using the ds_comp.ram_complete and ds_pass.ram_passed
signals respectively.

Example results from this test are documented in on-board memory test results.

5.5.5.4.3 DMA OCP Channels
Note: all filenames mentioned in this section are relative to the path hdl/vhdl/examples/uber/common/.

An instance of the test_uber_dma component, implemented in test_uber_dma_1ch_nb.vhd, provides test stimulus to
and verifies test results from the UUT's DMA OCP channels. The stimulus is actually applied in the form of OCP
commands and data to the Bridge MPTL interface, but apart from the packetisation, multiplexing and demultiplexing
that occurs in the MPTL interfaces (both Bridge and Target), the arrangement is transparent. In other words, it behaves
as if the stimulus were applied directly to the Target FPGA's DMA OCP channels.

In this testbench, DMA channel 0 (the value of the constant DMA_SINGLE_CHANNEL in the package uber_tb_pkg) is
tested. Changing this constant is not recommended as in the Uber design, only DMA channel 0 has access to both the
BRAM Block and the On-Board Memory Interface Block. The entity test_uber_dma contains two processes that (i)
generate OCP commands & OCP write data, and (ii) accept OCP responses (read data). The following subsections
describe these processes.

5.5.5.4.3.1 DMA OCP Command and Write Data Process
The process dma_channel_cmd_p in test_uber_dma_1ch_nb.vhd exercises DMA OCP channel 0 in the UUT as
described by the following pseudocode:

Set address := DMA_ADDR_WR, remaining := DMA_SIZE, tag := 0, index := 01.
while remaining != 0 do2.

Set chunk := min(remaining, 128)•
Generate 'chunk' bytes of data consisting of 32-bit words equal to (0xBEEF0000 + index), incrementing
'index' by one with each 32-bit word generated.

•

Page 114 Example HDL FPGA Designs
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

Issue an OCP write command on DMA channel 0 with 'address' as the address, 'tag' as the tag, and
length equal to 'chunk', using the data from step 4. Wait until the command has been accepted and all of
the data for the command has been transferred.

•

Set remaining := remaining - chunk, address := address + chunk, tag := tag + 1•

end while3.
Set address := DMA_ADDR_RD, remaining := DMA_SIZE, tag := 04.
while remaining != 0 do5.

Set chunk := min(remaining, 128)•
Issue an OCP read command on DMA channel 0 with 'address' as the address, 'tag' as the tag, and
length equal to 'chunk'. Wait until the command has been accepted.

•

Set remaining := remaining - chunk, address := address + chunk, tag := tag + 1•

end while6.

The DMA_SIZE, DMA_ADDR_WR and DMA_ADDR_RD constants are defined in the uber_tb_pkg package. The
values of DMA_ADDR_WR and DMA_ADDR_RD correspond to byte offset 0x7F00 into on-board memory bank 1.

Test complete and pass/fail indications for steps 1 to 3 are returned using the dma_comp.dma_write_cmd_complete
and dma_pass.dma_write_cmd_passed signals respectively. Test complete and pass/fail indications for steps 4 to 6
are returned using the dma_comp.dma_read_cmd_complete and dma_pass.dma_read_cmd_passed signals
respectively.

Example results from this test are documented in DMA OCP channels results.

5.5.5.4.3.2 DMA OCP Response Process
The process dma_channel_resp_p in test_uber_dma_1ch_nb.vhd exercises DMA OCP channel 0 in the UUT as
described by the following pseudocode:

Set remaining := DMA_SIZE, index := 0, expected_tag := 01.
while remaining != 0 do2.

Set chunk := min(remaining, 128)•
Wait for 'chunk' bytes of response data to be received from DMA OCP channel 0•
Verify that the received data, considered as 32-bit words, equals the incrementing pattern 0xBEEF0000 +
index, where index is incremented by 1 with each word checked. If a received 32-bit word does not equal
the expected pattern, the test is considered a failure.

•

Verify that the received OCP response tag for each 16-byte OCP word received equals 'expected_tag'. If
it does not, the test is considered a failure.

•

Set remaining := remaining - chunk, expected_tag := expected_tag + 1•

end while3.

The DMA_SIZE constant is defined in the uber_tb_pkg package.

Test complete and pass/fail indications are returned using the dma_comp.dma_read_resp_complete and
dma_pass.dma_read_resp_passed signals respectively.

Example results from this test are documented in DMA OCP channels results.

5.5.5.5 Memory Device Simulation Models
The testbench instantiates a DDR3 SDRAM simulation model for each memory device in each bank of on-board
memory. The DDR3 SDRAM model is located in hdl/vhdl/common/mem_tb/ddr3_sdram/. Refer to Section 6.7 for a
functional description.

Page 115Example HDL FPGA Designs
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

The DDR3 SDRAM part to be simulated is selected according to the TB_DDR3_PART constant defined in the
uber_tb_pkg package.

5.5.5.6 Testbench Package
The package uber_tb_pkg defines types, constants, and functions which are used by the Uber example FPGA
testbench.

Defininitions are as follows:

Clock period constants

Testbench clock period constants (type time).•
Testbench clock frequency constsnts (type natural).•

DMA test constants

DMA_WRITE_CHANNEL. The DMA channel used by writes (Host to FPGA) during 2 channel DMA test.•
DMA_READ_CHANNEL. The DMA channel used by reads (FPGA to Host) during 2 channel DMA test.•
DMA_SINGLE_CHANNEL. The DMA channel used by writes and reads during 1 channel DMA test.•
DMA_ADDR_WR. The start address used by writes (Host to FPGA) during DMA test.•
DMA_ADDR_RD. The start address used by reads (FPGA to Host) during DMA test.•
DMA_SIZE. The size of the DMA transfer in bytes.•
DMA_BL_WRITE. The OCP burst length used by writes (Host to FPGA) during DMA test.•
DMA_BL_READ. The OCP burst length used by reads (FPGA to Host) during DMA test.•

On-board RAM part selection constants

TB_DDR3_1G_PART. Part number of 1 Gib DDR3 SDRAM components.•
TB_DDR3_2G_PART. Part number of 2 Gib DDR3 SDRAM components.•
TB_DDR3_PART. Part number of selected DDR3 SDRAM components.•
TB_DDR3_ROW. Row address width of selected DDR3 SDRAM components.•
TB_DDR3_COL. Column address width of selected DDR3 SDRAM components.•
TB_DDR3_BANK. Bank address width of selected DDR3 SDRAM components.•
TB_DDR3_BYTE_ADDR_WIDTH. Byte address width of selected DDR3 SDRAM components.•
TB_DDR3_16_BYTE_ADDR_WIDTH. 16-byte address width of selected DDR3 SDRAM components.•

Interrupt test constants

MASK_EN_ALL. Interrupt mask register enable all constant.•

Test status types

top_comp_t. A record type containing non-OCP test completion elements.•
ds_comp_t. A record type containing direct slave OCP test completion elements.•
dma_comp_t. A record type containing DMA OCP test completion elements.•
top_pass_t. A record type containing non-OCP test pass elements.•
ds_pass_t. A record type containing direct slave OCP test pass elements.•
dma_pass_t. A record type containing DMA OCP test pass elements.•

Page 116 Example HDL FPGA Designs
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

5.5.6 Design Simulation
Modelsim macro files are located in each of the target FPGA example design directories. The macro file that should be
used depends upon the type of simulation required:

OCP-only: hdl/vhdl/examples/uber/<model>/uber-<model>.do•
Full MPTL: hdl/vhdl/examples/uber/<model>/uber-<model>-mptl.do•

where <model> corresponds to the board in use; for example admxrc6t1 for the ADM-XRC-6T1.

Modelsim simulation is initiated using the vsim command with the appropriate macro file; for example, to perform an
OCP-only Modelsim simulation in Windows for the ADM-XRC-6T1, start a shell and issue the following commands:

cd /d %ADMXRC3_SDK%\hdl\vhdl\examples\uber\admxrc6t1
vsim -do "uber-admxrc6t1.do"

In Linux, the commands are:

cd $ADMXRC3_SDK%/hdl/vhdl/examples/uber/admxrc6t1
vsim -do "uber-admxrc6t1.do"

Note: The Modelsim macro files always delete any previously compiled data before compiling the Uber
design.

Note: Before performing the first simulation of the Uber design, HDL files for the Xilinx™ Memory Interface
Generator (MIG) DDR3 SDRAM interface must be generated using the script gen_mem_if.bat (Windows)
or gen_mem_if.bash (Linux) in hdl/vhdl/common/mem_if/ddr3_sdram/mig_v3_6/. Refer to Section 6.5
for details.

5.5.6.1 Date/Time Package Generation
Before compiling the Uber example design HDL and initiating simulation, the macro file runs a TCL script
gen_today_pkg.tcl to generate a file containing the today_pkg package. This package contains HDL constant
definitions containing the date and time at which the script was run. The file generated is dependent on the board
selected and is located in the board design directory; for example, hdl/vhdl/examples/uber/admxrc6t1/
today_pkg_admxrc6t1_sim.vhd for the ADM-XRC-6T1. Transcript output is of the form:

--
-- today_pkg_admxrc6t1_sim.vhd
-- This file was generated automatically by gen_today_pkg.tcl
--
-- Date: 08/10/2010 (dd/mm/YYYY)
-- Time: 15:26:46 (HH/MM/SS)
--

library ieee;
use ieee.std_logic_1164.all;

package today_pkg is

 constant TODAYS_DATE : std_logic_vector(31 downto 0) := X"08102010";
 constant TODAYS_TIME : std_logic_vector(31 downto 0) := X"15264600";

end package today_pkg;

5.5.6.2 Initialisation Results
Modelsim transcript output during initialisation of the simulation is of the form described in the following subsections.

5.5.6.2.1 DDR3 SDRAM MIG Core MMCM Status
Each instantiation of the DDR3 SDRAM MIG core produces a summary of its MMCM clocking parameters:

############# Write Clocks MMCM_ADV Parameters #############

Page 117Example HDL FPGA Designs
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

nCK_PER_CLK = 2
CLK_PERIOD = 5000
CLKIN1_PERIOD = 2.500000e+000
DIVCLK_DIVIDE = 2
CLKFBOUT_MULT_F = 6
VCO_PERIOD = 833
CLKOUT0_DIVIDE_F = 3
CLKOUT1_DIVIDE = 6
CLKOUT2_DIVIDE = 3
CLKOUT0_PERIOD = 2499
CLKOUT1_PERIOD = 4998
CLKOUT2_PERIOD = 2499
##

5.5.6.2.2 Testbench Status
The testbench produces a summary of the board and simulation type, and then waits for the MPTL interface to
complete its initialisation:

** Note: Board Type : adm_xrc_6t1
Time: 0 fs Iteration: 0 Instance: /test_uber
** Note: Target Use : sim_ocp
Time: 0 fs Iteration: 0 Instance: /test_uber
** Note: Waiting for MPTL online....
Time: 0 fs Iteration: 0 Instance: /test_uber

5.5.6.2.3 DDR3 SDRAM Initialisation
Each instantiated DDR3 SDRAM MIG core produces a truncated initialisation sequence during simulation. This is
detected by the DDR3 SDRAM models and warnings are issued by each instantiated part:

** Warning: DDR3 SDRAM Init FSM (3) : Deviation from recommended initialisation sequence:
violation of 200us delay before RESET_L de-assertion
Time: 971771500 fs Iteration: 4 Instance: /test_uber/ddr3_model_g__0/ddr3_sdram_bank_ls_i/ddr3_sdram_init_fsm_i
** Warning: DDR3 SDRAM Init FSM (4) : Deviation from recommended initialisation sequence:
violation of 10ns CKE delay before RESET_L de-assertion
Time: 971771500 fs Iteration: 4 Instance: /test_uber/ddr3_model_g__0/ddr3_sdram_bank_ls_i/ddr3_sdram_init_fsm_i

Each instantiated DDR3 SDRAM MIG core produces status information during its initialisation sequence:

PHY_INIT: Memory Initialization completed at 5063.017 ns
PHY_INIT: Write Leveling completed at 22183.017 ns
PHY_INIT: Read Leveling Stage 1 completed at 30373.017 ns
PHY_INIT: Read Leveling CLKDIV cal completed at 43313.017 ns
PHY_INIT: Read Leveling Stage 2 completed at 50638.017 ns
PHY_INIT: Phase Detector Initial Cal completed at 55618.017 ns

5.5.6.3 Non-OCP Functions Results
5.5.6.3.1 Clock Output Test Results

Modelsim transcript output during simulation is of the form:

** Note: Expected clk_out freq = 80MHz
Time: 1483750 ps Iteration: 10 Instance: /test_uber
** Note: Actual clk_out freq = 80MHz
Time: 1483750 ps Iteration: 10 Instance: /test_uber

** Note: Test clk_out completed: PASSED.
Time: 1483750 ps Iteration: 10 Instance: /test_uber

5.5.6.3.2 MPTL GPIO Bus Test Results
Modelsim transcript output during simulation is of the form:

** Note: Test mptl_gpio completed: PASSED.
Time: 3028750 ps Iteration: 13 Instance: /test_uber

Page 118 Example HDL FPGA Designs
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

5.5.6.3.3 DMA Abort Bus Test Results
Modelsim transcript output during simulation is of the form:

** Note: Test dma_abort completed: PASSED.
Time: 2278750 ps Iteration: 13 Instance: /test_uber

5.5.6.4 Direct Slave OCP Channel Results
5.5.6.4.1 Simple Test Results

Modelsim transcript output during simulation is of the form:

** Note: Wrote simple WDATA 4 bytes 0xCAFEFACE with enable 0b1111 to byte address 0x000000
Time: 2038750 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i
** Note: Read simple RDATA 4 bytes 0xECAFEFAC from byte address 0x000000
Time: 2351250 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i

** Note: Test Simple completed: PASSED.
Time: 2351250 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i

5.5.6.4.2 Clock Frequency Measurement Test Results
Modelsim transcript output during simulation is of the form:

** Note: Wrote Clear All CTRL 4 bytes 0x80000000 with enable 0b1111 to byte address 0x000044
Time: 2533750 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i

** Note: Wrote PLL_REG_CLK_SEL SEL 4 bytes 0x00000000 with enable 0b1111 to byte address 0x000040
Time: 2543750 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i
** Note: Read PLL_REG_CLK FREQ 4 bytes 0x00000050 from byte address 0x000048
Time: 4176250 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i
** Note: Expected freq = 80 MHz ±2 MHz
Time: 4176250 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i
** Note: Actual freq = 80 MHz
Time: 4176250 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i

** Note: Wrote PLL_PRI_CLK_SEL SEL 4 bytes 0x00000001 with enable 0b1111 to byte address 0x000040
Time: 4183750 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i
** Note: Read PLL_PRI_CLK FREQ 4 bytes 0x000000C8 from byte address 0x000048
Time: 4751250 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i
** Note: Expected freq = 200 MHz ±2 MHz
Time: 4751250 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i
** Note: Actual freq = 200 MHz
Time: 4751250 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i

** Note: Wrote MGT113_CLK0_SEL SEL 4 bytes 0x00000014 with enable 0b1111 to byte address 0x000040
Time: 4758750 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i
** Note: Read MGT113_CLK0 FREQ 4 bytes 0x000000FA from byte address 0x000048
Time: 5326250 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i
** Note: Expected freq = 250 MHz ±2 MHz
Time: 5326250 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i
** Note: Actual freq = 248 MHz
Time: 5326250 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i

** Note: Test Clock Read completed: PASSED.
Time: 5326250 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i

5.5.6.4.3 XRM GPIO Test Results
Modelsim transcript output during simulation is of the form:

** Note: Wrote XRM_GPIO_DD DATAO 4 bytes 0x76543210 with enable 0b1111 to byte address 0x000224
Time: 5508750 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i
** Note: Wrote XRM_GPIO_DD TRI 4 bytes 0x00000000 with enable 0b1111 to byte address 0x00022C
Time: 5518750 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i
** Note: Read XRM_GPIO_DD DATAI 4 bytes 0x76543210 from byte address 0x000228
Time: 6026250 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i
** Note: Wrote XRM_GPIO_DD TRI 4 bytes 0xFFFFFFFF with enable 0b1111 to byte address 0x00022C
Time: 6033750 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i

** Note: Test Front IO completed: PASSED.
Time: 6033750 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i

Page 119Example HDL FPGA Designs
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

5.5.6.4.4 Pn4/Pn6 GPIO Test Results
Modelsim transcript output during simulation is of the form:

** Note: Wrote PN4_GPIO_P DATAO 4 bytes 0xAABBCCDD with enable 0b1111 to byte address 0x00023C
Time: 6043750 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i
** Note: Wrote PN4_GPIO_N DATAO 4 bytes 0x55443322 with enable 0b1111 to byte address 0x000248
Time: 6053750 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i
** Note: Wrote PN4_GPIO_P TRI 4 bytes 0x00000000 with enable 0b1111 to byte address 0x000244
Time: 6063750 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i
** Note: Wrote PN4_GPIO_N TRI 4 bytes 0x00000000 with enable 0b1111 to byte address 0x000250
Time: 6073750 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i
** Note: Read PN4_GPIO_P DATAI 4 bytes 0xAABBCCDD from byte address 0x000240
Time: 6651250 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i
** Note: Read PN4_GPIO_N DATAI 4 bytes 0x55443322 from byte address 0x00024C
Time: 6901250 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i
** Note: Wrote PN4_GPIO_P TRI 4 bytes 0xFFFFFFFF with enable 0b1111 to byte address 0x000244
Time: 6908750 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i
** Note: Wrote PN4_GPIO_N TRI 4 bytes 0xFFFFFFFF with enable 0b1111 to byte address 0x000250
Time: 6918750 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i

** Note: Wrote PN6_GPIO_MS DATAO 4 bytes 0xAAAABBBB with enable 0b1111 to byte address 0x000254
Time: 6928750 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i
** Note: Wrote PN6_GPIO_LS DATAO 4 bytes 0xCCCCDDDD with enable 0b1111 to byte address 0x000260
Time: 6938750 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i
** Note: Wrote PN6_GPIO_MS TRI 4 bytes 0x00000000 with enable 0b1111 to byte address 0x00025C
Time: 6948750 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i
** Note: Wrote PN6_GPIO_LS TRI 4 bytes 0x00000000 with enable 0b1111 to byte address 0x000268
Time: 6958750 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i
** Note: Read PN6_GPIO_MS DATAI 4 bytes 0x0000003B from byte address 0x000258
Time: 7601250 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i
** Note: Read PN6_GPIO_LS DATAI 4 bytes 0xCCCCDDDD from byte address 0x000264
Time: 7851250 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i
** Note: Wrote PN6_GPIO_MS TRI 4 bytes 0xFFFFFFFF with enable 0b1111 to byte address 0x00025C
Time: 7858750 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i
** Note: Wrote PN6_GPIO_LS TRI 4 bytes 0xFFFFFFFF with enable 0b1111 to byte address 0x000268
Time: 7868750 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i

** Note: Test Rear IO completed: PASSED.
Time: 7868750 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i

5.5.6.4.5 Interrupt Test Results
Modelsim transcript output during simulation is of the form:

** Note: Wrote Interrupt MASK 4 bytes 0x00000000 with enable 0b1111 to byte address 0x0000C8
Time: 8173750 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i
** Note: Read Interrupt MASK 4 bytes 0x00000000 from byte address 0x0000C8
Time: 8491250 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i
** Note: Wrote Interrupt COUNT 4 bytes 0xFFFFFFFF with enable 0b1111 to byte address 0x0000D0
Time: 8498750 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i
** Note: Read Interrupt COUNT 4 bytes 0xFFFFFFFF from byte address 0x0000D0
Time: 8816250 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i

** Note: Interrupt Monitor: Detected falling edge on linti_l
Time: 8958750 ps Iteration: 13 Instance: /test_uber
** Note: Interrupt Handler: Cleared interrupt(s), masked STAT = 0x00000001
Time: 9298750 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i

** Note: Interrupt Monitor: Detected falling edge on linti_l
Time: 9583750 ps Iteration: 13 Instance: /test_uber
** Note: Interrupt Handler: Cleared interrupt(s), masked STAT = 0x00000002
Time: 9923750 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i

...

** Note: Interrupt Monitor: Detected falling edge on linti_l
Time: 28333750 ps Iteration: 13 Instance: /test_uber
** Note: Interrupt Handler: Cleared interrupt(s), masked STAT = 0x80000000
Time: 28673750 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i

** Note: Read Interrupt STAT 4 bytes 0x00000000 from byte address 0x0000C4
Time: 29066250 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i

** Note: Test Interrupt completed: PASSED.
Time: 29066250 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i

Page 120 Example HDL FPGA Designs
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

5.5.6.4.6 Informational Register Test Results
Modelsim transcript output during simulation is of the form:

** Note: Read Info DATE 4 bytes 0x18022011 from byte address 0x000140
Time: 29491250 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i
** Note: Read Info TIME 4 bytes 0x10522600 from byte address 0x000144
Time: 29741250 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i
** Note: Read Info BRAM BASE 4 bytes 0x00080000 from byte address 0x00014C
Time: 29991250 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i
** Note: Read Info BRAM MASK 4 bytes 0x0007FFFF from byte address 0x000150
Time: 30241250 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i
** Note: Read Info RAM BASE 4 bytes 0x00200000 from byte address 0x000154
Time: 30491250 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i
** Note: Read Info RAM MASK 4 bytes 0x001FFFFF from byte address 0x000158
Time: 30741250 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i
** Note: Read Info RAM INFO 4 bytes 0xXXXXXXX4 from byte address 0x00015C
Time: 30991250 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i

** Note: Test Info completed: PASSED.
Time: 30991250 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i

5.5.6.4.7 BRAM Test Results
Modelsim transcript output during simulation is of the form:

** Note: Wrote BRAM Addr base 4 bytes 0x2389EF45 with enable 0b1111 to byte address 0x080000
Time: 30498750 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i
** Note: Read BRAM Addr base 4 bytes 0x2389EF45 from byte address 0x080000
Time: 30876250 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i

** Note: Wrote BRAM Addr base 16 bytes 0x56789ABCDEF123456789ABCDEF123456
with enable 0b1111111111111111 to byte address 0x080000
Time: 30883750 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i
** Note: Read BRAM Addr base 16 bytes 0x56789ABCDEF123456789ABCDEF123456
from byte address 0x080000
Time: 31266250 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i

** Note: Wrote BRAM Addr base 32 bytes 0xFEDCBA987654321FEDCBA987654321FE123456789ABCDEF123456789ABCDEF12
with enable 0b11111111111111111111111111111111 to byte address 0x080000
Time: 31278750 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i
** Note: Read BRAM Addr base 32 bytes 0xFEDCBA987654321FEDCBA987654321FE123456789ABCDEF123456789ABCDEF12
from byte address 0x080000
Time: 31671250 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i

** Note: Wrote OOR Addr base-4 4 bytes 0x369CF258 with enable 0b1111 to byte address 0x07FFFC
Time: 31678750 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i
** Note: Read OOR Addr base-4 4 bytes 0xDEADC0DE from byte address 0x07FFFC
Time: 31916250 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i

** Note: Wrote OOR Addr top+1 4 bytes 0x258BE147 with enable 0b1111 to byte address 0x100000
Time: 31923750 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i
** Note: Read OOR Addr top+1 4 bytes 0xDEADC0DE from byte address 0x100000
Time: 32151250 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i

** Note: Wrote OOR Addr top+1 32 bytes 0xFEDCBA987654321FEDCBA987654321FE123456789ABCDEF123456789ABCDEF12
with enable 0b11111111111111111111111111111111 to byte address 0x100000
Time: 32163750 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i
** Note: Read OOR Addr top+1 32 bytes 0xDEADC0DEDEADC0DEDEADC0DEDEADC0DEDEADC0DEDEADC0DEDEADC0DEDEADC0DE
from byte address 0x100000
Time: 32416250 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i

** Note: Wrote BRAM Addr top 4 bytes 0x147AD036 with enable 0b1111 to byte address 0x0FFFFC
Time: 32423750 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i
** Note: Read BRAM Addr top 4 bytes 0x147AD036 from byte address 0x0FFFFC
Time: 32801250 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i

** Note: Test BRAM completed: PASSED.
Time: 32801250 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i

5.5.6.4.8 On-Board Memory Test Results
Modelsim transcript output during simulation is of the form:

** Note: Waiting for on-board RAM bank 1 to initialise...
Time: 32801250 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i

Page 121Example HDL FPGA Designs
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

** Note: On-board RAM bank 1 initialised
Time: 58551250 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i

** Note: Read RAM Bank Info Reg 4 bytes 0x3F10181C from byte address 0x00034C
Time: 58801250 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i
** Note: Wrote RAM Bank Offset Reg 4 bytes 0x00FFFEFF with enable 0b1111 to byte address 0x000344
Time: 58808750 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i
** Note: Read RAM Bank Offset Reg 4 bytes 0x00FFFEFF from byte address 0x000344
Time: 59126250 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i
** Note: Wrote RAM Bank Length Reg 4 bytes 0x000000FF with enable 0b1111 to byte address 0x000348
Time: 59133750 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i
** Note: Read RAM Bank Length Reg 4 bytes 0x000000FF from byte address 0x000348
Time: 59451250 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i
** Note: Wrote RAM Bank Ctrl Reg 4 bytes 0x00000100 with enable 0b1111 to byte address 0x000340
Time: 59458750 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i

** Note: Wrote RAM DS Bank Reg Addr 4 bytes 0x00000001 with enable 0b1111 to byte address 0x000300
Time: 59468750 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i
** Note: Wrote RAM DS Page Reg Addr 4 bytes 0x00000000 with enable 0b1111 to byte address 0x000304
Time: 59478750 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i
** Note: Wrote RAM Win Addr base 4 bytes 0x349AF056 with enable 0b1111 to byte address 0x200000
Time: 59488750 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i
** Note: Read RAM Win Addr base 4 bytes 0x349AF056 to byte address 0x200000
Time: 61401250 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i

** Note: Wrote RAM DS Page Reg Addr 4 bytes 0x0000007F with enable 0b1111 to byte address 0x000304
Time: 61408750 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i
** Note: Wrote RAM Win Addr top 4 bytes 0x47AD0369 with enable 0b1111 to byte address 0x3FFFFC
Time: 61418750 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i
** Note: Read RAM Win Addr top 4 bytes 0x47AD0369 from byte address 0x3FFFFC
Time: 62776250 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i

** Note: Wrote RAM DS Page Reg Addr 4 bytes 0x00000000 with enable 0b1111 to byte address 0x000304
Time: 62783750 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i
** Note: Wrote RAM Win Addr base 32 bytes 0xFEDCBA987654321FEDCBA987654321FE123456789ABCDEF123456789ABCDEF12
with enable 0b11111111111111111111111111111111 to byte address 0x200000
Time: 62798750 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i
** Note: Read RAM Win Addr base 32 bytes 0xFEDCBA987654321FEDCBA987654321FE123456789ABCDEF123456789ABCDEF12
from byte address 0x200000
Time: 64021250 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i

** Note: Wrote RAM Win Addr base 48 bytes
0x3456789ABCDEF123456789ABCDEF1234EDCBA987654321FEDCBA987654321FED23456789ABCDEF123456789ABCDEF123
with enable 0b11 to byte address 0x200000
Time: 64038750 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i
** Note: Read RAM Win Addr base 48 bytes
0x3456789ABCDEF123456789ABCDEF1234EDCBA987654321FEDCBA987654321FED23456789ABCDEF123456789ABCDEF123
from byte address 0x200000
Time: 65741250 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i

** Note: Wrote RAM Win Addr base 32 bytes 0xDCBA987654321FEDCBA987654321FEDC456789ABCDEF123456789ABCDEF12345
with enable 0b11111111111111111111111111111111 to byte address 0x200010
Time: 65753750 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i
** Note: Read RAM Win Addr base 32 bytes 0xDCBA987654321FEDCBA987654321FEDC456789ABCDEF123456789ABCDEF12345
from byte address 0x200010
Time: 67296250 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i

** Note: Wrote RAM Win Addr base 48 bytes
0x6789ABCDEF123456789ABCDEF1234567DCBA987654321FEDCBA987654321FEDC56789ABCDEF123456789ABCDEF123456
with enable 0b11 to byte address 0x200010
Time: 67313750 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i
** Note: Read RAM Win Addr base 48 bytes
0x6789ABCDEF123456789ABCDEF1234567DCBA987654321FEDCBA987654321FEDC56789ABCDEF123456789ABCDEF123456
from byte address 0x200010
Time: 68541250 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i

** Note: Wrote RAM Win Addr base 4 bytes 0x45000000 with enable 0b1000 to byte address 0x200000
Time: 68548750 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i
** Note: Wrote RAM Win Addr base 4 bytes 0x00AB0000 with enable 0b0100 to byte address 0x200000
Time: 68558750 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i
** Note: Wrote RAM Win Addr base 4 bytes 0x00000100 with enable 0b0010 to byte address 0x200000
Time: 68568750 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i
** Note: Wrote RAM Win Addr base 4 bytes 0x00000067 with enable 0b0001 to byte address 0x200000
Time: 68578750 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i
** Note: Read RAM Win Addr base 4 bytes 0x45AB0167 from byte address 0x200000
Time: 69791250 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i

** Note: Waiting for internal test of on-board RAM bank 1 to complete...
Time: 69791250 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i

** Note: Read RAM Bank Stat Reg 4 bytes 0x1XXXX0XF from byte address 0x000350

Page 122 Example HDL FPGA Designs
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

Time: 81541250 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i
** Note: Internal test of on-board RAM bank 1 complete
Time: 81541250 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i

** Note: Test RAM completed: PASSED.
Time: 81541250 ps Iteration: 13 Instance: /test_uber/test_uber_ds_i

5.5.6.5 DMA OCP Channels Results
Modelsim transcript output during simulation is of the form:

** Note: DMA read response data process started
Time: 2028750 ps Iteration: 14 Instance: /test_uber/test_uber_dma_i

** Note: DMA write process started (Base address = 0x2000007F00)
Time: 2028750 ps Iteration: 14 Instance: /test_uber/test_uber_dma_i
** Note: DMA write process completed
Time: 63493750 ps Iteration: 13 Instance: /test_uber/test_uber_dma_i
** Note: 4032 bytes transferred.
Time: 63493750 ps Iteration: 13 Instance: /test_uber/test_uber_dma_i

** Note: DMA read command process started (Base address = 0x2000007F00)
Time: 63493750 ps Iteration: 13 Instance: /test_uber/test_uber_dma_i
** Note: DMA read command process completed
Time: 63576250 ps Iteration: 13 Instance: /test_uber/test_uber_dma_i

** Note: DMA read response data process completed
Time: 67456250 ps Iteration: 13 Instance: /test_uber/test_uber_dma_i
** Note: 4032 bytes transferred with 0 data error(s)
Time: 67456250 ps Iteration: 13 Instance: /test_uber/test_uber_dma_i

** Note: Test DMA completed: PASSED.
Time: 67456250 ps Iteration: 13 Instance: /test_uber/test_uber_dma_i

5.5.6.6 Completion Results
Assuming that all tests passed, Modelsim transcript output on successful completion of simulation is of the form:

** Failure: Test of design UBER completed: PASSED.
Time: 82126250 ps Iteration: 15 Process: /test_uber/test_results_p File: ../common/test_uber.vhd
Break in Process test_results_p at ../common/test_uber.vhd line 407
Simulation Breakpoint: Break in Process test_results_p at ../common/test_uber.vhd line 407
MACRO ./uber-admxrc6t1.do PAUSED at line 216

Page 123Example HDL FPGA Designs
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

6 Common HDL Components
The ADM-XRC Gen 3 SDK provides a number of HDL components that are used in the example FPGA designs and
testbenches. These components may also be used in customer FPGA designs. This section provides details of their
interfaces and structure.

The components are divided into libraries as follows:

ADB3 OCP library•
MPTL library•
ADB3 target library•
ADB3 probe library•
Memory interface library•
Memory application library•
Memory model library•
Clock frequency measurement library•
ChipScope™ library•

Page 124 Common HDL Components
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

6.1 ADB3 OCP Library
The ADB3 OCP library is located in hdl/vhdl/common/adb3_ocp and contains the following elements:

ADB3 OCP profile definition package (adb3_ocp)•
ADB3 OCP library component declaration package (adb3_ocp_comp)•
ADB3 OCP library components•

6.1.1 ADB3 OCP Profile Definition Package (adb3_ocp)
The package adb3_ocp defines constants and types which relate to the ADB3 OCP profile. This OCP profile is used for
many of the reuseable VHDL modules in this SDK, and to connect together the various blocks in the example FPGA
designs.

Two main types are defined:

Burst capable data flow from OCP Master to OCP Slave (M2S)

Command Cmd of type ocp_CmdT (Idle, Write, Read, Write Non Post).•
Command Start Address Addr of type std_logic_vector with width ADB3_OCP_ADDR_WIDTH = 64.•
Command Burst Length BurstLength of type std_logic_vector with width ADB3_OCP_BURST_WIDTH = 12.•
Command Tag Tag of type std_logic_vector with width ADB3_OCP_TAG_WIDTH = 8.•
Data Data of type std_logic_vector with width ADB3_OCP_DATA_WIDTH = 128.•
Data Byte Enable DataByteEn of type std_logic_vector with width ADB3_OCP_BE_WIDTH = 16.•
Data Valid DataValid of type std_logic.•
Response Accept RespAccept of type std_logic.•

Burst capable data flow from OCP Slave to OCP Master (S2M)

Command Accept CmdAccept of type std_logic.•
Data Accept DataAccept of type std_logic.•
Response Data Data of type std_logic_vector with width ADB3_OCP_DATA_WIDTH = 128.•
Response Type Resp of type ocp_RespT (None, Valid, Failed, Error).•
Response Tag Tag of type std_logic_vector with width ADB3_OCP_TAG_WIDTH = 8.•

Refer to Section 7.1 for a description of ADB3 OCP protocol transactions.

Page 125Common HDL Components
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

6.1.2 ADB3 OCP Library Component Declaration Package (adb3_ocp_comp)

The package adb3_ocp_comp defines general-purpose ADB3 OCP library components.

Components that require the data for the current OCP command to be fully read or written before the next OCP
command is accepted are categorised as 'blocking'. Blocking components have a lower data throughput in general, but
require less FPGA resources. Blocking components in the ADB3 OCP library are as follows:

adb3_ocp_mux_b•
adb3_ocp_simple_bus_if•
adb3_ocp_split_b•

Components that can accept further OCP commands before the data for the current OCP command has been fully read
or written are categorised as 'non-blocking'. Non-blocking components have a higher data throughput in general, but
require more FPGA resources. Non-blocking components in the ADB3 OCP library are as follows:

adb3_ocp_cross_clk_dom•
adb3_ocp_mux_nb•
adb3_ocp_ocp2ddr3_nb•
adb3_ocp_retime_nb•
adb3_ocp_split_nb•

Page 126 Common HDL Components
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

6.1.3 ADB3 OCP Library Components
6.1.3.1 adb3_ocp_cross_clk_dom
6.1.3.1.1 Introduction

This is a non-blocking component in the ADB3 OCP library. Its function is to connect a single primary ADB3 OCP
channel in the primary clock domain to a single secondary ADB3 OCP channel in the secondary clock domain.

Dependencies

The command path is independent from the write data path. Data acceptance does not block command
acceptance.

•

The command path is independent from the read response path. Response acceptance does not block
command acceptance.

•

6.1.3.1.2 Interface
The adb3_ocp_cross_clk_dom component interface is shown in Figure 18 below and described in Table 73.

adb3_ocp_cross_clk_dom

slave_rst master_rst

slave_s2m

slave_m2s master_m2s

master_s2m

slave_clk master_clk

Figure 18: ADB3 OCP Library adb3_ocp_cross_clk_dom Component Interface

Signal Type Description
OCP Primary Port

slave_rst Input OCP Primary (slave) port asynchronous reset.
slave_clk Input OCP Primary (slave) port clock.
slave_m2s Input OCP Primary (slave) port M2S connection.
slave_s2m Output OCP Primary (slave) port S2M connection.

OCP Secondary Port
master_rst Input OCP Secondary (master) port asynchronous reset.
master_clk Input OCP Secondary (master) port clock.
master_m2s Output OCP Secondary (master) port M2S connection.
master_s2m Input OCP Secondary (master) port S2M connection.

Table 73: ADB3 OCP Library adb3_ocp_cross_clk_dom Component Interface

6.1.3.1.3 Description
The adb3_ocp_cross_clk_dom component block diagram is shown in Figure 19 below.

Page 127Common HDL Components
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

adb3_ocp_cross_clk_dom

Command path

Write data path

slaves_m2s

(Cmd, Tag, Addr,

BurstLength)

slaves_s2m

(CmdAccept)

Cmd FIFO

master_m2s

(Cmd, Tag, Addr,

BurstLength)

master_s2m

(CmdAccept)

master_m2s

(DataValid, Data,

DataByteEn)

master_s2m

(DataAccept)

Data FIFO

slave_m2s

(DataValid, Data,

DataByteEn)

slave_s2m

(DataAccept)

slave_s2m

(Resp, Data, Tag)

slave_m2s

(RespAccept)

Resp FIFO

master_s2m

(Resp, Data, Tag)

master_m2s

(RespAccept)

Read response path

afifo

wd rq

wadv

wpf

we

radv

rf

re

afifo

wd rq

wadv

wpf

we

radv

rf

re

afifo

rq wd

radv

rf

re

wadv

wpf

we

slave_clk master_clk

Figure 19: ADB3 OCP Library adb3_ocp_cross_clk_dom Block Diagram

Page 128 Common HDL Components
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

The component consists of three instances of the Asychronous FIFO block afifo. One for command signals, one for
data signals, and the third for response signals as follows:

6.1.3.1.3.1 Command Path
This consists of the Cmd, Tag, BurstLength, and Addr elements of the slave_m2s/master_m2s signals, and the
CmdAccept element of the slave_s2m/master_s2m signals.

Command FIFO

The slave_m2s port command elements are interfaced to the master_m2s port command elements via the
command FIFO.

•

The slave_s2m port CmdAccept element is generated from the command FIFO full flag.•
The command FIFO write advance is generated from the slave_m2s port Cmd element and the command
FIFO full flag.

•

The command FIFO read advance is generated from the master_s2m port CmdAccept element and the
command FIFO empty flag.

•

6.1.3.1.3.2 Write Data Path
This consists of the DataValid, DataByteEn, and Data elements of the slave_m2s/master_m2s signals, and the
DataAccept element of the slave_s2m/master_s2m signals.

Write Data FIFO

slave_m2s port write data elements are interfaced to the master_m2s port write data elements via the write
data FIFO.

•

The slave_s2m port DataAccept element is generated from the data FIFO full flag.•
The write data FIFO write advance is generated from the slave_m2s port DataValid element and the write
data FIFO full flag.

•

The write data FIFO read advance is generated from the master_s2m port DataAccept element and the write
data FIFO empty flag.

•

6.1.3.1.3.3 Read Response Path
This consists of the Resp, Tag, and Data elements of the master_s2m/slave_s2m signals, and the RespAccept
element of the master_m2s/slave_m2s signals.

Read Response FIFO

master_s2m port read response elements are interfaced to the slave_s2m port read response elements via
the read response FIFO.

•

The master_m2s port RespAccept element is generated from the read response FIFO full flag.•
The read response FIFO write advance is generated from the slave_m2s port Resp element and the read
response FIFO full flag.

•

The read response FIFO read advance is generated from the slave_m2s port RespAccept element and the
read response FIFO empty flag.

•

Page 129Common HDL Components
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

6.1.3.2 adb3_ocp_mux_b
6.1.3.2.1 Introduction

This is a blocking component in the ADB3 OCP library. Its function is to multiplex multiple primary ADB3 OCP channels
onto a single secondary ADB3 OCP channel. The multiplex is controlled by round-robin arbitration of OCP commands.

6.1.3.2.2 Interface
The adb3_ocp_mux_b component interface is shown in Figure 20 below and described in Table 74.

adb3_ocp_mux_b

slaves_m2s master_m2s

slaves_s2m

ocp_rst

ocp_clk

master_s2m

Figure 20: ADB3 OCP Library adb3_ocp_mux_b Component Interface

Signal Type Description
mux_inputs Generic Number of primary OCP channels to be multiplexed.
ocp_rst Input OCP asynchronous reset.
ocp_clk Input OCP clock.

OCP Primary Ports
slaves_m2s Input OCP Primary (slave) ports M2S connection.
slaves_s2m Output OCP Primary (slave) ports S2M connection.

OCP Secondary Port
master_m2s Output OCP Secondary (master) port M2S connection.
master_s2m Input OCP Secondary (master) port S2M connection.

Table 74: ADB3 OCP Library adb3_ocp_mux_b Component Interface

6.1.3.2.3 Description
TBD

Page 130 Common HDL Components
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

6.1.3.3 adb3_ocp_mux_nb
6.1.3.3.1 Introduction

This is a non-blocking component in the ADB3 OCP library. Its function is to multiplex multiple primary ADB3 OCP
channels onto a single secondary ADB3 OCP channel. The multiplex is controlled by round-robin arbitration of OCP
commands.

Dependencies

The command path is independent from the write data path. Data acceptance does not block command
acceptance.

•

The command path is independent from the read response path. Response acceptance does not block
command acceptance.

•

Transactions on multiple primary ADB3 OCP channels may be accepted simultaneously.•

6.1.3.3.2 Interface
The adb3_ocp_mux_nb component interface is shown in Figure 21 below and described in Table 75.

adb3_ocp_mux_nb

slaves_m2s master_m2s

slaves_s2m

ocp_rst

ocp_clk

master_s2m

Figure 21: ADB3 OCP Library adb3_ocp_mux_nb Component Interface

Signal Type Description
mux_inputs Generic Number of primary OCP channels to be multiplexed.
ocp_rst Input OCP asynchronous reset.
ocp_clk Input OCP clock.

OCP Primary Ports
slaves_m2s Input OCP Primary (slave) ports M2S connection.
slaves_s2m Output OCP Primary (slave) ports S2M connection.

OCP Secondary Port
master_m2s Output OCP Secondary (master) port M2S connection.
master_s2m Input OCP Secondary (master) port S2M connection.

Table 75: ADB3 OCP Library adb3_ocp_mux_nb Component Interface

6.1.3.3.3 Description
The adb3_ocp_mux_nb component block diagram is shown in Figure 22 below.

Page 131Common HDL Components
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

- - -

- - -

- - -

Command path

slaves_s2m(n)

CmdAccept

slaves_m2s(n)

Cmd, Tag, Addr,

BurstLength

- - -

master_m2s

(Cmd, Tag, Addr,

BurstLength)

Write data path

slaves_s2m(0)

(DataAccept)

slaves_m2s(0)

(DataValid, Data,

DataByteEn)

master_s2m

(CmdAccept)

adb3_ocp_mux_nb_fifo

d q

wr

not_full

full

adv

valid

adb3_ocp_mux_nb_fifo

d q

wr

not_full

full

adv

valid

adb3_ocp_mux_nb_fifo

d q

wr

not_full

full

adv

valid

adb3_ocp_mux_nb_fifo

d q

wr

not_full

full

adv

valid

adb3_ocp_mux_nb_fifo

d q

wr

not_full

full

adv

valid

master_m2s

(DataValid, Data,

DataByteEn)

master_s2m

(DataAccept)

Read response path

- - -

adb3_ocp_mux_nb_fifo

d q

wr

not_full

full

adv

valid

sel

sel

adb3_ocp_mux_nb_fifo

dq

wr

not_full

full

adv

valid

slaves_s2m(0)

(Resp, Data, Tag)

slaves_m2s(0)

(RespAccept)

adb3_ocp_mux_nb_fifo

dq

wr

not_full

full

adv

valid

adb3_ocp_mux_nb_fifo

dq

wr

not_full

full

adv

valid

master_s2m

(Resp, Data, Tag)

master_m2s

(RespAccept)

slaves_s2m(n)

(Resp, Data, Tag)

slaves_m2s(n)

(RespAccept)

slaves_m2s(n)

(DataValid, Data,

DataByteEn)

slaves_s2m(n)

(DataAccept)

FSM

d sel

start

FSM

d sel

start

Slave FIFO

Slave FIFO Master FIFO

Slave FIFO

Slave FIFO

Slave FIFO

Slave FIFO

Master FIFO

Master FIFO

Read Cmd FIFO

Write Cmd FIFO

Read Resp FSM

Write Data FSM

adb3_ocp_mux_nb

d(0)

d(n)

q

mux

- - -

adb3_ocp_mux_nb_fifo

d q

wr

not_full

full

adv

valid

adb3_ocp_mux_nb_fifo

d q

wr

not_full

full

adv

valid

slaves_m2s(0)

Cmd, Tag, Addr,

BurstLength

slaves_s2m(0)

CmdAccept

d(0)

d(n)

q

mux

Figure 22: ADB3 OCP Library adb3_ocp_mux_nb Block Diagram

Page 132 Common HDL Components
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

6.1.3.3.3.1 Command Path
This consists of the Cmd, Tag, BurstLength, and Addr elements of the slaves_m2s/master_m2s signals, and the
CmdAccept element of the slaves_s2m/master_s2m signals.

Slave Command FIFOs

The slaves_m2s ports command elements are interfaced to the slave command mux inputs via the slave
command FIFOs.

•

The slaves_s2m ports CmdAccept elements are generated from the slave command FIFOs not full flags.•
The slave command FIFOs write advances are generated from the slaves_m2s ports Cmd elements and the
slave command FIFOs not full flags.

•

The slave command FIFOs read advances are generated from the slave command select and the master,
write, and read command FIFO not full flags.

•

Priority Selector

Priority is assigned on a round-robin basis.•
The slave command select is generated from the highest priority non-empty slave command FIFO.•

Slave Command Mux

The slave command mux select is generated from the slave command select.•
The slave command mux routes the selected slave command FIFO to the master command FIFO.•

Master Command FIFO

The slave command mux output is interfaced to the master_m2s port command elements via the master
command FIFO.

•

The master command FIFO write advance is generated from the slave command select and the master, write,
and read command FIFO not full flags.

•

The master command FIFO read advance is generated from the master_s2m port CmdAccept element and
the master command FIFO not empty flag.

•

Write Command FIFO

The slave command select and slave command FIFO output BurstLength element are interfaced to the write
data FSM via the write command FIFO.

•

The write command FIFO write advance is generated from the master command FIFO write advance and
master command FIFO Cmd element.

•

The write command FIFO read advance is generated from the write data FSM.•

Read Command FIFO

The slave command select and slave command FIFO output BurstLength element are interfaced to the read
data FSM via the read command FIFO.

•

The read command FIFO write advance is generated from the master command FIFO write advance and
master command FIFO Cmd element.

•

The read command FIFO read advance is generated from the read data FSM.•

6.1.3.3.3.2 Write Data Path

Page 133Common HDL Components
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

This consists of the DataValid, DataByteEn, and Data elements of the slaves_m2s/master_m2s signals, and the
DataAccept element of the slaves_s2m/master_s2m signals.

Slave Write Data FIFOs

The slaves_m2s ports write data elements are interfaced to the slave write data mux inputs via the slave write
data FIFOs.

•

The slaves_s2m ports DataAccept elements are generated from the slave write data FIFOs not full flags.•
The slave write data FIFOs write advances are generated from the slaves_m2s ports DataValid elements and
the slave write data FIFOs not full flags.

•

The slave write data FIFOs read advances are generated from the write data select, the slave write data FIFOs
not empty flags, and the master write data FIFO not full flag.

•

Slave Write Data Mux

The slave write data mux select is generated from the write data select.•
The slave write data mux routes the selected slave write data FIFO to the master write data FIFO.•

Master Write Data FIFO

The slave write data mux output is interfaced to the master_m2s port write data elements via the master write
data FIFO.

•

The master write data FIFO write advance is generated from the write data select, the slave write data FIFO
not empty flags, and the master write data FIFO not full flag.

•

The master write data FIFO read advance is generated from the master_s2m port DataAccept element and
the master write data FIFO not empty flag.

•

Write Data FSM

Counts write data bursts for current entry in the write command FIFO.•
The write data select is generated from the FSM state and write command FIFO output.•
The write command FIFO read advance is generated from the FSM state.•

6.1.3.3.3.3 Read Response Path
This consists of the Resp, Tag, and Data elements of the master_s2m/slaves_s2m signals, and the RespAccept
element of the master_m2s/slaves_m2s signals.

Master Read Response FIFO

The master_s2m port read response elements are interfaced to the slave read response FIFOs via the master
read response FIFO.

•

The master read response FIFO write advance is generated from the master_s2m port Resp element and the
master read response FIFO not full flag.

•

The master read response FIFO read advance is generated from the read response select, slave read
response FIFOs not full flags, and the master read response FIFO not empty flag.

•

Slave Read Response FIFOs

The master read response FIFO is interfaced to the slaves_s2m ports read response elements via the slave
read response FIFOs.

•

Page 134 Common HDL Components
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

The slave read response FIFOs write advances are generated from the read response select, the slave read
response FIFOs not full flags, and the master read response FIFO not full flag.

•

The slave read response FIFOs read advances are generated from the slaves_m2s ports RespAccept
elements and the slave read response FIFOs not empty flags.

•

Read Response FSM

Counts read response bursts for current entry in the read command FIFO.•
The read response select is generated from the FSM state and read command FIFO output.•
The read command FIFO read advance is generated from the FSM state.•

Page 135Common HDL Components
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

6.1.3.4 adb3_ocp_ocp2ddr3_nb
6.1.3.4.1 Introduction

This is a non-blocking component in the ADB3 OCP library. Its function is to interface a single ADB3 OCP channel to
the Xilinx™ DDR3 SDRAM MIG core user interface.

6.1.3.4.2 Interface
The adb3_ocp_ocp2ddr3_nb component interface is shown in Figure 23 below and described in Table 76.

adb3_ocp_ocp2ddr3_nb

ocp_m2s

phy_init_done

ocp_s2m

ocp_rst

ocp_clk

app_rdy

app_en

app_rd_data_valid

app_rd_data

app_wdf_rdy

mig_clk

mig_rst

app_wdf_data

app_wdf_wren

app_sz

app_addr

app_cmd

app_wdf_end

app_wdf_mask

Figure 23: ADB3 OCP Library adb3_ocp_ocp2ddr3_nb Component Interface

Signal Type Description
app_row_width Generic Width of the row part of the app_addr output.
app_col_width Generic Width of the col part of the app_addr output.
app_bank_width Generic Width of the bank part of the app_addr output.
app_addr_width Generic Width of the app_addr output (4-byte addressing).

OCP Interface
ocp_rst Input OCP asynchronous reset.
ocp_clk Input OCP clock.
ocp_m2s Input OCP M2S connection.
ocp_s2m Output OCP S2M connection.

DDR3 SDRAM MIG Core User Interface
mig_rst Input User interface reset.
mig_clk Input User interface clock.
phy_init_done Input User interface phy calibration complete.
app_rdy Input User interface command ready.

Table 76: ADB3 OCP Library adb3_ocp_ocp2ddr3_nb Component Interface (continued on next page)

Page 136 Common HDL Components
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

Signal Type Description
app_wdf_rdy Input User interface write data ready.
app_rd_data Input User interface read command data.
app_rd_data_valid Input User interface read command data valid.
app_en Output User interface command enable.
app_cmd Output User interface command.
app_addr Output User interface command address.
app_sz Output User interface command on the fly BL8/BC4 select.
app_wdf_wren Output User interface write command data enable .
app_wdf_data Output User interface write command data.
app_wdf_mask Output User interface write command data mask (active low).
app_wdf_end Output User interface write command data end.

Table 76: ADB3 OCP Library adb3_ocp_ocp2ddr3_nb Component Interface

6.1.3.4.3 Description
The adb3_ocp_ocp2ddr3_nb component block diagram is shown in Figure 24 below.

Page 137Common HDL Components
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

Command path

Write data path

Read response path

adb3_ocp_ocp2ddr3_nb

afifo

wd rq

wadv

wpf

we

radv

rf

re

afifo

wd rq

wadv

wpf

we

radv

rf

re

afifo

rq wd

radv

rf

re

wadv

wpf

we

app_rd_data

app_rd_data_valid

phy_init_done

sfifo

d q

wr

not_full

full

adv

valid

app_wdf_wren

app_wdf_end

app_wdf_mask

app_wdf_data

app_sz

app_addr

app_cmd

app_en

app_rdy

app_wdf_rdy

ocp_m2s

Cmd, Tag, Addr,

BurstLength

ocp_s2m

CmdAccept

ocp_m2s

(DataValid, Data,

DataByteEn)

ocp_s2m

(DataAccept)

ocp_s2m

(Resp, Data, Tag)

ocp_m2s

(RespAccept)

Cmd OutputCmd Input

Data Input Data Output

Resp InputResp Output

Read Tag FIFO

Figure 24: ADB3 OCP Library adb3_ocp_ocp2ddr3_nb Block Diagram

Page 138 Common HDL Components
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

6.1.3.4.3.1 Command Path
This consists of the Cmd, Tag, BurstLength, and Addr elements of the ocp_m2s signal, and the app_rdy, app_en,
app_cmd, app_addr, and app_sz signals.

Command Input

This block operates in the ocp_clk domain.•
The ocp_m2s port command/data elements and command FIFO full flag are used to produce the command
FIFO data and write advance and the slave_s2m port CmdAccept element.

•

ocp_m2s port transactions are converted into MIG core user interface transactions which are then written to
the command FIFO.

•

Command FIFO

MIG core user interface transaction data in the ocp_clk domain is interfaced to the mig_clk domain.•

Command Output

This block operates in the mig_clk domain.•
The command FIFO data output and empty flag are used to produce the MIG core user interface command
signals.

•

Read Tag FIFO

This block operates in the mig_clk domain.•
The command FIFO data outputs cmd_fifo_bl8_out and cmd_fifo_tag_out are written to the read tag FIFO
on every MIG core user interface read command.

•

The read tag FIFO output tag_fifo_tag_out is used as the tag value for OCP response data written into the
response FIFO.

•

The read tag FIFO output tag_fifo_bl8_out is compared with the number of OCP response data words and
this is used to generate the read tag FIFO read advance.

•

6.1.3.4.3.2 Write Data Path
This consists of the DataValid, DataByteEn, and Data elements of the ocp_m2s signal, and the app_wdf_rdy,
app_wdf_wren, app_wdf_data, app_wdf_mask, and app_wdf_end signals.

Write Data Input

This block operates in the ocp_clk domain.•
The ocp_m2s port command/data elements and write data FIFO full flag are used to produce the write data
FIFO data and write advance and the slave_s2m port DataAccept element.

•

ocp_m2s port write data is converted into MIG core user interface write data data which is then written to the
write data FIFO.

•

Write Data FIFO

MIG core user interface write data in the ocp_clk domain is interfaced to the mig_clk domain.•

Write Data Output

This block operates in the mig_clk domain.•

Page 139Common HDL Components
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

The write data FIFO data output and empty flag are used to produce the MIG core user interface write data
signals.

•

6.1.3.4.3.3 Read Response Path
This consists of the Resp, Tag, and Data elements of the ocp_s2m signal, and the app_rd_data, and
app_rd_data_valid signals.

Read Response Input

This block operates in the mig_clk domain.•
The app_rd_data, and app_rd_data_valid signals, read tag FIFO output tag_fifo_tag_out, and read
response FIFO full flag are used to produce the read response FIFO data and write advance.

•

MIG core user interface read data signals are converted to OCP response data which is then written to the
read response FIFO.

•

Read Response FIFO

MIG core user interface read data in the mig_clk domain is interfaced to the ocp_clk domain.•

Read Response Output

This block operates in the ocp_clk domain.•
The read response FIFO data output and empty flag, and ocp_m2s port element RespAccept are used to
produce the ocp_s2m port response elements and the response FIFO read advance.

•

Page 140 Common HDL Components
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

6.1.3.5 adb3_ocp_retime_nb
6.1.3.5.1 Introduction

This is a non-blocking component in the ADB3 OCP library. Its function is to re-time a single primary ADB3 OCP
channel, producing a single secondary ADB3 OCP channel.

6.1.3.5.2 Interface
The adb3_ocp_retime_nb component interface is shown in Figure 25 below and described in Table 77.

adb3_ocp_retime_nb

slave_m2s master_m2s

slave_s2m

ocp_rst

ocp_clk

master_s2m

Figure 25: ADB3 OCP Library adb3_ocp_retime_nb Component Interface

Signal Type Description
ocp_rst Input OCP asynchronous reset.
ocp_clk Input OCP clock.

OCP Primary Port
slave_m2s Input OCP Primary (slave) port M2S connection.
slave_s2m Output OCP Primary (slave) port S2M connection.

OCP Secondary Port
master_m2s Output OCP Secondary (master) port M2S connection.
master_s2m Input OCP Secondary (master) port S2M connection.

Table 77: ADB3 OCP Library adb3_ocp_retime_nb Component Interface

6.1.3.5.3 Description
TBD

Page 141Common HDL Components
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

6.1.3.6 adb3_ocp_simple_bus_if
6.1.3.6.1 Introduction

This is a blocking component in the ADB3 OCP library. Its function is to convert a single ADB3 OCP channel to a
simple parallel interface.

6.1.3.6.2 Interface
The adb3_ocp_simple_bus_if component interface is shown in Figure 26 below and described in Table 78.

adb3_ocp_simple_bus_if

ocp_m2s

d

ocp_s2m

ocp_rst

ocp_clk q

we

r

w

a

Figure 26: ADB3 OCP Library adb3_ocp_simple_bus_if Component Interface

Signal Type Description
addr_width Generic Width of the address output a.
data_width Generic Width of the data input/output d/q.
read_latency Generic Number of cycles delay before read data q is available.

OCP Interface
ocp_rst Input OCP asynchronous reset.
ocp_clk Input OCP clock.
ocp_m2s Input OCP M2S connection.
ocp_s2m Output OCP S2M connection.

Simple Bus Interface
d Output Write data.
q Input Read data.
a Output Write/Read address.
w Output Write valid.
r Output Read valid.
we Output Write data byte valid.

Table 78: ADB3 OCP Library adb3_ocp_simple_bus_if Component Interface

6.1.3.6.3 Description
TBD

Page 142 Common HDL Components
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

6.1.3.7 adb3_ocp_split_b
6.1.3.7.1 Introduction

This is a blocking component in the ADB3 OCP library. Its function is to de-multiplex a single primary ADB3 OCP
channel into multiple secondary ADB3 OCP channels. The de-multiplex is controlled by the primary channel command
address.

6.1.3.7.2 Interface
The adb3_ocp_split_b component interface is shown in Figure 27 below and described in Table 79.

adb3_ocp_split_b

slave_m2s masters_m2s

slave_s2m

ocp_rst

ocp_clk

masters_s2m

Figure 27: ADB3 OCP Library adb3_ocp_split_b Component Interface

Signal Type Description
addr_range_table Generic Table defining the address ranges to be used to control the split operation.
ocp_rst Input OCP asynchronous reset.
ocp_clk Input OCP port clock.

OCP Primary Port
slave_m2s Input OCP Primary (slave) port M2S connection.
slave_s2m Output OCP Primary (slave) port S2M connection.

OCP Secondary Ports
masters_m2s Output OCP Secondary (master) ports M2S connection.
masters_s2m Input OCP Secondary (master) ports S2M connection.

Table 79: ADB3 OCP Library adb3_ocp_split_b Component Interface

6.1.3.7.3 Description
TBD

Page 143Common HDL Components
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

6.1.3.8 adb3_ocp_split_nb
6.1.3.8.1 Introduction

This is a non-blocking component in the ADB3 OCP library. Its function is to de-multiplex a single primary ADB3 OCP
channel into multiple secondary ADB3 OCP channels. The de-multiplex is controlled by the primary channel command
address.

6.1.3.8.2 Interface
The adb3_ocp_split_nb component interface is shown in Figure 28 below and described in Table 80.

adb3_ocp_split_nb

slave_m2s masters_m2s

slave_s2m

ocp_rst

ocp_clk

masters_s2m

Figure 28: ADB3 OCP Library adb3_ocp_split_nb Component Interface

Signal Type Description
addr_range_table Generic Table defining the address ranges to be used to control the split operation.
error_data Generic OCP Response Data to be returned if address is out of range.
ocp_rst Input OCP asynchronous reset.
ocp_clk Input OCP port clock.

OCP Primary Port
slave_m2s Input OCP Primary (slave) port M2S connection.
slave_s2m Output OCP Primary (slave) port S2M connection.

OCP Secondary Ports
masters_m2s Output OCP Secondary (master) ports M2S connection.
masters_s2m Input OCP Secondary (master) ports S2M connection.

Table 80: ADB3 OCP Library adb3_ocp_split_nb Component Interface

6.1.3.8.3 Description
The adb3_ocp_split_nb component block diagram is shown in Figure 29 below.

Page 144 Common HDL Components
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

- - -

- - -

- - -

Command path

slave_s2m

CmdAccept

slave_m2s

Cmd, Tag, Addr,

BurstLength

- - -

masters_m2s(n)

(Cmd, Tag, Addr,

BurstLength)

Write data path

masters_s2m(n)

(CmdAccept)

adb3_ocp_mux_nb_fifo

d q

wr

not_full

full

adv

valid

masters_m2s(n)

(DataValid, Data,

DataByteEn)

masters_s2m(n)

(DataAccept)

Read response path

- - -

adb3_ocp_mux_nb_fifo

dq

wr

not_full

full

adv

valid

masters_s2m(n)

(Resp, Data, Tag)

masters_m2s(n)

(RespAccept)

slave_s2m

(Resp, Data, Tag)

slave_m2s

(RespAccept)

slave_m2s

(DataValid, Data,

DataByteEn)

slave_s2m

(DataAccept)

Slave FIFO Master FIFO

Slave FIFO

Slave FIFO

Master FIFO

Master FIFO

Read Cmd FIFO

Write Cmd FIFO

Read Resp FSM

Write Data FSM

adb3_ocp_split_nb

- - -

masters_m2s(0)

(Cmd, Tag, Addr,

BurstLength)

masters_s2m(0)

(CmdAccept)

adb3_ocp_split_nb_fifo

d q

wr

not_full

full

adv

valid

Master FIFO

sel

masters_m2s(0)

(DataValid, Data,

DataByteEn)

masters_s2m(0)

(DataAccept)

Master FIFO

adb3_ocp_split_nb_fifo

d q

wr

not_full

full

adv

valid

adb3_ocp_split_nb_fifo

d q

wr

not_full

full

adv

valid

adb3_ocp_split_nb_fifo

d q

wr

not_full

full

adv

valid

adb3_ocp_split_nb_fifo

d q

wr

not_full

full

adv

valid

adb3_ocp_split_nb_fifo

dq

wr

not_full

full

adv

valid

Master FIFO

adb3_ocp_split_nb_fifo

dq

wr

not_full

full

adv

valid

masters_s2m(0)

(Resp, Data, Tag)

masters_m2s(0)

(RespAccept)
q

d(0)

d(n)

muxadb3_ocp_split_nb_fifo

dq

wr

not_full

full

adv

valid

FSM

dsel

start

adb3_ocp_split_nb_fifo

dq

wr

not_full

full

adv

valid

FSM

dsel

start

Figure 29: ADB3 OCP Library adb3_ocp_split_nb Block Diagram

Page 145Common HDL Components
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

6.1.3.8.3.1 Command Path
This consists of the Cmd, Tag, BurstLength, and Addr elements of the slaves_m2s/master_m2s signals, and the
CmdAccept element of the slaves_s2m/master_s2m signals.

Slave Command FIFO

The slave_m2s port command elements are interfaced to the master command FIFOs via the slave command
FIFO.

•

The slave_s2m port CmdAccept element is generated from the slave command FIFO not full flag.•
The slave command FIFO write advance is generated from the slave_m2s port Cmd element and the slave
command FIFO not full flag.

•

The slave command FIFO read advance is generated from the slave command FIFO not empty, slave
command select, and the master, write, and read command FIFO not full flags.

•

Address Selector

The slave command select is generated by comparison of the slave command FIFO Addr element with the
address ranges in the addr_range_table generic.

•

Master Command FIFOs

The slave command FIFO is interfaced to the masters_m2s ports command elements via the master
command FIFOs.

•

The master command FIFOs write advances are generated from the slave command FIFO not empty, slave
command select, and the master, write, and read command FIFO not full flags.

•

The master command FIFOs read advances are generated from the master_s2m port CmdAccept element
and the master command FIFOs not empty flags.

•

Write Command FIFO

The slave command select and slave command FIFO output BurstLength element are interfaced to the write
data FSM via the write command FIFO.

•

The write command FIFO write advance is generated from the slave command FIFO write advance and slave
command FIFO Cmd element.

•

The write command FIFO read advance is generated from the write data FSM.•

Read Command FIFO

The slave command select and slave command FIFO output BurstLength and Tag elements are interfaced to
the read data FSM via the read command FIFO.

•

The read command FIFO write advance is generated from the slave command FIFO write advance and slave
command FIFO Cmd element.

•

The read command FIFO read advance is generated from the read data FSM.•

6.1.3.8.3.2 Write Data Path
This consists of the DataValid, DataByteEn, and Data elements of the slaves_m2s/master_m2s signals, and the
DataAccept element of the slaves_s2m/master_s2m signals.

Slave Write Data FIFO

Page 146 Common HDL Components
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

The slave_m2s port write data elements are interfaced to the master write data FIFOs via the slave write data
FIFO.

•

The slave_s2m port DataAccept element is generated from the slave write data FIFO not full flag.•
The slave write data FIFO write advance is generated from the slave_m2s port DataValid element and the
slave write data FIFO not full flag.

•

The slave write data FIFO read advance is generated from the write data select, the slave write data FIFO not
empty flag, and the master write data FIFOs not full flags.

•

Master Write Data FIFOs

The slave write data FIFO is interfaced to the masters_m2s ports write data elements via the master write
data FIFOs.

•

The master write data FIFOs write advances are generated from the write data select, the slave write data
FIFO not empty flag, and the master write data FIFOs not full flags.

•

The master write data FIFOs read advances are generated from the masters_s2m ports DataAccept
elements and the master write data FIFOs not empty flags.

•

Write Data FSM

Counts write data bursts for current entry in the write command FIFO.•
The write data select is generated from the FSM state and write command FIFO output.•
The write command FIFO read advance is generated from the FSM state.•

6.1.3.8.3.3 Read Response Path
This consists of the Resp, Tag, and Data elements of the master_s2m/slaves_s2m signals, and the RespAccept
element of the master_m2s/slaves_m2s signals.

Master Read Response FIFOs

The masters_s2m ports read response elements are interfaced to the slave read response mux inputs via the
master read response FIFOs.

•

The masters_s2m ports CmdAccept elements are generated from the master read response FIFOs not full
flags.

•

The master read response FIFOs write advances are generated from the masters_s2m ports Resp elements
and the master read response FIFOs not full flags.

•

The master read response FIFOs read advances are generated from the read response select, slave read
response FIFO not full flag, and the master read response FIFOs not empty flags.

•

Master Read Response Mux

The master read response mux select is generated from the master read response select.•
The master read response mux routes the selected master read response FIFO to the slave read response
FIFO.

•

Slave Read Response FIFO

The master read response mux is interfaced to the slave_s2m port read response elements via the slave read
response FIFO.

•

The slave read response FIFO write advance is generated from the read response select, the slave read
response FIFO not full flag, and the master read response FIFOs not empty flags.

•

Page 147Common HDL Components
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

The slave read response FIFO read advance is generated from the slave_m2s port RespAccept element and
the slave read response FIFO not empty flag.

•

Read Response FSM

Counts read response bursts for current entry in the read command FIFO.•
The read response select is generated from the FSM state and read command FIFO output.•
The read command FIFO read advance is generated from the FSM state.•

Page 148 Common HDL Components
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

6.2 MPTL Library
The MPTL library is located in the hdl/vhdl/common/mptl directory and contains the following elements:

MPTL library components•
MPTL interface components•

6.2.1 MPTL Library Components
6.2.1.1 Bridge MPTL Interface Wrapper (mptl_if_bridge_wrap)
6.2.1.1.1 Introduction

This is a component in the MPTL library. It is used by example FPGA testbenches to convert between stimulus OCP
transactions and Bridge MPTL interface data. It is located in the hdl/vhdl/common/mptl directory. The MPTL interface
that is instantiated depends on the board selected and the design use.

The board selected is indicated by the value of the BOARD_TYPE constant. The design use is indicated by the value
of the TARGET_USE constant. Both are defined in the adb3_target_inc_pkg package.

6.2.1.1.2 Interface
The mptl_if_bridge_wrap component interface is shown in Figure 30 below and described in Table 81.

mptl_if_bridge_wrap

direct_slave_m2s

mptl_b2t

dma_channels_m2s

mptl_t2b

mptl_sb_t2b

mptl_sb_b2t

direct_slave_s2m

dma_channels_s2m

dma_abort

ocp_clk_in

ocp_clk_out

direct_master_m2s

direct_master_s2m

mptl_clk

gpio_b2t

gpio_t2b

Figure 30: MPTL Library mptl_if_bridge_wrap Component Interface

Page 149Common HDL Components
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

Signal Type Description
OCP Interface

ocp_clk_in Input Independent OCP clock source (from testbench).
direct_slave_m2s Input Direct slave OCP channel master (Transferred to target via MPTL

interface).
direct_slave_s2m Output Direct slave OCP channel slave (Transferred from target via MPTL

interface.
dma_channels_m2s Input DMA OCP channels master (Transferred to target via MPTL interface).
dma_channels_s2m Output DMA OCP channels slave (Transferred from target via MPTL interface).
direct_masters_m2s Output Direct mater OCP channels master (Transferred from target via MPTL

interface).
direct_masters_s2m Input Direct master OCP channels slave (Transferred to target via MPTL

interface).
dma_abort Output DMA abort request (to testbench).
ocp_clk_out Output OCP clock (to testbench).

MPTL Interface
mptl_t2b Input MPTL interface data signals connected to target MPTL interface.
mptl_b2t Output MPTL interface data signals connected to target MPTL interface.
mptl_clk Input MPTL interface clock (from testbench).
mptl_sb_t2b Input MPTL interface sideband signals connected to target MPTL interface.
mptl_sb_b2t Output MPTL interface sideband signals connected to target MPTL interface.
gpio_b2t Input General purpose i/o (Transferred to target via MPTL interface).
gpio_t2b Output General purpose i/o (Transferred from target via MPTL interface).

Table 81: MPTL Library mptl_if_bridge_wrap Component Interface

6.2.1.1.3 Description
6.2.1.1.3.1 OCP-Only Simulation

During OCP-only simulation (selected by TARGET_USE = SIM_OCP), the mptl_if_bridge_wrap component
instantiates the simulation MPTL interface mptl_if_bridge_sim.

Refer to Section 6.2.2.1 for a functional description.

6.2.1.1.3.2 Full MPTL Simulation
During full MPTL simulation (selected by TARGET_USE = SIM_MPTL), the mptl_if_bridge_wrap component
instantiates the full MPTL interface appropriate to the board in use. The MPTL interface consists of the actual wrapped
logic supplied as a Xilinx™ HDL netlist file (.vhd).

Refer to Section 6.2.2.3 for a functional description.

Page 150 Common HDL Components
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

6.2.1.2 Target MPTL Interface Wrapper (mptl_if_target_wrap)
6.2.1.2.1 Introduction

This is a component in the MPTL library. It is used by the example FPGA designs to convert between Target MPTL
interface data and OCP transactions. It is located in the hdl/vhdl/common/mptl directory. The type of Target MPTL
interface that is instantiated depends upon which variant of the adb3_target_inc_pkg is in use, through the
BOARD_TYPE and TARGET_USE constants.

6.2.1.2.2 Interface
The mptl_if_target_wrap component interface is shown in Figure 31 below and described in Table 82.

mptl_if_target_wrap

direct_slave_m2s

mptl_b2t

dma_channels_m2s

mptl_t2b mptl_clk_out

mptl_sb_t2b

mptl_sb_b2t

direct_slave_s2m

dma_channels_s2m

dma_abort

gpio_b2t

gpio_t2b

mptl_clk

ocp_clk

direct_master_m2s

direct_master_s2m

Figure 31: MPTL Library mptl_if_target_wrap Component Interface

Signal Type Description
OCP Interface

ocp_clk Input OCP clock (from target FPGA).
direct_slave_m2s Output Direct slave OCP channel master (Transferred from bridge via MPTL

interface).
direct_slave_s2m Input Direct slave OCP channel slave (Transferred to bridge via MPTL interface).
dma_channels_m2s Output DMA OCP channels master (Transferred from bridge via MPTL interface).
dma_channels_s2m Input DMA OCP channels slave (Transferred to bridge via MPTL interface).
direct_masters_m2s Input Direct mater OCP channels master (Transferred to bridge via MPTL

interface).
direct_masters_s2m Output Direct master OCP channels slave (Transferred from bridge via MPTL

interface).

Table 82: MPTL Library mptl_if_target_wrap Component Interface (continued on next page)

Page 151Common HDL Components
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

Signal Type Description
dma_abort Input DMA abort request (from target FPGA).

MPTL Interface
mptl_t2b Output MPTL interface data signals connected to bridge MPTL interface.
mptl_b2t Input MPTL interface data signals connected to bridge MPTL interface.
mptl_clk Input MPTL interface clock (from target FPGA).
mptl_clk_out Output Unused.
ocp_ready Input OCP channels ready (from target FPGA).
mptl_sb_t2b Output MPTL interface sideband signals connected to bridge MPTL interface.
mptl_sb_b2t Input MPTL interface sideband signals connected to bridge MPTL interface.
gpio_b2t Output General purpose i/o (Transferred from bridge via MPTL interface).
gpio_t2b Input General purpose i/o (Transferred to bridge via MPTL interface).

Table 82: MPTL Library mptl_if_target_wrap Component Interface

6.2.1.2.3 Description
6.2.1.2.3.1 OCP-Only Simulation

During OCP-only simulation (selected by TARGET_USE = SIM_OCP), the mptl_if_target_wrap component
instantiates the simulation MPTL interface mptl_if_target_sim.

Refer to Section 6.2.2.2 for a functional description.

6.2.1.2.3.2 Full MPTL Simulation
During full MPTL simulation (selected by TARGET_USE = SIM_MPTL), the mptl_if_target_wrap component
instantiates the full MPTL interface appropriate to the board in use. The MPTL interface consists of the actual wrapped
logic supplied as a Xilinx™ HDL netlist file (.vhd).

Refer to Section 6.2.2.4 for a functional description.

6.2.1.2.3.3 Synthesis
During synthesis (selected by TARGET_USE = SYN_NGC), the mptl_if_target_wrap component instantiates the full
MPTL interface appropriate to the board in use. The MPTL interface consists of the actual wrapped logic supplied as a
Xilinx™ ISE netlist file (.ngc).

Refer to Section 6.2.2.5 for a functional description.

Page 152 Common HDL Components
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

6.2.2 MPTL Interface Components
6.2.2.1 Bridge MPTL Interface For OCP-Only Simulation (mptl_if_bridge_sim)

6.2.2.1.1 Introduction
This component consists of an OCP-only simulation version of the bridge MPTL interface.

6.2.2.1.2 Interface
This component's interface is the sames as the mptl_if_bridge_wrap component. Refer to Figure 30 and Table 81.

6.2.2.1.3 Description
The MPTL interface signals mptl_t2b and mptl_b2t connect the bridge and target MPTL interface blocks. They are of
type mptl_pins_t which is defined in the adb3_target_inc_pkg package appropriate for OCP-only simulation of the
board in use. For example adb3_target_inc_sim_ocp_6t1_pkg.vhd located in hdl/vhdl/common/adb3_target/
admxrc6t1/ for the ADM-XRC-6T1. During OCP-only simulation these signals transfer OCP transactions directly
between the bridge and target MPTL interface blocks.

Clock Generation

During OCP-only simulation, the bridge MPTL interface OCP clock must be the same as the target MPTL
interface OCP clock. This is accomplished by connecting the target clock to the bridge clock via the
mptl_t2b.target_ocp_clk signal.

•

The ocp_clk_in input is unused.•
The ocp_clk_out output is driven by mptl_t2b.target_ocp_clk.•

Initialisation

At power-up, an online delay counter produces the mptl_sb_b2t.mptl_bridge_gtp_online_l output.•
The mptl_sb_t2b.mptl_target_configured_l input is ignored.•
The mptl_sb_t2b.mptl_target_gtp_online_l input is ignored.•

MPTL Interface

The direct slave OCP channel master input direct_slave_m2s drives the mptl_b2t.direct_slave_m2s output
to the target MPTL interface. The mptl_t2b.direct_slave_s2m input from the target MPTL interface drives the
direct slave OCP channel slave output direct_slave_s2m.

•

The DMA OCP channels master input dma_channels_m2s drives the mptl_b2t.dma_channels_m2s output
to the target MPTL interface. The mptl_t2b.dma_channels_s2m input from the target MPTL interface drives
the DMA OCP channels slave output dma_channels_s2m.

•

The direct master OCP channels slave input direct_masters_s2m drives the mptl_b2t.direct_masters_s2m
output to the target MPTL interface. The mptl_t2b.direct_masters_m2s input from the target MPTL interface
drives the direct master OCP channels master output direct_masters_m2s.

•

The general purpose i/o bus gpio_b2t input drives the mptl_b2t.gpio_b2t output to the target MPTL interface.
The mptl_t2b.gpio_t2b input from the target MPTL interface drives the general purpose i/o bus output
gpio_t2b.

•

DMA Abort

On the ADM-XRC-6T1 board, the mptl_t2b.dma_abort input from the target MPTL interface drives the DMA
abort request output dma_abort.

•

Page 153Common HDL Components
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

On the ADM-XRC-6TL board, the inverted mptl_sb_t2b.mptl_dma_abort_l input from the target MPTL
interface drives the DMA abort request output dma_abort.

•

Page 154 Common HDL Components
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

6.2.2.2 Target MPTL Interface For OCP-Only Simulation (mptl_if_target_sim)

6.2.2.2.1 Introduction
This component consists of an OCP-only simulation version of the target MPTL interface.

6.2.2.2.2 Interface
This component's interface is the sames as the mptl_if_target_wrap component. Refer to Figure 31 and Table 82.

6.2.2.2.3 Description
The MPTL interface signals mptl_t2b and mptl_b2t connect the bridge and target MPTL interface blocks. They are of
type mptl_pins_t which is defined in the adb3_target_inc_pkg package appropriate for OCP-only simulation of the
board in use. For example adb3_target_inc_sim_ocp_6t1_pkg.vhd located in hdl/vhdl/common/adb3_target/
admxrc6t1/ for the ADM-XRC-6T1. During OCP-only simulation these signals transfer OCP transactions directly
between the bridge and target MPTL interface blocks.

Clock Generation

During OCP-only simulation, the bridge MPTL interface OCP clock must be the same as the target MPTL
interface OCP clock. This is accomplished by connecting the target clock to the bridge clock via the
mptl_t2b.target_ocp_clk signal.

•

The ocp_clk input drives the mptl_t2b.target_ocp_clk signal.•

Initialisation

At power-up, an online delay counter produces the mptl_sb_t2b.mptl_target_gtp_online_l output using the
mptl_sb_b2t.mptl_bridge_gtp_online_l input.

•

The mptl_sb_t2b.mptl_target_configured_l output is generated using the OCP channels ready ocp_ready
input.

•

MPTL Interface

The direct slave OCP channel master output direct_slave_m2s is driven by the mptl_b2t.direct_slave_m2s
input from the bridge MPTL interface. The mptl_t2b.direct_slave_s2m output to the bridge MPTL interface is
driven by the direct slave OCP channel slave input direct_slave_s2m.

•

The DMA OCP channels master output dma_channels_m2s is driven by the mptl_b2t.dma_channels_m2s
input from the bridge MPTL interface. The mptl_t2b.dma_channels_s2m output to the bridge MPTL interface
is driven by the DMA OCP channels slave input dma_channels_s2m.

•

The direct master OCP channels slave output direct_masters_s2m is driven by the
mptl_b2t.direct_masters_s2m input from the bridge MPTL interface. The mptl_t2b.direct_masters_m2s
output to the bridge MPTL interface is driven by the direct master OCP channels master input
direct_masters_m2s.

•

The general purpose i/o bus gpio_t2b input drives the mptl_t2b.gpio_t2b output to the bridge MPTL interface.
The mptl_b2t.gpio_b2t input from the bridge MPTL interface drives the general purpose i/o bus output
gpio_b2t.

•

DMA Abort

On the ADM-XRC-6T1 board, the dma_abort input from the target FPGA drives the DMA abort request output
mptl_t2b.dma_abort.

•

Page 155Common HDL Components
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

On the ADM-XRC-6TL board, the inverted dma_abort input from the target FPGS drives the DMA abort
request output mptl_sb_t2b.mptl_dma_abort_l.

•

Page 156 Common HDL Components
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

6.2.2.3 Bridge MPTL Interface For Full MPTL Simulation
6.2.2.3.1 Introduction

This component instantiates an HDL netlist of the bridge MPTL interface during full MPTL simulation. The component
used depends on the board selected for simulation. For example, for the ADM-XRC-6T1, the block hierarchy is:

MPTL interface wrapper (mptl128_interface_bridge_6t1_top)•
MPTL interface top level (mptl128_interface_bridge_6t1)•
MPTL interface netlist (mptl128_interface_bridge_6t1_slv)•

These components can be found in the following locations:

hdl/vhdl/common/mptl/admxrc6t1/mptl128_interface_bridge_6t1_top.vhd•
hdl/vhdl/common/mptl/admxrc6t1/mptl128_interface_bridge_6t1_sim.vhd•
hdl/vhdl/common/mptl/admxrc6t1/mptl128_interface_bridge_6t1_slv.vhd•

6.2.2.3.2 Interface
This component's interface is the sames as the mptl_if_bridge_wrap component. Refer to Figure 30 and Table 81.

6.2.2.3.3 Description
The MPTL interface signals mptl_t2b and mptl_b2t connect the bridge and target MPTL interface blocks. They are of
type mptl_pins_t which is defined in the adb3_target_inc_pkg package appropriate for full MPTL simulation of the
board in use. For example adb3_target_inc_sim_mptl_6t1_pkg.vhd located in hdl/vhdl/common/adb3_target/
admxrc6t1/ for the ADM-XRC-6T1. During full MPTL simulation these signals transfer MPTL data between the bridge
and target MPTL interface blocks.

Clock Generation

During full MPTL simulation, the bridge MPTL interface OCP clock may be independent of the target MPTL
interface OCP clock.

•

The ocp_clk_in input provides the independent OCP clock generated by the testbench.•
The ocp_clk_out output is driven by the ocp_clk_in signal.•

OCP Interface

The MPTL interface wrapper direct master OCP channels input (direct_masters_s2m) is processed by the
make_defined_s2m function to ensure that it only contains '0' or '1' data. Other data values may cause the
simulation of the MPTL interface to fail.

•

The remainder of the MPTL interface wrapper signals are connected to their equivalents on the MPTL interface top
level.

Page 157Common HDL Components
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

6.2.2.4 Target MPTL Interface For Full MPTL Simulation
6.2.2.4.1 Introduction

This component instantiates an HDL netlist of the target MPTL interface during Full MPTL simulation. The component
used depends on the board selected for simulation. For example, for the ADM-XRC-6T1, the block hierarchy is:

MPTL interface wrapper (mptl128_interface_target_6t1_top)•
MPTL interface top level (mptl128_interface_target_6t1)•
MPTL interface netlist (mptl128_interface_target_6t1_slv)•

These components can be found in the following locations:

hdl/vhdl/common/mptl/admxrc6t1/mptl128_interface_target_6t1_top.vhd•
hdl/vhdl/common/mptl/admxrc6t1/mptl128_interface_target_6t1_sim.vhd•
hdl/vhdl/common/mptl/admxrc6t1/mptl128_interface_target_6t1_slv.vhd•

6.2.2.4.2 Interface
This component's interface is the sames as the mptl_if_target_wrap component. Refer to Figure 31 and Table 82.

6.2.2.4.3 Description
The MPTL interface signals mptl_t2b and mptl_b2t connect the bridge and target MPTL interface blocks. They are of
type mptl_pins_t which is defined in the adb3_target_inc_pkg package appropriate for full MPTL simulation of the
board in use. For example adb3_target_inc_sim_mptl_6t1_pkg.vhd located in hdl/vhdl/common/adb3_target/
admxrc6t1/ for the ADM-XRC-6T1. During full MPTL simulation these signals transfer MPTL data between the bridge
and target MPTL interface blocks.

OCP Interface

The MPTL interface wrapper direct slave OCP channel input (direct_slave_s2m) and DMA OCP chammels
input (dma_channels_s2m) are processed by the make_defined_s2m function to ensure that they only
contain '0' or '1' data. Other data values may cause the simulation of the MPTL interface to fail.

•

The remainder of the MPTL interface wrapper signals are connected to their equivalents on the MPTL interface top
level.

Page 158 Common HDL Components
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

6.2.2.5 Target MPTL Interface For Synthesis
6.2.2.5.1 Introduction

This component instantiates a target MPTL interface core during synthesis. The component used depends on the board
selected for synthesis. For example, for the ADM-XRC-6T1, the block hierarchy is:

MPTL interface wrapper (mptl128_interface_target_6t1_top)•
MPTL interface top level (mptl128_interface_target_6t1)•

These components can be found in the following locations:

hdl/vhdl/common/mptl/admxrc6t1/mptl128_interface_target_6t1_top.vhd•
hdl/vhdl/common/mptl/admxrc6t1/v6lxt/mptl128_interface_target_6t1.ngc•

6.2.2.5.2 Interface
This component's interface is the sames as the mptl_if_target_wrap component. Refer to Figure 31 and Table 82.

6.2.2.5.3 Description
The MPTL interface signals mptl_t2b and mptl_b2t connect the bridge and target MPTL interface blocks. They are of
type mptl_pins_t which is defined in the adb3_target_inc_pkg package appropriate for synthesis of the board in use.
For example adb3_target_inc_syn_ngc_6t1_pkg.vhd located in hdl/vhdl/common/adb3_target/admxrc6t1/ for the
ADM-XRC-6T1. During synthesis these signals transfer MPTL data between the bridge and target MPTL interface
blocks.

The MPTL interface wrapper signals are connected to their equivalents on the MPTL interface top level.

Page 159Common HDL Components
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

6.3 ADB3 Target Library
The ADB3 target library is located in hdl/vhdl/common/adb3_target/ and contains the following elements:

ADB3 target types definition package (adb3_target_types_pkg)•
ADB3 target include package (adb3_target_inc_pkg)•
ADB3 target package (adb3_target_pkg)•
ADB3 target testbench package (adb3_target_tb_pkg)•

6.3.1 ADB3 Target Types Definition Package (adb3_target_types_pkg)
The adb3_target_types_pkg package defines constants and types which are used by the ADB3 target include
packages.

Types are defined as follows:

board_type_t. An enumerated type containing an element for each board supported by the SDK, for example
ADM_XRC_6T1 for the ADM-XRC-6T1 board.

•

target_use_t. An enumerated type containing an element for each end use supported by the SDK, for example
SIM_OCP for OCP-only simulation.

•

Maximum value constants (covering all boards supported by the SDK) are defined as follows:

MAX_DS_CHANNELS: direct slave OCP channels.•
MAX_DMA_CHANNELS: DMA OCP channels.•
MAX_DM_CHANNELS: direct master OCP channels.•
MAX_MEM_BANKS: on-board memory banks.•
MAX_MPTL_SER_WIDTH: width of MPTL serial data interface.•
MAX_XRM_GPIO_WIDTH: width of the XRM GPIO interface.•
MAX_XRM_MGT_WIDTH: width of the XRM MGT interface.•
MAX_PN4_GPIO_WIDTH: width of the Pn4 GPIO interface.•
MAX_PN6_GPIO_WIDTH: width of the Pn6 GPIO interface.•
MAX_PN6_MGT_WIDTH: width of the Pn6 MGT interface.•

Page 160 Common HDL Components
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

6.3.2 ADB3 Target Include Package (adb3_target_inc_pkg)
The adb3_target_inc_pkg package defines constants and types which characterise the board selected, and whether
synthesis or simulation is being performed. This enables a simulation to perform "lightweight" versions of certain
lengthy initialisation sequence. Without these aids, rapid development of code would be unfeasible due to the length of
real time required for simulations.

The adb3_target_inc_pkg package exists in several variants, one for each supported combination of board and
usage. For example, the package for OCP-only simulation of the ADM-XRC-6T1 board is contained in hdl/vhdl/
common/adb3_target/adb3_target_inc_sim_ocp_6t1_pkg.vhd. Table 83 lists the available variants of the
adb3_target_inc_pkg package:

Model TARGET_USE Filename relative to hdl/vhdl/common/adb3_target/

ADM-XRC-6TL
SIM_MPTL admxrc6tl/adb3_target_inc_sim_mptl_6tl_pkg.vhd
SIM_OCP admxrc6tl/adb3_target_inc_sim_ocp_6tl_pkg.vhd
SYN_NGC admxrc6tl/adb3_target_inc_syn_ngc_6tl_pkg.vhd

ADM-XRC-6T1
SIM_MPTL admxrc6t1/adb3_target_inc_sim_mptl_6t1_pkg.vhd
SIM_OCP admxrc6t1/adb3_target_inc_sim_ocp_6t1_pkg.vhd
SYN_NGC admxrc6t1/adb3_target_inc_syn_ngc_6t1_pkg.vhd

Table 83: Available variants of the adb3_target_inc_pkg package

The following definitions are available in this package:

Usage Definitions

BOARD_TYPE. Defines the board in use according to the board_type_t enumerated type; for example,
ADM_XRC_6T1 for the ADM-XRC-6T1 board.

•

TARGET_USE. Defines the usage according to the target_use_t enumerated type; for example, SIM_OCP for
OCP-only simulation.

•

Clock Definitions

CLKS_IN_REF_CLK_VALID. Indicates presence of ref_clk clock input on this board.•
CLKS_IN_LCLK_VALID. Indicates presence of lclk clock input on this board.•
CLKS_IN_XRM_GCLK_M2C_VALID. Indicates presence of xrm_gclk_m2c clock input on this board.•
CLKS_OUT_XRM_MGTCLK_C2M_VALID. Indicates presence of xrm_mgtclk_c2m clock outputput on this
board.

•

REF_CLK_FREQ_HZ. The frequency in Hz of the reference clock input used by the target FPGA design.•

GPIO Definitions

XRM_GPIO_VALID. Indicates the presence of the XRM GPIO interface on this board.•
XRM_GPIO_WIDTH. Indicates the width of the XRM GPIO interface on this board.•
XRM_MGT_WIDTH. Indicates the width of the XRM MGT interface on this board.•
PN4_GPIO_VALID. Indicates the presence of the Pn4 GPIO interface on this board.•
PN4_GPIO_WIDTH. Indicates the width of the Pn4 GPIO interface on this board.•
PN6_GPIO_VALID. Indicates the presence of the Pn6 GPIO interface on this board.•
PN6_GPIO_WIDTH. Indicates the width of the Pn6 GPIO interface on this board.•
PN6_MGT_WIDTH. Indicates the width of the Pn6 MGT interface on this board.•

On-Board Memory Definitions

Page 161Common HDL Components
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

DDR3_VALID. Indicates the presence of DDR3 SDRAM on this board.•
DDR3_BANKS. Indicates the number of banks of DDR3 SDRAM on this board.•
DDR3_BANK_ROW_WIDTH. Indicates the width of the DDR3 SDRAM row address interface on this board.•
DDR3_BANK_DATA_WIDTH. Indicates the width of the DDR3 SDRAM data interface on this board•
DDR3_BYTE_ADDR_WIDTH. Indicates the width of the DDR3 SDRAM byte address interface on this board.•
DDR3_16_BYTE_ADDR_WIDTH. Indicates the width of the DDR3 SDRAM 16-byte address interface on this
board.

•

MEM_VALID. Indicates the presence of on-board memory on this board.•
MEM_BANKS. Indicates the number of banks of on-board memory on this board.•

MPTL Interface Definitions

DS_CHANNELS. Indicates the number of direct slave OCP channels on this board.•
DMA_CHANNELS. Indicates the number of dma OCP channels on this board.•
DM_CHANNELS. Indicates the number of direct master OCP channels on this board.•
DS_ADDR_WIDTH. Indicates the address space size for a direct slave OCP channel on this board.•
DMA_ADDR_WIDTH. Indicates the address space size for a dma OCP channel on this board.•
DM_ADDR_WIDTH. Indicates the address space size for a direct master OCP channel on this board.•
MPTL_SER_WIDTH. Indicates the width of the MPTL serial data interface that exists on this board.•
std_logic_dbl_t. Type defining a general-purpose differential std_logic signal.•
mptl_pins_t. Type defining the MPTL interface signals between the bridge and target FPGAs. Definition
depends on board and end use.

•

mptl_sb_b2t_t. Type defining the MPTL sideband interface signals from the bridge to the target. Definition
depends on board and end use.

•

mptl_sb_t2b_t. Type defining the MPTL sideband interface signals from the target to the bridge. Definition
depends on board and end use.

•

Page 162 Common HDL Components
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

6.3.3 ADB3 Target Package (adb3_target_pkg)
The package adb3_target_pkg defines functions and components which relate to target example FPGAs.

Function definitions

ds_base_conv.•
ds_mask_conv.•
dma_base_conv.•
dma_mask_conv.•
mask_vec_width.•
make_defined.•
make_defined_s2m.•

Component definitions

mptl_if_target_wrap•
mptl_if_target_sim•
mptl64par_interface_target_6tl_top•
mptl128_interface_target_6t1_top•
mptl64par_interface_target_6tl•
mptl128_interface_target_6t1•

Page 163Common HDL Components
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

6.3.4 ADB3 Target Testbench Package (adb3_target_tb_pkg)
The package adb3_target_tb_pkg defines functions, procedures, and components which relate to target example
FPGA testbenches.

Function definitions

conv_byte_vector.•
conv_byte_enable.•
conv_vector.•
conv_string_hex.•
conv_string.•

Procedure definitions

adb3_target_sim_read_reg32.•
adb3_target_sim_read_reg64.•
adb3_target_sim_read.•
adb3_target_sim_read_cmd.•
adb3_target_sim_read_resp.•
adb3_target_sim_write_reg32.•
adb3_target_sim_write_reg64.•
adb3_target_sim_write.•
adb3_wait_cycles.•

Component definitions

mptl_if_bridge_wrap•
mptl_if_bridge_sim•
mptl64par_interface_bridge_6tl_top•
mptl64par_interface_bridge_6tl•
mptl128_interface_bridge_6t1_top•
mptl128_interface_bridge_6t1•

Page 164 Common HDL Components
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

6.4 ADB3 Probe Library
The ADB3 Probe library is located in the hdl/vhdl/common/adb3_probe/ directory and contains the following
elements:

ADB3 probe library package (adb3_probe_pkg)•
ADB3 probe library components•

6.4.1 ADB3 Probe Library Package (adb3_probe_pkg)
The package adb3_probe_pkg defines constants and types which are used by the ADB3 probe library components.

6.4.2 ADB3 Probe Library Components
6.4.2.1 adb3_ocp_transaction_probe
6.4.2.1.1 Introduction

This is a component in the ADB3 probe library. Its function is to monitor an OCP channel and produce warnings/errors if
specific conditions occur. It is used by target example FPGA testbenches.

6.4.2.1.2 Interface
The adb3_ocp_transaction_probe component interface is shown in Figure 32 below and described in Table 84.

adb3_ocp_transaction_probe

status

ocp_clk

ocp_s2m

ocp_m2s

Figure 32: ADB3 Probe Library adb3_ocp_transaction_probe Component Interface

Signal Type Description
Generics
enable_logging Generic Enable use of log file for info/warnings/errors.
sel_int_log_file Generic Select between internal name and external name for log file.
int_log_filename Generic Internal filename for log file if selected and enabled.
addr_align_bits Generic Set number of unused address LSBs for checking.
addr_width_max Generic Set maximum address width for checking.
data_burst_max Generic Set maximum burst length for checking.
enable_tag_check Generic Enable checking of OCP_CMD_READ tag with read data tag.
OCP Port
ocp_clk Input OCP clock.
ocp_m2s Input OCP port M2S monitor connection.
ocp_s2m Input OCP port S2M monitor connection.
Status
status Output Probe status.

Table 84: ADB3 Probe Library adb3_ocp_transaction_probe Component Interface

Page 165Common HDL Components
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

6.4.2.1.3 Description
This component checks for the following conditions:

Read data with incorrect tag for active read command (enable_tag_check generic).•
Read data for read command which has completed.•
Write data for write command which has completed.•
Write data with invalid DataByteEn value.•
Invalid command detection.•
Invalid address detection (addr_width_max generic).•
Invalid burst length detection (data_burst_max generic).•
Non-valid response detection.•

Page 166 Common HDL Components
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

6.5 Memory Interface Library
The Memory interface library is located in the hdl/vhdl/common/mem_if/ directory and contains the following
elements:

Memory interface library package (mem_if_pkg)•
Memory interface library components•

6.5.1 Memory Interface Library Package (mem_if_pkg)
The package mem_if_pkg defines types, constants, and functions which are used by the memory interface library
components.

Defininitions are as follows:

DDR3 SDRAM bank physical interface types

ddr3_addr_out_t. A record type containing address elements (outputs).•
ddr3_ctrl_out_t. A record type containing control elements (outputs).•
ddr3_data_inout_t. A record type containing data elements (bi-dir).•
ddr3_clk_out_t. A record type containing clock elements (outputs).•

Memory physical interface types

mem_addr_out_t. A record type containing address elements for all memory banks (outputs).•
mem_ctrl_out_t. A record type containing bank control elements for all memory banks (outputs).•
mem_data_inout_t. A record type containing data elements for all memory banks (bi-dir).•
mem_clk_out_t. A record type containing clock elements for all memory banks (outputs).•

Memory interface functions

conv_sim_bypass_init_cal. Returns the value of sim_bypass_init_cal that is appropriate for the
TARGET_USE value in the variant of the adb3_target_inc_pkg that has been selected.

•

conv_sim_init_option. Returns the value of sim_init_option that is appropriate for the TARGET_USE value
in the variant of the adb3_target_inc_pkg that has been selected.

•

 conv_sim_cal_option. Returns the value of sim_cal_option that is appropriate for the TARGET_USE value
in the variant of the adb3_target_inc_pkg that has been selected.

•

DDR3 SDRAM MIG V3.6 core types

mig_v3_6_clocks_t. A record type containing MIG core clock generic elements.•
mig_v3_6_common_t. A record type containing MIG core bank generic elements.•
mig_v3_6_bank01_t. A record type containing MIG core bank 0 and 1 generic elements.•
mig_v3_6_bank2_t. A record type containing MIG core bank 2 generic elements.•
mig_v3_6_bank3_t. A record type containing MIG core bank 3 generic elements.•

Component definitions

ddr3_if_bank_v3_6•

Page 167Common HDL Components
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

6.5.2 Memory Interface Library Components
6.5.2.1 DDR3 SDRAM Memory Interface Bank (ddr3_if_bank_v3_6)
6.5.2.1.1 Introduction

This is a component in the memory interface library. Its function is to convert on-board memory bank OCP channel
transactions to DDR3 SDRAM MIG core user interface transactions and instantiate a single bank Xilinx™ DDR3
SDRAM MIG core.

6.5.2.1.2 Interface
The ddr3_if_bank_v3_6 component interface is shown in Figure 33 below and described in Table 85.

ddr3_if_bank_v3_6

ocp_m2s

ocp_s2m

ocp_rst

ocp_clk

ddr3_addr_out

ddr3_ref_clk

ddr3_rst

ddr3_clk_out

ddr3_data_inout

ddr3_ctrl_out

ddr3_iodelay_ctrl_rdy

ddr3_clk

ddr3_if_err

ddr3_if_stat

ddr3_if_rdy

Figure 33: Memory Interface Library ddr3_if_bank_v3_6 Component Interface

Signal Type Description
bank Generic Bank select.

OCP Port
ocp_rst Input OCP asynchronous reset..
ocp_clk Input OCP clock.
ocp_m2s Input OCP port M2S connection.
ocp_s2m Output OCP port S2M connection.

DDR3 SDRAM MIG Core Bank Control/Status
ddr3_rst Input MIG core asynchronous reset.
ddr3_clk Input MIG core clock.
ddr3_ref_clk Input MIG core reference clock.
ddr3_iodelay_ctrl­
_rdy

Input MIG core IO delay ready.

Table 85: Memory Interface Library ddr3_if_bank_v3_6 Component Interface (continued on next page)

Page 168 Common HDL Components
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

Signal Type Description
ddr3_if_rdy Output MIG core ready.
ddr3_if_stat Output MIG core status.
ddr3_if_err Output MIG core error.

DDR3 SDRAM Bank Physical Interface
ddr3_addr_out Output Bank address.
ddr3_ctrl_out Output Bank control.
ddr3_data_inout Bi-dir Bank data.
ddr3_clk_out Output Bank clocks.

Table 85: Memory Interface Library ddr3_if_bank_v3_6 Component Interface

6.5.2.1.3 Description
This component converts on-board memory bank OCP channel transactions to DDR3 SDRAM MIG core user interface
transactions and instantiates a single bank Xilinx™ DDR3 SDRAM MIG core. It is implemented in
ddr3_if_bank_v3_6.vhd which is located in hdl/vhdl/common/mem_if/ddr3_sdram/. It includes the following
components:

OCP to DDR3 SDRAM MIG core (adb3_ocp_ocp2ddr3_nb)•
Xilinx™ DDR3 SDRAM MIG core•

6.5.2.1.3.1 OCP To DDR3 SDRAM MIG Core (adb3_ocp_ocp2ddr3_nb)
This component converts ADB3 OCP transactions to DDR3 SDRAM MIG core user interface transactions. It is
implemented using the ADB3 OCP library component adb3_ocp_ocp2ddr3_nb.

6.5.2.1.3.2 Xilinx™ DDR3 SDRAM MIG Core
This component instantiates a single bank Xilinx™ DDR3 SDRAM MIG core which has been generated using the
Xilinx™ Core Generator MIG tool. Refer to Section 6.5.2.1.4 for details of the generation procedure.

Note: Currently version 3.6 of the Xilinx™ DDR3 SDRAM MIG core is supported. This is available in ISE
version 12.3 or 12.4.

The component instantiated depends on the bank selected by the bank generic. For example c0_memc_ui_top.vhd
located in hdl/vhdl/common/mem_if/ddr3_sdram/mig_v3_6/rtl/ip_top/ is used for bank 0.

6.5.2.1.4 Xilinx™ DDR3 SDRAM MIG Core Generation
Prior to the initial simulation or bitstream build of a design using a Xilinx™ DDR3 SDRAM MIG core, its HDL files will
need to be generated using the gen_mem_if script. Examples are as follows:

To generate HDL files for Virtex-6 6VLX240T devices using Windows, start a shell and issue the following commands:

cd /d %ADMXRC3_SDK%\hdl\vhdl\common\mem_if\ddr3_sdram\mig_v3_6
gen_mem_if.bat 6vlx240t

To generate HDL files for Virtex-6 6vsx315t devices using Linux, start a shell and issue the following commands:

cd $ADMXRC3_SDK/hdl/vhdl/common/mem_if/ddr3_sdram/mig_v3_6
./gen_mem_if.bash 6vsx315t

Page 169Common HDL Components
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

For further information, refer to the Xilinx™ documentation included with the generated Xilinx™ DDR3 SDRAM MIG
core. After generation of the core, the documentation can be found in hdl/vhdl/common/mem_if/ddr3_sdram/
mig_v3_6/mig_temp/mig_v3_6/docs/.

The VHDL source files can be found in hdl/vhdl/common/mem_if/ddr3_sdram/mig_v3_6/rtl/.

Page 170 Common HDL Components
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

6.6 Memory Application Library
The memory application library is located in the hdl/vhdl/common/mem_apps/ directory and contains the following
elements:

Memory application library components•

6.6.1 Memory Application Library Components
6.6.1.1 Memory Test Block (blk_mem_test)
6.6.1.1.1 Introduction

This is a component in the memory application library. Its function is to generate test stimulus, and analyse test
responses on a single ADB3 OCP channel.

6.6.1.1.2 Interface
The blk_mem_test component interface is shown in Figure 34 below and described in Table 86.

blk_mem_test

ocp_m2s

ocp_s2m

ocp_rst

ocp_clk

error

done

ephase

eaddr

length

offset

go

Figure 34: Memory Application Library blk_mem_test Component Interface

Signal Type Description
a_width Generic Number of logical address bits in memory port.
d_width Generic Number of logical bits in a memory port word.
rd_width Generic Number of physical data pins on memory bank.
tag_base Generic Tag base value.
tag_incr Generic Tag value increment.
tag_mask Generic Tag check mask bits.

OCP Port
ocp_rst Input OCP asynchronous reset.
ocp_clk Input OCP clock.

Table 86: Memory Application Library blk_mem_test Component Interface (continued on next page)

Page 171Common HDL Components
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

Signal Type Description
ocp_m2s Input OCP port M2S connection.
ocp_s2m Input OCP port S2M connection.

Memory Test Control/Status
go Input Initiate test.
offset Input Test start (16-byte words).
length Input Test length-1 (16-byte words).
done Input Test finished/idle.
error Input Error has occurred (qualified by done).
eaddr Input First error address (16-byte words)(qualified by done and error).
ephase Input First error phase (qualified by done and error).

Table 86: Memory Application Library blk_mem_test Component Interface

6.6.1.1.3 Description
TBD

Page 172 Common HDL Components
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

6.7 Memory Model Library
The Memory model library is located in the hdl/vhdl/common/mem_tb/ directory and contains the following elements:

DDR3 SDRAM memory model•

6.7.1 DDR3 SDRAM Memory Model
The DDR3 SDRAM Memory model is located in the hdl/vhdl/common/mem_tb/ddr3_sdram/ directory and contains
the following elements:

DDR3 SDRAM model package (ddr3_sdram_pkg)•
DDR3 SDRAM model components•

6.7.1.1 DDR3 SDRAM Model Package (ddr3_sdram_pkg)
The package ddr3_sdram_pkg defines types, constants, and components which are used by the DDR3 SDRAM
model.

Defininitions are as follows:

DDR3 SDRAM part types

part_size_t. Record type for different part sizes.•
speed_grade_cl_cwl_t. Array type for timing parameters which vary with speed grade, CL, and CWL.•
speed_grade_t. Record type for timing parameters which vary with speed grade.•
part_t. Record type for overall part used by generic model.•

Supported part_size_t constants

M8_X_B8_X_D16. 8Mb Array x 8 banks x 16 data bits = 1Gib part.•
M16_X_B8_X_D16. 16Mb Array x 8 banks x 16 data bits = 2Gib part.•

Supported speed_grade_cl_cwl_t constants

MT41J_187E_CL_CWL_MIN. Micron MT41J64M16_187E (minimum values).•
MT41J_187E_CL_CWL_MAX. Micron MT41J64M16_187E (maximum values).•

Supported speed_grade_t constants

MT41J_187E. Micron MT41J64M16_187E.•

Supported part_t constants

MT41J64M16_187E. Micron MT41J64M16_187E (1Gib part).•
MT47J128M16_187E. Micron MT47J128M16_187E (2Gib part).•

Component definitions

ddr3_sdram•

Page 173Common HDL Components
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

6.7.1.2 DDR3 SDRAM Model Components
6.7.1.2.1 DDR3 SDRAM Model (ddr3_sdram)
6.7.1.2.1.1 Introduction

This is a component in the memory model library. Its function is to provide a generic simulation model which may be
customised to represent specific DDR3 SDRAM parts.

6.7.1.2.1.2 Interface
The ddr3_sdram component interface is shown in Figure 35 below and described in Table 87.

ddr3_sdram

reset_l

dq

dqs

cke

cs_l

ras_l

cas_l

ba

a

we_l

dm

odt

ck

init_start

init_filename

log_start

log_filename

Figure 35: Memory Model Library ddr3_sdram Component Interface

Signal Type Description
message_level Generic Select message reporting level.
part Generic Select component part.
short_init_dly Generic Select shortened initialisation sequence.

Control/Data
ck+ck_l Input Clock (differential).
reset_l Input Reset (active low).
cke Input Clock enable.
cs_l Input Chip select (active low).
ras_l Input Row access strobe (active low).
cas_l Input Column active strobe (active low).
we_l Input Write enable (active low).
odt Input On-die termination.
dm Input Input data mask.

Table 87: Memory Model Library ddr3_sdram Component Interface (continued on next page)

Page 174 Common HDL Components
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

Signal Type Description
ba Input Bank address.
a Input Address.
dq Bi-dir Data.
dqs+dqs_l Bi-dir Data strobe (differential).

Init/Log files
init_start Input Load data initialisation file.
init_filename Input Initialisation file name (default "init.txt").
log_start Input Save data log file.
log_filename Input Log file name (default "log.txt").

Table 87: Memory Model Library ddr3_sdram Component Interface

6.7.1.2.1.3 Description
TBD

6.7.1.2.1.3.1 Message Reporting
The generic message_level controls the type of 'note' level messages reported by the model. 'warning', 'error', and
'failure' level messages are always reported. Options are as follows:

0 - No additional messages.•
1 - Write additional messages only.•
2 - Read additional messages only.•
3 - Info additional messages only.•
4 - Write and read additional messages.•
5 - Write and info additional messages.•
6 - Read and info additional messages.•
7 - Write and read and info additional messages.•

6.7.1.2.1.3.2 Part Selection
The generic part selects the DDR3 SDRAM part to be simulated by the model.

6.7.1.2.1.3.3 Initialisation Delay Selection
The generic short_init_dly controls the DDR3 SDRAM initialisation sequence. The length of this sequence may be
reduced during simulation by setting this generic to 'true'

6.7.1.2.1.3.4 Memory Contents Initalisation
Loading of data from a file into the model is initiated by a 'true' value on the init_start input signal.

The format of each line in the init file should be as follows:

Start BANK (decimal 0-7).•
Start ROW (decimal 0..8191 1Gib/0..16383 2Gib).•
Start COL (decimal 0-1023).•

Page 175Common HDL Components
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

Start data BYTE (decimal 0-1).•
Data Bytes from starting byte.•

An example init file is shown below:

2 1 511 0 0xU0 0x00 0x00 0x0U 0x55
2 1 514 1 0x55 0x04 0x00 0x05 0x00 0x06 0x00 0x03 0x00 0x08 0x00 0x09 0x00 0x0A 0x00 0x07
2 1 522 1 0x00 0x0C 0x00 0x0D 0x00 0x0E 0x00 0x0B 0x00 0x10 0x00 0x11 0x00 0x12 0x00 0x0F
2 1 530 1 0x00 0x14 0x00 0x15 0x00 0x16 0x00 0x13 0x00 0x18 0x00 0x19 0x00 0x1A 0x00 0x17
2 1 538 1 0x00 0x1C 0x00 0x1D 0x00 0x1E 0x00 0x1B 0x00 0x20 0x00 0x21 0x00 0x22 0x00 0x1F
2 1 546 1 0x00
2 1 1023 0 0x77 0x77
2 2 0 0 0x99 0x99
2 2 511 0 0xU0 0x66 0x66 0x0U 0xAA
2 2 514 1 0xAA 0x06 0x00 0x07 0x00 0x08 0x00 0x05 0x00 0x0A 0x00 0x0B 0x00 0x0C 0x00 0x09
2 2 522 1 0x00 0x0E 0x00 0x0F 0x00 0x10 0x00 0x0D 0x00 0x12 0x00 0x13 0x00 0x14 0x00 0x11
2 2 530 1 0x00 16 0x00 0x17 0x00 0x18 0x00 0x15 0x00 0x1A 0x00 0x1B 0x00 0x1C 0x00 0x19
2 2 538 1 0x00 0x1E 0x00 0x1F 0x00 0x20 0x00 0x1D 0x00 0x22 0x00 0x23 0x00 0x24 0x00 0x21
2 2 546 1 0x00
2 2 1023 0 0x88 0x88

6.7.1.2.1.3.5 Memory Contents Logging
Saving of data to a file from the model is initiated by a 'true' value on the log_start input signal. Only memory data that
has been modified is output to the log file.

The format of each line in the log file is as follows:

Start BANK (decimal 0-7).•
Start ROW (decimal 0..8191 1Gib/0..16383 2Gib).•
Start COL (decimal 0-1023).•
Start data BYTE (decimal 0-1).•
Data Bytes from starting byte.•

An example log file is shown below:

0 5 512 0 0x04 0x00 0x05 0x00 0x06 0x00 0x03 0x00 0x08 0x00 0x09 0x00 0x0A 0x00 0x07 0x00
0 5 520 0 0x0C 0x00 0x0D 0x00 0x0E 0x00 0x0B 0x00 0x10 0x00 0x11 0x00 0x12 0x00 0x0F 0x00
0 4104 512 0 0x08 0x00 0x09 0x00 0x0A 0x00 0x07 0x00 0x0C 0x00 0x0D 0x00 0x0E 0x00 0x0B 0x00
0 4104 520 0 0x10 0x00 0x11 0x00 0x12 0x00 0x0F 0x00 0x14 0x00 0x15 0x00 0x16 0x00 0x13 0x00
2 1 511 0 0xU0 0x00 0x00 0x0U 0x55
2 1 514 1 0x55 0x04 0x00 0x05 0x00 0x06 0x00 0x03 0x00 0x08 0x00 0x09 0x00 0x0A 0x00 0x07
2 1 522 1 0x00 0x0C 0x00 0x0D 0x00 0x0E 0x00 0x0B 0x00 0x10 0x00 0x11 0x00 0x12 0x00 0x0F
2 1 546 1 0x00
2 1 1023 0 0x77 0x77
2 2 0 0 0x99 0x99
2 2 511 0 0xU0 0x66 0x66 0x0U 0xAA
2 2 514 1 0xAA 0x06 0x00 0x07 0x00 0x08 0x00 0x05 0x00 0x0A 0x00 0x0B 0x00 0x0C 0x00 0x09
2 2 522 1 0x00 0x0E 0x00 0x0F 0x00 0x10 0x00 0x0D 0x00 0x12 0x00 0x13 0x00 0x14 0x00 0x11
2 2 546 1 0x00
2 2 1023 0 0x88 0x88
5 5 0 0 0x02 0x00 0x03 0x00 0x04 0x00 0x01 0x00 0x06 0x00 0x07 0x00 0x08 0x00 0x05 0x00
5 5 8 0 0x0A 0x00 0x0B 0x00 0x0C 0x00 0x09 0x00 0x0E 0x00 0x0F 0x00 0x10 0x00 0x0D 0x00
6 5 768 0 0x02 0x00 0x03 0x00 0x04 0x00 0x01 0x00 0x06 0x00 0x07 0x00 0x08 0x00 0x05 0x00
6 5 776 0 0x0A 0x00 0x0B 0x00 0x0C 0x00 0x09 0x00 0x0E 0x00 0x0F 0x00 0x10 0x00 0x0D 0x00
7 5 512 0 0x02 0x00 0x03 0x00 0x04 0x00 0x01 0x00 0x06 0x00 0x07 0x00 0x08 0x00 0x05 0x00
7 5 520 0 0x0A 0x00 0x0B 0x00 0x0C 0x00 0x09 0x00 0x0E 0x00 0x0F 0x00 0x10 0x00 0x0D 0x00

Page 176 Common HDL Components
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

6.8 Clock Frequency Measurement Library
The clock frequency measurement library is located in the hdl/vhdl/examples/uber/common/ directory and contains
the following elements:

Clock frequency measurement library components•

6.8.1 Clock Frequency Measurement Library Components
6.8.1.1 Clock Frequency Measurement Block (blk_clock_freq)
6.8.1.1.1 Introduction

This is a component in the clock frequency measurement library. Its function is to count the number of edges present
on a sample clock in a measurement period.

6.8.1.1.2 Interface
The blk_clock_freq component interface is shown in Figure 36 below and described in Table 88.

blk_clock_freq

rst

ref_clk

running

count

done

valid

do

read_clk

smp_clk

idle

Figure 36: Clock Frequency Measurement Library blk_clock_freq Component Interface

Page 177Common HDL Components
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

Signal Type Description
ref_clk_tcval Generic Measurement period in ref_clk cycles.
smp_clk_div_stages Generic Number of ripple-divide stages for smp_clk.

Reset/Clocks
rst Input Asynchronous reset.
ref_clk Input Reference clock.
smp_clk Input Sample clock (to be measured).

Read Clock Domain
read_clk Input Read clock.
do Input Start a measurement.
count Output Number of smp_clk cycles counted (qualified by valid).
running Output smp_clk is running (qualified by valid).
valid Output count and running are valid.
done Output Measurement completed (Active for 1 cycle).
idle Output Measurement not in progress.

Table 88: Clock Frequency Measurement Library blk_clock_freq Component Interface

6.8.1.1.3 Description
TBD

6.8.1.1.3.1 Clock Frequency Measurement Block Constraints
This block works by prescaling the clock whose frequency is being measured (input via the smp_clk port) by a power
of 2, sampling it, and counting rising edges during a certain number of ref_clk cycles. Thus, in order to prevent
incorrect measurements resulting from aliasing of the sampled clock, the following relationship must hold between the
frequencies of ref_clk and smp_clk, and the number of divider stages (the smp_clk_div_stages generic) used in
each blk_clock_freq instance:

ref_clk frequency > smp_clk frequency * 2 / (2**smp_clk_div_stages)•

For small values of smp_clk_div_stages, the accuracy of a measured clock frequency is approximately equal to the
accuracy of ref_clk.

Page 178 Common HDL Components
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

6.9 ChipScope™ Library
The ChipScope™ library is located in the hdl/vhdl/common/ChipScope™/ directory and contains the following
elements:

Xilinx™ ChipScope™ interface (ICON/ILA)•
ChipScope™ library components•

6.9.1 Xilinx™ ChipScope™ Interface (ICON/ILA)
Prior to the initial bitstream build of a design using a Xilinx™ ChipScope™ interface, its .NGC files will need to be
generated using the gen_ChipScope™ script. Examples are as follows:

To generate .NGC files for Virtex-6 6VLX240T devices using Windows, start a shell and issue the following commands:

cd /d %ADMXRC3_SDK%\hdl\vhdl\common\ChipScope™
gen_ChipScope™.bat 6vlx240t

To generate .NGC files for a Virtex-6 6VSX315T device using Linux, start a shell and issue the following commands:

cd $ADMXRC3_SDK/hdl/vhdl/common/ChipScope™
./gen_ChipScope™.bash 6vsx315t

Once generated, the Xilinx™ ChipScope™ interface .NGC files are located in hdl/vhdl/common/ChipScope™/cgp/.

Page 179Common HDL Components
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

6.9.2 ChipScope™ Library Components
6.9.2.1 ChipScope™ Block (blk_ChipScope™)
6.9.2.1.1 Introduction

This is a component in the ChipScope™ library. Its function is to instantiate up to 3 Xilinx™ ChipScope™ interfaces,
each connected to an ADB3 OCP channel.

6.9.2.1.2 Interface
The blk_ChipScope™ component interface is shown in Figure 37 below and described in Table 89.

blk_chipscope

ocp_ch0_s2m

ocp_ch0_trig

ocp_ch0_clk

ocp_ch0_m2s

ocp_ch2_clk

ocp_ch2_trig

ocp_ch2_s2m

ocp_ch2_m2s

ocp_ch1_s2m

ocp_ch1_m2s

ocp_ch1_clk

ocp_ch1_trig

Figure 37: ChipScope™ Library blk_ChipScope™ Component Interface

Signal Type Description
instantiate Generic Enables generation of this component.

ChipScope™ 0
ocp_ch0_clk Input OCP port clock.
ocp_ch0_m2s Input OCP port M2S.
ocp_ch0_s2m Input OCP port S2M.
ocp_ch0_trig Input Trigger.

ChipScope™ 1
ocp_ch1_clk Input OCP port clock.
ocp_ch1_m2s Input OCP port M2S.
ocp_ch1_s2m Input OCP port S2M.

Table 89: ChipScope™ Library blk_ChipScope™ Component Interface (continued on next page)

Page 180 Common HDL Components
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

Signal Type Description
ocp_ch1_trig Input Trigger.

ChipScope™ 2
ocp_ch2_clk Input OCP port clock.
ocp_ch2_m2s Input OCP port M2S.
ocp_ch2_s2m Input OCP port S2M.
ocp_ch2_trig Input Trigger.

Table 89: ChipScope™ Library blk_ChipScope™ Component Interface

6.9.2.1.3 Description
For each ChipScope™ channel, a Xilinx™ chipscope_ila component is instantiated with connections as follows (when
instantiate = true):

ILA clk input

OCP port clock.•

ILA data input

OCP port M2S: Addr(39:0), Data, BurstLength, DataByteEn, Tag.•
OCP port S2M: Data, Tag.•
ILA trig0.•
ILA trig1.•

ILA trig0 input

OCP port M2S: RespAccept, DataValid, Cmd(1:0).•
OCP port S2M: Resp, DataAccept, CmdAccept.•

ILA trig1 input

Trigger input•

ILA trig_out output

Unconnected•

A Xilinx™ chipscope_icon component is also instantiated (when instantiate = true).

6.9.2.2 ChipScope™ Simulation Block (blk_chipscope_sim)
6.9.2.2.1 Introduction

This is a component in the ChipScope™ library. Its function is to instantiate a simulation only version of the
blk_ChipScope™ component.

6.9.2.2.2 Interface
This component's interface is the sames as the blk_ChipScope™ component. Refer to Figure 37 and Table 89.

Page 181Common HDL Components
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

6.9.2.2.3 Description
Signals are generated as for the blk_ChipScope™ component, but no chipscope_ila and chipscope_icon
components are instantiated.

Page 182 Common HDL Components
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

7 FPGA design guide
This section provides guidelines for FPGA designs targeting third generation Alpha Data hardware.

7.1 ADB3 OCP Protocol Reference
7.1.1 Introduction

OCP-IP Protocols in general allow interfacing between two modules, with one module the master (in control of the
transactions) and one module the slave. Each OCP-IP Protocol must have at least a command (Cmd) signal however
the definition of other sideband signals is fairly flexible. The main groupings of signals used in the ADB3 OCP protocol
are a Command Group, synchronous to the Cmd signal, and Data transfer groups both from Master to Slave (Write)
and Slave to Master (Read Response). Each of these groupings is acknowledged independently allowing the flow to
be controlled.

The MPTL interface provides the user with a bank of OCP ports through which the data is passed as Read or Write
transactions.

Master Port - instigates all transfers, can have multiple requests active at any one time if the slave can also
handle multiple requests.

•

Slave Port - responds to Master request, does not instigate any requests•

The MPTL Interface in the User FPGA provides an OCP Master Port for direct reads and writes from the Host via Bars
2/3 and 4/5 (64 bit bars) and a Master Port for each DMA engine in the Bridge.

Each OCP Link operates as follows:

The Master Port outputs a command along with the address, byte enables and burst length for the transaction.1)
The Slave port responds by accepting the command (and the other information).2)
For write transactions:3)

The Master Port outputs the data to be written along with a data valid flag.I)
The Slave Port accepts the data as and when it is able to. Responding with a data accept flag for each
data transfer.

II)

Once all the data has been transferred the Master may start the next transaction.III)

For Read transactions:
The Slave Port retrieves the data that has been requested.I)
The Slave Port outputs the data as and when it is available along with a data valid flag.II)
The Master Port accepts the data . Responding with a data accept flag for each data transfer.III)
Once all the data has been transferred the Master Port is free to start the next transaction.IV)

All OCP ports operate independently and with multiple DMA engines the user can instigate multiple data streams into
and out of the application design.

For advanced systems where the user application has a requirement for direct access from the Application to the Host
an MPTL interface can be provided that has an extra Slave Port. This allows the application to make memory access
requests direct to the Host System.

7.1.2 ADB3 OCP Signal Definitions

Page 183FPGA design guide
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

Signal Group Type Description
Cmd Command OCP Cmd Idle,Write or Read
Addr Command 64 bit std_logic_vector Address

BurstLength Command 12 bit std_logic_vector Length of transfer
Data Data 128 bit std_logic_vector Write Data to Slave

DataByteEn Data 16 bit std_logic_vector Byte Enables for Data
DataValid Data std_logic Qualifier for Data

RespAccept Response std_logic Flow Control for response
Tag Command 8 bit std_logic_vector Tag for Read response data

Table 90: ADB3 OCP Master Signals

Signal Group Type Description
CmdAccept Command std_logic Flow Control for commands
DataAccept Data std_logic Flow Control for write Data

Data Response 128 bit std_logic_vector Response Data to Master
Resp Response OCP Resp Qualifier for Response Data
Tag Response 8 bit std_logic_vector Tag for Read response data

Table 91: ADB3 OCP Slave Signals

7.1.3 Example OCP Transfer Waveform Diagrams
 This section contains timing diagrams for most common transactions and highlight the main operation of the protocol.

Note: These waveforms show different transfer sequences, all are valid OCP requests. This is to show the
different timing sequences of commands and data transfers. Figure 42 shows how a single OCP slave port
handles the two different write requests as shown in Figure 38.

Page 184 FPGA design guide
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

clk

MASTER

CMD IDLE WR IDLE WR IDLE

Addr X A0 X A1 X

BurstLength X 1 X 1 X

Data X D0 X D1 X

DataByteEn X BE0 X BE1 X

DataValid

RespAccept

Tag X T0 X T1 X

SLAVE

CmdAccept

DataAccept

Data X

Resp NONE

Tag X

Figure 38: Single Beat Write

Figure 38 shows 2 single beat write commands. The address, burst length and tag are all presented at the same time
as the Cmd is set to Write. The Cmd is acknowledged within 1 clock cycle in the first case and so the Cmd is returned
to Idle after a single clock cycle. In the first case, the Data and Byte Enables are asserted and accepted also in the
same clock cycle. In the second case, the Write command is not accepted until the 4th cycle after it is asserted
(possible due to the Slave being busy). The master in this case also does not assert the Data Valid signal until after the
Cmd. The data accept is also not accepted immediately and therefore the Data Valid must remain high until the data
beat is accepted. All these cases constitute legal OCP transfers with the protocol.

Page 185FPGA design guide
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

clk

MASTER

CMD IDLE RD IDLE RD IDLE

Addr X A0 X A1 X

BurstLength X 1 X 1 X

Data X

DataByteEn X

DataValid

RespAccept

Tag X T0 X T1 X

SLAVE

CmdAccept

DataAccept

Data X Q0 X Q1 X

Resp X VALID X VALID X

Tag X T0 X T1 X

Figure 39: Single Beat Read

Figure 39 shows 2 single beat read commands. in the first case the read request is immediately accepted. The slave
responds with a response (Q0) on the following clock cycle. The Tag send with the read command is returned with the
response. The second example shows a delayed command accept, a delayed response and a delayed response
accept, all of which are legal with the protocol.

Page 186 FPGA design guide
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

clk

MASTER

CMD IDLE WR IDLE WR IDLE

Addr X A0 X A1 X

BurstLength X 4 X 2 X

Data X D0 D1 D2 D3 X D4 X D5 X

DataByteEn X BE0 BE1 BE2 BE3 X BE4 X BE5 X

DataValid

RespAccept

Tag X T0 X T1 IDLE

SLAVE

CmdAccept

DataAccept

Data X

Resp NONE

Tag X

Figure 40: Burst Write

Figure 40 shows 2 burst writes. A single command is issued for multiple data word transfers. The command protocol
operates in exactly the same manner as for single beat transfers. Multiple data transfers occur for each command.
Data transfers only occur when both DataValid and DataAccept are asserted. The master must wait on DataAccept
being asserted before presenting the next data word. The slave must check that DataValid is asserted when receiving
data. The slave may assert DataAccept even if DataValid is not asserted.

Page 187FPGA design guide
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

clk

MASTER

CMD IDLE RD IDLE

Addr X A0 X

BurstLength X 8 X

Data X

DataByteEn X

DataValid

RespAccept

Tag X T0 X

SLAVE

CmdAccept

DataAccept

Data X Q0 Q1 Q2 Q3 Q4 Q5 X Q6 Q7 X

Resp NONE VALID NONE VALID NONE

Tag X T0 X T0 X

Figure 41: Burst Read

Figure 41 shows a read burst. The response should be held valid and the read tag returned by the slave for all data
transfers. Each data transfer required the Response to be Valid and RespAccect to be asserted.

Page 188 FPGA design guide
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

clk

MASTER

CMD IDLE WR IDLE WR IDLE

Addr X A0 X A1 X

BurstLength X 1 X 1 X

Data X D0 X D1 X

DataByteEn X BE0 X BE1 X

DataValid

RespAccept

Tag X T0 X T1 X

SLAVE

CmdAccept

DataAccept

Data X

Resp NONE

Tag X

Figure 42: OCP Slave Controlled Transfers

Figure 42 shows the OCP slave port delaying accepting the write data until it has accepted the write command, notice
how the OCP master port must keep the data valid during this time. Compare this to the original sequence in Figure
38.

Page 189FPGA design guide
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

8 The ADMXRC3 API
The ADMXRC3 API is the application programming interface that applications, including the ones in this SDK, use to
communicate with third generation Alpha Data hardware. This API is documented in the ADMXRC3 API Specification.

Page 190 The ADMXRC3 API
AD-UG-0004Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

Page Intentionally left blank.

Page 191The ADMXRC3 API
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.3.0 User Guide
(v1.3 - 04th March 2011)

Revision History:

Date Revision Nature of Change
20/05/2010 1.0 Initial version

26/07/2010 1.1
Updated for release 1.1.0
Added SDK structure diagram.
Added information about example applications.

21/09/2010 1.2
Updated for release 1.2.0
Added section for getting started in VxWorks.
Documented VxWorks example applications.

04/03/2011 1.3

Updated for release 1.3.0
Documented new MEMTESTH example application.
Documented new options in existing example applications and utilities.
Documented DDR3 memory interface additions to UBER design.
Added outlines of common HDL components provided by SDK.
Corrected error in DEBUG column of table showing naming conventions for
VxWorks example binaries.

©2011 Alpha Data Parallel Systems Ltd. All rights reserved. All other trademarks and registered trademarks are the
property of their respective owners.

Address: 4 West Silvermills Lane,
 Edinburgh, EH3 5BD, UK
Telephone: +44 131 558 2600
Fax: +44 131 558 2700
email: sales@alpha-data.com
website: http://www.alpha-data.com

Address: 3507 Ringsby Court Suite 105
 Denver, CO 80216
Telephone: (303) 954 8768
Fax: (866) 820 9956 - toll free
email: sales@alpha-data.com
website: http://www.alpha-data.com

v3.34

	1 Introduction
	1.1 Document conventions
	1.2 Supported operating systems
	1.3 Supported Alpha Data hardware
	1.4 Installation
	1.4.1 Installation in Windows
	1.4.2 Installation in Linux
	1.4.3 Installation in VxWorks

	1.5 Structure of this SDK

	2 Getting started
	2.1 Getting started in Windows 2000 / XP / Server 2003
	2.2 Getting started in Windows Vista and later
	2.3 Getting started in Linux
	2.4 Getting started in VxWorks

	3 Example applications for Windows and Linux
	3.1 Building the example applications in Windows
	3.2 Building the example applications in Linux
	3.3 DUMP utility
	3.4 FLASH utility
	3.4.1 Failsafe bitstream mechanism

	3.5 INFO utility
	3.6 ITEST example
	3.7 MEMTESTH example
	3.8 MONITOR utility
	3.9 SIMPLE example
	3.10 SYSMON utility
	3.10.1 Building SYSMON in Linux

	3.11 VPD utility

	4 Example applications for VxWorks
	4.1 Building the example VxWorks applications in Windows
	4.2 Building the example VxWorks applications in Linux
	4.3 MAKE options for the example VxWorks applications
	4.4 FLASH utility (VxWorks)
	4.4.1 Failsafe bitstream mechanism (VxWorks)

	4.5 INFO utility (VxWorks)
	4.6 ITEST example (VxWorks)
	4.7 MEMTESTH example (VxWorks)
	4.8 MONITOR utility (VxWorks)
	4.9 SIMPLE example (VxWorks)
	4.10 VPD utility (VxWorks)

	5 Example HDL FPGA Designs
	5.1 Introduction
	5.2 Design Simulation Using Modelsim
	5.2.1 Full MPTL Simulation (TARGET_USE = SIM_MPTL)
	5.2.2 OCP-Only Simulation (TARGET_USE = SIM_OCP)

	5.3 Bitstream Build Using Xilinx™ ISE
	5.3.1 Building All Example Bitstreams for Windows
	5.3.2 Building All Example Bitstreams for Linux
	5.3.3 Building Specific Example/Board/Device Bitstreams

	5.4 Simple Example FPGA Design
	5.4.1 Board Support
	5.4.2 Source Location
	5.4.2.1 VHDL Source Files for Simulation
	5.4.2.2 VHDL Source Files for Synthesis
	5.4.2.3 XST Files
	5.4.2.4 Implementation Constraint Files

	5.4.3 Design Synthesis and Bitstream Build
	5.4.4 Design Description
	5.4.4.1 Clock Generation
	5.4.4.1.1 OCP Clock
	5.4.4.1.2 Target MPTL Interface Clock

	5.4.4.2 Target MPTL Interface
	5.4.4.3 OCP to Simple Bus Interface Block
	5.4.4.4 Simple Test Registers
	5.4.4.4.1 Register Description

	5.4.5 Testbench Description
	5.4.5.1 Clock Generation
	5.4.5.2 Bridge MPTL Interface
	5.4.5.3 Direct Slave OCP Channel Probe
	5.4.5.4 Stimulus Generation and Verification
	5.4.5.4.1 Direct Slave OCP Channel
	5.4.5.4.1.1 Simple Test

	5.4.6 Design Simulation
	5.4.6.1 Initialisation Results
	5.4.6.2 Direct Slave OCP Channel Results
	5.4.6.3 Completion Results

	5.5 Uber Example FPGA Design
	5.5.1 Board Support
	5.5.2 Source Location
	5.5.2.1 VHDL Source Files for Simulation
	5.5.2.2 VHDL Source Files for Synthesis
	5.5.2.3 XST Files
	5.5.2.4 Implementation Constraint Files

	5.5.3 Design Synthesis and Bitstream Build
	5.5.3.1 Date/Time Package Generation

	5.5.4 Design Description
	5.5.4.1 Clock Generation Block
	5.5.4.1.1 Internal Clock Generation (MMCM)
	5.5.4.1.2 Internal Reset Generation (MMCM)
	5.5.4.1.3 MPTL Interface Clock Generation
	5.5.4.1.4 Input Clock Buffering
	5.5.4.1.5 Input Clock Extraction (MGT Sourced)
	5.5.4.1.6 Output Clock Generation

	5.5.4.2 Target MPTL Interface
	5.5.4.3 OCP Direct Slave Block
	5.5.4.3.1 OCP Cross-Clock Domain Block
	5.5.4.3.2 Direct Slave Address Space Splitter Block
	5.5.4.3.3 Simple Test Register Block
	5.5.4.3.3.1 Description
	5.5.4.3.3.2 Register Description

	5.5.4.3.4 Clock Frequency Measurement Register Block
	5.5.4.3.4.1 Description
	5.5.4.3.4.2 Register Description

	5.5.4.3.5 Interrupt Test Register Block
	5.5.4.3.5.1 Description
	5.5.4.3.5.2 Register Description

	5.5.4.3.6 Informational Register Block
	5.5.4.3.6.1 Description
	5.5.4.3.6.2 Register Description

	5.5.4.3.7 GPIO Test Register Block
	5.5.4.3.7.1 Description
	5.5.4.3.7.2 Register Description

	5.5.4.3.8 On-Board Memory Register Block
	5.5.4.3.8.1 Description
	5.5.4.3.8.2 Register Description

	5.5.4.3.9 Direct Slave BRAM Access Block
	5.5.4.3.9.1 Description
	5.5.4.3.9.2 Direct Slave BRAM Access Window

	5.5.4.3.10 Direct Slave On-Board Memory Access Block
	5.5.4.3.10.1 Description
	5.5.4.3.10.2 Direct Slave On-Board Memory Access Window

	5.5.4.4 OCP Switching Block
	5.5.4.4.1 Direct Slave On-Board Memory OCP Address Space Splitter Block
	5.5.4.4.2 BRAM OCP Multiplexor Block
	5.5.4.4.3 DMA Channel 0 OCP Address Space Splitter Block
	5.5.4.4.4 On-Board Memory Bank OCP Multiplexors

	5.5.4.5 BRAM Block
	5.5.4.6 On-Board Memory Interface Block
	5.5.4.7 On-Board Memory Application Block
	5.5.4.8 ChipScope™ Connection Block (optional)
	5.5.4.9 Design Package

	5.5.5 Testbench Description
	5.5.5.1 Clock Generation
	5.5.5.2 Bridge MPTL Interface
	5.5.5.3 OCP Channel Probes
	5.5.5.4 Stimulus Generation and Verification
	5.5.5.4.1 Non-OCP Functions
	5.5.5.4.1.1 Clock Output Test
	5.5.5.4.1.2 MPTL GPIO Bus Test
	5.5.5.4.1.3 DMA Abort Bus Test

	5.5.5.4.2 Direct Slave OCP Channel
	5.5.5.4.2.1 Simple Test
	5.5.5.4.2.2 Clock Frequency Measurement Test
	5.5.5.4.2.3 XRM GPIO Test
	5.5.5.4.2.4 Pn4/Pn6 GPIO Test
	5.5.5.4.2.5 Interrupt Test
	5.5.5.4.2.6 Informational Register Test
	5.5.5.4.2.7 BRAM Test
	5.5.5.4.2.8 On-Board Memory Test

	5.5.5.4.3 DMA OCP Channels
	5.5.5.4.3.1 DMA OCP Command and Write Data Process
	5.5.5.4.3.2 DMA OCP Response Process

	5.5.5.5 Memory Device Simulation Models
	5.5.5.6 Testbench Package

	5.5.6 Design Simulation
	5.5.6.1 Date/Time Package Generation
	5.5.6.2 Initialisation Results
	5.5.6.2.1 DDR3 SDRAM MIG Core MMCM Status
	5.5.6.2.2 Testbench Status
	5.5.6.2.3 DDR3 SDRAM Initialisation

	5.5.6.3 Non-OCP Functions Results
	5.5.6.3.1 Clock Output Test Results
	5.5.6.3.2 MPTL GPIO Bus Test Results
	5.5.6.3.3 DMA Abort Bus Test Results

	5.5.6.4 Direct Slave OCP Channel Results
	5.5.6.4.1 Simple Test Results
	5.5.6.4.2 Clock Frequency Measurement Test Results
	5.5.6.4.3 XRM GPIO Test Results
	5.5.6.4.4 Pn4/Pn6 GPIO Test Results
	5.5.6.4.5 Interrupt Test Results
	5.5.6.4.6 Informational Register Test Results
	5.5.6.4.7 BRAM Test Results
	5.5.6.4.8 On-Board Memory Test Results

	5.5.6.5 DMA OCP Channels Results
	5.5.6.6 Completion Results

	6 Common HDL Components
	6.1 ADB3 OCP Library
	6.1.1 ADB3 OCP Profile Definition Package (adb3_ocp)
	6.1.2 ADB3 OCP Library Component Declaration Package (adb3_ocp_comp)
	6.1.3 ADB3 OCP Library Components
	6.1.3.1 adb3_ocp_cross_clk_dom
	6.1.3.1.1 Introduction
	6.1.3.1.2 Interface
	6.1.3.1.3 Description
	6.1.3.1.3.1 Command Path
	6.1.3.1.3.2 Write Data Path
	6.1.3.1.3.3 Read Response Path

	6.1.3.2 adb3_ocp_mux_b
	6.1.3.2.1 Introduction
	6.1.3.2.2 Interface
	6.1.3.2.3 Description

	6.1.3.3 adb3_ocp_mux_nb
	6.1.3.3.1 Introduction
	6.1.3.3.2 Interface
	6.1.3.3.3 Description
	6.1.3.3.3.1 Command Path
	6.1.3.3.3.2 Write Data Path
	6.1.3.3.3.3 Read Response Path

	6.1.3.4 adb3_ocp_ocp2ddr3_nb
	6.1.3.4.1 Introduction
	6.1.3.4.2 Interface
	6.1.3.4.3 Description
	6.1.3.4.3.1 Command Path
	6.1.3.4.3.2 Write Data Path
	6.1.3.4.3.3 Read Response Path

	6.1.3.5 adb3_ocp_retime_nb
	6.1.3.5.1 Introduction
	6.1.3.5.2 Interface
	6.1.3.5.3 Description

	6.1.3.6 adb3_ocp_simple_bus_if
	6.1.3.6.1 Introduction
	6.1.3.6.2 Interface
	6.1.3.6.3 Description

	6.1.3.7 adb3_ocp_split_b
	6.1.3.7.1 Introduction
	6.1.3.7.2 Interface
	6.1.3.7.3 Description

	6.1.3.8 adb3_ocp_split_nb
	6.1.3.8.1 Introduction
	6.1.3.8.2 Interface
	6.1.3.8.3 Description
	6.1.3.8.3.1 Command Path
	6.1.3.8.3.2 Write Data Path
	6.1.3.8.3.3 Read Response Path

	6.2 MPTL Library
	6.2.1 MPTL Library Components
	6.2.1.1 Bridge MPTL Interface Wrapper (mptl_if_bridge_wrap)
	6.2.1.1.1 Introduction
	6.2.1.1.2 Interface
	6.2.1.1.3 Description
	6.2.1.1.3.1 OCP-Only Simulation
	6.2.1.1.3.2 Full MPTL Simulation

	6.2.1.2 Target MPTL Interface Wrapper (mptl_if_target_wrap)
	6.2.1.2.1 Introduction
	6.2.1.2.2 Interface
	6.2.1.2.3 Description
	6.2.1.2.3.1 OCP-Only Simulation
	6.2.1.2.3.2 Full MPTL Simulation
	6.2.1.2.3.3 Synthesis

	6.2.2 MPTL Interface Components
	6.2.2.1 Bridge MPTL Interface For OCP-Only Simulation (mptl_if_bridge_sim)
	6.2.2.1.1 Introduction
	6.2.2.1.2 Interface
	6.2.2.1.3 Description

	6.2.2.2 Target MPTL Interface For OCP-Only Simulation (mptl_if_target_sim)
	6.2.2.2.1 Introduction
	6.2.2.2.2 Interface
	6.2.2.2.3 Description

	6.2.2.3 Bridge MPTL Interface For Full MPTL Simulation
	6.2.2.3.1 Introduction
	6.2.2.3.2 Interface
	6.2.2.3.3 Description

	6.2.2.4 Target MPTL Interface For Full MPTL Simulation
	6.2.2.4.1 Introduction
	6.2.2.4.2 Interface
	6.2.2.4.3 Description

	6.2.2.5 Target MPTL Interface For Synthesis
	6.2.2.5.1 Introduction
	6.2.2.5.2 Interface
	6.2.2.5.3 Description

	6.3 ADB3 Target Library
	6.3.1 ADB3 Target Types Definition Package (adb3_target_types_pkg)
	6.3.2 ADB3 Target Include Package (adb3_target_inc_pkg)
	6.3.3 ADB3 Target Package (adb3_target_pkg)
	6.3.4 ADB3 Target Testbench Package (adb3_target_tb_pkg)

	6.4 ADB3 Probe Library
	6.4.1 ADB3 Probe Library Package (adb3_probe_pkg)
	6.4.2 ADB3 Probe Library Components
	6.4.2.1 adb3_ocp_transaction_probe
	6.4.2.1.1 Introduction
	6.4.2.1.2 Interface
	6.4.2.1.3 Description

	6.5 Memory Interface Library
	6.5.1 Memory Interface Library Package (mem_if_pkg)
	6.5.2 Memory Interface Library Components
	6.5.2.1 DDR3 SDRAM Memory Interface Bank (ddr3_if_bank_v3_6)
	6.5.2.1.1 Introduction
	6.5.2.1.2 Interface
	6.5.2.1.3 Description
	6.5.2.1.3.1 OCP To DDR3 SDRAM MIG Core (adb3_ocp_ocp2ddr3_nb)
	6.5.2.1.3.2 Xilinx™ DDR3 SDRAM MIG Core

	6.5.2.1.4 Xilinx™ DDR3 SDRAM MIG Core Generation

	6.6 Memory Application Library
	6.6.1 Memory Application Library Components
	6.6.1.1 Memory Test Block (blk_mem_test)
	6.6.1.1.1 Introduction
	6.6.1.1.2 Interface
	6.6.1.1.3 Description

	6.7 Memory Model Library
	6.7.1 DDR3 SDRAM Memory Model
	6.7.1.1 DDR3 SDRAM Model Package (ddr3_sdram_pkg)
	6.7.1.2 DDR3 SDRAM Model Components
	6.7.1.2.1 DDR3 SDRAM Model (ddr3_sdram)
	6.7.1.2.1.1 Introduction
	6.7.1.2.1.2 Interface
	6.7.1.2.1.3 Description
	6.7.1.2.1.3.1 Message Reporting
	6.7.1.2.1.3.2 Part Selection
	6.7.1.2.1.3.3 Initialisation Delay Selection
	6.7.1.2.1.3.4 Memory Contents Initalisation
	6.7.1.2.1.3.5 Memory Contents Logging

	6.8 Clock Frequency Measurement Library
	6.8.1 Clock Frequency Measurement Library Components
	6.8.1.1 Clock Frequency Measurement Block (blk_clock_freq)
	6.8.1.1.1 Introduction
	6.8.1.1.2 Interface
	6.8.1.1.3 Description
	6.8.1.1.3.1 Clock Frequency Measurement Block Constraints

	6.9 ChipScope™ Library
	6.9.1 Xilinx™ ChipScope™ Interface (ICON/ILA)
	6.9.2 ChipScope™ Library Components
	6.9.2.1 ChipScope™ Block (blk_ChipScope™)
	6.9.2.1.1 Introduction
	6.9.2.1.2 Interface
	6.9.2.1.3 Description

	6.9.2.2 ChipScope™ Simulation Block (blk_chipscope_sim)
	6.9.2.2.1 Introduction
	6.9.2.2.2 Interface
	6.9.2.2.3 Description

	7 FPGA design guide
	7.1 ADB3 OCP Protocol Reference
	7.1.1 Introduction
	7.1.2 ADB3 OCP Signal Definitions
	7.1.3 Example OCP Transfer Waveform Diagrams

	8 The ADMXRC3 API
	Tables
	Table 1: Example applications for Windows and Linux
	Table 2: Naming conventions for VxWorks examples binary
	Table 3: Example HDL FPGA Designs
	Table 4: Simple Design Makefile Targets
	Table 5: Simple Design Direct Slave Address Map
	Table 6: Simple Design, DATA Register (0x000000)
	Table 7: Uber Design Makefile Targets
	Table 8: Uber Design Direct Slave Address Map
	Table 9: Simple Test Register Block Address Map
	Table 10: Simple Test Register Block, DATA Register (0x000000)
	Table 11: Clock Frequency Measurement Register Block Address Map
	Table 12: Clock Frequency Measurement Register Block, SEL Register (0x000040)
	Table 13: Clock Frequency Measurement Register Block, CTRL/STAT Register (0x000044)
	Table 14: Clock Frequency Measurement Register Block, FREQ Register (0x000048)
	Table 15: Interrupt Test Register Block Address Map
	Table 16: Interrupt Test Register Block, SET Register (0x0000C0)
	Table 17: Interrupt Test Register Block, CLEAR/STAT Register (0x0000C4)
	Table 18: Interrupt Test Register Block, MASK Register (0x0000C8)
	Table 19: Interrupt Test Register Block, ARM Register (0x0000CC)
	Table 20: Interrupt Test Register Block, COUNT Register (0x0000D0)
	Table 21: Informational Register Block Address Map
	Table 22: Informational Register Block, DATE Register (0x000140)
	Table 23: Informational Register Block, TIME Register (0x000144)
	Table 24: Informational Register Block, SPLIT Register (0x000148)
	Table 25: Informational Register Block, BRAM_BASE Register (0x00014C)
	Table 26: Informational Register Block, BRAM_MASK Register (0x000150)
	Table 27: Informational Register Block, MEM_BASE Register (0x000154)
	Table 28: Informational Register Block, MEM_MASK Register (0x000158)
	Table 29: Informational Register Block, MEM_BANKS Register (0x00015C)
	Table 30: GPIO Test Register Block Address Map
	Table 31: GPIO Test Register Block, XRM_GPIO_DA_DATAO Register (0x000200)
	Table 32: GPIO Test Register Block, XRM_GPIO_DA_DATAI Register (0x000204)
	Table 33: GPIO Test Register Block, XRM_GPIO_DA_TRI Register (0x000208)
	Table 34: GPIO Test Register Block, XRM_GPIO_DB_DATAO Register (0x00020C)
	Table 35: GPIO Test Register Block, XRM_GPIO_DB_DATAI Register (0x000210)
	Table 36: GPIO Test Register Block, XRM_GPIO_DB_TRI Register (0x000214)
	Table 37: GPIO Test Register Block, XRM_GPIO_DC_DATAO Register (0x000218)
	Table 38: GPIO Test Register Block, XRM_GPIO_DC_DATAI Register (0x00021C)
	Table 39: GPIO Test Register Block, XRM_GPIO_DC_TRI Register (0x000220)
	Table 40: GPIO Test Register Block, XRM_GPIO_DD_DATAO Register (0x000224)
	Table 41: GPIO Test Register Block, XRM_GPIO_DD_DATAI Register (0x000228)
	Table 42: GPIO Test Register Block, XRM_GPIO_DD_TRI Register (0x00022C)
	Table 43: GPIO Test Register Block, XRM_GPIO_CS_DATAO Register (0x000230)
	Table 44: GPIO Test Register Block, XRM_GPIO_CS_DATAI Register (0x000234)
	Table 45: GPIO Test Register Block, XRM_GPIO_CS_TRI Register (0x000238)
	Table 46: GPIO Test Register Block, PN4_GPIO_P_DATAO Register (0x00023C)
	Table 47: GPIO Test Register Block, PN4_GPIO_P_DATAI Register (0x000240)
	Table 48: GPIO Test Register Block, PN4_GPIO_P_TRI Register (0x000244)
	Table 49: GPIO Test Register Block, PN4_GPIO_N_DATAO Register (0x000248)
	Table 50: GPIO Test Register Block, PN4_GPIO_N_DATAI Register (0x00024C)
	Table 51: GPIO Test Register Block, PN4_GPIO_N_TRI Register (0x000250)
	Table 52: GPIO Test Register Block, PN6_GPIO_MS_DATAO Register (0x000254)
	Table 53: GPIO Test Register Block, PN6_GPIO_MS_DATAI Register (0x000258)
	Table 54: GPIO Test Register Block, PN6_GPIO_MS_TRI Register (0x00025C)
	Table 55: GPIO Test Register Block, PN6_GPIO_LS_DATAO Register (0x000260)
	Table 56: GPIO Test Register Block, PN6_GPIO_LS_DATAI Register (0x000264)
	Table 57: GPIO Test Register Block, PN6_GPIO_LS_TRI Register (0x000268)
	Table 58: On-Board Memory Register Block Address Map
	Table 59: On-Board Memory Register Block, DS_BANK Register (0x000300)
	Table 60: On-Board Memory Register Block, DS_PAGE Register (0x000304)
	Table 61: On-Board Memory Register Block, BANKx_CTRL Register (0x000320, 0x000340, ...)
	Table 62: On-Board Memory Register Block, BANKx_OFFSET Register (0x000324, 0x000344, ...)
	Table 63: On-Board Memory Register Block, BANKx_LENGTH Register (0x000328, 0x000348, ...)
	Table 64: On-Board Memory Register Block, BANKx_INFO Register (0x00032C, 0x00034C, ...)
	Table 65: On-Board Memory Register Block, BANKx_STAT Register (0x000330, 0x000350, ...)
	Table 66: On-Board Memory Register Block, BANKx_APP_ERR_ADDR Register (0x000334, 0x000354, ...)
	Table 67: On-Board Memory Register Block, BANKx_MUX_ERR Register (0x000338, 0x000358, ...)
	Table 68: On-Board Memory Register Block, BANKx_DDR3_ERR Register (0x00033C, 0x00035C, ...)
	Table 69: Direct Slave BRAM Access Window
	Table 70: Direct Slave On-Board Memory Access Window
	Table 71: Uber Design Direct Slave On-Board Memory Address Map
	Table 72: Uber Design DMA Channel 0 Address Map
	Table 73: ADB3 OCP Library adb3_ocp_cross_clk_dom Component Interface
	Table 74: ADB3 OCP Library adb3_ocp_mux_b Component Interface
	Table 75: ADB3 OCP Library adb3_ocp_mux_nb Component Interface
	Table 76: ADB3 OCP Library adb3_ocp_ocp2ddr3_nb Component Interface
	Table 77: ADB3 OCP Library adb3_ocp_retime_nb Component Interface
	Table 78: ADB3 OCP Library adb3_ocp_simple_bus_if Component Interface
	Table 79: ADB3 OCP Library adb3_ocp_split_b Component Interface
	Table 80: ADB3 OCP Library adb3_ocp_split_nb Component Interface
	Table 81: MPTL Library mptl_if_bridge_wrap Component Interface
	Table 82: MPTL Library mptl_if_target_wrap Component Interface
	Table 83: Available variants of the adb3_target_inc_pkg package
	Table 84: ADB3 Probe Library adb3_ocp_transaction_probe Component Interface
	Table 85: Memory Interface Library ddr3_if_bank_v3_6 Component Interface
	Table 86: Memory Application Library blk_mem_test Component Interface
	Table 87: Memory Model Library ddr3_sdram Component Interface
	Table 88: Clock Frequency Measurement Library blk_clock_freq Component Interface
	Table 89: ChipScope™ Library blk_ChipScope™ Component Interface
	Table 90: ADB3 OCP Master Signals
	Table 91: ADB3 OCP Slave Signals

	Figures
	Figure 1: Structure of the ADM-XRC Gen 3 SDK
	Figure 2: SYSMON user interface - device information
	Figure 3: SYSMON user interface - sensor readings
	Figure 4: SYSMON user interface - sensor display
	Figure 5: Simple Design Block Diagram
	Figure 6: Simple Design Testbench Block Diagram
	Figure 7: Uber Design Top Level Block Diagram
	Figure 8: Uber Design Top Level Hierarchy
	Figure 9: Uber Design Package Dependencies
	Figure 10: Uber Design Internal Clock Generation (MMCM)
	Figure 11: Uber Design Clock Buffering/Extraction
	Figure 12: Uber Direct Slave Block Diagram
	Figure 13: Uber OCP Switching Block
	Figure 14: Uber BRAM Block Diagram
	Figure 15: Uber Memory Interface Block Diagram
	Figure 16: Uber Design Testbench And Top Level Block Diagram
	Figure 17: Uber Design Testbench Hierarchy
	Figure 18: ADB3 OCP Library adb3_ocp_cross_clk_dom Component Interface
	Figure 19: ADB3 OCP Library adb3_ocp_cross_clk_dom Block Diagram
	Figure 20: ADB3 OCP Library adb3_ocp_mux_b Component Interface
	Figure 21: ADB3 OCP Library adb3_ocp_mux_nb Component Interface
	Figure 22: ADB3 OCP Library adb3_ocp_mux_nb Block Diagram
	Figure 23: ADB3 OCP Library adb3_ocp_ocp2ddr3_nb Component Interface
	Figure 24: ADB3 OCP Library adb3_ocp_ocp2ddr3_nb Block Diagram
	Figure 25: ADB3 OCP Library adb3_ocp_retime_nb Component Interface
	Figure 26: ADB3 OCP Library adb3_ocp_simple_bus_if Component Interface
	Figure 27: ADB3 OCP Library adb3_ocp_split_b Component Interface
	Figure 28: ADB3 OCP Library adb3_ocp_split_nb Component Interface
	Figure 29: ADB3 OCP Library adb3_ocp_split_nb Block Diagram
	Figure 30: MPTL Library mptl_if_bridge_wrap Component Interface
	Figure 31: MPTL Library mptl_if_target_wrap Component Interface
	Figure 32: ADB3 Probe Library adb3_ocp_transaction_probe Component Interface
	Figure 33: Memory Interface Library ddr3_if_bank_v3_6 Component Interface
	Figure 34: Memory Application Library blk_mem_test Component Interface
	Figure 35: Memory Model Library ddr3_sdram Component Interface
	Figure 36: Clock Frequency Measurement Library blk_clock_freq Component Interface
	Figure 37: ChipScope™ Library blk_ChipScope™ Component Interface
	Figure 38: Single Beat Write
	Figure 39: Single Beat Read
	Figure 40: Burst Write
	Figure 41: Burst Read
	Figure 42: OCP Slave Controlled Transfers

	Alpha Data Website

