e,ALPHA DATA

ADM-XRC Gen 3
SDK 1.2.0 User
Guide

Revision: 1.2
Date: 21st September 2010

@ALPHA DATA

ADM-XRC Gen 3 SDK 1.2.0 User Guide
(v1.2 - 215t September 2010)

©2010 Copyright Alpha Data Parallel Systems Ltd.
All rights reserved.

This publication is protected by Copyright Law, with all rights reserved. No
part of this publication may be reproduced, in any shape or form, without
d

prior written consent from Alpha Data Parallel Systems Lii

Address

Telephone.

Fax

email
website

Head Office

4 West Silvermills Lane,
Edinburgh, EH3 58D, UK

+44 131 558 2600

+44 131 558 2700

US office
2570 North First Street, Suite 440
San Jose, CA 95131

(408) 467 5076 General

(408) 916 5713 Sales

(408) 436 5524

(866) 820 9956 toll free

ADM-XRC Gen 3 SDK 1.2.0 User Guide
(V1.2 - 215t September 2010) @ ALPHA DATA

Table Of Contents
1

1.1 Supported operating syste:
1.2 Supported Alpha Data hardware
1.3 Installation
1.3.1 Installation in Windo
1.32 Installation in Linu
1.3.3 Installation in VxWork:
1.4 Structure of this SDK
2 Getting started.
2.1 Getting started in Windows 2000 / XP / Server 2003
2.2 Getting started in Windows Vista and later
2.3 Getting started in Linux
2.4 Getting started in VxWork

3 Example for Windows and Linu
3.1 Building the example in Wind
3.2 Building the example in Linu

3.3 DUMP utiity
3.4 FLASH utilty.

3.4.1 Failsafe bitstream mechanism
3.5 INFO utilty
3.6 ITEST example.

ENEEREERFoooasnmrrreree

3.7 MONITOR utility 21
3.8 SIMPLE example 22
3.9 SYSMON uilty 23
3.9.1 Building SYSMON in Linw 25
3.10 VPD utility. 26
4 Example appli for VxWorks 29
4.1 Building the example VxWorks in Windows 29
4.2 Building the example VxWorks in Linuw 29
4.3 MAKE options for the example VxWorks 29
4.4 FLASH utilty (VxWorks) 32
4.4.1 Failsafe bitstream mechanism (VxWorks) 33
4.5 INFO utilty (VxWorks) bt
4.6 ITEST example (VxWorks) 36
4.7 MONITOR utiity (VxWorks) 38
4.8 SIMPLE example (VxWorks) 2
4.9 VPD uility (VxWorks) 40
5 Example HDL FPGA Designs 43
5.1 Introduction 43
5.2 Design Simulation Using Modelsim. 3
5.3 Bitstream Build Using ISE 43
5.3.1 Building All Example Bitstream: 3
5.3.2 Building Specific D Bitstreams 44

ADM-XRC Gen 3 SDK 1.2.0 User Guide

@ALPHA DATA (v1.2 - 215t September 2010)

5.4 Simple Example FPGA Design .
5.4.1 Design Description a5
5.4.1.1 Clock Generation. -
5.4.1.1.1 Internal Clock Generation. P
5.4.1.1.2 External Clock Buffering a7
5.4.1.1.3 MPTL Interface Clock. .
5.4.1.2 MPTL Interfa a7
5.4.1.3 OCP Direct Slave Channel a7
5.4.1.3.1 Simple Test Register a7
5.4.1.3.1.1 Description a7
5.4.1.3.1.2 Register Interface a7

5.4.2 Board Support 48
5.4.3 Source Location 48
5.4.4 Testbench Decription 49
5.4.4.1 Clock Generation. 49
5.4.4.1.1 Simple Example Design Clocks 49
5.4.4.1.2 Testbench Clock: 49
5.4.4.2 Test Direct Slave Interface 49
5.4.4.2.1 Simple Test. 49
5.4.4.2.2 Bridge MPTL Interface 49
5.4.4.2.3 OCP test probe 49
5.4.5 Design Simulation 50
5.4.5.1 Initialisation Result 50
5.4.5.2 Direct Slave Test Results 50
5.4.5.3 Completion Results 50
5.4.6 Bitstream Build 50
5.4.7 ISE Constraint File: 51
5.5 Uber Example FPGA Design. 52
5.5.1 Design Description 52
5.5.1.1 Clock Generation Block. 57
5.5.1.1.1 Internal Clock Generation (MMCM). 57
5.5.1.1.2 Internal reset generation 57
5.5.1.1.3 External Clock Buffering (Non-MGT Sourced) 57
5.5.1.1.4 External Clock Extraction (MGT Sourced) 57
5.5.1.1.5 MPTL Interface Clock Generation 57
5.5.1.2 MPTL Interface Block 60
5.5.1.3 OCP Direct Slave Interface Block. 60
5.5.1.3.1 OCP Address Space Splitter Block 62
5.5.1.3.2 Simple Test Block 62
55.1.3.2.1 Description 62
55.1.3.2.2 Register Interface 62
55.1.3.3 Clock Read Block 62
55.1.3.3.1 Description 62
55.1.3.3.2 Register Interface 63

5.5.1.3.4 GPIO Test Block o

ADM-XRC Gen 3 SDK 1.2.0 User Guide.
(V1.2 - 215t September 2010)

@ALPHA DATA

5.5.1.3.4.1 Description 64
5.5.1.3.4.2 Register Interf 64
5.5.1.3.5 Interrupt Test Block. 67
55.1.3.5.1 Description 67
55.1.3.5.2 Register Interf 67
5.5.1.3.6 Info Block 68
55.1.3.6.1 Description 68
55.1.3.6.2 Register Interface 68
55.1.3.7 BRAM Interface Block 69
5.5.1.4 OCP DMA Interface Block 69
5.5.1.4.1 OCP Channel Mux Block 7
55.1.4.2 OCP To Parallel Interface Block 7
55.1.4.3 BRAM Block 7
5.5.1.5 ChipScope Connection Block (optional) 7
5.5.2 Board Support 7
5.5.3 Source Location 7
5.5.4 Testbench Description 7
5.5.4.1 Clock Generation. 74
5.5.4.1.1 Uber Example Design Clock: 7
5.5.4.1.2 Testbench Clock: 74
5.5.4.2 Test Direct Slave Interface 74
55.4.2.1 Simple Test 74
55.4.2.2 Clock Read Test 74
55.4.2.3 Front 10 (XRM GPIO) Test 7
5.5.4.2.4 Rear 10 (PN4/PN6 GPIO) Test 75
55.4.2.5 Interrupt Test 75
5.5.4.2.6 Info Test. 75
5.5.4.2.7 BRAM Test 76
5.5.4.3 Test DMA Interface 76
5.5.4.3.1 DMA Write Channel Proce: 76
5.5.4.3.2 DMA Read Channel Proce: 7
5.5.4.4 Bridge MPTL interf 76
5.5.4.5 OCP test prob 76
5.5.5 Design Simulation 7
5.5.5.1 Date/Time Package Generation Result 77
5.5.5.2 Initialisation Result 77
5.5.5.3 Test Direct Slave Block Test Result 77
5.5.5.3.1 Simple Test Result 77
5.5.5.3.2 Clock Read Test Result 77
5.5.5.3.3 Front 10 (XRM GPIO) Test Result 78
5.5.5.3.4 Rear 10 (PN4/PNG GPIO) Test Results. 78
55.5.3.5 Interrupt Test Results 79
55.5.3.6 Info Test Result 79
5.5.5.3.7 BRAM Test Results 79
5.5.5.4 Test DMA Block Test Results 79

@ALPHA DATA

ADM-XRC Gen 3 SDK 1.2.0 User Guide
(v1.2 - 215t September 2010)

6 Common HDL

6.2 MPTL Library.

7 FPGA design guide

5.5.5.5 Completion Result 80
5.5.6 Bitstream Build 80
5.5.6.1 Date/Time Package Generation Results 81
5.5.7 ISE Constraint Fil 81
82

6.1 ADB3 OCP Library 82
6.1.1 adb3_ocp_pkg Packag 82
6.1.2 adb3_ocp_cross_clk_dom Component 82
6.1.3 adb3_ocp_mux Component 82
6.1.4 adb3_ocp_reg_split Component 82
6.5 adb3_ocp_simple_bus_if Component 82
82

6.2.1 mptl_pkg Package. 82
6.2.2 mptl_if_bridge_wrap Component 82
6.2.2.1 OCP-OCP Simulation Py
6.2.2.2 OCP-MPTL-OCP Simulation 82
6.2.23 Synthesi 82
6.2.3 mptl_if_target_wrap Component 82
6.2.3.1 OCP-OCP Simulation Py
6.2.3.2 OCP-MPTL-OCP Simulation 83
6.2.33 Synthesi 83

6.3 ADB3 Target Library 83
6.3.1adb3_target_types_pkg Package 83
6.3.2 adb3_target_pkg Package 83
6.3.3adb3_target_th_pkg Package 83
6.4 ADB3 Probe Library. 83
6.4.1 adb3_probe_pkg Package 83
6.4.2 adb3_ocp_transaction_probe_sim Component. 83
6.5 ADCOMMON Library 83
6.5.1 cdc_pkg Package 83
6.5.2 clock_speed_pkg Package. 83
6.5.2.1 clock_speed Component 83
6.5.3 rst_pkg Packag 83
6.5.3.1 rst_sync Component 84

85

7.1 ADB3 OCP Protocol Referent 85
7.1.1 Introduction. 85
7.1.2 Timing Diagrams 85
90

8 The ADMXRC3 API

ADM-XRC Gen 3 SDK 1.2.0 User Guide.
(V1.2 - 215t September 2010)

@ALPHA DATA

Tables

Table 1:
Table 2:
Table 3:
Table 4:
Table 5:
Table 6:
Table 7:
Table 8:
Table 9:

Table 10:
Table 11:
Table 12:
Table 13:
Table 14:
Table 15:
Table 16:
Table 17:
Table 18:
Table 19:
Table 20:
Table 21:
Table 22:
Table 23:
Table 24:
Table 25:
Table 26:
Table 27:
Table 28:
Table 29:
Table 30:
Table 31:
Table 32:
Table 33:
Table 34:
Table 35:
Table 36:
Table 37:
Table 38:
Table 39:
Table 40:
Table 41:
Table 42:
Table 43:

Naming conventions for VxWorks examples binary 30
FPGA Designs/Host 43
Simple Design Simple Test Block Address Map a7
Simple Design Simple Test Block DATA Register 47
Uber design Direct Slave Address Map 62
Uber Design Simple Test Block Address Map 62
Uber Design Simple Test Block DATA Register 62
Uber Design Clock Read Block Address Map 63
Uber Design Clock Read Block SEL Register 63
Uber Design Clock Read Block CTRLISTAT Register 63
Uber Design Clock Read Block FREQ Register 64
Uber Design GPIO Test Block Address Map 64
Uber Design GPIO Test Block XRM_GPIO_DA_TRI Register (0x00000200).... 64
Uber Design GPIO Test Block XRM_GPIO_DA_DATA Register (0x00000204) 65
Uber Design GPIO Test Block XRM_GPIO_DB_TRI Register (0x00000208).... 65
Uber Design GPIO Test Block XRM_GPIO_DB_DATA Register (0x0000020C) 65
Uber Design GPIO Test Block XRM_GPIO_DC_TRI Register (0x00000210).... 65
Uber Design GPIO Test Block XRM_GPIO_DC_DATA Register (0x00000214).. 65
Uber Design GPIO Test Block XRM_GPIO_DD_TRI Register (0x00000218)..... 65
Uber Design GPIO Test Block XRM_GPIO_DD_DATA Register (0x0000021C) 65
Uber Design GPIO Test Block XRM_GPIO_CS_TRI Register (0x00000220) 65
Uber Design GPIO Test Block XRM_GPIO_CS_DATA Register (0x00000224).. 65
Uber Design GPIO Test Block PN4_GPIO_P_TRI Register (0x00000228) 66
Uber Design GPIO Test Block PN4_GPIO_P_DATA Register (0x0000022C) 66
Uber Design GPIO Test Block PN4_GPIO_N_TRI Register (0x00000230) 66
Uber Design GPIO Test Block PN4_GPIO_N_DATA Register (0x00000234) 66
Uber Design GPIO Test Block PN6_GPIO_MS_TRI Register (0x00000238) 66
Uber Design GPIO Test Block PN6_GPIO_MS_DATA Register (0x0000023C) 66
Uber Design GPIO Test Block PN6_GPIO_LS_TRI Register (0x00000240) 66
Uber Design GPIO Test Block PN6_GPIO_LS_DATA Register (0x00000244) ... 66
Uber Design Interrupt Test Block Address Map. 67
Uber Design Interrupt Test Block SET Register (0x000000C0) 67
Uber Design Interrupt Test Block CLEAR/STAT Register (0x000000C4)... 67
Uber Design Interrupt Test Block MASK Register (0x000000C8). 67
Uber Design Interrupt Test Block ARM Register (0x000000CC) 67
Uber Design Interrupt Test Block COUNT Register (0x000000D0) 68
Uber Design Info Block Address Map 68
Uber Design Info Block DATE Register 14 68
Uber Design Info Block TIME Register 144, 68
Uber Design Info Block SPLIT Register 69
Uber Design Info Block BASE Register 14C) 69
Uber Design Info Block MASK Register 69
ADB3 OCP Master Signal 85

ADM-XRC Gen 3 SDK 1.20 User Guide
@ ALPHA DATA (v1.2 - 21t September 2010)

Table 44: ADB3 OCP Slave Signal: 85
Figures
Figure 1. Structure of the ADM-XRC Gen 3 SDK 3
Figure 2: SYSMON user interface - device information 23
Figure 3: SYSMON user interface - sensor reading: 24
Figure 4 SYSMON user interface - sensor display 24
Figure 5: Simple Design Testbench And Top Level Block Diagram 46
Figure 6: Uber Design Top Level Hierarchy 53
Figure 7: Uber Design Package D 54
Figure 8: Uber Design Testbench And Top Level Block Diagram R B R reens 56
Figure 9: Uber Design Internal Clock Generation (MMCM) 58
Figure 10: Uber Design Clock 59
Figure 11: Uber Direct Slave Block Diagram 61
Figure 12: Uber DMA Block Diagram 70
Figure 13: Uber Design Testbench Hierarchy 73

Single Beat Write 86
Single Beat Read 87
Burst Writ 88
Figure 17: Burst Read 89

ADM-XRC Gen 3 SDK 1.20 User Guide
(v1.2 - 215t September 2010) @ALPHA DATA

1 Introduction

This document describes the ADM-XRC Gen 3 Software Development Kit (SDK), which provides resources for

developers working with the third generation of reconfigurable computing hardware from Alpha Data. The key features

of the SDK are:

+ Example applications that use the ADMXRC3 API

+ Example HDL FPGA designs that target third generation Alpha Data hardware such as the ADM-XRC-6TL.
These designs are built from a number of HDL components that are also provided in this SDK.

« Utilties for working with third generation Alpha Data hardware.

1.1 Supported operating systems
This SDK supports the following operating systems:
« Windows NT-based operating systems beginning with Windows 2000. Both 32-bit and 64-bit editions are
supported.
. Liu disibutions running a 2.6.x kernel.

Beginning with release 1.2.0, this SDK includes header files and example code for VxWorks. For VxWorks
development, itis assumed that a host / development machine is available that runs one of the above operating
systems.

1.2 Supported Alpha Data hardware
The example applications and HDL code in this SDK support the following models in Alpha Data's range of
reconfigurable computing hardware:
. ADM-XRC-6TL
. ADM-XRC-6T1

1.3 Installation
1.3.1 Installation in Windows
The default installation location depends upon whether the operating system is a 32-bit or 64-bit edition of Windows:

+ %ProgramFiles%\ADMXRCG3SDK-1.2.0 in 32-bit editions of Windows.
+ 9%ProgramFiles(x86)%\ADMXRCG3SDK-1.2.0 in 64-bit editions of Windows.

During installation, the installer automatically creates an environment variable ADMXRC3_SDK that points to where the
SDK is installed. Certain example applications use this environment variable to locate FPGA bitstream (.BIT) files. A
user need not manually set this variable, but if using several versions of the SDK, it can be set manually according to
which version of the SDK is in use.

1.3.2 Installation in Linux

This SDK is supplied as a tarball (tar.gz extensmn) that should normally be extracted to the /opt directory, which places
the root of the SDK at/opt/admxrcg3sdk-1.
After installation, an environment variable AquRca,sDK must be defined that points to where the SDK is installed.
Certain example applications use this environment variable to locate FPGA bitstream (.BIT) files. A convenient way to
permanently define this variable for a given user is to add the following to the user's .bash_profile:
ADUXRC3_SDK=/0pt/adnxrcg3sdk-1.2.0
export-ADIXRC3_SDK

Introduction Page 1
AD-UG-0004 Alpha Data Parallel Systems Ltd

ADM-XRC Gen 3 SDK 1.2.0 User Guide

@ALPHA DATA (v1.2 - 215t September 2010)

1.3.3 Installation in VxWorks

Since VxWorks normally requires a Windows, Linux or UNIX host, this SDK must be installed on a Windows or Linux
host as described in Section 1.3.1, "Installation in Windows" or Section 1.3.2, "Installation in Linux"

1.4 Structure of this SDK

Page 2 Introduction
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.2.0 User Guide.
(V1.2 - 215t September 2010)

@ALPHA DATA

(1

The root of the SDK, e.g. loptiadmxrog3sdk-12.0

Example appl d utities

Makefiles and project files for Linux

Project fles for Windows

Source code for Linux & Windows example applications
Source code shared by multple example applications

Linux-specific portability source code
‘Windows-specific portability source code

Source code for DUMP utity
Source code for FLASH utity

VxWorks examples and Makefiles
Source code for k i

[it
= simpie
uber

Prebuilt binaries for example appiications

Prebuilt binaries for x64 editions of Windows
Prebuilt binaries for x86 editions of Windows

Prebuilt bitstreams for example FPGA designs

Figure 1:

- doc for SDK; contains this d t
f nat
L vhdl
common Common VHDL libraries; shared by muttple example FPGA designs
adb3_ocp
adb3_probe
examples — Example VHDL FPGA designs
simple SIMPLE example FPGA design
admxrost ADM-XRC-6TL-specific code for SIMPLE example FPGA design
admxrcstl ADM-XRC-6TL-specific code for SIMPLE example FPGA design
common Modelindependent code for SIMPLE example FPGA design
uber - UBER example FPGA design
admxrcst ADM-XRC-6TL-specific code for UBER example FPGA design
admxrcstl ADM-XRC-6T1-specific code for UBER example FPGA design
common Modekindependent code for UBER example FPGA design

API header files
AP library files

DLL import libraries for x64 editions of Windows.
DLL import libraries for x86 editions of Windows

Structure of the ADM-XRC Gen 3 SDK

Introduction
AD-UG-0004

Page 3
Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.20 User Guide
@ ALPHA DATA (v1.2 - 21t September 2010)

2 Getting started
2.1 Getting started in Windows 2000 / XP / Server 2003

Note: This section also applies to Windows Vista and later when User Account Control (UAC) is disabled

This section describes how to run a basic confidence test on Alpha Data hardware, in Windows 2000 / XP / Server

2003. This confidence test assumes the following:

1. Allfeatures of the SDK were installed, as described in Section 1.3, "Installation".

2. Any model from Alpha Data's reconfigurable computing range that is supported by this SDK s installed in the
machine. For alist of hardware supported, refer to section Section 1.2, "Supported Alpha Data hardware"

3. The ADB3 driver is installed. The ADBS driver for Windows is available from Alpha Data's public FTP site: ftp://
ftp.alpha-data.com/publadmxrcg3/windows.

4. You are logged on as a user that is a member of the Administrators group.

First, start an SDK command prompt by clicking on the 'SDK Command Prompt’ shortcut from the ‘ADM-XRC Gen 3
SDK’ group on the Windows start menu. This command prompt automatically starts with the working directory set to the
bin/win32/x86/ folder of the SDK and also ensures that the ADMXRC3_SDK environment variable is set correctly.
Next, run the info utilty. The output looks like this:

nfornation

Mumber-of-programable-clocks-1
Mumber-of -Di-channels
Number-of~target-FF

ocal-bus-
Nunber-of-nerory-banks
Bank-presence-bi tnap

Target-FPGA-informa

Nemory-bank-informat

03.0-WHz~--533. 3-NHz
Connectivity-mask-0x1

Local-bus-window-infornation
Window-0~~(Ta P

~0x0-5i ze-0x400000
~0x400000

Targ
~0x0~5ize~0x400000
-0x400000

Window~2-~(ADN-XRC-6TL-speci ~OXFB2FFO00-size~0x1000
e

Local-base-
Virtiatosrze-oxlond

Page 4 Getting started
Alpha Data Parallel Systems Ltd. AD-UG-0004

ADM-XRC Gen 3 SDK 1.2.0 User Guide
(V1.2 - 215t September 2010) @ ALPHA DATA

i i i i 1000
0X0-5ize~0X0
2~0x1000

Now run the simple example application. It prompts the user to enter hexadecimal values (up to 32 bits), and displays
these value nibble-reversed. The nibble-reversal is performed by the target FPGA. Pressing CTRL-Z exits this example.
The output looks like this:

Enter-values~for.
CTt

70
(CTRL- RL-Z-to-exit)

Oxdcbad3z1

Oxfeebdaed

Oxecafefac

If everything works as described above, then the hardware, driver and SDK are all correctly installed and substantially

working. Possible next steps are:

+ Experiment with modifying and rebuilding the simple example application in order to become familiar with the
basics of the ADMXRC3 API

+ Experiment with modifying and rebuilding the simple example FPGA design in order to become familiar with
creating FPGA designs for Alpha Data hardware.

2.2 Getting started in Windows Vista and later

Note: If User Account Control is disabled, please refer instead to the instructions in Section 2.1, "Getting
started in Windows 2000 / XP / Server 2003".

This section describes how to run a basic confidence test on Alpha Data hardware, in versions of Windows that have

User Account Control (UAC) such as Windows Vista and later. This confidence test assumes the following:

1. Allfeatures of the SDK were installed, as described in Section 1.3, "Installation”.

2. Any model from Alpha Data's reconfigurable computing range that is supported by this SDK is installed in the
machine. For a list of hardware supported, refer to section Section 1.2, "Supported Alpha Data hardware".

3. The ADB3 driver is installed. The ADB3 driver for Windows is available from Alpha Data's public FTP site: ftp://
ftp.alpha-data.com/publadmxrcg3/windows.

4. Youare logged on as a user that is a member of the Administrators group.

Because of User Account Control (UAC), it is not possible to make use of the ‘SDK Command Prompt shortcut that is
installed along with the SDK. Instead, start a command prompt by right-clicking on the ‘Command Prompt’ shortcut in
the *Accessories' program group and selecting ‘Run as administrator'. This willtypically incur a UAC confirmation
prompt. Then, enter the following command (do not omit the double quotes)

“HADNXRC3_SDK#\env .bat™
This executes the env.bat batch file, which sets up the environment and changes to the folder containing the prebuilt
example application binaries. In order for this to work correctly, the ADMXRC3_SDK system environment variable must
be correctly defined. The installer normally sets this variable, but if not, it must be set using the Windows Control Panel
as a system environment variable to point to where the SDK is installed.

Next, run the info utilty. The output looks like this:

Getting started Page 5

AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.20 User Guide
@ ALPHA DATA (v1.2 - 21t September 2010)

Nunber-of-progranmable-clocks-1
Nunber-of-DiiA~-channels 2
Nunber-of-target-FPGAS
Nunber-of~local-bus-windows~
Nunber-of-sensors
Number-of~1/0-nodulle-sites—
us-windows-
Nunber-of-nefory-banks
Bank-presence-t

Target-FPGA-

forma

Nemory-bank-
k-0~

forma

~65536(0x10000)~Kil-x~32+0~bits
533.3-1Hz

Connectivity-mask-0x1

R3,

, ~DD¥
303.0MHz-

533. 3401z

Bank-2~

-
SORAY. ~DDRS. —65536(oxwooo)—k-w—x—azm bits

com‘uecuvny—mask ot

DDR3,.

W-X-32+0-bi
303.0°NHz~-~533_3-WHz
Connectivity-nask-0x1

Local-bus-window-infornation
i Targ p

Local-base~~~0x0~5ize~0x400000
Virtual-size-0x400000
Tar

Local-base -0x400000

Virtual-size-0xi00000

-XRC-6TL-Speci 1000
Local-base~-0x0-5i ze~0x0
Virtual-size-0x1000

ase-~~0x0~Size-0x0
Vectuatarze om0

Now run the simple example application. It prompts the user to enter hexadecimal values (up to 32 bits), and displays
these value nibble-reversed. The nibble-reversal is performed by the target FPGA. Pressing CTRL-Z exits this example.
The output looks like this:

Enter-values-for-1/0
(CTRL-D~/~CTRL-Z~to~exit)

Lasdsben
OUT-=-0x1234abcd , ~IN-=-Oxdcbad321
deadbeef
OUT-=-Oxdeadbeef. Oxfeebdaed
cafetace
OUT-=-Oxcafeface, Oxecafefac

If everything works s described above, then the hardware, driver and SDK are all correctly installed and substantially

working. Possible next steps are:

+ Make a copy of the SDK in your own filespace, and use the copy to experiment with modifying and rebuilding
the simple example application in order to become familiar with the basics of the ADMXRC3 API

+ Make a copy of the SDK in your own filespace, and use the copy to experiment with modifying and rebuilding
the simple example FPGA design in order to become familiar with creating FPGA designs for Alpha Data
hardware.

2.3 Getting started in Linux

Page 6

Getting started
Alpha Data Parallel Systems Ltd. AD-UG-0004

ADM-XRC Gen 3 SDK 1.2.0 User Guide.

(V1.2 - 215t September 2010) @ ALPHA DATA

This section describes how to run a basic confidence test on Alpha Data hardware, in Linux. This confidence test
assumes the following:

1. This SDK is installed as described in Section 1.3, "Installation”, and the ADMXRC3_SDK environment
variable is set to point to where the SDK has been installed.

2. Any model from Alpha Data's reconfigurable computing range that is supported by this SDK s installed in the
machine. For alist of hardware supported, refer to section Section 1.2, "Supported Alpha Data hardware"

3

The ADBS3 driver is installed. The ADB3 driver for Linux is available from Alpha Data's public FTP site: ftp:/
ftp.alpha-data.com/publadmxrcg3/linux.

Note: In the following text, itis assumed that it is possible to log in as ‘root.. If a Linux distribution is used
where users are expected to use 'sudo’ rather than logging in as root, then in all of the following instructions,
commands should be prefixed with 'sudo’ so that the effect is the same as 'su'to '

Log in as root (if possible), change directory to where the SDK has been installed, and then run the configure script:
$-Cd~SADXRC3_SDK
§-./configure

This detects certain features of the operating system environment so that the example applications can be built. Next
change directory to the Linux application directory.
$-cd-apps/|
Srake-clean-al

Having built the example applications, run the info utiity:
$~info/info

‘The output looks like this:
APL
AP

nfornation
brary-version
Driver-version
Card-information

Serial-nunber 106(0x6A)
Nunber-of-progranmable-clocks-1

Nunber-of-DiA~channels 2
Nunber-of-target-FPGAS

Number-of~loca
Number-of-sens:
Number-of-1/0-nodule-sites~
Number-of-loc —windows—

Numher«of—memory«hanks
Bank-presence-bi trap

Target-FPGA

1750-:
Wemory~bank

,~DDR3,.
Hz-

533.3-Hz

ty-mask-0x1
Bank-

3 33.3-Hz
Connectivi ty-mask-0x1

303
connecuwty-mask 0x1
Local~bus-window~infornation

Getting started

Page 7
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.2.0 User Guide

@ALPHA DATA (v1.2 - 215t September 2010)

Local-base~~-0x0-Size-0x400000
Virtual-size-0x400000

0X0-5ize~0x400000

£~0x400000

N L-speci N
Local-base~~~0x0~size-0x0
Virtual-size-0x1000

i idge-regi i 1000
Local-base~-~0x0~size~0x0.
Virtual-size~0x1000

Targ

Local-base-
Virtual

Now run the simple example application:
$-simple/simple

it prompts the user to enter hexadecimal values (up to 32 bits), and displays these value nibble-reversed. The
nibble-reversal is performed by the target FPGA. Pressing CTRL-D exits this example. The output looks like this:

Enter-values~for~1/0
(CTRL-D~/~CTRL-Z~t0-&)

Oxdcbad3z1

-Oxfeebdaed

-Oxecafefac

If everything works as described above, then the hardware, driver and SDK are all correctly installed and substantially

working. Possible next steps are:

« Experiment with modifying and rebuilding the simple example application in order to become familiar with the
basics of the ADMXRC3 API.

« Experiment with modifying and rebuilding the simple example FPGA design in order to become familiar with
creating FPGA designs for Alpha Data hardware.

2.4 Getting started in VxWorks

Note: Before attempting to follow the instructions in this section, we recommend first building the ADB3
Driver for VxWorks and following the instructions for getting started, verifying that the driver appears to start
correctly on the target system. For details, please refer to the release notes for the ADB3 Driver for
VXWorks.

The example VxWorks applications in this SDK are supplied only in source code form because it is impractical to

provide binaries for the near-infinite number of possible VxWorks configurations. As a reslt, a downloadable module

binary for the examples must be built using one of the supported Wind River VxWorks toolchains (DIAB or GNU).

A second consideration is how the target system will access the downloadable module that you build. In the following

discussion, the term staging area refers to the some location on the development machine’s filesystem(s) that the

target system can access via FTP, NFS, or whatever other method the target system uses for host file access. There

are two main approaches:

+ Copy the entire SDK into the staging area, and build the examples there into a downloadable module. The
target system can then access the downloadable module from the staging area. This approach is convenient
s no manual copying of files is required after building, but may be problematic on some host operating
systems iffile permissions in the staging area do not permit the execution of build commands in the staging
area.

Page 8 Getting started
Alpha Data Parallel Systems Ltd. AD-UG-0004

ADM-XRC Gen 3 SDK 1.2.0 User Guide
(V1.2 - 215t September 2010) @ ALPHA DATA

Copy the SDK to an arbitrary location (e.g. your personal folder on the development machine) and build the
examples there into a downloadable module. The downloadble module must then be copied to the staging
area, and the target system can then access it. This approach is compatible with restrictive file permissions in

the staging area, but the downside is the inconvenience of manually copying of the downloadable module into
the staging area each time it is built

Whichever approach is chosen, the next step is build the example applications as described in Section 4.1, “Building
the example VxWorks applications in Windows" o Section 4.2, "Building the example VxWorks applications in
Linux". This yields a file admxrc3Apps.out containing all of the examples that can be downloaded to the

system. The location of this file is as shown in Table 1 Naming conventions for VxWorks examples binary'

o download the file onto the target system, use the target system's console or a VxWorks host shell on the target
system in order to enter the following command:

~>~1d~<host:/path/to/adnxrc3Apps . out

where host/pathitol is replaced by the host and folder that contains admxrc3Apps.out.

Now the INFO utility can be run as a basic confidence test that the applications were built correctly. Enter the following
command:

->-adnxrc3info

‘The output Iooks like this:

Serial-nunber-
Nunber~of~progrannat
unber-of-DHA-channe -
Nunber-of~target-FPGAS
Nunber-of-local
Number-of~
Nunber-of-
Number-of-local-bus-»
Nunber-of-nerory-banks
Bank-presence-bi tmap
Target-FPGA-

forma

Nemory~bank-~informat

Bank-~1~

Local-bus~window-infornation
i Tar Py

Local-base~~-0x0-s
i ~5i2e~0x400000
i Targ

2~0x400000

~0x0-5ize~0x400000
0000

-0x0

Getting started

Page 9
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.20 User Guide
@ ALPHA DATA (v1.2 - 21t September 2010)

Local-base~~~0x0-size-0x0
Virtual-size-0x1000

Now run the simple example:

—>~adnxrcasinp!

It prompts the user to enter hexadecimal values (up to 32 bits), and displays these value nibble-reversed. The
nibble-reversal is performed by the target FPGA. Pressing CTRL-D exits this example. The output looks like this:

Enter-values-for-1/0
(CTRL-D~/~CTRL-Z~to~exit)

1234abcd
OUT-=-0x1234abcd.
deadbeef
OUT-=-Oxdeadbeef.
cafeface
OUT-=-Oxcafeface,

=~Oxecafefac

If everything works s described above, then the hardware, driver and SDK are all correctly installed and substantally
working. Possible next steps are:

+ Experiment with modifying and rebuilding the simple example application in order to become familiar with the
basics of the ADMXRC3 API.

Experiment with modifying and rebuilding the simple example FPGA design in order to become familiar with
creating FPGA designs for Alpha Data hardware.

Page 10 Getting started
Alpha Data Parallel Systems Ltd. AD-UG-0004

ADM-XRC Gen 3 SDK 1.2.0 User Guide.

(v1.2 - 215t September 2010) @ALPHA DATA

3 Example applications for Windows and Linux

The example applications and utilties are described in the following subsections.

buMP Uity for reading and writing memory access windows
FLASH Uit for programming FPGA bitstream (.BIT) files in user-programmable Flash memory
INFO Uiilty for displaying information about a reconfigurable computing device

ITEST Example demonstrating how to consume target FPGA interrupt notifications in an application
MONITOR Uty that displays sensor readings

SIMPLE Example demonstrating how 10 read and wile registers in a target FPGA

Ssvsvon sty tatcombines the nctonlty o the INFO and MONITOR wifies i gaphical user

vPD Uity that allows the Vital Product Data of a reconfigurable computing device to be read or writen

Source code for the example Windows and Linux applications is provided in the apps/src directory, relative to the root
of the SDK.

3.1 Building the example applications in Windows

AMicrosoft Visual Studio 2008 solution is provided, containing all of the Windows examples. This file is
9%ADMXRC3_SDK%\apps\win32\apps.sin. To build all of the examples, use the "Batch Build" command in Visual
Studio.

3.2 Building the example applications in Linux
To build au of the example applications, excluding the SYSMON utility, at once, enter the following shell commands in a
BASH sl
$~cd~$ADMXRC3 3_SDK/apps/linux
$~./cor ure
$~make~clean~a

When compiling on 64-bit bi-architecture machine such as x86_64, two executables are built for each example
application: a 64-bit native version and a 32-bit version. For example, the native version of INFO is named info, and the
32-bit version is info32. For machines that are not bi-architecture, only the native version is built. The configure script
determines whether or not to build bi-architecture versions of the example applications,

The SYSMON utilty must be buit separately, because it depends upon certain packages being present n the system
For further details, refer to Section 3.9.1, "Building SYSMON in Linux".

Example applications for Windows and Linux Page 11
AD-UG-0004 Alpha Data Parallel Systems Ltd

ADM-XRC Gen 3 SDK 1.2.0 User Guide

@ALPHA DATA (v1.2 - 215t September 2010)

3.3 DUMP utility

Command line

ndow-offset-|

| -rd-window-offset-|
~rq-window-offset-
i -1
i 1
1
dunp-~[option-. - T-wq-windon-offset~[n 1
where
window s the memory window t0 read or wite.
offset s the offset nto the window at which to begin reading or witing
n s the number of bytes to read or write.
data s an optonal data item, valid for wite commands

and the following options are accepted:

index <index> Specifes the index of the card o open (defalt 0).
snt> Species the serial number of the card o open
-be ‘Causes the data to be read or written to be treated as little-endian (default).
+be Causes the data to be read or writen to be treated as big-endian.
-hex ‘Causes write values to be interpreted as decimal unless prefixed by '0x' (default).
+hex ‘Causes write values to be interpreted as hexadecimal always.

Summary

Displays data read from a memory access window, or writes data to a memory access window.

Description
The DUMP utility operates in of two modes:

+ Reading data from a memory access window and displaying it for this mode, use the rb, rw, rd or rq
commands.
+ Wiiting data to a memory access window; for this mode, use the wb, ww, wd or wq commands.

In either mode, the option +be may be passed, before the command. This causes the DUMP utilty to adopt big-endian
byte ordering convention as opposed to litle-endian (the defautr).

Read mode

The read command implies the radix for displaying data:
rb

Byte (8-bit) reads; data is displayed as bytes.

w

Word (16-bit) reads; data is displayed as words.

Doubleword (32-bit) reads; data is displayed as doublewords.

Page 12 Example applications for Windows and Linux
Alpha Data Parallel Systems Ltd. AD-UG-0004

ADM-XRC Gen 3 SDK 1.2.0 User Guide.

(V1.2 - 215t September 2010) @ ALPHA DATA

rq
Quadword (64-bit) reads; data is displayed as quadwords,

After the read command, a window index and an offset must be supplied, in that order. This specifies the memory
access window 1o be read, and where in that window to begin reading data. An optional length parameter, in bytes, can
also be supplied. If omitted, the length is equal to the radix implied by the read command. If present, the length
parameter specifies how many bytes to read and display. The length should be an integer multiple of the width; if not,
the length is rounded down.
For example, the command

dump-rw-0-0x80000-0x60
produces ouput of the form

Dump-of-nerory.at— DxuUlSGDUD +-96(0x60)-bytes
~0: 06~~~08~~~0a~~~0c-

0X00150030: -afa7f596-445d-B232-1637 8414~ Ld1e-171p

b7

Write mode

‘The write command implies the radix (that is, word size) to be used when performing writes:

wh
Data is witten as bytes (8-bit).

ww

Data is written as words (16-bi).

wd

Data is witten as doublewords (32-bit).
wq

Data is written as quadwords (64-bit).

After the write command, a window index and an offset must be supplied, in that order. This specifies the memory
access window (0 be read, and where i that window to begi wrilng daa. An opional length parameter, in btes, can
also be supplied. If omitted, the length is equal to the radix implied by the write command. If present, the lengt!
parameter specifies how many bytes to write. The length should be an integer multiple of the width; if not, the |engm is
rounded down

The program obtains the values to be written in two ways: from any additional parameters on the command line after

the length parameter, and then from the standard input stream (stdin). This works as follows:

1. Any remaining command line arguments, if present after the length parameter, are interpreted as data values
1o be written. These values are assumed to be of the radix implied by the command, and are written to the
memory window, incrementing the offset with each word written. If there are enough values passed on the
ccommand line to satisfy the byte count, the program terminates.

2. Ifthere are insufficient data values passed on the command line, the program waits for values to be entered on
the standard input stream. Values entered this way are also assumed to be of the radix implied by the
command, and are written to the memory window, incrementing the offset with each word written. When the
entie byte count that was specified in the length parameter has been satisfied or end-of-fle is encountered,
the program terminates:

An example session looks like this:
C>dunp~rd-0-0x80000-0x40

Example applications for Windows and Linux Page 13
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.20 User Guide
@ ALPHA DATA (v1.2 - 21t September 2010)

C>dump-wd-0-0xB0004-0x8-Oxdeadbee
Vindow-0~0ffset-0x80004-~napped-g~0x00110004
0x80004: ~OXDEADBEEF

0xB0008: ~Oxcafeface

C>dunp-rd-0-0xB0000-0x40

Dump-of-memory-at-0x00110000-+-64(0x40)~bytes:
00 04~ 08~ oc

0%001. :
0X001. :
0X001. :

Remarks

When entering data for write commands, values are expressed in decimal by default. To express data as hexadecimal,
prefix it with ‘0’ or use the +hex option.

The DUMP utilty uses store instructions for writes that are equal to the width specified on the command line, if
possible. This is not possible f the CPU architecture in use does not have store instructions of the required with or if
the offset specified on the command line would resultin unaligned stores. In the case of an unaligned offset, writes are
performed as a sequence of byte stores, because unaligned stores are llegal on some CPU architectures,

Page 14 Example applications for Windows and Linux
Alpha Data Parallel Systems Ltd. AD-UG-0004

ADM-XRC Gen 3 SDK 1.2.0 User Guide
(V1.2 - 215t September 2010) @ ALPHA DATA

3.4 FLASH utility

WARNING: Incorrect use of the +failsafe option may impact long-term reliabilty of a reconfigurable
computing card. Please refer to {{iink :section:Failsafe bitstream mechanism:St}) below for an explanation of
the +failsafe option and how it may be used.

Command line

flash-[option-. ..]-chkblank-target:

flash-[option-. ..]-verify--~target

where
target-index s the index of a target FPGA.
filename i the name of a BIT file (program or verify commands only)

and the following options are accepted:

-index <index> ‘Specifies the index of the card to open (default 0).

-sn<#> ‘Specifles the serial number of the card to open.

ailsafe Causes the default image to be erased / programmed / verified (defaul)
taiisate Causes the tobe erased / | verified; see

mechanism below.

force Causes a mismatch between the target FPGA device and the BIT file device to resultin an
i

error (default).
+force Causes a mismatch between the target FPGA device and the BIT file device to be ignored.

Summary

Blank-checks, erases, programs or verifies a target FPGA bitstream image in the user-programmable Flash memory of
adevice.

Description
The FLASH utility has four commands:
+ chkblank <target-index>
Verifies that an image is blank, i.e. all bytes are OxFF.
« erase <targetindex>
Erases an image so that it becomes blank, i.e. all bytes are OxFF.
« program <target-index> <filen
Programs the specified st (BIT) file into an image o that the target FPGA is configured from the image:
at power-on of reset.
« verify <target-index> <filename>
Verifies that an image contains the specified bitstream (.BIT) file.

chkblank command

Example applications for Windows and Linux Page 15
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADMIXRC Gen 3 SDK 1.2.0 User Guide
’A LPHA DATA (v1.2 - 21st September 2010)

The chkblank command verifies that a target FPGA image s blank, i.e. all bytes are OxFF, but does not modify the
Flash memory bank. Following the command, an index of a target FPGA in the device must be specified. The index of
the target FPGA is normally zero but may be nonzero in in models with multiple target FPGAs.

For example, to blank-check the default image for target FPGA 0

flash~progran-0~/path/to/my_design.bit

erase command

The erase command erases a target FPGA image so that it becomes blank, i.e. all bytes are OxFF. It automatically
performs a blank-check after erasing. Following the command, an index of a target FPGA n the device must be
specified. The index of the target FPGA is normally zero but may be nonzero in in models with multiple target FPGAs.
For example, to erase the default image for target FPGA 0:

flash-erase-0

program command

The program command programs a target FPGA image with the data in the specified bitstream (BIT) file. Following
the command, an index of a target FPGA in the device and the name of a bitstream (.BIT) filename must be specified.
The index of the target FPGA is normally zero but may be nonzero in in models with multiple target FPGAS.

If the device in the .BIT file does not match the target FPGA, this command fails with an error and does not program the
target FPGA image, unless the +force option is passed. Verification is automatically performed after programming.

For example, to program the default image for target FPGA 0 with a bitstream file called my_design.bit:

flash-progran-0-/path/to/my_design.bit

verify command

The verify command verifies that a target FPGA image contains the data in the specified bitstream (.BIT) file, but does
not modify the Flash memory bank. Following the command, an index of a target FPGA in the device and the name of a
pisteam (&) flename must be specifed. The index of the trget FPGA i normaly ero but may be nonzero inin
‘models with multiple target FF

If the device in the _BIT file does not match the target FPGA, this command fails with an error unless the +force option
is passed. If discrepancies between the target FPGA image and the data in the .BIT file are found, they are displayed
(up to a certain number of erroneous bytes), followed by a failure message.

For example, to verify that the default image for target FPGA 0 contains the data in bitstrea file called
my_design.bit

flash-verify-0~/path/to/my_design.bit

3.4.1 Failsafe bitstream mechanism
Due to errata in certain Xilinx™ FPGA families, the following Gen 3 models have a "failsafe bitstream" mechanism:

« ADM-XRC-6TL
+ ADM-XRC-6T1

In the above models, each target FPGA has two images: a default image, and a failsafe image. Alpha Data
factory-programs a known-good “null bitstream" into the failsafe image. When power is applied to a card, the firmware,
on the card first looks for a valid bitstream in the default image. If no bitstream is found, the firmware uses the null
bitstream in the failsafe image to configure the target FPGA. In this way, the firmware ensures that the target FPGA is
always configured with something when it is powered-on.

Because the purpose of the failsafe image is to protect the target FPGA from sub-micron effects that would otherwise:
degrade the performance of the target FPGA over time, Alpha Data recommends that the failsae image should never
be erased. If overwritien, a customer must ensure that the bitstream is valid, known-good and satisfies the
requirements for protecting the target FPGA from sub-micron effects.

Xilinx™ answer record 35055 elaborates on protecting Virtex-6 GTX transceivers from performance degradation over
time.

Page 16 Example applications for Windows and Linux
Alpha Data Parallel Systems Ltd AD-UG-0004

http://www.xilinx.com/support/answers/35055.htm

ADM-XRC Gen 3 SDK 1.2.0 User Guide
(V1.2 - 215t September 2010) @ ALPHA DATA

3.5 INFO utility

Command line

ifo-[option-...]
where the following options are accepted:

index <index> Specifes the index of the card o open (defalt 0).
sn > Specifes the seria number of the card to open
flash Causes Flash bank information not to be shoun (defau).
+Hash Causes Flash bank information to be shown
-io ‘Causes 1/O module information not to be shown (default).
+io ‘Causes 1/0 module information to be shown.
sensor auses sensor information not to be shown (defaul)
+sensor Causes sensor information to be shown.
Summary

Displays information about a reconfigurable computing device.

Description

The INFO uility demonstrates the use of most of the informational functions in the ADMXRC3 AP, It uses
ADMXRC3_OpenEx to open a device in passive mode, meaning that an unprivileged user can successfully run it. The
output consists of several sections, the first of which is obtained using ADMXRC3_GetVersioninfo:

nfornation

The second section shows information obtained using ADMXRC3_GetCardinfoEx, and shows the information in the
ADMXRC3_CARD_INFOEX structure:

Card-infornation

Ser 101(0x65)
Nunber-of-i prugrammable clocks-1
Number-of-OMA~chan 1
Nunber-of-target-| i

Nunber—of-loca
Nunber-of-sensors
Nunber-of-1/0-module-sites—
Nunber-of-local-bus-windows—-
Nuriber~of~memory-~banks-
Bank-presence-t

OxF

The third section uses the NumTargetFpga member of the ADMXRC3_CARD_INFOEX structure and
ADMXRC3_GetFpgalnfo o enumerate the target FPGAS in the device:

Target-FPGA-information

1759

The fourth section uses the NumMemoryBank member of the ADMXRC3_CARD_INFOEX structure and
ADMXRC3_GetBankinfo to enumerate the memory banks (non-Flash) in the device:

Nemory-bank-infornat .

Bank- i
Example applications for Windows and Linux Page 17
AD-UG-0004 Alpha Data Parallel Systems Lt

ADM-XRC Gen 3 SDK 1.20 User Guide
@ ALPHA DATA (v1.2 - 21t September 2010)

303.0-MHz~--533.3-NiHz
Connectivi ty-mask-0x1

The fourth section uses the NumWindow member of the ADMXRC3_CARD_INFOEX structure and
ADMXRC3_GetWindowInfo to enumerate the memory access windows in the device:

Local-bus-window-infornation
i Targ p

Local-base~~~ 2-0x400000
Virtual-size~0x400000
i Tar

ase~~~0x0~Size~0x400000
Vectuat-otze-odoobo
i (-XRC-6TL-speci

1000

Local-base-
Virtual-size~0x1000

e-0x0

base~~-0x0-5ize~0x0
ertuatoatzeodond

The next section appears if the +flash option is passed on the command line. It uses the NumFlashBank member of

the ADMXRC3_CARD_INFOEX structure and ADMXRC3_GetFlashinfo to enumerate the Flash memory banks in the
device:

Flash-bank~infornation

5 -

Useable~area-0x1200000-0X3FFFFFF
The next section appears if the +io option is passed on the command line. It uses the NumModuleSite member of the
ADMXRC3_CARD_INFOEX structure and ADMXRC3_GetModulelnfo to enumerate the I/O module sites in the device
and show what s fitted, if anything

1/0-nodule~information

P

The final section appears if the +sensor option is passed on the command line. It uses the NumSensor member of the
ADMXRC3_CARD_INFOEX structure and ADMXRC3_GetSensorInfo to enumerate the sensors in the device:
Sensor~information

pply-rai
V.~double, ~exponent-0,~error-0.0

pply
V,~double, ~exponent~0,~error~0.0

pply
V. ~double,~exponent-0,~error-0.0

pply
V.~double, ~exponent-0,~error-0.1

pply
V. ~double, ~exponent-0,~error=0.1

pply-rai
Vindoubte Jexponent 0. error-0.1

V,~double, ~exponent~0 error-0.2
XRM~1/0-v0)
v uogblerexponent 0,~error-0.1

pe
deg.~C,~double,~exponent-0

~error-3.0

Sensor-

deg.~C.~double,~exponent-0,~error-4.0

Page 18 Example applications for Windows and Linux

Alpha Data Parallel Systems Ltd. AD-UG-0004

ADM-XRC Gen 3 SDK 1.2.0 User Guide
(V1.2 - 215t September 2010) @ ALPHA DATA

3.6 ITEST example

Command line

est-[option-...]

where the following options are accepted:

-index <index> ‘Specifies the index of the card to open (default 0).

-sn<#> ‘Specifies the serial number of the card to open.

Summary

D of FPGA interrupt

Description

This example demonstrates how to consume FPGA interrupt noltifications in an application. It uses the interrupt test
block of the UBER example FPGA design, described in Section 5.5.1.3.5, "Interrupt Test Block" as a means of
generating FPGA interrupt notifications, and starts a thread whose purpose is to wait for and acknowledge interrupts
from the target FPGA.

When ITEST is started, the main thread first configures target FPGA 0 with the Section 5.5, “Uber Example FPGA
Design". The main thread then launches an interrupt thread that waits for notifications, in a loop. The main thread then
proceeds to wait for input, also in a loop. At this point, the user may press RETURN 1o generate an interrupt, or enter ‘g’
10 terminate the program. On termination, the program displays the number of FPGA interrupt notifications that the
interrupt thread consumed during execution.

A sample session looks like this

Ter=q~to-quit. or-anything-else-to-generate-an-interrupt:
Interruvt hread-started

Enter-"q*~to~quit,~or~anything-else~to-generate-an-interrupt:
Enter-*q*~to-quit,-or-anything-else-to-generate-an-interrupt:
Enter-"q*~to-quit,~or-anything-else~to-generate-an-interrupt:
Enter-*q*~to-quit,-or-anything-else~to-generate-an-interrup
Enter-"q*~to-quit,-or-anything-else-to-generate-an-interrupt:

Generated-: pts
Interrupt-thread-saw-5

terrupt(s)

The blank lines in the above session are simply empty lines where the user has pressed return. As can be seen, each
of the 5 interrupts generated resuils in the interrupt thread consuming a notification.

Remarks

As noted in the ADMXRC3 API Specification (see functions ADMXRC3_RegisterWin32Event,

ADMXRC3_Register m and ADMXRC: the ADMXRC3 API does not queue each type
of notification. Therefore, this example works as expected as long as the frequency of target FPGA interrupt
notifications is not too fast for the interrupt thread. Since the rate of generation of notifications in this example is limited
the user's keyboard input rate, the interrupt thread should be able (o keep up (as long as the machine is not heavily
loaded with other processes). Nevertheless, it is important to note that in this simple example, there is no mechanism
for throttling the rate of notifications so that notifications cannot be lost. In a real application, the preferred design
approaches are:

Example applications for Windows and Linux Page 19
AD-UG-0004 Alpha Data Parallel Systems Ltd

@ ALPHA DATA ADM-XRC Gen 3 SDK 1.2.0 User Guide

(v1.2 - 215t September 2010)

2

Architect the FPGA design and host application so that they tolerate out-of-date notifications being missed. For
example, if the target FPGA generates an interrupt when data arrives via an /O interface, it does not matter if
the host application does not succeed in consuming every target FPGA interrupt notification, because the
notifications before the latest one are considered out-of-date. When the host application handes a notification,
it reads a register in the target FPGA to determine the amount of new data rather than using the number of
notifications consumed. What matters is that regardless of how many times the target FPGA generates an
interrupt, the host application is guaranteed to eventually wake up and check for new data.

Use a fully handshaked system, where the host application must positively acknowledge a target FPGA
interrupt before the target FPGA generates a new interrupt.

In fact, the above two approaches are best used together, because minimizing the number of FPGA interrupts
minimizes unnecessary context switches in the operating system.

Page 20

Example applications for Windows and Linux
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.2.0 User Guide
(V1.2 - 215t September 2010) @ ALPHA DATA

3.7 MONITOR utility

Command line

o

or-[op

n-...]
where the following options are accepted:

-index <index> ‘Specifies the index of the card to open (default 0).
“sn <> ‘Specifies the serial number of the card to open
-period <delay> ‘Specifies the update period, n seconds.
repeat <n> Specifles the number of updates to perfor (default 0); a value of zero means “repeat for
ever.
Summary

Displays readings from all sensors.

Description

The MONITOR utilty repeatedly displays sensor readings in the command shell at the interval specified by the -period
option. The number of updates to perform before terminating can be specified on the command line using the -repeat
option, but by default, the program runs until interrupted with CTRL-C.
It makes use of the ADMXRC3_GetSensorinfo and ADMXRC3_ReadSensor functions from the ADMXRC3 API, and
because it opens a device in passive mode using ADMXRC3_Open€x, it can run alongside other reconfigurable
computing applications without disturbing them.
The output looks like this:

Nodel ~ADM-XRC-6TL

Serial-number:-— 101-(0%65)

Nunber~of~sensors

XWC-variable-pover-r:

\ge:~2.495712-V

g7~inter: e - g

Example applications for Windows and Linux Page 21
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADMIXRC Gen 3 SDK 1.2.0 User Guide
’A LPHA DATA (v1.2 - 21st September 2010)

3.8 SIMPLE example

Command line

sinple-[option-...]

where the following options are accepted:

-index <index> ‘Specifies the index of the card to open (default 0).
“sn <> ‘Specifies the serial number of the card to open
-uber Uses SIMPLE FPGA design (defaul)
+uber Uses UBER FPGA design.

Summary

Demonstrates access to target FPGA registers.

Description

The SIMPLE example application demonstrates accessing FPGA registers in its simplest form. It first configures target
FPGA 0 with the Section 5.4, “Simple Example FPGA Design”, or the Section 5.5, “Uber Example FPGA Design" if
the +uber option is specified. It then waits for input from the user. The user enters a hexadecimal value (up to 32 bits in
length), and the program writes each one to a register in the target FPGA. The target FPGA nibble-reverses the value
(ie. swaps bits 31:28 with 3:0, 27:24 with 7:4 etc.) and the program reads back the nibble-reversed value and displays
it. The program terminates on CTRL-D (Linux) or CTRL-Z (Windows).

A sample session looks like this:

Enter-values~for~1/0
(CTRL-D~/~CTRL-Z~to-exit)

1234abed
OUT-=-0x1234abcd, Oxdcbad321
deadbeef
OUT-=-Oxdeadbeef, ~IN~=~Oxfeebdaed
cafeface
OUT-=~Oxcafeface, Oxecafefac

Page 22 Example applications for Windows and Linux

Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.2.0 User Guide.

(V1.2 - 215t September 2010) @ ALPHA DATA

3.9 SYSMON utility

Command line

sysmon

Summary

Utiity presenting device information and hardware sensors in a graphical user interface.

Description

The SYSMON utilty combines the information shown by the INFO and MONITOR utilties with a graphical user
interface. Its main function is graphical display of hardware sensor data, and it can be minimized to the notification area
of the deskiop (the "System Tray" in Windows) in order to run unobtrusively.

It makes use of the ADMXRC3_(and ADMXRC3_| functions from the ADMXRC3 API, and
because it opens a device in passive mode using ADMXRC3_Open€x, it can run alongside other reconfigurable
computing applications without disturbing them.

The user interface of the Linux version of SYSMON is as follows upon starting the uilty:

S 'ADMXRC3 Diagnostics 0o ®

Device |Index 0 ADM-XRC-6TLSN #101 | | Update period |15

[Device Information | Sensor Information | Sensor Readout

~ APl information

APl version 110
L Driver version 110
~ Summary information
b Model 257 (0x101) => ADM-XRC-6TL
Serial Number 101 (65)
== Number of target FPGAS 1 J
Number of clock generators 1
Number of DMA channels 1
- Number of windows 4
Number of sensors 10
Number of I/O module sites 1 v

Figure 2: SYSMON user interface - device information

‘The Windows version of SYSMON offers equivalent functionality, but uses a different GUI technology to that of the
Linux version. The second tab shows sensor readings in tabular form:

Example applications for Windows and Linux Page 23
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.2.0 User Guide

@ALPHA DATA (v1.2 - 215t September 2010)

- ADMXRC3 Diagnostics. 0o

Device | Index 0 ADM-XRC-6TLSN #101 v | Update period |1s v About

1

Device Information| Sensor Information | Sensor Readout

| Description Value | Unit

1 1.5V supply rail 151 Vv
2 1.8V supply rail 18 v
3 2.5V supply rail 251 v
433V supply rail 327 vV
5 5V supply rail 502 Vv
6 XMCvariable powerrail 12V
7 XRM /O voltage 25 v
8 LM87 intemal temperature 49 deg.C
9 Target FPGA temperature 58 deg.C

Figure 3: SYSMON user interface - sensor readings

The third tab displays sensor readings in graphical form:
- 'ADMXRC3 Diagnostics 00

Device | index 0 ADM-XRC-6TL SN #101 |v | Update period |15 v About.

Device Information Séﬂvsov Information | Sensor Readout | @

Figure 4: SYSMON user interface - sensor display

Page 24 Example applications for Windows and Linux
Alpha Data Parallel Systems Ltd. AD-UG-0004

ADM-XRC Gen 3 SDK 1.2.0 User Guide
(V1.2 - 215t September 2010) @ ALPHA DATA

Initially, the ‘scope is empty and displays no sensors. The above figure shows the effect of clicking the voltage button,

labelled 2 in the above figure. The user interface elements of the 'scope toolbar are as follows:

1. The temperature bution sets the 'scope to display all temperature sensors in the device. Once some sensors
are displayed, updates begin.

2. The voltage button sets the ‘scope to display all voltage sensors i the device. Once some sensors are
displayed, updates begin.

3. The current button sets the 'scope to display all current sensors in the device. Once some sensors are
displayed, updates begin.

4. Mouse over the key to see which sensor corresponds to which colored trace.

5. The pause / resume bution can be used to pause and resume update of the 'scope.

6. ltem 6 s a button that adds another ‘scope when clicked, to a maximum of 4, so that various types of sensor
can be viewed at the same time.

7. ltem 7 s a button that destroys a 'scope when clicked. If there is only one 'scope, the button is disabled.

3.9.1 Building SYSMON in Linux
The Linux version of the SYSMON utility uses GTKMM-2.4. This package is present in recent Linux distributions such

as Fedora Core 13, but may not be present in all Linux distributions. For this reason, SYSMON is built separately from
the other example applications. A non-exhaustive list of the packages that are required to build SYSMON is as follows:

gtkmm24-devel cairomm-devel
libsige++20-devel glibmm24-devel
pangomm-devel pkgconfig

o run SYSMON, the corresponding runtime packages are required

gtkmm24. cairomm
libsige++20 glibmm24.
pangomm

To build the "Release" configuration of SYSMON, enter the following commands in a BASH shell:
$-cd-SADNXRC3_SDK/apps/linux
$~_/configure
-

yson
$-nake~-CONFIG=Release~clean-al
The executable’s path is then SADMXRC3_SD!

AD-UG-000:

Example applications for Windows and Linux Page 25
4 Alpha Data Parallel Systems Ltd

ADM-XRC Gen 3 SDK 1.2.0 User Guide

@ALPHA DATA (v1.2 - 215t September 2010)

3.10 VPD utility

Command line

)]
)]

-]
~fq-address-n-[data]

ing]
~rt
n
~rd
-1
~wd
q
address s the address in VPD memory at which to begin reading or writing
n s the number of bytes to read or wite
data s anumeric data item, valid for filland write commands.
stiing s a string data item, valid for filland write commands.

and the following options are accepted:

-index <index> ‘Specifies the index of the card o open (default).
“sn <> ‘Specifies the serial number of the card to open
hex ‘Causes numeric data values to be interpreted as decimal unless prefixed by ‘0x (default).
+hex ‘Causes numeric data values to be interpreted as hexadecimal always.

Summary

Displays data read from VPD memory, or writes data to VPD memory.

Description
The VPD utility operates in one of three modes:

« Filling a region of VPD memory with a value or string; for this mode, use the fb, fw, fd, fq or fs commands.

+ Reading data from VPD memory and displaying it; for this mode, use the rb, rw, rd or rq commands.

« Wiiting numeric or string data to a region of VPD memory; for this mode, use the wb, ww, wd, wq or ws
commands.

Fill mode
When filling a region of VPD memory with data, the fill command specifies whether the data is numeric or string data. In

the case of numeric data, the command also implies the radix (i.e. word size) of the data. The available fill commands
are:

b
Fill value is a byte (8-bit).

w
Fill value is a word (16-bit)

Page 26 Example applications for Windows and Linux
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.2.0 User Guide.

(v1.2 - 215t September 2010) @ALPHA DATA

fd
Fill value is a doubleword (32-bit).

fq

Fill value is a quadword (64-bi).

fs

Fillvalue is an ASCII string (8-bit characters).

The next 3 arguments atter the fil command must be:
(a) address - the byte address within VPD memory at which to begin filling

(b) N - byte count; the number of bytes of VPD memory to fill

(c) data or string - the numeric or string value to place in the specified region of VPD memory

If the command is s and the string value is shorter than the byte count n, the string is repeated untilthe byte count is
satisfied. If the string is longer than the byte count n, only the first n characters are used. If a string contains spaces, it
must be quoted on the command line so that it is not interpreted by the shell as two or more separate arguments,

For the numeric fill commands fb, fw, fd and fa, the numeric value is repeated until the byte count is satisfied

Read mode

The read command implies the radix (i.e. word size) used for displaying the data:

b
Byte (8-bi) reads; data is displayed as bytes.

w

Word (16-bit) reads; data s displayed as words.

rd

Doubleword (32-bit) reads; data is displayed as doublewords,

rq

Quadword (64-bit) reads; data is displayed as quadwords,

After the read command, an address must be supplied, which specifies where in VPD memory to begin reading. An
optional length parameter, in bytes, can also be supplied. If omitted, the length is equal to the radix implied by the read
command. If present, the length parameter specifies how many bytes to read and display. The length should be an

integer multiple of the width; if not, the length is rounded down.

Write mode

The write command specifies whether the data is numeric or string data. In the case of numeric data, the command
also implies the radix (i.e. word size) of the data. The available write commands are:

wh
Data is written as bytes (8-bit).

ww

Data is written as words (16-bit).

Data is written as doublewords (32-bit).

wa

Data is written as quadwords (64-bit),

ws

Data is supplied as one or more ASCII trings (8-bit characters)

After the write command, an address must be supplied, which specifies where in VPD memory to begin writing data. An
optional length parameter, in bytes, can also be supplied. If omitted, the length is equal to the radix implied by the write

command. If present, the length parameter specifies how many bytes to write. The length should be an integer multiple
of the width; if not, the length is rounded down

Example applications for Windows and Linux Page 27
AD-UG-0004 Alpha Data Parallel Systems Ltd

ADMIXRC Gen 3 SDK 1.2.0 User Guide
’A LPHA DATA (v1.2 - 21st September 2010)

The program obtains the values to be written in two ways: from any additional parameters on the command line after

the length parameter, and then from the standard input stream (stdin). This works as follows:

1. Any remaining command line arguments, if present after the length parameter, are interpreted as data values
to be written. Numeric values are assumed to be of the radix implied by the command parameter. As each
value it written to VPD memory, the address is incremented. If there are enough values passed on the
command line to satisfy the byte count, the program terminates.

2. Ifthere are insufficient data values passed on the command line, the program waits for values to be entered on
the standard input stream. Numeric values entered this way are also assumed to be of the radix implied by the
command. As each value it written to VPD memory, the address is incremented. When the entire byte count
that was specified in the length parameter has been satisfied or end-of-file is encountered, the program
terminates.

Example session
The following session was captured under Linux using an ADM-XRC-6TL. The base address 0x100000 is used
because that is the VPD-space address of the user-definable area of VPD memory in the ADM-XRC-6TL.

$-./vpd-rb-0x100000-0x60
DuMp~0F~VPD-at-0x100000~+~96(0x60)~bytes:

0X00100000: ~FF~FF~FF~FF~FF~F T~~~ -~ F~f~FF~{~TT-TT

0:-1
T
T~ T~ T~ T~ T~ T~ T~ T~ T~ T~ T~ T~ T~ T~ TT-
LUl Uy UL U U L L L
~FF~ T~ TT- -~~~
0x100008~20~"hel
i~ud~0x100020~12
0:~0xdeadbeef
cafeface
8:~0x12345678
0x100031-~10-0xa55a
$~./vpd-rb-0x100000-0x60
Dump~0f-VPD-at-0x100000~+-96(0x60)~bytes:

FE-FF-
o-or I

0X00100000:

T
0X00100040: ~FF~FF~Ff~FF~FF~Ff~FF~ -1~ FT-F~TT-FT- 1T
0X00100050: ~FF~FF~Ff~FF—FF~Ff~FF—FF—Ff—FF-FF-Ff—Ff-FF-

NOTE: the above sesssion assumes that VPD write protection has

the ADBS3 Driver for Linux or Windows (as appropriate).

Remarks

When entering data for fil or write commands, values are expressed in decimal by default. To express data as
hexadecimal, prefix it with ‘0x’ or use the +hex option.
I the current version of the VPD utiity, data is always read from and written to VPD memory in little-endian byte order.

Page 28 Example applications for Windows and Linux
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.20 User Guide
(v1.2 - 215t September 2010) @ALPHA DATA

4 Example applications for VxWorks

The example applications and utilties are described in the following subsections.

FLASH Uity for programming FPGA bitstream (.BIT) files in user-programmable Flash memory
INFO Utilty for displaying information about a reconfigurable computing device
ITEST Example demonstrating how to consume target FPGA interrupt notiications in an application
MONITOR Uty that displays sensor readings
SIMPLE Example demonstrating how to read and wite registers in a target FPGA
vPD Uity that allows the Vital Product Data of a reconfigurable computing device to be read or writen
Source code for the example VxWorks and Linux is provided in the directory, relative to

the root of the SDK,

4.1 Building the example VxWorks appllcatlons in Windows
4. RusBarilditgs inelsinux

8a
2

Make a copy of the SDK accurdmg {0 the discussion in Section 2.4, “Getting started in VxWorks"
Start a VxWorks Development Shell via the shortcut on the Windows Start Menu. It is important to use this

4.3 NJRRE GBS TR e SIS A VB S giEno e vind River

$he toPRAGA MEREARY 6 the VxWorks examples accepts a number of options which are passed on the MAKE
command line. These are:

CONFIG=<configuration>

Specifies a predefined configuration defined by the file rules.<configuration>, located in the same folder as
the Makefile. This option affects the directory where the binary is placed; see Table 1 'Naming conventions
for VxWorks examples binary' below for details.

‘The rules file may contain any of the following options; for an example, see rules.pd-6.7.

CPU=<cpu>
Specifies the CPU being targetted; for example PPC604 or PENTIUM4 (default). Must be appropriate for the
TARGET option.
DEBUG=<falseltrue>
Specifies a release (false) or debug (true, default) build. This option affects the directory where the binary is
placed; see Table 1‘Naming conventions for VxWorks examples binary’ below for details.
EXTRA_CCOPTS=<extra compller options>
Specifies extra C compiler option:
EXTRA_LDOPTS=<extra linker opuuns>
Specifies extra linker options.
TARGET=<target spec>
Defines the target specification, which must be appropriate for the CPU option. Examples of valid target
specifications for the DIAB toolchain are -tPPC604FH:vxworks55 (PowerPC 604 VxWorks 5.5) and
-tPENTIUMA4LH:vxworks67 (default, Pentium 4 VxWorks 6.7). Examples of valid target specifications for the
GNU toolchain are -mcpu=604 (PowerPC 604) and -mtune=pentiumé -march=pentiumé (Pentium 4).
TOOLCHAIN=<diablgnu>
Specifies the toolchain to be used to build the driver; legal values are diab (default) or gnu. If the gnu
toolchain is selected, the following additional options must be specified (which can be in the rules file specified
by the CONFIG option, for convenience):
. cc=<compiler>
Specifies the C compiler; must be appropriate for the CPU and TARGET options. For example, ccppc
selects the PowerPC GNU compiler.

Example applications for VxWorks Page 29

AD-UG-0004

Alpha Data Parallel Systems Ltd

ADMIXRC Gen 3 SDK 1.2.0 User Guide
’ALF“‘ DATA (v1.2 - 21st September 2010)

LD: inker>

Specilies te irker: must be appropriate orthe CPU and TARGET optons. For example, dppe selcts
the PowerPC GNU linl

N umper>

Specifies nblea dumper; must be appropriate for the CPU and TARGET options. For example, nmppc
selects the PowerPC GNU object dump utiity.

VSB=<variant>

Specifies VxWorks source build (VSB) variant libraries, if required. If omitted, the normal libraries are used.

The most common value for this option is Smp. This option affects the directory where the binary is placed; see
Table 1°Naming conventions for VxWorks examples binary’ below for details.

When the CONFIG option is specified, the SDK's build system reads a rules file that contains values for the other
options. For example, the configuration ppc604-6.7 has a rules file rules.ppc604-6.7. This configuration targets a
PowerPC 604 CPU running VxWorks 6.7. and by way of illustration, the rules file contains:
CPU=PPC604
feq-(S(TOOLCHAIN)
_CCOP1

geall

If no CONFIG option is specified, the default configuration is default. The rules.default file contains:

CPU=PENTIUMA

feq-(S(TOOLCHAIN) .

TARGE

else
eq—(s(moLch N).gnu)

Itis possible that none of the predefined configurations supplied by Alpha Data is appropriate for your hardware
platiorm. If that is the case, a new configuration can be created by using one of the existing rules files as a template
and modifying it appropriately.

Several options affect the location where the resulting binary is placed, assuming that a build is successful. The naming
conventions are as follows:

DEBUG option VSB option Path to binary.
false not defined _SDI
true not defined X
false defined X . <VsB out
false defined ;_SDI _<vs8

Table 1: Naming conventions for VxWorks examples binary

Page 30 Example applications vm VxWorks,
Alpha Data Parallel Systems Ltd UG-0004

ADM-XRC Gen 3 SDK 1.2.0 User Guide.

(v1.2 - 215t September 2010) @ALPHA DATA

For example, if DEBUG=true and VSB=smp, the path to the binary is

S(ADNXRC3_SDK)/app: ig>/debug_ _out
Example applications for VxWorks Page 31
AD-UG-0004 Alpha Data Parallel Systems Lt

ADM-XRC Gen 3 SDK 1.2.0 User Guide

@ALPHA DATA (v1.2 - 215t September 2010)

4

4 FLASH utility (VxWorks)

WARNING: Incorrect use of the FLAG_FAILSAFE value (0x100) for the flags parameter may impact
long-term reliability of reconfigurable computing card. Please refer to Section 4.4.1, “Failsafe bitstream
(VXWorks)" below for an explanation of the failsafe bitstream mechanism and how it may be

used.

Invocation in VxWorks shell

kblank",~<target-
|ags> -“erase" -<target-|

-<target-
-<target-index>.

adnxrcFlash-<index>,<flags>
adnarestlash-<index

A

dex>.~<

~"pro me>
ik s <ndesc Hages ersfy

n:
enare’’>

where

index s normally the index of reconfigurable computing device (default 0). However, this may be
interpreted as a serial number instead of an index i flags contains 0L,

s the bitwise OR of zero or more of the following flags (default 0):

FLAG_BYSERIAL (0x1) => index s interpreted as a serial number rather than a device

flags FLAG_FORCE (0x10) => a program or verify command proceeds even if the FPGA type in
the _BIT file device does not match the FPGA type in the devic
FLAG_FAILSAFE (0x100) => performs the operation on the the failsafe image instead of
the default image

targetindex s the index of a target FPGA (default 0).

“flename” s a string containing the name of a BIT file (program or verify commands only).

The FLASH utiity requires one of the following commands to be passed as a string argument in the third parameter
. chkblank

Verifies that an image is blank, i.e. all bytes are OxFF.
.« erase

Erases an image so that it becomes blank, i.e. all bytes are OxFF.

program
Programs the specified bitstream (.BIT) file into an image so that the target FPGA is configured from the image
at power-on o reset.

verify
Verifies that an image contains the specified bitstream (.BIT) file.

chkblank command

The chkblank command verifies that a target FPGA image s blank, i.e. all bytes are OxFF, but does not modify the
Flash memory bank. Following the command, an index of a target FPGA in the device must be specified. The index of
the target FPGA is normally zero but may be nonzero in in models with muliple target FPGAS

For example, to blank-check the default image for target FPGA 0 in the reconfigurable computing device whose index is
o:

~>~adnxrc3Flash-0,0,"chkblank",0

erase command
The erase command erases a target FPGA image so that it becomes blank, i.e. all bytes are OxFF. It automatically
performs a blank-check after erasing. Following the command, an index of a target FPGA n the device must be
specified. The index of the target FPGA is normally zero but may be nonzero in in models with multiple target FPGAS.
For example, to erase the default image for target FPGA 0 in the reconfigurable computing device whose index is 0:
~->~admxrc3Flash~0,0.

Page 32 Example applications for VxWorks
Alpha Data Parallel Systems Ltd. AD-UG-0004

ADM-XRC Gen 3 SDK 1.20 User Guide
(v1.2 - 215t September 2010) @ALPHA DATA

program command

The program command programs a target FPGA image with the data in the specified bitstream (BIT) file. Following
the command, an index of a target FPGA in the device and the name of a bitstream (.BIT) filename must be specified.
The index of the target FPGA is normally zero but may be nonzero in in models with multiple target FPGAS.

If the device in the BIT file does not match the target FPGA, this command fails with an error and does not program the
target FPGA image, unless the +force option is passed. Verification is automatically performed after programming.

For example, to program the default image for target FPGA 0, in the reconfigurable computing device whose index s 0,
with a bitstrea file called my_design.bit:

~>-adnxrc3Flash-0,0,"progran”,0, "host: /path/to/my_design.bit"

verify command

The verify command verifies that a target FPGA image contains the data in the specified bitstream (BIT) file, but does,
not modify the Flash memory bank. Following the command, an index of a target FPGA in the device and the name of a
bitstream (.BIT) filename must be specified. The index of the target FPGA is normally zero but may be nonzero in in
models with multiple target FPGAS.

If the device in the .BIT file does not match the target FPGA, this command fails with an error unless the +force option
is passed. If discrepancies between the target FPGA image and the data in the .BIT file are found, they are displayed
(up t0 a certain number of erroneous bytes), followed by a failure message.

For example, to verify that the default image for target FPGA 0, in the reconfigurable computing device whose index is
0, contains the data in a bitstream file called my_design.bit

->-adnxrc3Flash-0,0,"vel

.0, "host:/path/to/my_design.

4.4.1 Failsafe bitstream mechanism (VxWorks)
Due to errata in certain Xilinx™ FPGA families, the following Gen 3 models have a “failsafe bitstream" mechanism:

+ ADM-XRC-6TL
« ADM-XRC-6T1

In the above models, each target FPGA has two images: a default image, and a failsafe image. Alpha Data
factory-programs a known-good "null bitstream" into the failsafe image. When power is applied to a card, the firmware,
on the card first looks for a valid bitstream in the default image. If no bitstream is found, the firmware uses the null
bitstream in the failsafe image to configure the target FPGA. In this way, the firmware ensures that the target FPGA is
always configured with something when it is powered-on.

Because the purpose of the failsafe image is to protect the target FPGA from sub-micron effects that would otherwise
degrade the performance of the target FPGA over time, Alpha Data recommends that the failsafe image should never
be erased. If overwritien, a customer must ensure that the bitstream is valid, known-good and satisfies the
requirements for protecting the target FPGA from sub-micron effects.

Xilinx™ answer record 35055 elaborates on protecting Virtex-6 GTX transceivers from performance degradation over
time.

Example applications for VxWorks Page 33
AD-UG-0004 Alpha Data Parallel Systems Ltd

http://www.xilinx.com/support/answers/35055.htm

ADM-XRC Gen 3 SDK 1.2.0 User Guide

@ALPHA DATA (v1.2 - 215t September 2010)

4.5 INFO utility (VXWorks)

Invocation in VxWorks shell

adnxre3info-<index>,~<flags>

where
index specifies the index of the card to open (default 0),
is the bitwise OR of zero or more of the following flags (default O):
tags FLAG_SHOWFLASHINFO (010) => show Flash bark information.
o FLAG_SHOWMODULEINFO (0x20) => show I/O module information.
FLAG_SHOWSENSORINFO (0x40) => show sensor information.
Summary

Displays information about a reconfigurable computing device.

Description

The INFO utility demonstrates the use of most of the informational functions in the ADMXRCS3 API. It uses
ADMXRC3_OpenEx to open a device in passive mode, meaning that an unprivileged user can successfully run it. The
output consists of several sections, the first of which is obtained using ADMXRC3_GetVersioninfo:

nfornat

The second section shows information obtained using ADMXRC3_GetCardinfoEx, and shows the information in the
ADMXRC3_CARD_INFOEX structure:

Se
Number~of~progrannat
Number-of-DWA-channels-
Number-of~target-FPGAs-

Nunber-of-sensors
Number-of-1/0-module-si
Nunber-~of~local-bus-indows—
Mumber-of nerory | Dank
Bank-presence-

The third section uses me NumTargetFpga member of the ADMXRC3_CARD_INFOEX structure and
ADMXRC3_GetFpgalnfo to enumerate the target FPGAS in the device:
Target-FPGA-information

££1750- pping:
The fourth section uses the NumMemoryBank member of the ADMXRC3_CARD_INFOEX structure and
ADMXRC3_GetBankinfo to enumerate the memory banks (non-Flash) in the device:

Nemory-bank-information

Connecllvlly-mask 0x1

Page 34 Example applications for VxWorks
Alpha Data Parallel Systems Ltd. AD-UG-0004

ADM-XRC Gen 3 SDK 1.2.0 User Guide.

(V1.2 - 215t September 2010) @ ALPHA DATA

303.0-MHz~--533.3-NiHz
Connectivity-mask-0x1

The fourth section uses the NumWindow member of the ADMXRC3_CARD_INFOEX structure and

ADMXRC3_GetWindowinfo to enumerate the memory access windows in the device:

Local-bus-window-infornation
i Targ p

ase~~~0x0~5ize~0x400000
Virtual-size-0x400000

Tar

bas -0x400000

Virtual-size-0xio0000

i ~XRC-6TL-speci 1000
Local-base e-0x0.

Virtual-size-0x1000

ase-~~0x0~5ize~0x0
Vectuatsrze o

The next section appears if the FLAG_SHOWFLASHINFO (0x10) flag is used. It uses the NumFlashBank member of
the ADMXRC3_CARD_INFOEX structure and ADMXRC3_GetFlashinfo to enumerate the Flash memory banks in the
device:

Flash-bank~information

.)~
Useable~area~0x1200000-0x3FFFFFF

‘The next section appears if the FLAG_SHOWMODULEINFO (0x20) flag is used. It uses the NumModuleSite member
of the ADMXRC3_CARD_INFOEX structure and ADMXRC3_GetModulelnfo to enumerate the /O module sites in the
device and show what s fitted, if anything:

1/0-nodule-information

p
The final optional section appears if the FLAG_SHOWSENSORINFO (0x40) flag is used. It uses the NumSensor
member of the ADMXRC3_CARD_INFOEX structure and ADMXRC3_GetSensorinfo to enumerate the sensors in the
device:

Sensor-information
Sensor-0

~rai
—~exponent-0,-error-0.0

Sensor- p
o Sipenent-0,-error-0.0
sensor- X i
e, exponent-0, -error-0.0
Sensor-3 y-rail
~exponent-0,~error-0.1
Sensor~4 1
jouble, ~exponent-0,-error-0.1
Sensor-5 Si-Soppty
double, exponent-0. error-0.1
Sensor-6 Xiic-val
V,~doul
Sensor-7- XRM-=1/
V:odouble, ~exponent-0,-error-0.1
Sensor-8 {67 internal-tenperature
deg ~C,~double, ~exponent-0,~error-3.0
Sensor-
deg.~C, ~double, ~exponent-0, -error-4.0
Example applications for VxWorks Page 35

AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.2.0 User Guide

@ALPHA DATA (v1.2 - 215t September 2010)

4.6 ITEST example (VxWorks)

Invocation in VxWorks shell

admxrc3iTest-<index>
where
index specifies the index of the card to open (default).
Summary
D of FPGA interrupt
Description

This example demonstrates how to consume FPGA interrupt nolifications in an application. It uses the interrupt test
block of the UBER example FPGA design, described in Section 5.5.1.3.5, "Interrupt Test Block" as a means of
generating FPGA interrupt notifications, and starts a thread whose purpose is to wait for and acknowledge interrupts
from the target FPGA.

When ITEST is started, the main thread first configures target FPGA 0 with the Section 5.5, “Uber Example FPGA
Design". The main thread then launches an interrupt thread that waits for notifications, in loop. The main thread then
proceeds to wait for input, also in a loop. At this point, the user may press RETURN 1o generate an interrupt, or enter ‘g'
0 terminate the program. On termination, the program displays the number of FPGA interrupt notifications that the
interrupt thread consumed during execution.

Asample session looks like this:

Enter-"q*~to~quit,~or-anything-else~to-generate-an-interrupt:
Interrupt-thread-started

Enter-"q*~to-quit,~or-anything-else~to-generate-an-interrupt:
Enter-*q*~to-quit,-or-anything-else~to-generate-an-interrupt:
Enter-"q*~to-quit,-or-anything-else-to-generate-an-interrupt:
Enter~"q*~to-quit,~or-anything-else~to-generate-an-interrupt:
Enter-"q*~to-quit,-or-anything-else-to-generate-an-interrupt:

Generated-5-interrupts.
Interrupt-thread-saw-5-interrupt(s)

The blank lines in the above session are simply empty lines where the user has pressed return. As can be seen, each

of the 5 interrupts generated resuilts in the interrupt thread consuming a notification.

Remarks
As noted in the ADMXRC3 AP Specification (see functions ADMXRC3_RegisterWin32Event,
ADMXRC3_Register 'm and ADMXRC3 i the ADMXRC3 AP does not queue each type

of notification. Therefore, this example works as expected as long as the frequency of target FPGA interrupt
notifications s not too fast for the interrupt thread. Since the rate of generation of notifications in this example s limited
the user's keyboard input rate, the interrupt thread should be able to keep p (as long as the machine is not heavily
loaded with other processes). Nevertheless, it is important to note that in this simple example, there is no mechanism
for throttling the rate of notifications so that notifications cannot be lost. In a real application, the preferred design
approaches are:

Page 36 Example applications for VxWorks
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.2.0 User Guide
(V1.2 - 215t September 2010) @ ALPHA DATA

1. Architect the FPGA design and host application so that they tolerate out-of-date notifications being missed. For
example, if the target FPGA generates an interrupt when data arrives via an /O interface, it does not matter if
the host application does not succeed in consuming every target FPGA interrupt notification, because the
notifications before the latest one are considered out-of-date. When the host application handes a notification,
it reads a register in the target FPGA to determine the amount of new data rather than using the number of
notifications consumed. What matters is that regardless of how many times the target FPGA generates an
interrupt, the host application is guaranteed to eventually wake up and check for new data.

2. Use a fully handshaked system, where the host application must positively acknowledge a target FPGA
interrupt before the target FPGA generates a new interrupt.

In fact, the above two approaches are best used together, because minimizing the number of FPGA interrupts
minimizes unnecessary context switches in the operating system.

Example applications for VxWorks Page 37
AD-UG-0004

Alpha Data Parallel Systems Ltd

ADM-XRC Gen 3 SDK 1.20 User Guide
@ ALPHA DATA (v1.2 - 21t September 2010)

4.7 MONITOR utility (VxWorks)

Invocation in VxWorks shell

adnxreaionitor-<index>,~<flags>, ~<period>, ~<nutber-of-updates>

where
index specifies the index of the card to open (default 0)
fags s a bitwise OR of flags that modify the behavior of ths utity (default 0); must be 0 as there
o are currently no flags defined.
period s the update period, in seconds.

number of updates specifesthe number o updtes 1 perfo (defaut) a vale of 2610 means epeat for

Summary

Displays readings from all sensors.

Description

The MONITOR utilty repeatedly displays sensor readings in the VxWorks shell at the interval specified by the period
parameter. The number of updates to perform before terminating is specified by the number of updates parameter. If
not specified, the default is 0, which means that the example runs for ever.

This utility makes use of the ADMXRC3_GetSensorinfo and ADMXRC3_ReadSensor functions from the ADMXRC3
AP, and because it opens a device in passive mode using ADMXRC3_OpenEx, it can run alongside other
reconfigurable computing applications without disturbing them.

The output looks like this:

~1V-supply-r:

Page 38 Example applications for VxWorks
Alpha Data Parallel Systems Ltd. AD-UG-0004

ADM-XRC Gen 3 SDK 1.2.0 User Guide
(V1.2 - 215t September 2010) @ ALPHA DATA

4.8 SIMPLE example (VxWorks)

Invocation in VxWorks shell

adnxre3sinple-<index>,-<flags>

where

index specifies the index of the card to open (default 0),

. is the bitwise OR of zero or more of th following flags (default O):

lags FLAG_USEUBER (0x10) => use UBER bitstream instead of SIMPLE bitstream.
Summary

Demonstrates access to target FPGA registers.
Description

The SIMPLE example application demonstrates accessing FPGA registers in its simplest form. It first configures target
FPGA 0 with the Section 5.4, "Simple Example FPGA Design", or the Section 5.5, "Uber Example FPGA Design" if
the flags parameter includes FLAG_USEUBER (0x10). It then waits for input from the user. The user enters a
hexadecimal value (up to 32 bits in length), and the program writes each one to a register in the target FPGA. The
target FPGA nibble-reverses the value (i.e. swaps bits 31:28 with 3:0, 27:24 with 7:4 etc.) and the program reads back
the nibble-reversed value and displays it. The program terminates on CTRL-D.

Asample session looks like this:

Enter-values-for-1/0
(CTRL-D~/~CTRL-Z-to-exit)

1234abcd
0UT-=-0x1234abcd,, ~ IN-
deadbeef
OUT-=-Oxdeadbeef, ~ N

-Oxcafeface, ~IN-=-Oxecafefac

Example applications for VxWorks
004

Page 39
AD-UG-0 Alpha Data Parallel Systems Ltd

ADMIXRC Gen 3 SDK 1.2.0 User Guide
’A LPHA DATA (v1.2 - 21st September 2010)

4.9 VPD utility (VxWorks)

Invocation in VxWorks shell

admxre3vpd-—- -<f|ags> ~<address>,~<n>,
adnxrc3vpd- > ~<flags>.
admxrc3vpd-- ags>
admxrc3vpd- ~<flags>
admxrc3vpd-- —<flags>.
p ~<flags>,
admxrc3vpd-- —<flags>.
adnxrc3vpd- ~<flags
admxrc3vpd-- —<flags>.
admxrc3vpd- ~<flags>
admxre3vpd-- —<flags>.
admxrec3Vpd-- x>, ~<flags>,
aumxrczvud <|ndex> ~<flags>.
lags>,:
where
index specifies the index of the card o open (default).
is the bitwise OR of zero or more of the following flags (default 0):
flags FLAG_BYSERIAL (0x1) => index is interpreted as a serial number rather than a device
index
FLAG_HEX (0x10) => causes the uity o interpret all numeric data values as hexadecimal
address is the address in VPD memory at which to begin reading or writing
n is the number o bytes to read or wrie.
J— s a string containing a numeric data argument; required for the b, w, d & fq commands
um-arg and optional for the wb, ww, wd & wq commands.
str-arg” is a sting argument; required for the fs command and opional for the ws command
Summary

Displays data read from VPD memory, or writes data to VPD memory.

Description

The VPD utility operates in one of three modes:

« Filling a region of VPD memory with a value or string; for this mode, use the fb, fw, fd, fq or fs commands.

+ Reading data from VPD memory and displaying it; for this mode, use the rb, rw, rd or rq commands.

« Wiiting numeric or string data to a region of VPD memory; for this mode, use the wb, ww, wd, wq or ws
commands.

Fill mode

When fillng a region of VPD memory with data, the fill command specifies whether the data is numeric or string data. In
the case of numeric data, the command also implies the radix (i.e. word size) of the data. The available fill commands
are:

b

Fill value is a byte (8-bit).

w
Fill value is a word (16-bi)

fd
Fill value is a doubleword (32-bif).

Page 40 Example applications for VxWorks
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.2.0 User Guide.

(V1.2 - 215t September 2010) @ ALPHA DATA

fq
Fill value is a quadword (64-bi).
Fill value is an ASCI string (8-bit characters).

The next 3 arguments after the fil command must be:
(a) address - the byte address within VPD memory at which to begin filling

(b) - byte count; the number of bytes of VPD memory to fill

(¢) data or string - the numeric or string value to place in the specified region of VPD memory

If the command is s and the string value is shorter than the byte count , the string is repeated untilthe byte count is
satisfied. If the string is longer than the byte count n, only the first n characters are used. If a string contains spaces, it
must be quoted on the command line so that it is not interpreted by the shell as two or more separate arguments,

For the numeric fill commands b, fw, fd and fq, the numeric value is repeated until the byte count is satisfied.

Read mode

The read command implies the radix (i.e. word size) used for displaying the data:

b
Byte (8-bit) reads; data is displayed as bytes.

w

Word (16-bit) reads; data s displayed as words.

rd

Doubleword (32-bit) reads; data is displayed as doublewords,

rq

Quadword (64-bit) reads; data is displayed as quadwords,

After the read command, an address must be supplied, which specifies where in VPD memory to begin reading. An
optional length parameter, in bytes, can also be supplied. If omitted, the length is equal to the radix implied by the read
command. If present, the length parameter specifies how many bytes to read and display. The length should be an

integer multiple of the width; if not, the length is rounded down

Write mode
The write command specifies whether the data is numeric or string data. In the case of numeric data, the command
also implies the radix (i.e. word size) of the data. The available write commands are:

wh
Data is written as bytes (8-bi).

ww

Data is written as words (16-bit).

wd

Data is written as doublewords (32-bit).

wa

Data is written as quadwords (64-bit).

ws

Data is supplied as one or more ASCII trings (8-bit characters).

After the write command, an address must be supplied, which specifies where in VPD memory to begin writing data. An
optional length parameter, in bytes, can also be supplied. If omitted, the length is equal to the radix implied by the write
command. If present, the length parameter specifies how many bytes to write. The length should be an integer multiple
of the width; if not, the length is rounded down.

The program obtains the values to be written in two ways: from any additional parameters on the command line after
the length parameter, and then from the standard input stream (stdin). This works as follows:

Example applications for VxWorks Page 41
AD-UG-0004 Alpha Data Parallel Systems Ltd

ADMIXRC Gen 3 SDK 1.2.0 User Guide
’A LPHA DATA (v1.2 - 21st September 2010)

1. Any remaining command line arguments, if present after the length parameter, are interpreted as data values
to be written. Numeric values are assumed to be of the radix implied by the command parameter. As each
value it written to VPD memory, the address is incremented. If there are enough values passed on the
command line to satisfy the byte count, the program terminates.

2. Ifthere are insufficient data values passed on the command line, the program waits for values to be entered on
the standard input stream. Numeric values entered this way are also assumed to be of the radix implied by the
command. As each value it written to VPD memory, the address is incremented. When the entire byte count
that was specified in the length parameter has been satisfied or end-of-file is encountered, the program
terminates.

Example session

The following session was captured using an ADM-XRC-6TL. The base address 0x100000 is used because that is the
VPD-space address of the user-definable area of VPD memory in the ADM-XRC-6TL.

—>~adnxrcaVpd-0,0,"rb™,0x100000,0x60
P at-0x

0x00100000:

qi
33
A
3
?
223333

RS
wor

value-=-0-
> admxn:avpd 9,0,"F5",0x100008, 20, "hel lo-vortdt™
value-

—>7admxn:3vpdfu 0,"wd",0x100020,12
0x00100020: ~0xdeadbeef
4:~0xcafeface
~Oxtza4s678

val
->~admxrczvnd n 0,"fw",0x100031, 10, "0xas5a"
val

- admkrclvpd 5,0."rb'0x100000,0x60
Dump~0f-VPD-at-0x100000~+-96(0x60)~bytes:

0X00100000: 1~ FF~ff~F -1~ F1~1-11-68-65-6c-6c-6-20-77-6T"
7-61-

0x00100040:
0X00100050:

NOTE: the above sesssion assumes that VPD write protection has been disabled as described in the release notes for
the ADB3 Driver for VxWorks.

Remarks

When entering data for fill or write commands, values are expressed in decimal by default. To express data as
hexadecimal, prefix it with '0x' or use the FLAG_HEX (0x10) flag.
In the current version of the VPD utilty, data is always read from and written to VPD memory in little-endian byte order.

Page 42 Example applications for VxWorks
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.2.0 User Guide.

(v1.2 - 215t September 2010) @ALPHA DATA

5 Example HDL FPGA Designs
5.1 Introduction

Anumber of example FPGA designs are included with the SDK. The purpose of these is to demonstrate functionality
available on the Virtex 6 based ADM-XRC series of cards and also to serve as customisable starting points for
user-developed designs. A testbench and simulation/build scripts are also included with each example design.

The example applications use these example designs to demonstrate how software running on the host CPU can
interact with an FPGA design.

The table below lsts the example FPGA designs and their related applications:

FPGA Design Host Application Purpose

simple: simple Demonstrates implementation of host-accessible registers. Uses a signal naming
convention consistent with the Local Bus in earler generations of the ADM-XRC.

uber simple Demonstrates implementation of host-accessible registers.

uber itest Demonstrates implementation of FPGA interrupts.

Table 2: FPGA Designs/Host applications
Example designs are located in the %ADMXRC3_SDK26\hdl\vhdl\examples directory.

5.2 Design Simulation Using Modelsim

Atestbench design and macro files compatible with Modelsim are provided for simulation of each example FPGA
design. For details specific to each example design, refer to its Design Simulation section.

5.3 Bitstream Build Using ISE

Bitstreams for all supported combinations of example FPGA design, board, and device are supplied pre-built in the
9%ADMXRC3_SDK6\bit directory of the SDK. This directory is the equivalent of the %ADMXRC3_SDK%\bin directory
for the example applications. The source files required to re-build all bitstreams are supplied in the
%ADMXRC3_SDK%\hdl directory. Bitstream build in the Windows environment uses the Visual Studio nmake
command. Bitstream build in the Linux environment uses the GNU Make make command.

5.3.1 Building All Example Bitstreams
Amakeile is provided for building all bitstreams for all example FPGA designs. It is located in the
%ADMXRC3_SDK%\hdl\whdl\examples directory. As many bitstream files will be generated, it may take from minutes
o hours to run to completion. To perform the build using Windows, start a shell and issue the following commands:

cd /d %ADMXRC3_SDKi\hdI\vhdI\examples
nmake clean al

Similarly using Linux, start a shell and issue the following commands:
cd SADMXRC3_SDK/hd1/vhdl/examples
make clean all
o perform a build and install the resulting bitstrear files in the %ADMXRC3_SDK6\bit directory using Windows, start
ashell and issue the following commands:

cd /d %ADMXRC3_SDK#\hdI\vhdI\examples
nmake clean instal

Similarly using Linux, start a shell and issue the following commands:

cd SADMXRC3_SDK/hd1/vhdl/examples
make clean install

Example HDL FPGA Designs Page 43
AD-UG-0004 Alpha Data Parallel Systems Ltd

ADM-XRC Gen 3 SDK 1.2.0 User Guide

@ALPHA DATA (v1.2 - 215t September 2010)

5.3.2 Building Specific Example/Board/Device Bitstreams

For each example FPGA design, a makefile s provided for building all ts bitstreams, or a specific board/device
bitstream. For details specific to each example design, refer to its Bitstream Build section.

Page 44 Example HDL FPGA Designs
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.2.0 User Guide
(1.2 - 215t September 2010) CT

DATA

5.4 Simple Example FPGA Design
5.4.1 Design Description

The Simple example FPGA design demonstrates direct slave register access on the Virtex 6 series of ADM-XRC
boards. The design includes the following functional areas

- Clock Generation

« Intemal clock generation
+ Extemal clock buffering
+ MPTLinterface clock

- MPTL Interface (mptl_if_target_wrap)

- OCP Direct Slave Channel
- Simple test using host-accessible registers

The Simple example FPGA design top level simple_l.vhd is located in
9%ADMXRC3_SDK%6\hdl\vhdl\examples\simple\common. It consists of the following blocks

+ MPTL interface block (mptl_if_target_wrap)
+ OCP Direct Slave interface block (adb3_ocp_simple_bus_if)

Atop level biock diagram of the Simple example design is shown in Figure 5, "Simple Design Testbench And Top
ram

Level Block Diag

Example HDL FPGA Designs
AD-UG-0004 Alpha Data Parallel Systems Ltd

Page 45

Page 46

@ALPHA DATA

ADM-XRC Gen 3 SDK 1.2.0 User Guide
(V1.2 - 215t September 2010)
)
werugar wr
et 2
e T Sdeband
s [ocrona Cry .
«—+{ocpom
ocp simulus 4+ [ocros,
b3 ocp_ smple s
WPTL clck smole
Aegter
Cock Generaion narace
el s> ok l—
et ok "

10 with VHDL record type defined i adb3,_target inc_phg ——— OCP DMA nterface
~—— Record definiion is dependent on board n simulation ——— OCP DM nterface
For example ADM-XRC-6TL uses adb3_target_inc_sim_ocp_61_pko vhd. —— ocP DS inerface

Figure 5: Simple Design Testbench And Top Level Block Diagram

Alpha Data Parallel Systems Ltd.

Example HDL FPGA Designs
AD-UG-

ADM-XRC Gen 3 SDK 1.2.0 User Guide.

(v1.2 - 215t September 2010) @ALPHA DATA

5.4.1.1 Clock Generation

This function includes the following functional areas:
+ Intemal clock generation

+ Extemal clock buffering

« MPTL interface clock

5.4.1.1.1 Internal Clock Generation

Auser clock usr_clk is generated from a buffered version of the ref_clk input.

5.4.1.1.2 External Clock Buffering
Areference clock is input on the ref_clk input and is buffered. Its source is dependent on the board selected and is

defined in the constraints file located in the board design directory, for example: \admxrc6ti\simple-admxre6tl.ucf for
the ADM-XRC-6TL. Itis double ended

5.4.1.1.3 MPTL Interface Clock
The MPTL interface block requires an mpti_clk clock input, Its source is dependent on the board selected and is
defined in the constraints file located in the board design directory, for example: \admxrc6ti\simple-admxrcétl.ucf for
the ADM-XRC-6TL. Its type mptl_clk_t is defined in the board specific package adb3_target_inc_pkg which is located
in the board directory in %ADMXRC3_SDK%\fpga\commoniadb3_target. It is double ended.

5.4.1.2 MPTL Interface

This function is implemented using the MPTL library component mptl_if_target_wrap. Refer to section 6 for a
functional description.

5.4.1.3 OCP Direct Slave Channel
The OCP Direct Slave Channel function consists of an OCP to parallel interface block, and a register section. The

MPTL interface OCP Direct Slave channel connects to the OCP to parallel interface block. This block is implemented
using the ADB3 OCP library component adb3_ocp_simple_bus_i. Refer to section 6 for a functional description.

5.4.1.3.1 Simple Test Registers

5.4.1.3.1.1 Description
The OCP to parallel interface block connects to the Simple test registers. Write accesses are controlled by the write
enable bus and/or the write signal. Read accesses are controlled by the read signal. The address bus is used to select

the register to be accessed and data is transferred on the data busses.

5.4.1.3.1.2 Register Interface

The Simple FPGA design implements registers in the Direct Slave OCP address space as follows:

\ Rame [| pawess |
[owa [rw | oocomon0 |

Table 3: Simple Design Simple Test Block Address Map

Example HDL FPGA Designs Page 47
AD-UG-0004 Alpha Data Parallel Systems Ltd

ADMIXRC Gen 3 SDK 1.2.0 User Guide
’ALF“‘ DATA (v1.2 - 21st September 2010)

(o [womonc [Tope | Fancion \
[at0 Jomm | W |Inate the bl reversed versio f e s data vt |

Table 4: Simple Design Simple Test Block DATA Register (0x00000000)

5.4.2 Board Support
The Simple FPGA design is compatible with all Virtex 6 based boards
5.4.3 Source Location

The Simple FPGA design is located in %ADMXRC3_SDK9%\fpgalexamples\simple. Source files common to all boards
are located in the \common directory. These include the design and testbench top levels.

For a complete list of the source files used during simulation, refer to the appropriate Modelsim macro file located in the
board design directory, for example: \admxrcéthsimple-admxrcétl.do for the ADM-XRC-6TL.

For a complete list of the source files used during synthesis, refer to the appropriate XST project file located in the
board design directory, for example: \admxrc6t1\simple-admxrc6tL prj for the ADM-XRC-6T1.

Page 48 Example HDL FPGA Designs
AD-UL

Alpha Data Parallel Systems Ltd 1G-0004.

ADM-XRC Gen 3 SDK 1.2.0 User Guide.

(v1.2 - 215t September 2010) @ALPHA DATA

5.4.4 Testbench Decription

The Simple example FPGA design testbench test_simple.vhd is located in
9%ADMXRC3_SDK%\hdl\vhdllexamples\simple\common. Refer to Figure 5, "Simple Design Testbench And Top
Level Block Diagram”.

The design testbench consists of the following functional areas:

+ Clock generation
. Test direct slave interface

+ Bridge MPTL interface (mptl_if_bridge_wrap)

+ OCPtest probe (adb3_ocp_transaction_probe)

5.4.4.1 Clock Generation
5.4.4.1.1 Simple Example Design Clocks

+ The Simple example design ref_clk and mptl_clk inputs are dependent on the board selected. They are
connected to appropriate clocks generated in the testhench. Refer to the testbench file for connection
information for each board.

5.4.4.1.2 Testbench Clocks

The Bridge MPTL Interface mptl_if_bridge_wrap input ocp_clk connection is dependent on the type of simulation

selected.

+ During OCP-OCP simulation, it must be driven by the same clock as the Simple example design MPTL
Interface mptl_if_target_wrap input ocp_clk. This signal is transferred to the testbench using the
mptl_t2b.target_ocp_clk record element.

The Bridge MPTL Interface mptl_if_bridge_wrap input mptl_clk connection is dependent on the type of board
selected. Refer to the testbench file for connection information for each board.

5.4.4.2 Test Direct Slave Interface
This function connects to the mpt_if_bridge_wrap OCP direct slave interface and contains the following sections:
5.4.4.2.1 Simple Test

This section communicates with the Simple Test block registers as follows:

Write (32-bit), set DATA = Ox“cafeface”
Read). exp DATA = Ox“cafeface"

Section complete and passfail indications are returned using the simple_complete and simple_passed signals
respectively.

5.4.4.2.2 Bridge MPTL Interface

This function is implemented using the MPTL library component mptl_if_bridge_wrap. Refer to section 6 for a
functional description.

The mptl_if_bridge_wrap component output mptl_sb_b2t.mptl_bridge_gtp_online_I is combined with the Simple
example design output mptl_sb_t2b.mptl_target_gtp_online_ to produce the mptl_online_long signal. This
indicates that the MPTL interface is active and stable. This signal is monitored and will terminate the simulation if it
goes inactive.

5.4.4.2.3 OCP test probes

Example HDL FPGA Designs Page 49
AD-UG-0004 Alpha Data Parallel Systems Ltd

ADM-XRC Gen 3 SDK 1.20 User Guide
@ ALPHA DATA (v1.2 - 21t September 2010)

This function monitors the direct slave OCP interface for transaction errors using the ADB3 Probe library component
adb3_ocp_transaction_probe_sim. Refer to section 6 for a functional description.

5.4.5 Design Simulation

Modelsim macro files are located in %ADMXRC3_SDK%\fpgalexamples\simple in each of the board design
directories. For example \admxrc6tl\simple-admxrcétl.do for the ADM-XRC-6TL.

Modelsim simulation is initiated using the vsim command with the appropriate macro file. For example, to perform a
modelsim simulation using windows and the ADM-XRC-6TL, start a shell and issue the following commands:

cd_/d %ADMXRC3_SDK#\hdl\vhdI\examples\simple
vsim -do -adnxrc6tl .do™

Expected simulation results are shown below.

5.4.5.1 Initialisation Results

Modelsim output during initialisation of simulation wil be similar to the following example:

Ieest

5.4.5.2 Direct Slave Test Results

Modelsim output during simulation will be similar to the following example:

Te WDATA 4 bytes OXCAFEFACE with enable 0b1111 to byte address 0
ration: 6 Instance: /test_sinple
bytes OECAEFAC fron byte address O

4= Note: Wrote siny

.
" 1oa7s00 s teration: ¢ instance: /test sl
o Test Sinple corploted: PASSE:

" L 1657500 e iteration: 6 nsiance: /test_sinple

5.4.5.3 Completion Results

Modelsim output on successful completion of simulation will be similar to the following example:

= Failure: Test of design SIVPLE conpleted: PASS
T

common/test_sinple.vhd

/test_results_p
fe.vhd Tine 244

~/comon/test_sinple.vhd line 244

WACRO /Sinple-admxrestl..do PAUSED at line 34

5.4.6 Bitstream Build

Amakeile is provided for building all bitstreams, or a specific board/device bitstream, for the Simple FPGA example
design. Itis located in the %ADMXRC3_SDK%\hdl\vhdl\examples\simple directory. In order to use a re-built
bitstream with the example applications, it must be copied to the %ADMXRC3_SDK%\bitisimple directory. This can be
performed automatically by using the install makefile option. A "clean up" of the files produced by the build process can
be performed by using the clean makefile option. Examples are as follows:
o perform a build of all Simple design bitstreams using Windows, start a shell and issue the following commands:

cd /d %ADMXRC3_SDK¥\hdI\vhdI\examples\sinple

nnake clean all
Similarly using Linux, start a shell and issue the following commands:

©d SADUXRC3_SDK/hd/vhdl /examples/sinple

make clean al
o perform a build and install the resulting bitstreams using Windows, start a shell and issue the following commands:

cd /d %ADMXRC3_SDK#\hdI\vhdI\examples\simple

Example HDL FPGA Designs

Page 50
Alpha Data Parallel Systems Ltd. AD-UG-0004

ADM-XRC Gen 3 SDK 1.2.0 User Guide.

(v1.2 - 215t September 2010) @ALPHA DATA

nmake clean instal

Similarly using Linux, start a shell and issue the following commands:

cd SADMXRC3_SDK/I
make clean install

/vhd/examples/simple

To perform a build for an ADM-XRC-6TL board fitted with an 6VLX240T device using Windows, start a shell and issue
the following commands:

cd /d %ADMXRC3_SDK#\hdI\vhdI\examples\simple
nmake bit_admxrc6tl_6vix240t

Similarly using Linux, start a shell and issue the following commands:
cd SADMXRC3_SDK/hd1/vhdl/examples/simple
make bit_admxrc6tl_6vix240t
o perform a build and install for an ADM-XRC-6TL board fitted with an 6VLX240T device using Windows, start a shel
and issue the following commands:

cd /d %ADMXRC3_SDK¥\hdl\vhdI\examples\simpl
nmake inst_admxrc6tl_6vIx240t

Similarly using Linux, start a shell and issue the following commands:

cd SADNXRC3_SDK/hd1/vhdl/examples/simple
make inst_admxrcétl_6vIx240t

To perform a clean for an ADM-XRC-6TL board fitted with an 6VLX240T device using Windows, start a shell and issue
the following commands:

cd /d %ADMXRC3_SDK¥\hdI\vhdI\examples\simple
nmake clean_admxrc6tl_6vIx240t

Similarly using Linux, start a shell and issue the following commands:

cd SADVXRC3, SDK/hdI/vhdl/examples/slmple
nmake clean_admxrc6tl_6vIx240

The full path and filename of bitstreams built using Windows will be:

%ADMXRC3_SDK¥%\hdI\vhd1 P imp put i board>-<device>.bit
The full path and filename of bitstreams built using Linux will be:
SADMXRC3_SDK/hd1/vhd1 p P! P ign>-<board>-<device>.bit

5.4.7 ISE Constraint Files

Constraint files for building Simple design bitstrea files using ISE are provided. These files are located in
9%ADMXRC3_SDK%\fpgalexamples\simple in each of the board design directories, for example
\admxrc6ti\simple-admxrcétl.ucf for the ADM-XRC-6TL.

Example HDL FPGA Designs Page 51
AD-UG-0004 Alpha Data Parallel Systems Ltd

ADM-XRC Gen 3 SDK 1.2.0 User Guide

@ALPHA DATA (v1.2 - 215t September 2010)

5.5 Uber Example FPGA Design
5.5.1 Design Description

The Uber example FPGA design demonstrates functionality available on the Virtex 6 series of ADM-XRC boards. The
design includes the following functional areas:

- Clock Generation (blk_clocks)
+Internal clock generation

+ Intemal reset generation
+ Extemnal clock buffering (non-MGT sourced) and extraction (MGT sourced)

- MPTL Interface (mptl_if_target_wrap)

- OCP Direct Slave Channel (blk_direct_slave)

+ Direct Slave address space splitter (adb3_ocp_reg_split)
- Simple test using host-accessible registers (blk_ds_simple_test)

. Clock frequency measurement using host-accessible registers (blk_ds_clk_read)
XRM/PN4/PN6 GPIO test using host-accessible registers (blk_ds_io_test)

Interrupt test using host-accessible registers (blk_ds._int_test)

General purpose host-accessible registers including date and time stamps (blk_ds_info)
« Interface to BRAM in OCP DMA Block (adb3_ocp_cross_clk_dom)

- OCP DMA Channels (blk_dma)
+ OCP DMA channel multiplex (adb3_ocp_mux)

+ Interface to Block RAM (adb3_ocp_simple_bus_if)

- ChipScope Connection (optional)(blk_chipscope)

+ ChipScope connection to OCP channels

A hierarchical diagram of the top level of the Uber example design is shown in Figure 6, "Uber Design Top Level

Hierarchy". A diagram of the package dependencies in the Uber example design is shown in Figure 7, “Uber Design
Package Dependencies”

Page 52 Example HDL FPGA Designs
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.2.0 User Guide.

(V1.2 - 215t September 2010)

@ALPHA DATA

O

b ama i o gt wan i
acama o et g
a3 ocp_ i oLt sim i [P ——
a3 ocp.mox o argetsm <Boaxd WPTL rartace>_op
Direct Slave OCP Interace:
VA OGP Interface ocp.0ce Simulation Bitstrean Build

Alpha Data MPTL Interface

pp—
A e MPTL nteace Cor

Bitstream Build (NGC Core)

=l

Figure 6: Uber Design Top Level Hierarchy

Example HDL FPGA Designs
AD-UG-000:

4

Alpha Data Parallel Systems Ltd.

Page 53

@ALPHA DATA

ADM-XRC Gen 3 SDK 1.2.0 User Guide
(v1.2 - 215t September 2010)

Board-Specific Packages (ADV-XRC-6TL)

adb3_target_types_pkg

[o |

adb3_target_inc_pkg

R

adb3_target_th_pkg adb3_target_pkg

O e o -

Example Design-Specific Packages (Uber)

-

[T

uber_th pkg uber_prg
1
Lo uber_tb_pkg.vhd uber_pkg.vhd twg
1 I,
Example Design Top Level (Uber)
tst_uber uber

Figure 7: Uber Design Package Dependencies

Page 54

Alpha Data Parallel Systems Ltd.

Example HDL FPGA Desig
Al

ns

0004

ADM-XRC Gen 3 SDK 1.2.0 User Guide.
(V1.2 - 215t September 2010)

@ ALPHA DATA

The Uber example FPGA design top level uber.vhd is located in

%ADMXRC3_SDK%\hdl\vhdllexamples\uber\common. It consists of the following blocks:

Clack generation black (blk_clocks)
MPTL interface block (mptl_if_target_wrap)

OCP Direct Slave interface block (blk_direct_slave)
OCP DMA interface block (blk_dma)

ChipScope connection block (optional)(blk_chipscope)

Atop level block diagram of the Uber example design is shown in Figure 8, “Uber Design Testbench And Top Level
Block Diagram”.

Example HDL FPGA Designs

AD-UG-0004

Alpha Data Parallel Systems Ltd

Page 55

@ALPHA DATA

ADM-XRC Gen 3 SDK 1.2.0 User Guide

(V1.2 - 215t September 2010)

o = ==
(.
=
=
o L
-
-
w s
=
L=

Figure 8: Uber Design Testbench And Top Level Block Diagram

Page 56

Alpha Data Parallel Systems Ltd.

Example HDL FPGA Designs
AD-UG-0004

ADM-XRC Gen 3 SDK 1.2.0 User Guide.

(v1.2 - 215t September 2010) @ALPHA DATA

5.5.1.1 Clock Generation Block

The clock and reset generation block is located in %ADMXRC3_SDK9%\fpgalexamples\ubericommon in the file
blk_clocks.vhd. It includes the following functional areas

« Internal clock generation (MMCM)

+ Internal reset generation

+ Extemal clock buffering (non-MGT sourced)

.« Exteral clock extraction (MGT sourced)

+ MPTLinterface clock generation

5.5.1.1.1 Internal Clock Generation (MMCM)

Four user clocks are generated using a Xilinx™ MMCM block: pli_ref_clk; pll_reg_clk; pll_mem_clk; and
pli_mem_x2_clk. The first two are used to drive the high speed (OCP DMA) and low speed (OCP Direct Slave) areas
of the design respectively. Refer to Figure 9, "Uber Design Internal Clock Generation (MMCM)". The last two are
unused at present

5.5.1.1.2 Internal reset generation

Three user resets are generated: pll_ref_rst; pll_reg_rst; and pll_mem_rst, from their respective clocks. Refer to
Figure 9, "Uber Design Internal Clock Generation (MMCM)". pll_mem_rst is unused at present

The resets are generated using the ADCOMMON lbrary componen rst_sync. Refer to section 6 for a unctional
description. The resets are active high and are asserted and d

5.5.1.1.3 External Clock Buffering (Non-MGT Sourced)

Non-MGT sourced clocks are input on the clks_non_mgt signal and are buffered. Non-MGT souvced clock support is
dependent on the board selected. Their type clks_non_mgt_t is defined in the board specific package
adb3_target_inc_pkg which is located in the board directory in %ADMXRC3_SDK%\fpga\commonladb3_target.
Refer to Figure 10, "Uber Design Clock Buffering/Extraction”

5.5.1.1.4 External Clock Extraction (MGT Sourced)

MGT sourced clocks are input on the clks_magt signal and are converted from double-ended to single-ended and then
buffered. The buffered clocks are connected to the clk_vec signal. The connection order is defined by the clk_vec_t
type in the uber_pkg.vhd file. MGT sourced clock support is dependent on the board selected. Their type clks_mgt_t
is defined in the board specific package adb3_target_inc_pkg which s located in the board director
9%ADMXRC3_SDK9%\fpgalcommonladb3_target. Refer (o Figure 10, "Uber Design Clock Buffering/Extraction”

5.5.1.1.5 MPTL Interface Clock Generation

The MPTL interface block requires an mptl_clk clock input. Its source is dependent on the board selected. s type
mptl_clk_tis defined in the board specific package adb3_target_inc_pkg which is located in the board directory in
%ADMXRC3_SDKU%\fpgalcommontadb3_target. It is double ended!

Refer to Figure 10, "Uber Design Clock Buffering/Extraction”.

Example HDL FPGA Designs Page 57
AD-UG-0004 Alpha Data Parallel Systems Ltd

@ALPHA DATA

ADM-XRC Gen 3 SDK 1.2.0 User Guide
(V1.2 - 215t September 2010)

ks ootk Lo

1054 ook output rrequeney

coxmuiscurrson ous_p/orvess oivios

120076.000

NG BASE

e

RSt Lockep

ot oy

200012.000/2 = 1200 stz

= K¥
e
>
>

[RsTsve|

T
mastr s [oL

RET_SVNE

master st [g

[RsTsve|

L mastar st | e st

BiLmem_22_ak

Figure 9: Uber Design Internal Clock Generation (MMCM)

Page 58

Alpha Data Parallel Systems Ltd.

Example HDL FPGA Designs
AD-UG-0004

ADM-XRC Gen 3 SDK 1.2.0 User Guide.
(V1.2 - 215t September 2010)

@ ALPHA DATA

s mgtgu2_c0p.

ke gtz exon —Q

cis_mgtmgu13_ca0p.

aks_ mgtgu13_exon —f

ks mgtgua7_cx0p.

ks mgtmgu7_ckon —q

1BUFDS
GTXEL
o

oovz

| BUFDS

GTXEL
o
ooz

ceB

mgt_cik bUIGTLZ_ CLKO_NUM)

mat_cl_bUGTLLS_ CLKO_NUM)

m_el BUAGTLT_CLKO_NUM)

e vec

>
>

e vec

i vec_bulgIMGTLI2_CLKO_NUM)

JaMGT113_CLKD_ NUM)

JaMGT117_CLKo_ NUM)

ADM-XRC-6TL

s non_ matick

e vec

oL omn

cis_non_mgtam._ ckp.

s non_mgtam._ ckn

e vec

>
>
>

a0 _CLIIN NN

cs_mgt 14 ko otk
ADM-XRC-6TL mptl_clk generation et ° oiclke.
cis_mgtmgu14_cxon mou_ckn
s mgtguts_ck0p. mou_ck
ADM-XRC-6T1 mptl_clk generation OIS -eke
s mgtngus_ckon ot _ckn

Figure 10: Uber Design Clock Buffering/Extraction

Example HDL FPGA Designs
AD-UG-0004

Alpha Data Parallel Systems Ltd

Page 59

ADM-XRC Gen 3 SDK 1.2.0 User Guide

@ALPHA DATA (v1.2 - 215t September 2010)

5.5.1.2 MPTL Interface Block

This block is implemented using the MPTL library component mptl_i
description

The Uber design output signal mpti_sb_t2b.mptl_target_configured_| indicates that the FPGA OCP based blocks are
ready to communicate with the bridge via the MPTL interface. This output is generated using the mptl_if_target_wrap
input ocp_ready. In the case of the Uber design, this input is generated using an NOR of the MMCM clock domain
reset signals (active high). This ensures that OCP communication is not initiated until the MMCM is locked and the
resets are inactive.

f_target_wrap. Refer to section 6 for a functional

5.5.1.3 OCP Direct Slave Interface Block
The OCP Direct Slave interface block is located in %ADMXRC3_SDK9%\fpgalexamplesiubericommon in the file
blk_direct_slave.vhd. It includes the following blocks:
+ OCP address space splitter block (adb3_ocp_reg_split)
« Simple test block (blk_ds_simple_test)
+ Clock read block (blk_ds_clk_read)
+ GPIO test block (blk_ds_io_test)
+ Interrupt test block (blk_ds_int_test)
+ Info block (blk_ds_info)
« BRAM interface block (adb3_ocp_cross_clk_dom)

Ablock diagram of the OCP direct slave interface block is shown in Figure 11, “Uber Direct Slave Block Diagram"”

Page 60 Example HDL FPGA Designs
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.2.0 User Guide.

(V1.2 - 215t September 2010)

@ALPHA DATA

WETL T2 4] MPTLTZE
NPT et +—| MPTL Scebana

e

et ck

plren ek

ot rger wiap

oA |

a3 ocp_cross ol dom

aa3_ocp_reg_spin

i

b

simple

bl Jo_tst

— .
Aofoceos
oo o s

Figure 11: Uber Direct Slave Block Diagram

Example HDL FPGA Designs

AD-UG-000:

4

Alpha Data Parallel Systems Ltd.

Page 61

ADM-XRC Gen 3 SDK 1.2.0 User Guide

@ALPHA DATA (v1.2 - 215t September 2010)

5.5.1.3.1 OCP Address Space Splitter Block

This block is implemented using the ADB3 OCP library component adb3_ocp_reg_split. Refer to section 6 for a
functional description. It splts the upstream OCP interface into multiple downstream OCP interfaces. The splitis
controlled by an address space range table which is defined using the ADDR_RANGE_TABLE constant in package
uber_pkg.

The Uber example design OCP direct slave address space is split as follows:

Block Type ‘Addr Range Data Widh
Simple Registers 0x00000000-0x0000003F 3201t

Clock Read Registers 0x00000040-0x0000007F 3201

nterrupt Registers 0x000000C0-0X000000FF___|32:01t

nfo Registers 0x00000140-040000017F 3201

1 Registers 0x00000200-0x0000027F 3201

BRAM Inierface | BRAM 0x000B0000-0000FFFFF | 128t

Table 5: Uber design Direct Slave Address Map
Note: Read transactions to undefined areas of the address space will return data consisting of 0x"DEADCODE".

5.5.1.3.2 Simple Test Block

5.5.1.3.2.1 Description

The simple test block is located in %ADMXRC3_SDK%\fpgalexamples\uber\common in the file
blk_ds_simple_test.vhd. It consists of an OCP to parallel interface block, and a register section. The split OCP Direct
Slave channel connects to the OCP to parallel interface block. This block s implemented using the ADB3 OCP library
component adb3_ocp_simple_bus_if. Refer to section 6 for a functional description.

The simple test block performs a nibble reverse function using its register interface.

5.5.1.3.2.2 Register Interface

The OCP to parallel interface block connects to the Simple registers. Write accesses are controlled by the write enable
bus and/or the write signal. Read accesses are controlled by the read signal. The address bus is used to select the
register to be accessed and data is transferred on the data busses.

The Simple test block implements registers in the Direct Slave OCP address space as follows:

\ Narme [A |
[oma [owooooos0_|

Table 6: Uber Design Simple Test Block Address Map

[om [wnenone [e | Fncion \

[0 Joma RW | Return thenibble reversed versio of helat date witen |

Table 7: Uber Design Simple Test Block DATA Register (0x00000000)

5.5.1.3.3 Clock Read Block
5.5.1.3.3.1 Description

Page 62 Example HDL FPGA Designs
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.2.0 User Guide.

(v1.2 - 215t September 2010) @ALPHA DATA

The Clock Read Block s located in %ADMXRC3_SDK%\fpgalexamples\ubericommon in the file
blk_ds_clk_read.vhd. It consists of clock frequency measurement blocks, an OCP to parallel interface block, and a
register section. The clock frequency measurement blocks are implemented using the ADCOMMON library component
clock_speed. Refer to section 6 for a functional description. The split OCP Direct Slave channel connects to the OCP
to parallel interface block. This block is implemented using the ADB3 OCP library component
adb3_ocp_simple_bus _if. Refer to section 6 for a functional description.

The clock read block allows the frequencies of Uber example design clocks to be read using its register interface.

5.5.1.3.3.2 Register Interface

The OCP to parallel interface block connects to the Clock Read registers. Wite accesses are controlled by the write
enable bus and/or the write signal. Read accesses are controlled by the read signal. The address bus s used to select
the register to be accessed and data is transferred on the data busses.

The Clock Read block implements registers in the Direct Slave OCP address space as follows:

Name Address
SEL 0400000040
CTRUSTAT 0x00000042
FREQ 0x00000048

Table 8: Uber Design Clock Read Block Address Map

Bils Mnemonic Type Function
a1s Unused
40 |SEL_CLK M | Controlsfindicates selection of the FPGA clock data to be accessed using the STAT and

FREQ regsters Selecton s 3 alovs:
_reg_clk (Intemal user clock derived from ref_cik)
00001 > v e (el 20 e reforoncscosk
m_Cck (Interal user clock derived from ref_clk)
ok Extema)
clin (External MGT clock)
20010 = mliia.cho (Extemal MGT dock

11000 => mgt115_clko (External MGT clock)
11010 => mgU116_clkO (External MGT clock)
11100 => mgt117_clkD (External MGT clock)

Table 9: Uber Design Clock Read Block SEL Register (0x00000040)

Bis Mnemonic Type Function
31 [CLRUPDATE | RWAC |wite conolsrequency messuremen updaed flags
< Clea al maosiremant uposed s,
e

Read: ncates seleted frequency measurement update status:
1= Measurement updated
0 = Measurement not updated.

30 |cLkvauD RO Indicates selectd board ok vld s
ali on this board.
32 Clock vt v o e e
29 |CLK.RUNNING | RO |indicates selected clock running status:
1= Clock running

0= Clock not running.

280 Unused

Table 10: Uber Design Clock Read Block CTRLISTAT Register (0x00000044)

Example HDL FPGA Designs Page 63
AD-UG-0004 Alpha Data Parallel Systems Ltd

ADM-XRC Gen 3 SDK 1.2.0 User Guide

’ALF“‘ DATA (v1.2 - 21st September 2010)
o5 [wnemonc [e | Funcion \
o0 |rree [R0 [indcates elcid clok equency measurementn iz |

Table 11: Uber Design Clock Read Block FREQ Register (0x00000048)

5.5.1.3.4 GPIO Test Block
5.5.1.3.4.1 Description

The GPIO test block is located in %ADMXRC3_SDK%\fpgalexamplesiuber\common in the fle bik_ds_io_test.vhd
It consists of an OCP to parallel interface block, and a register section. The split OCP Direct Slave channel connects to
the OCP to parallel interface block. This block is implemented using the ADB3 OCP library component
adb3_ocp_simple_bus._if. Refer to section 6 for functional description.

The GPIO test block controls the XRM, PN4, and PN6 GPIO bi-directional interfaces. Each bit of each interface may be
controlled individually using its register interface.

5.5.1.3.4.2 Register Interface

The OCP to parallel interface block connects to the GPIO test block registers. Write accesses are controlled by the
write enable bus and/or the write signal. Read accesses are controlled by the read signal. The address bus is used to
select the register to be accessed and data is transferred on the data busses.

The GPIO test block implements registers in the Direct Slave OCP address space as follows:

Name Address
XRM_GPIO_DA_TRI 0400000200
XRM_GPIO_DA_DATA 0400000204
XRM_GPIO_DB_TRI 0x00000208
XRM_GPIO_DB_DATA 0x0000020C
XRM_GPIO_DC_TRI 0x00000210
XRM_GPIO_DC_DATA 0x00000214
XRM_GPIO_DD_TRI 0x00000218
XRM_GPIO_DD_DATA 0x0000021C
XRM_GPIO_CS_TRI 0400000220
XRM_GPIO_CS_DATA 0x00000224
PNa_GPIO_P_TRI 0x00000228
PNA_GPIO_P_DATA 0x0000022C
PN4_GPIO_N_TRI 0x00000230
PNa_GPIO_N_DATA 0x00000234
PNG_GPIO_MS_TRI 0x00000238
PNG_GPIO_MS_DATA 0x0000023C
PNG_GPIO_LS_TRI 0x00000240
PNG_GPIO_LS_DATA 0x00000244

Table 12: Uber Design GPIO Test Block Address Map

[Bts | wnemonic | mpe | Function |
[a0 Joamw | ™ Jconwolsindicates tistate enables of da_p(15:0), da_n(15:0) 10 ports |

Table 13: Uber Design GPIO Test Block XRM_GPIO_DA_TRI Register (0x00000200)

Page 64 Example HDL FPGA Designs
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.2.0 User Guide
(v1.2 - 21st September 2010) arena 0aTa
[Bts | wnemonc | mpe | Function |

310 |DADATA RW | Write: controls data writen to da_p(15:0), da_n(15:0) IO ports
Read indicates data read from da_p(150), da_n(15:0) IO ports
‘Table 14: Uber Design GPIO Test Block XRM_GPIO_DA_DATA Register (0x00000204)
[Bis | wnemonic | mype | Function |
[a0 Joewi | ™ Jconwoisiindicates wistate enables of db_p(15:0), db_n(15:0) 10 ports |
Table 15: Uber Design GPIO Test Block XRM_GPIO_DB_TRI Register (0x00000208)
[Bts | wnemonc | mype | Function |
310 |0B_DATA RW | Wiite: controls data witien to db_p(15:0), db_n(15:0) O ports.
Read: indicates data read from db_p(150), db_n(15:0) IO ports.
Table 16: Uber Design GPIO Test Block XRM_GPIO_DB_DATA Register (0x0000020C)
[eis | wnemonic | mype | Function |
[st0[ocrr | ™ Jconvoisiingicates uistate enables of dc_p(15:0), dc_n(15:0) 1O ports. |
Table 17: Uber Design GPIO Test Block XRM_GPIO_DC_TRI Register (0x00000210)
[[wnerone | e | Funcion |
310 |DC_DATA RW | Wite: controls data witlen to dc_p(15:0), de_n(15:0) 10 ports.
Read: indicates data read from de._p(15:0), dc_n(15:0) O porls.
Table 18: Uber Design GPIO Test Block XRM_GPIO_DC_DATA Register (0x00000214)
[Bis [wmemonic [Type | Function |
[st0 oo trr M| Conralsindicates tistate enables of dd_p(15:0), dd_n(15:0) 10 ports |
Table 19: Uber Design GPIO Test Block XRM_GPIO_DD_TRI Register (0x00000218)
[Bis [wnemonc | me | Function |
310 |DD_DATA RW | Wiite: controls data wiitien (0 dd_p(15:0), dd_n(15:0) IO ports.
Read: indicates data read from dd_p(15:0), dd_n(15:0) IO ports
‘Table 20: Uber Design GPIO Test Block XRM_GPIO_DD_DATA Register (0x0000021C)
Bits Mnemonic | Type Function
3118 Unused
170 |csTRI M| Controls/indicates tristate enables of sa, sb. sc. sd. dd_cc_p. dd_cc_n, dc_cc_p, d_cc_n,
db_cc_p. db_ce_n, da_cc_p. da_cc_n 10 ports
Table 21: Uber Design GPIO Test Block XRM_GPIO_CS_TRI Register (0x00000220)
Bits Mnemonic | Type Function
3118 Unused
170 |cs_DATA RW | Write: controls data witien to sa, sb, ¢, 5d, dd_cc._p, dd_cc_n, de_co_p, dc_cc_n,
db_cc_p, db_cc_n, da_cc_p, da_cc_n 10 ports
Read: ndicales data read from sa, sb, sc, sd, dd_cc_p, dd_cc_n, de_cc_p, de_cc_n,
db_cc_p, db_cc_n, da_cc_p, da_cc_n 10 ports
Table 22: Uber Design GPIO Test Block XRM_GPIO_CS_DATA Register (0x00000224)
Example HDL FPGA Designs Page 65

AD-UG-0004 Alpha Data Parallel Systems Ltd

ADMIXRC Gen 3 SDK 1.2.0 User Guide
’ALPN‘ DATA (v1.2 - 21st September 2010)

\ o [inerane]_Type | Functon \
[suewe_cpio_wiorh [Jowses \
[PNa_GPIo_wioTH10_|[P¥R | W |Conolindcats viste nable of gio_pPNA_GPIO_WIBT10] 10 pors™

Table 23: Uber Design GPIO Test Block PN4_GPIO_P_TRI Register (0x00000228)

Bits Mnemonic| _Type Function
31:PN4_GPIO_WIDTH Unused

PN4_GPIO_WIDTH-10 |P_DATA | RW |Write: controls data written to gpio_p(PN4_GPIO_WIDTH-1.0) 10 ports."
Read: indicates data read from gpio_p(PN4_GPIO_WIDTH-1:0) IO ports **

Table 24: Uber Design GPIO Test Block PN4_GPIO_P_DATA Register (0x0000022C)

\ o [inerane]_Tope | Funcion \
[oumncroworn | | |oses \
[Pa_GPIo_WioTH 10 [NTRT | W |Conrolsindiats viste nable of gio_rPNA_GPIO_WIBT 101 10 pors™ |

Table 25: Uber Design GPIO Test Block PN4_GPIO_N_TRI Register (0x00000230)

Bits Mnemonic|_Type Function
31:PN4_GPIO_WIDTH Unused

PN4_GPIO_WIDTH-10 | N_DATA | RW |Write: controls data written to gpio_n(PN4_GPIO_WIDTH-1.0) 10 ports.
Read: indicates data read from gpio_n(PN4_GPIO_WIDTH-1.0) IO ports **

Table 26: Uber Design GPIO Test Block PN4_GPIO_N_DATA Register (0x00000234)

* The PN4_GPIO_WIDTH constant is defined in the adb3_target_inc_pkg package.

Bits Mnemonic| _Type Function
31:PN6_GPIO_WIDTH-32 Unused. Note: applicable only when PN6_GPIO_WIDTH < 63.
PG GPIOWIDTH330. |MS.TRI [M [Gonrsindicate ot crabes of (PG GPIO_WIDTH33:32) 0 ports.++

Note: applicable only when PN6_GPIO_WIDTH >

Table 27: Uber Design GPIO Test Block PN6_GPIO_MS_TRI Register (0x00000238)

Bits Mnemonic| _Type Function
3LPNG_GPIO_WIDTH-32 Unused. Note: applicable only when PN6_GPIO_WIDTH < 63.

PN6_GPIO_WIDTH-33:0 | MS_DATA| RW | Wiite: controls data written o gpio(PNG_GPIO_WIDTH-33:32) IO ports.++
Read: indicates data read from gpio(PN6_GPIO_WIDTH-33:32) IO ports ++
Note: applicable only when PNG_GPIO_WIDTH > 32.

Table 28: Uber Design GPIO Test Block PN6_GPIO_MS_DATA Register (0x0000023C)

Bits Mnemonic| Type Function
31:PN6_GPIO_WIDTH Unused. Note: applicable only when PN6_GPIO_WIDTH < 31
PN6_GPIO_WIDTH-10 |LS_TRI | M | Controls/indicates tristate enables of gpio(PNG_GPIO_WIDTH-L'0) 10 ports.++

Note: on boards where PNG_GPIO_WIDTH > 32 the register width is (3L0).

Table 29: Uber Design GPIO Test Block PN6_GPIO_LS_TRI Register (0x00000240)

Page 66 Example HDL FPGA Designs
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.2.0 User Guide.

(V1.2 215t September 2010) arena 0aTa
Bits Vnemonic|_Type Function
3LPN6_GPIO_WIDTH Unused Note: applicable only when PN6_GPIO_WIDTH < 31

PN6_GPIO_WIDTH-10 | LS_DATA| RW | Write: controls data written (o gpio(PN6_GPIO_WIDTH-1:0) 10 ports.++
Read: indicates data read from gpio(PNG_GPIO_WIDTH-1:0) 10 ports.++
Note: on boards where PNG_GPIO_WIDTH > 32 the register width is (3L:0).

Table 30: Uber Design GPIO Test Block PN6_GPIO_LS_DATA Register (0x00000244)
++ The PN6_GPIO_WIDTH constant is defined in the adb3_target_inc_pkg package.
5.5.1.3.5 Interrupt Test Block
5.5.1.3.5.1 Description

The Interrupt test block s located in %ADMXRC3_SDK9%\fpgalexamples\uber\common in the file
blk_ds_int_test.vhd. It consists of an OCP to parallel interface block, a register section, and interrupt generation. The
split OCP Direct Slave channel connects to the OCP to parallel interface block. This block is implemented using the
ADB3 OCP library component adb3_ocp_simple_bus_if. Refer to section 6 for a functional description

The interrupt test block controls the generation of the interrupt output using its register interface.

5.5.1.3.5.2 Register Interface

The OCP to parallel interface block connects to the Interrupt registers. Write accesses are controlled by the write
enable bus and/or the write signal. Read accesses are controlled by the read signal. The address bus is used to select
the register to be accessed and data is transferred on the data busses,

The Interrupt test block implements registers in the Direct Slave OCP address space as follows:

Name Address
seT 0x000000C0
GLEARISTAT 0x000000C4
MASK 0x000000C8
ARM 0x000000CC
COUNT 0x00000000

Table 31: Uber Design Interrupt Test Block Address Map

T o
w0 [ser wis

‘Controls the setting of individual bits in the STAT register. This wil activate the nterrupt
output if these bits are not masked by the MASK register.

Table 32: Uber Design Interrupt Test Block SET Register (0x000000C0)

[os [verone [oo | Farim |
[[| e

Read: indicaes the contents of the STAT register.

Write: controls the clearing of indiidual bits n the STAT register. ‘

Table 33: Uber Design Interrupt Test Block CLEAR/STAT Register (0x000000C4)

T Fain

310 |MASK M| Controlsfindicates the masking (1) or enabling (0) of individual bits in the STAT register.
9 9 g

Table 34: Uber Design Interrupt Test Block MASK Register (0x000000C8)

Example HDL FPGA Designs Page 67
AD-UG-0004 Alpha Data Parallel Systems Ltd

ADM-XRC Gen 3 SDK 1.2.0 User Guide

@ALPHA DATA (v1.2 - 215t September 2010)

o5 [wnemonc [e | Funcion \

[0 [aw [WO _[Awe 0 s reger vl e the FPGA merup ouut o s nacive state |

Table 35: Uber Design Interrupt Test Block ARM Register (0x000000CC)

Bils Mnemonic Type Function

310 | COUNT RW [Wite: controls data writien to the COUNT register. f STAT register is zero, then cycle.
counter will be iniialised with this value.
Read: indicates elapsed cycle count from STAT register becoming non-zero.

Table 36: Uber Design Interrupt Test Block COUNT Register (0x000000D0)

5.5.1.3.6 Info Block
5.5.1.3.6.1 Description

‘The Info block s located in %ADMXRC3_SDK%\fpgalexamplesiuber\common in the file blk_ds_info.vhd. It consists
of an OCP to parallel interface block, and a register section. The split OCP Direct Slave channel connects to the OCP
o parallel interface block. This block is implemented using the ADB3 OCP library component
adb3_ocp_simple_bus_if. Refer to section 6 for a functional description.

The Info block allows read access to its register interface.

5.5.1.3.6.2 Register Interface

The OCP to parallel interface block connects to the Info registers. Write accesses are controlled by the write enable bus
andfor the write signal. Read accesses are controlled by the read signal. The address bus is used to select the register
to be accessed and data is transferred on the data busses.

The Info block implements registers in the Direct Slave OCP address space as follows:

Name. Address
DATE 0x00000140
TIME 0x00000144
spLIT 0x00000148
BASE 0x0000014C
MASK 000000150

Table 37: Uber Design Info Block Address Map

Bils Mnemonic Type Function
310 |DATE RO | Indicates date of buid (DDIMMIYYYY) in BCD format where:
DD = Day of monin
MM = Month of year
YYYY = Year.

Table 38: Uber Design Info Block DATE Register (0x00000140)

Bils Mnemonic Type Function

310 |TIME RO | Indicates time of build (HHMM/SSILL) in BCD format where:
HH

S5 = Second of minute
LL = Millsecond of second.

Table 39: Uber Design Info Block TIME Register (0x00000144)

Page 68 Example HDL FPGA Designs
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.2.0 User Guide.

(v1.2 - 215t September 2010) @ALPHA DATA

o5 [wnemonc [e | Funcion \
[eus_[seum | R0 _[indcates adressspt ok ou of ange address OGP wre \
@0 [[R0 [indcates aressspit ok out of ange address OGP o |

Table 40: Uber Design Info Block SPLIT Register (0x00000148)

o [wmemone [e Funcion \
oo et | RO Idcates VA BRAM base address n DVA OCP acress space |

Table 41: Uber Design Info Block BASE Register (0x0000014C)

B[vneronc | e | Fncion \
[iasx [RO [idcates VA BRAM mask addres n DA OCP addies space |

Table 42: Uber Design Info Block MASK Register (0x00000150)

5.5.1.3.7 BRAM Interface Block

The BRAM interface block connects the split Direct Slave OCP channel (in the pli_reg_clk domain) to the OCP DMA
block BRAM (in the pll_ref_clk domain). This block is implemented using the ADB3 OCP library component
adb3_ocp_cross_clk_dom. Refer to section 6 for a functional description.

5.5.1.4 OCP DMA Interface Block

The OCP DMA interface block is located in %ADMXRC3_SDK9%\fpgalexamples\uber\common in the file
blk_dma.vhd. It includes the following blocks:

+ OCP channel mux block (adb3_ocp_mux)

+ OCPto parallel interface block (adb3_ocp_simple_bus_if)

+ BRAM block (bram_single_wrap)

Ablock diagram of the OCP DMA interface block is shown in Figure 12, “Uber DMA Block Diagram".

Example HDL FPGA Designs Page 69
AD-UG-0004 Alpha Data Parallel Systems Ltd

@ALPHA DATA

ADM-XRC Gen 3 SDK 1.2.0 User Guide
(V1.2 - 215t September 2010)

ot it g s

wert ear —]
ek

werLgar
WETL Sietang

aab3.ocp_ e aaba_ocp_simple_bus 1

oce

oceos

Bleg o

bicam

b arect siave

ol drect st

Figure 12: Uber DMA Block Diagram

Page 70

Alpha Data Parallel Systems Ltd.

Example HDL FPGA Designs
AD-UG-0004

ADM-XRC Gen 3 SDK 1.2.0 User Guide.

(v1.2 - 215t September 2010) @ALPHA DATA

5.5.1.4.1 OCP Channel Mux Block

The OCP channel mux block connects the multiplexed DMA and Direct Slave OCP address spaces to the OCP to
parallel interface block. The mux block is implemented using the ADB3 OCP library component adb3_ocp_mux. Refer
to section 6 for a functional description,

5.5.1.4.2 OCP To Parallel Interface Block

The OCP to parallel interface block connects the OCP Channel Mux Block to the BRAM block. This block is
implemented using the ADB3 OCP library component adb3_ocp_simple_bus_if. Refer to section 6 for a functional
description.

5.5.1.4.3 BRAM Block

The BRAM block instantiates 128 off the Xilinx™ BRAM_SINGLE_MACRO 36Kb x 1 macro.

5.5.1.5 ChipScope Connection Block (optional)

The ChipScope connection block may be inserted in the Uber design if required. It s located in
%ADMXRC3_SDKU\fpgalcommonichipscope in the file blk_chipscope.vhd. It consists of three instantiations of the
Xilinx™ ChipScope ILA block and a single instantiation of the xmnxw ChipScope ICON block. Each of the ILA blocks is
connected to a single ChipScope connection block OCP chant
Prior to the initial bitstream build of a design using the ChlpScupe connection block, the ChipScope ILA core
chipscope_ila.nge and ChipScope ICON core chipscope_icon.ngc will need to be generated using a script file.
Examples are as follows:
To generate cores for Virtex 6 6v1x240t devices using Windows, start a shell and issue the following commands:

cd /d HADMXRC3_SDK#\hdI\vhdI\common\chipscope

gen_chipscope.bat 6vIx240t
To generate cores for Virtex 6 6vsx315t devices using Linux, start a shell and issue the following commands:

cd SADNMXRC3_SDK/hd1/vhdl/common/chipscope

_/gen_chipscope.bash 6vsx315t

5.5.2 Board Support

The Uber FPGA design is compatible with all Virtex 6 based boards.

5.5.3 Source Location

The Uber FPGA design is located in %ADMXRC3_SDK%\hdi\vhdilexamplesiuber. Source files common to all boards
are located in the \common directory. These include the design and testbench top levels.

For a complete list of the source files used during simulation, refer to the appropriate Modelsim macro file located in the
board design directory, for example: \admxrcétl\uber-admxrcétl.do for the ADM-XRC-6TL.

For a complete list of the source files used during synthesis, refer to the appropriate XST project file located in the
board design directory, for example: \admxrc6t1\uber-admxrc6t1-6vIx240t.prj for the ADM-XRC-6T1,

5.5.4 Testbench Description

The Uber example FPGA design testbench test_uber.vhd is located in
9%ADMXRC3_SDK%\hdllvhdilexamples\uber\common. Refer to Figure 8, "Uber Design Testbench And Top Level
Block Diagram”.

The design testbench consists of the following functional areas:

+ Clock generation

« Testdirect slave interface (test_uber_ds)

+ TestDMAinterface (test_uber_dma)

. Bridge MPTL interface (mptl_if_bridge_wrap)

Example HDL FPGA Designs Page 71
AD-UG-0004 Alpha Data Parallel Systems Ltd

ADM-XRC Gen 3 SDK 1.2.0 User Guide

@ALPHA DATA (v1.2 - 215t September 2010)

+ OCP test probes (test_uber_probes)

The hierarchical structure of the design testbench is shown in Figure 13, "Uber Design Testbench Hierarchy”

Page 72 Example HDL FPGA Designs
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.2.0 User Guide
(1.2 - 215t September 2010) @ ALPHA DATA

‘ st uberrobes ‘ ‘ st uber o

3. oco ansacton prose

ove |
a3 ocp vasacton prove

Uber example design
Direct Slave (D) test stimulus

Direct Master (OM) teststmulus.

Direct Memory Access (DMA) teststmulus.

Alpha Data MPTL interface

oooomEo

‘Alpha Data OCP ransaction checking

Figure 13: Uber Design Testbench Hierarchy

Example HDL FPGA Designs Page 73
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.2.0 User Guide

@ALPHA DATA (v1.2 - 215t September 2010)

5.5.4.1 Clock Generation
5.5.4.1.1 Uber Example Design Clocks

The Uber example design requires clock inputs on the clks_non_mgt and clks_mat signals.

+ The clks_non_mgt and clks_mgt inputs are records defined in the adb3__target_inc_pkg package. Their
definitions are dependent on the board selected. They are connected to appropriate clocks generated by the
testbench. Refer to the testbench file for connection information for each board.

5.5.4.1.2 Testbench Clocks
The Bridge MPTL Interface mptl_if_bridge_wrap input ocp_clk connection is dependent on the type of simulation
selected

+ During OCP-OCP simulation, it must be driven by the same clock as the Simple example design MPTL
Interface mptl_if_target_wrap input ocp_clk. This signal is transferred to the testbench using the
mptl_tzb.target_ocp_clk record element.

. During OCP-MPTL-OCP simulation, it may be driven by an independent clock.

The Bridge MPTL Interface mptl_if_bridge_wrap input mptl_clk connection is dependent on the type of board
selected. Refer to the testbench file for connection information for each board.

5.5.4.2 Test Direct Slave Interface

This function is implemented using the test_uber_ds entity. It connects to the mptl_if_bridge_wrap OCP direct slave
interface and contains the following sections:

5.5.4.2.1 Simple Test
This section communicates with the Uber example design Simple Test block registers as follows:

Write (32-bit), set DATA = Ox“cafeface”
Read (32-bit), exp DATA = Ox“cafeface"

Section complete and pass/fail indications are returned using the ds_comp.simple_complete and
ds_pass.simple_passed signals respectively.

5.5.4.2.2 Clock Read Test
This section communicates with the Uber example design Clock Read block registers as follows:
set CLR_UPDATE = "1°
set SEL_CLK = PLL_REG_CLK_SEL
exp CLR_UPDATE -
exp FREQ = 0x"00000053"
set SEL_CLK = PLL_REF_CLK_SEL
exp CLR_UPDATE = *1*
exp FREQ = 0x'000000C8"
set SEL_CLK = MGT113_CLKO_SEL
exp CLR_UPDATE = "17
exp FREQ = Board Dependent
Section complete and passfail indications are returned using the ds_comp.clock_complete and
ds_pass.clock_passed signals respectively.

5.5.4.2.3 Front 10 (XRM GPIO) Test
This section communicates with the Uber example design GPIO Test block registers as follows:
Write (32-bit), set XRM_GPI0_DD_DATA = 0x"76543210"

Page 74 Example HDL FPGA Designs
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.20 User Guide
(v1.2 - 215t September 2010) @ALPHA DATA

). set XRM_GP 0000000
). exp XRM_GP10_| DD DATA = 070843950
Section complete and pass/fail indications are returned using the ds_comp.frontio_complete and
ds_pass.frontio_passed signals respectively.

5.5.4.2.4 Rear 10 (PN4/PN6 GPIO) Test

This section communicates with the Uber example design GPIO Test block registers as follows:

set PN4_GPIO_P_DATA = Ox"AABBCCDD"
Dx"55443322
0000"
Dx nnoonnoo“

set PN6_GPI0_| MS DATA
set PN6_GPIO_LS_DATA
set PN6_GPIO_MS . i
set PN6_GPIO_LS

exp PNe,GPlo,Ms,DATA
exp PN6_GPIO_LS_DATA +*CCCCDDDD!
set PN6_GPIO_MS_TRI = OX"FFFFFFFF
. set PN6_GPIO_LS_TRI = OX"FFFFFFFF"

** Data tested will be determined by the PN4_GPIO_WIDTH constant defined in the adb3_target_inc_pkg package.
++ Data tested will be determined by the PNG_GPIO_WIDTH constant defined in the adb3_target_inc_pkg package.
Section complete and pass/fail indications are returned using the ds_comp.reario_complete and
ds_pass.reario_passed signals respectively.

5.5.4.2.5 Interrupt Test

This section communicates with the Uber example design Interrupt Test block registers as follows:

OX""AAAABBBB’

Write (32-bit).

Read (32-bit), exp COUNT
for n in 0 to 31 Ioop
Write (32-bit), set SET = 2**n

ti_n |n[errup(active

. exp CLEAR/STAT = 2**n
. set CLEAR/STAT = 2**n
W te (32 bit), set ARM = Don"t Care

Read (327bil), exp CLEAR/STAT = 0x'00000000™

Section complete and passffail indications are returned using the ds_comp.int_complete and ds_pass.int_passed
signals respectively.

5.5.4.2.6 Info Test

This section communicates with the Uber example design Info Test block registers as follows:

SE 80000"
. exp MASK = 0X"DDO7FFFF'
Section complete and pass/fail indications are returned using the ds_comp.info_complete and ds_pass.info_passed
signals respectively.

Example HDL FPGA Designs

Page 75
AD-UG-0004 Alpha Data Parallel Systems Ltd

ADMIXRC Gen 3 SDK 1.2.0 User Guide
’ALF“‘ DATA (v1.2 - 21st September 2010)

5.5.4.2.7 BRAM Test

This section communicates with the Uber example design BRAM block as follows:

Write), addr "00080000", 0x"'2389EF45"
Read . addr 00080000 '2389EF45’
Write (32-bit), addr ‘0007FFFC’ '369CF258"
Read (32-bit), addr ‘0007FFFC", 'DEADCODE’
Write (32-bit), addr '00100000" 258BE147"
Read (32-bit), addr '00100000° 'DEADCODE’
Write (32- addr ‘000F000C"", 147AD036
Read (32-| addr ‘000F000C’ 147AD036

Section complete and pass/fail indications are returned using the ds_comp.bram_complete and
ds_pass.bram_passed signals respectively.

5.5.4.3 Test DMA Interface

This function is implemented using the test_uber_dma entity. It connects to the mptl_if_bridge_wrap OCP DMA
interface and contains the following sections:

5.5.4.3.1 DMA Write Channel Process

This process communicates with the Uber example design BRAM block as follows:
for n in 0 to (DMA_SIZE/96)-1 loop
Write (96-1 byte) . addr = DMA_ADDR_WR, data = 96 bytes incrementing patten
end

Section complete and passffail indications are returned using the dma_comp.dma_write_complete and

dma_pass.dma_write_passed signals respectively.

The DMA_SIZE and DMA_ADDR_WR constants are defined in the uber_tb_pkg package.

5.5.4.3.2 DMA Read Channel Process
This process communicates with the Uber example design BRAM block as follows:
for n in 0 to (DUASIZE/GH)-1 loop
Read (64-byte), ad DMA_ADDR_RD, exp = 64 bytes incrementing patten
end loop
Section complete and pass/fail indications are returned using the dma_comp.dma_read_complete and
dma_pass.dma_read_passed signals respectively.
The DMA_SIZE and DMA_ADDR_RD constants are defined in the uber_tb_pkg package.

5.5.4.4 Bridge MPTL interface

“This function is implemented using the MPTL library component mptl_if_bridge_wrap. Refer to section 6 for a
functional description.

The mptl_if_bridge_wrap component output mptl_sb_b2t.mptl_bridge_gtp_online_l is combined with the Uber
example design output mptl_sb_t2b.mptl_target_gtp_online_ to produce the mptl_online_long signal. This
indicates that the MPTL interface is active and stable. This signal is monitored and will terminate the simulation if it
goes inactive.

5.5.4.5 OCP test probes

This function is implemented using the test_uber_probes entity. It monitors each of the OCP interfaces for transaction
errors using the ADB3 Probe library component adb3_ocp_transaction_probe_sim. Refer to section 6 for a functional
description.

Page 76 Example HDL FPGA Designs
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.2.0 User Guide.

(V1.2 - 215t September 2010) @ ALPHA DATA

5.5.5 Design Simulation

Modelsim macro files are located in %ADMXRC3_SDK9\fpgalexamplesiuber in each of the board design directories.
For example \admxrcsti\uber-admxrc6tl.do for the ADM-XRC-6TL.
Modelsim simulation is initiated using the vsim command with the appropriate macro file. For example, to perform a
‘modelsim simulation using Windows and the ADM-XRC-6TL, start a shell and issue the following commands:

Cd /d %ADMXRCC’I SDK%\hdI\vhdl\examples\uber
~do *“uber-adnxrcét

Expected simulation resuls are shown below.

o

.5.5.1 Date/Time Package Generation Results

Before compiling the Uber example design HDL and initiating simulation, the macro file runs a tcl script to generate a
file containing the today_pkg package. This package contains HDL constant definitions containing the date and time at
which the script was run. The script executed will be gen_today_pkg.tcl. The file generated is dependent on the board
selected and is located in the board design directory,for example: \admxrcétitoday_pkg_admxrcstl_sim.vh for the
ADM-XRC-6TL. Script output will be similar to the following example:

kg_adnxrcsti_sin.vhd
T M T vas Generated sutonaticatly by gon_todey_pko. et

Date: 08/10/2010 (da/mn/YYYY)
- Tine: 15:26:46 (H/N/SS)

tiorary i
" lete s ogic 1164.a11;
package today_pkg is

constant TODAYS DATE
constant TODAYS_TIVE - std_

std_logic_vector(31 downto 0)
Togic_vector (31 downto 0) -

end package today_pky:

5.5.5.2 Initialisation Results

Modelsim output during initialisation of simulation wil be similar to the following example:
= Note: soars Ty - aan xec_o
on: 0 Instance: /test_sirple
ocp
<0 instance: /test_sinple

Waiting for WTL ontine
Tine: 0ps Iteration: 0 Instance: /test sinple

5.5.5.3 Test Direct Slave Block Test Results
5.5.5.3.1 Simple Test Results

Modelsim output during simulation will be similar to the following example:

¥ ™ Note: Wirote sinpll IDATA 4 bytes OXCAFEFACE with enablle ODLILL to byte address 0
Tine

+* Note:

4 Tine: 2132500 ps Iteras Instance: /test_uber/test_uber_ds_i

** llote: Test Sirple conpleted: PASSED.

5.5.5.3.2 Clock Read Test Results

Modelsim output during simulation will be similar to the following example:

= tote: wrote clear ALl CTRL 4 bytss 0xa0000000 with snablls GBILLL to byte address 68

205 e Veration: 13 Instance: /8ot uber/test_uher_de i
en ahle %11i1 to byte sddress 64

iteration: nee: Jtcot uber/test e

o MR nend PLLLRES.GLX FREQ 4 bytes 0x00000053 Toon byt sadress 72

Example HDL FPGA Designs Page 77
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.20 User Guide
@ ALPHA DATA (v1.2 - 21t September 2010)

: 3672500 ps Iteration: 13 Instance: /test_uber/test_uber_ds_ |
e 0 or 81 Wz

Tteration: 13 Instance: /test_uber/test_uber_ds._
Iteration: 13 Instance: /test_uber/test_uber_ds_i

e

Iteration: 13 Instance: /test_uber/test_uber_ds_i

Urote UGTLLS_CLKO_SEL SeL. 4 bytes 000000014 with enible Db1111 €0 byte addross 64
/test_uber/test_uber_d

Read NGTLLS.CLKD FREQ 4 bytes OHOOUOOOFA from byte address 72

: 4952500 ps Iteration: 13 Instance: /test_uber/test_uber_ds. |

e 250 4

4952500 ps Iteration: 13 Instance: /test_uber/test_uber_ds.
Actual treq = 250 iz

4952500 ps Iteratior Instance: /test_uber/test_uber_ds_
Test Clock Read comploted: PASSED:

: 4952500 ps Iteratior Instance: /test_uber/test_uber_ds_

5.5.5.3.3 Front IO (XRM GPIO) Test Results

Modelsim output during simulation will be similar to the following example:

: Wrote XN1_GPI0.D8 DATA 4 bytes OXTESASZI0 with enable OBILL €0 byte address 540
s

5125 ns Instance: /test_uber/test
Wrote 14 bytes 0x000 i enable BUITA to byte address 536
5135 ns Stance: gecat.uber/test. uoer

Ress XEGPIO.DA DATA 4 bytes OXTSSS2ID fron byt address 540

st_uber)
" rate XA GPI0 On TR 4 bytee OAFEEFFFEE with enante mmu o byte address 536
5630 1o Iteration: 13 Instance: /test_vber/test_uber .
e: Test Front 10 conpleted: PASSEI

5630 e heoration: 13 Instance: /test_uber/test_uber s

5.5.5.3.4 Rear 10 (PN4/PN6 GPIO) Test Results

Modelsim output during simulation will be similar to the following example:
x rote 762102 DA 4 bytes uAASECE00 wkth enablle OV o Byte address 556
5640 ns Tteration: 13 Instance: /test.uber/test uber. s i

: Wrote PN4_GPIO_N DATA 4 bytes 0155443322 with enable
test ber/test uber.
cavie o umm to byte address 552

nmm €0 byte address 564

nable obun 0 byte address 560
anco: /tost_uber/tost door
rote s G101 IOATA 4 byteo. ORAMMABBBS with enabie omm o byte address 572
6480 ns Tteration: 13 Instance: /test_uber/test_uber_d:

VAT 4 ytes. OXLCCCDBoD nith enable OBLLLI to byte address 580

it ——

: g iber_ds._i
rote PY_GPI0.LS TR 4 bytes OCEFFFEFEF with cnable 0L to byte address 570
17370 s Iteration: 13 Instance: /test_uber/test_uber_c
Page 78 Example HDL FPGA Designs
Alpha Data Parallel Systems Ltd. AD-UG-0004

ADM-XRC Gen 3 SDK 1.2.0 User Guide.

(V1.2 - 215t September 2010) @ ALPHA DATA

** llote: Test Rear 10 conpleted: PASSED.
& Tine: 7970 ne Meration: 13 Inatance: /test_uber/test_uber_ds_

5.5.5.3.5 Interrupt Test Results

Modelsim output during simulation will be similar to the following example:
4~ Note: Hrote InterupE WASK 4 bytes OXDOD0ODD With enable Ob11l to byte address 200
7645 ns lteration: 13 Instance: /test._uber/test_uber.ds_i
Read Interrupt MASK 4 bytes 0X00000000 fron byte address 200

1

rote nterrupt CONT 4 bytes ONEEFEFFEF wath enable 0v11i1 i byte address 200
7045 s Heration: 13 Instance: /test ubor/tes
630 Interrupt COUNT 4 bytss GREFFFFEEE from byte sudress 208
teration: 13 Instance: /test .memes: uner_ds_
g o

1

1

[

: ube
Intarrapt Handler Cleared interrupt(e: sacked STAT = 0x00000002
: 9265 ns Iteration: 13 Instance: /test uber/test_uber_ds i

Interrupt Nonitor ted fatting odge on tint

26345 ne. Teeration: 12 mnstanco. /tect uber

Cheared torruptey, macked STAT = oxso0aooon

Iteration: 13 Instance: /test uber/test_uber

 Read Interrupt STAT 4 bytes 000000000 f7on byte address 156
27032500 po. " Iteration: 13 Instance: /test_ubor/test. uber s

Test Interrupt conpleted: PASSED.

5.5.5.3.6 Info Test Results

Modelsim output during simulation will be similar to the following example:
ad Info DATE 4 bytes 0x13072010 fron byte address 320

" 27427500 ps Instance: /test_uber/test_uber_ds.
" ad 1nfo TIVNE 4 bytes 0x18131232 fron byte address 324

" 27657500 ps © 13 Instance: /test_uber/test_uber_ds_i
" ead Info BASE 4 bytes 0x00080000 fron byte addl

" 27807500 ps Iteration: 13 Instance: /test_uber/test uber ds_i
" ead Info UASK 4 bytes 0x0007FFFF fron byte add

28137500 ps Iteration: 13 Instance: /test_uber/test uber ds
% Note: Test Info completed:

5.5.5.3.7 BRAM Test Results

Modelsim output during simulation will be similar to the following example:
7 Note: wroto BRAM Adir base 4 bytes OKZIBOEESS whth enable OD1LLL £ byte aress 524268

BRAV conpleted: PASSED.
20912500 ps Iteration: 13 Instance: /test_uber/test_uber_ds_ i

5.5.5.4 Test DMA Block Test Results

Example HDL FPGA Designs Page 79
AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK 1.20 User Guide
@ ALPHA DATA (v1.2 - 21t September 2010)

Modelsim output during simulation will be similar to the following example:
: 0 urite process started
e 1620 ns Iteration: 14 Instance:
OWA read process started

1695 ns Iteration: 13 Instance: /test_uber/test_uber_dna i
: OWA write process completed

5530 ns Iteration: 13 Instance: /test_uber/test_uber_dna_i

: /test_uber/test_uber_dna_i

5530 ns Iteration: 13 Instance: /test_uber/test_uber_dna i

tance: /test_uber/test_uber_dna_i

2225 ns Iteration: 13 Inst:
Test DA conpleted: PAS:

: sen.
© 3225 ns Iteration: 13 Instance: /test_uber/test_uber_dna i

ance: /test_uber/test_uber_dna_i

5.5.5.5 Completion Results

Modelsim output on successful completion of simulation will be similar to the following example:

Iure: Test of design USER conpleted: PASSED.
34230 Process: /test_uber/test_results_p File:
. /conmon/test_uber.vhd 1ine 325

akpoint: Break in Process test_results_p at ../comnon/test_uber.vhd I
¥ UACRO /uber-adnxrcstl.do PAUSED at 1ine 74

. ./conmon/test_uber.vhd

e 328
5.5.6 Bitstream Build

Amakefile is provided for building all bitstreams, or a specific board/device bitstream, for the Uber FPGA example
design. Itis located in the %ADMXRC3_SDKIhdl\vhdl\examplesiuber directory. In order to use a re-built bitstream
with the example applications, it must be copied to the %ADMXRC3_SDK%\bitiuber directory. This can be performed
automatically by using the install makefile option. A "clean up" of the files produced by the build process can be
performed by using the clean makefile option. Examples are as follo
o perform a build of all Uber design bitstreams using Windows, start a shell and issue the following commands:

cd /d HADNXRC3_SDK¥\hdI\vhdI\examples\uber

nmake clean al

Similarly using Linux, start a shell and issue the following commands:
cd SADMXRC3_SDK/hd1/vhdl/examples/uber
make clean all
o perform a build and install the resulting bitstreams using Windows, start a shell and issue the following commands:

cd /d %ADMXRC3_SDK¥\hdI\vhdI\examples\uber
nmake clean instal

Similarly using Linux, start a shell and issue the following commands:

cd $ADMXRC$ SDthdI/vhdl/examples/uber
make cle:

o perform a build for an ADM-XRC-6TL board fitted with an 6VLX240T device using Windows, start a shell and issue
the following commands:

cd /d HADMXRC3. SDK%\hdI\vhdl\examples\uber
nmake bit_admxrc6tl_6vix24(

Similarly using Linux, start a shell and issue the following commands:

cd SADMXRC3, SDK/hdl/vndllexamples/ubsr
make bit_admxr

To perform a build and install for an ADM-XRC-6TL board fitted with an 6VLX240T device using Windows, start a shell
and issue the following commands:

cd /d %ADMXRC3_SDK¥\hd \vhdl\examples\uber
nmake inst_admxrc6tl_6vix2401

Page 80 Example HDL FPGA Designs
Al

Alpha Data Parallel Systems Ltd. D-UG-0004

ADM-XRC Gen 3 SDK 1.2.0 User Guide.

(v1.2 - 215t September 2010) @ALPHA DATA

Similarly using Linux, start a shell and issue the following commands:

cd SADMXRC3_SDK/hd1/vhdl/examples/uber
make inst_admxrc6tl_6vIx240t

o perform a clean for an ADM-XRC-6TL board fitted with an 6VLX240T device using Windows, start a shell and issue
the following commands:

cd /d %ADMXRC3_SDK¥\hdl\vhdI\examples\uber
nmake clean_admxrc6tl_6vIx240t

Similarly using Linux, start a shell and issue the following commands:

cd $ADMXRC3_SDK/hd1/vhdl1/examples/uber
make clean_admxrc6tl_6vIx240t

The full path and filename of bitstreams built using Windows will be:

%ADMXRC3_SDK¥%\hdI\vhd P \output board>-<device>.bit
The full path and filename of bitstreams built using Linux will be:
SADMXRC3_SDK/hd1/vhd p Joutput. ign>-<board>-<devi

5.5.6.1 Date/Time Package Generation Results

If XST is required to be run during bitstream build, the makefile will run a tcl script to generate a file containing the
today_pkg package. This package contains HDL constant definitions containing the date and time at which the script
was run. The script executed will be gen_today_pkg.tcl. The file generated is dependent on the board selected and is
located in the board design directory, for example: \admxrctiitoday_pkg_admxrc6t_6vix240t.vhd for the
ADM-XRC-6TL. Script output will be similar to the following example:

today_pko_admxrc6t_6vix240t.vhd
This Tile was generated autoratically using the

e gen_today_pkg-bat

y ieee;
use iece-std logic_1164.al1;

package today_pkg is
constant TODAYS_DATE : std_logic_vector(31 downto 0) = X"06102010";
constant TODAYS_TIVE : std_logic_vector(31 downto 0) := X"11043305

end package today_pko:

5.5.7 ISE Constraint Files

Constraint files for Uber design bitstream files using ISE are provided. These files are located in
%ADMXRC3_SDK%\hdl\vhdl\examples\uber in each of the board design directories, for example
\admxrc6tiuber-admxrcétl.ucf for the ADM-XRC-6TL,

Example HDL FPGA Designs Page 81
AD-UG-0004 Alpha Data Parallel Systems Ltd

ADM-XRC Gen 3 SDK 1.2.0 User Guide

@ALPHA DATA (v1.2 - 215t September 2010)

6 Common HDL components

The ADM-XRC Gen 3 SDK provides a number of HDL components that are used in the example FPGA designs. These
components may also be used in customer FPGA designs, and this section details their interfaces and usage.

6.1 ADB3 OCP Library
TBA

6.1.1 adb3_ocp_pkg Package
TBA

6.1.2 adb3_ocp_cross_clk_dom Component
TBA

6.1.3 adb3_ocp_mux Component
TBA

6.1.4 adb3_ocp_reg_split Component
TBA

6.1.5 adb3_ocp_simple_bus_if Component
TBA

6.2 MPTL Library
TBA

6.2.1 mptl_pkg Package
TBA

6.2.2 mptl_if_bridge_wrap Component
TBA

6.2.2.1 OCP-OCP Simulation
TBA

6.2.2.2 OCP-MPTL-OCP Simulation
TBA

6.2.2.3 Synthesis
TBA

6.2.3 mptl_if_target_wrap Component

6.2.3.1 OCP-OCP Simulation
TBA

Page 82 Common HDL components.
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.2.0 User Guide.
(V1.2 - 215t September 2010)

@ ALPHA DATA

6.2.3.2 OCP-MPTL-OCP Simulation
TBA

6.2.3.3 Synthesis

TBA
TBA

6.3 ADB3 Target Library
TBA

6.3.1 adb3_target_types_pkg Package
TBA

6.3.2 adb3_target_pkg Package
TBA

6.3.3 adb3_target_tb_pkg Package
TBA

6.4 ADB3 Probe Library
TBA

6.4.1 adb3_probe_pkg Package
TBA

6.4.2 adb3_ocp_transaction_probe_sim Component
TBA

6.5 ADCOMMON Library
TBA

6.5.1 cdc_pkg Package
TBA

6.5.2 clock_speed_pkg Package
TBA

6.5.2.1 clock_speed Component
TBA

6.5.3 rst_pkg Package
TBA

Common HDL components
AD-UG-0004 Alpha Data Parallel Systems Ltd

Page 83

ADM-XRC Gen 3 SDK 1.2.0 User Guide

@ALPHA DATA (v1.2 - 215t September 2010)

6.5.3.1 rst_sync Component
TBA

Page 84 Common HDL components.
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.2.0 User Guide.

(V1.2 - 215t September 2010)

@ ALPHA DATA

7 FPGA design guide

This section provides guidelines for FPGA designs targetting third generation Alpha Data hardware.

7.1 ADB3 OCP Protocol Reference

7.1.1 Introduction

This document describes the ADB3 OCP Protocol used by the MPTL Interface block in the target FPGA. The protocol
is based on the OCP-IP standard which allows flexible connection between modules which share the OCP protocol.
Differences in the implemented subset of OCP signals can be overcome by tieing the mismatching signals to default
values. In general however most designs should simply stick to using the ADB3 OCP Protocol for module design,
unless exisiting OCP-IP with a different protocol is included

OCP-IP Protocols in general allow interfacing between 2 IP modules, with one module the master (in control of the
transactions) and one module the slave. Each OCP-IP Protocol must have at least a command (Cmd) signal however
the definition of other sideband signals is fairly flexible. The main groupings of signals used in the ADB3 OCP protocol
are a Command Group, synchronous to the Cmd signal, and Data transfer groups both from Master to Slave (Write)
and Slave to Master (Read Response). Each of these groupings is acknowledged independently allowing the flow to

be controlled

Signal Group. Type Description
cmd Command ocp cmd dle Write or Read
‘Addr Command 64 bit std_logic_veclor Address
BurstLength Command 12 bit std_logic_vector Length of wansfer
Data Data 128 bit std_logic_vector Wiite Data to Slave.
DataByteEn Data 16 bit std_logic_vector Byte Enables for Data
Datavalid Data std_logic Qualifer for Data
RespAccept Response. std_logic Fiow Control for response
Tag Command 8 bit std_logic_vector Tag for Read response data
Table 43: ADB3 OCP Master Signals
signal Group. Type Description
CmdAccept Command std_logic Fiow Control for commands
DataAccept Data std_logic Flow Control for write Data.
Data Response. 128 bit std_logic_vector Response Data to Master
Resp Response. OCP Resp Qualiier for Response Data
Tag Response. 8 bit std_logic_vector Tag for Read response data

Table 44: ADB3 OCP Slave Signals

In the VHDL code, the master and slave are grouped into record types to simplify the high level abstract system
design, allowing the upper level modules to be specified in terms of module master to slave connections, rather than

routing individual siganis

7.1.2 Timing Diagrams

This section contains timing diagrams for most common transactions and highlight the main operation of the protocol.

FPGA design guide
AD-UG-0004

Alpha Data Parallel Systems Ltd

Page 85

ADMIXRC Gen 3 SDK 1.2.0 User Guide
’ALP“‘ DATA (v1.2 - 21st September 2010)

Clk I WA WA W W W WA W AAW I WA W AW AW S WA WA
Master

cmd TOLE—)(WR X iR TBLE

Addr o AT

BurstLength T T

Data 0 o

D B0 L

Datavalid [

D

Tag ™ T

Slave
CmdAccept
DataAccept \

Data

Resp NORE

Tag

Figure 14: Single Beat Write

Figure 14, “Single Beat Write" shows 2 single beat wite commands. The address, burst length and tag are all
presented at the same time as the Cmd is set to Write. The Cmd is acknowledged within 1 clock cycle in the first case
and so the Cmd is returned to Idle after a single clock cycle. In the first case, the Data and Byte Enables are asserted
and accepted also in the same clock cycle. In the second case, the Write command is not accepted until the 4th cycle
after itis asserted (possible due to teh Slave being busy). The master in this case also does not assert the Data Valid
signal until after the Cmd. The data accept s also not accepted immediately and therefore the Data Valid must remain
high until the data beat is accepted. Al these cases constitute legal OCP transfers with the protocol.

Page 86 FPGA design guide
Alpha Data Parallel Systems Ltd

ADM-XRC Gen 3 SDK 1.2.0 User Guide.
(V1.2 - 215t September 2010)

@ ALPHA DATA

Clk I AWAWAWAWRWAWAWAW RWAWAWAW

Master

cmd TOLE (> X 0) TBLE

Addr o AT

BurstLength T T

Data

D

Datavalid

D

Tag ™ T

Slave

CmdAccept

DataAccept

Data % oL

Resp WoRE VAL NoE VLT

NORE

Tag i ™

Figure 15: Single Beat Read

Figure 15, “Single Beat Read" shows 2 single beat read commands. in the first case the read request is immediately
accepted. The slave responds with a response (QO) on the following clock cycle. The Tag send with the read
command is returned with the response. The second example shows a delayed command accept, a delayed response

and a delayed response accept, all of which are legal with the protocol.

FPGA design guide
AD-UG-0004 Alpha Data Parallel Systems Ltd

Page 87

ADM-XRC Gen 3 SDK 1.2.0 User Guide

’ALPN‘ DATA (v1.2 - 21st September 2010)
Clk I WA WA W W W WA W AAW I WA W AW AW S WA WA
Master
cmd [T 0 S W YBLE
Addr 7 g
BurstLength. 4 z
Data Do b1 Xp2z Y03 D4 D5
D BE0)(BEL) e (BES Ber BEs

Datavalid & /. [/ /

D

Tag ™ T

Slave
CmdAccept
DataAccept | /T | Y
Data

Resp NORE

Tag

Figure 16: Burst Write

Figure 16, "Burst Write" shows 2 burst writes. A single command is issued for multiple data word transfers. The
command protocol operates in exactly the same manner as for single beat transfers. Multiple data transfers occur for
each command. Data transfers only occur when both DataValid and DataAccept are asserted. The master must wait
on DataAccept being asserted before presenting the next data word. The slave must check that DataValid is asserted
when receiving data. The slave may assert DataAccept even if DataValid is not asserted.

Page 88 FPGA design guide
Alpha Data Parallel Systems Ltd

ADM-XRC Gen 3 SDK 1.2.0 User Guide.
(V1.2 - 215t September 2010)

@ ALPHA DATA

Clk _
Master

Cmd

Addr

BurstLength

Data

D

Datavalid

RespAccept_|

Tag

Slave

CmdAccept

DataAccept

Data

o

Resp

NORE

VAL

YoNE(VAL

NORE

Tag

i)

Figure 17: Burst Read

Figure 17, “Burst Read" shows a read burst. The response should be held valid and the read tag returned by the
slave for all data transfers. Each data transfer required the Response to be Valid and RespAccect to be asserted.

FPGA design guide

AD-UG-0004

Alpha Data Parallel Systems Ltd

Page 89

ADM-XRC Gen 3 SDK 1.2.0 User Guide

@ALPHA DATA (v1.2 - 215t September 2010)

8 The ADMXRC3 API

The ADMXRC3 API is the application programming interface that applications, including the ones in this SDK, use to
communicate with third generation Alpha Data hardware. This API is documented in the ADMXRC3 API Specification

Page 90 The ADMXRC3 API
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK 1.2.0 User Guide.

(V1.2 - 215t September 2010) @ ALPHA DATA

Page Intentionally left blank.

The ADMXRC3 API Page 91
AD-UG-0004 Alpha Data Parallel Systems Ltd

@ALPHA DATA

ADM-XRC Gen 3 SDK 1.2.0 User Guide
(v1.2 - 215t September 2010)

Revision History:

Nature of Change.

Date Revision

20/05/2010 10 Initial version
Updated for release 1.1.0

2610712010 11 ‘Added SDK structure diag
A Inormaton about axamle applcations.
Updated for release 1.2.0

2110012010 12 ‘Added section for geting started in VxWarks.
Documented VxWorks example applications.

© 2010 Alpha Data Parallel Systems Ltd. All rights reserved. All other trademarks and registered trademarks are the

property of their respective owners.

Adress: 4 West Sikermills Lane.
Egnburg, 13 300, Uc
2600

Tlephone: 1413

B w0
les@alphadai

bt T A dermcom

Adiess: 2570 Norh s e, e 40

a1 Josa.
Telphone: (58147 076 General
408) 016 5713 Sales.

w (108 436 552

emal. sales@alpha-data.com
website: ipiwalpha-data.com

	1 Introduction
	1.1 Supported operating systems
	1.2 Supported Alpha Data hardware
	1.3 Installation
	1.3.1 Installation in Windows
	1.3.2 Installation in Linux
	1.3.3 Installation in VxWorks

	1.4 Structure of this SDK

	2 Getting started
	2.1 Getting started in Windows 2000 / XP / Server 2003
	2.2 Getting started in Windows Vista and later
	2.3 Getting started in Linux
	2.4 Getting started in VxWorks

	3 Example applications for Windows and Linux
	3.1 Building the example applications in Windows
	3.2 Building the example applications in Linux
	3.3 DUMP utility
	3.4 FLASH utility
	3.4.1 Failsafe bitstream mechanism

	3.5 INFO utility
	3.6 ITEST example
	3.7 MONITOR utility
	3.8 SIMPLE example
	3.9 SYSMON utility
	3.9.1 Building SYSMON in Linux

	3.10 VPD utility

	4 Example applications for VxWorks
	4.1 Building the example VxWorks applications in Windows
	4.2 Building the example VxWorks applications in Linux
	4.3 MAKE options for the example VxWorks applications
	4.4 FLASH utility (VxWorks)
	4.4.1 Failsafe bitstream mechanism (VxWorks)

	4.5 INFO utility (VxWorks)
	4.6 ITEST example (VxWorks)
	4.7 MONITOR utility (VxWorks)
	4.8 SIMPLE example (VxWorks)
	4.9 VPD utility (VxWorks)

	5 Example HDL FPGA Designs
	5.1 Introduction
	5.2 Design Simulation Using Modelsim
	5.3 Bitstream Build Using ISE
	5.3.1 Building All Example Bitstreams
	5.3.2 Building Specific Example/Board/Device Bitstreams

	5.4 Simple Example FPGA Design
	5.4.1 Design Description
	5.4.1.1 Clock Generation
	5.4.1.1.1 Internal Clock Generation
	5.4.1.1.2 External Clock Buffering
	5.4.1.1.3 MPTL Interface Clock

	5.4.1.2 MPTL Interface
	5.4.1.3 OCP Direct Slave Channel
	5.4.1.3.1 Simple Test Registers
	5.4.1.3.1.1 Description
	5.4.1.3.1.2 Register Interface

	5.4.2 Board Support
	5.4.3 Source Location
	5.4.4 Testbench Decription
	5.4.4.1 Clock Generation
	5.4.4.1.1 Simple Example Design Clocks
	5.4.4.1.2 Testbench Clocks

	5.4.4.2 Test Direct Slave Interface
	5.4.4.2.1 Simple Test
	5.4.4.2.2 Bridge MPTL Interface
	5.4.4.2.3 OCP test probes

	5.4.5 Design Simulation
	5.4.5.1 Initialisation Results
	5.4.5.2 Direct Slave Test Results
	5.4.5.3 Completion Results

	5.4.6 Bitstream Build
	5.4.7 ISE Constraint Files

	5.5 Uber Example FPGA Design
	5.5.1 Design Description
	5.5.1.1 Clock Generation Block
	5.5.1.1.1 Internal Clock Generation (MMCM)
	5.5.1.1.2 Internal reset generation
	5.5.1.1.3 External Clock Buffering (Non-MGT Sourced)
	5.5.1.1.4 External Clock Extraction (MGT Sourced)
	5.5.1.1.5 MPTL Interface Clock Generation

	5.5.1.2 MPTL Interface Block
	5.5.1.3 OCP Direct Slave Interface Block
	5.5.1.3.1 OCP Address Space Splitter Block
	5.5.1.3.2 Simple Test Block
	5.5.1.3.2.1 Description
	5.5.1.3.2.2 Register Interface

	5.5.1.3.3 Clock Read Block
	5.5.1.3.3.1 Description
	5.5.1.3.3.2 Register Interface

	5.5.1.3.4 GPIO Test Block
	5.5.1.3.4.1 Description
	5.5.1.3.4.2 Register Interface

	5.5.1.3.5 Interrupt Test Block
	5.5.1.3.5.1 Description
	5.5.1.3.5.2 Register Interface

	5.5.1.3.6 Info Block
	5.5.1.3.6.1 Description
	5.5.1.3.6.2 Register Interface

	5.5.1.3.7 BRAM Interface Block

	5.5.1.4 OCP DMA Interface Block
	5.5.1.4.1 OCP Channel Mux Block
	5.5.1.4.2 OCP To Parallel Interface Block
	5.5.1.4.3 BRAM Block

	5.5.1.5 ChipScope Connection Block (optional)

	5.5.2 Board Support
	5.5.3 Source Location
	5.5.4 Testbench Description
	5.5.4.1 Clock Generation
	5.5.4.1.1 Uber Example Design Clocks
	5.5.4.1.2 Testbench Clocks

	5.5.4.2 Test Direct Slave Interface
	5.5.4.2.1 Simple Test
	5.5.4.2.2 Clock Read Test
	5.5.4.2.3 Front IO (XRM GPIO) Test
	5.5.4.2.4 Rear IO (PN4/PN6 GPIO) Test
	5.5.4.2.5 Interrupt Test
	5.5.4.2.6 Info Test
	5.5.4.2.7 BRAM Test

	5.5.4.3 Test DMA Interface
	5.5.4.3.1 DMA Write Channel Process
	5.5.4.3.2 DMA Read Channel Process

	5.5.4.4 Bridge MPTL interface
	5.5.4.5 OCP test probes

	5.5.5 Design Simulation
	5.5.5.1 Date/Time Package Generation Results
	5.5.5.2 Initialisation Results
	5.5.5.3 Test Direct Slave Block Test Results
	5.5.5.3.1 Simple Test Results
	5.5.5.3.2 Clock Read Test Results
	5.5.5.3.3 Front IO (XRM GPIO) Test Results
	5.5.5.3.4 Rear IO (PN4/PN6 GPIO) Test Results
	5.5.5.3.5 Interrupt Test Results
	5.5.5.3.6 Info Test Results
	5.5.5.3.7 BRAM Test Results

	5.5.5.4 Test DMA Block Test Results
	5.5.5.5 Completion Results

	5.5.6 Bitstream Build
	5.5.6.1 Date/Time Package Generation Results

	5.5.7 ISE Constraint Files

	6 Common HDL components
	6.1 ADB3 OCP Library
	6.1.1 adb3_ocp_pkg Package
	6.1.2 adb3_ocp_cross_clk_dom Component
	6.1.3 adb3_ocp_mux Component
	6.1.4 adb3_ocp_reg_split Component
	6.1.5 adb3_ocp_simple_bus_if Component

	6.2 MPTL Library
	6.2.1 mptl_pkg Package
	6.2.2 mptl_if_bridge_wrap Component
	6.2.2.1 OCP-OCP Simulation
	6.2.2.2 OCP-MPTL-OCP Simulation
	6.2.2.3 Synthesis

	6.2.3 mptl_if_target_wrap Component
	6.2.3.1 OCP-OCP Simulation
	6.2.3.2 OCP-MPTL-OCP Simulation
	6.2.3.3 Synthesis

	6.3 ADB3 Target Library
	6.3.1 adb3_target_types_pkg Package
	6.3.2 adb3_target_pkg Package
	6.3.3 adb3_target_tb_pkg Package

	6.4 ADB3 Probe Library
	6.4.1 adb3_probe_pkg Package
	6.4.2 adb3_ocp_transaction_probe_sim Component

	6.5 ADCOMMON Library
	6.5.1 cdc_pkg Package
	6.5.2 clock_speed_pkg Package
	6.5.2.1 clock_speed Component

	6.5.3 rst_pkg Package
	6.5.3.1 rst_sync Component

	7 FPGA design guide
	7.1 ADB3 OCP Protocol Reference
	7.1.1 Introduction
	7.1.2 Timing Diagrams

	8 The ADMXRC3 API
	Tables
	Table 1: Naming conventions for VxWorks examples binary
	Table 2: FPGA Designs/Host applications
	Table 3: Simple Design Simple Test Block Address Map
	Table 4: Simple Design Simple Test Block DATA Register (0x00000000)
	Table 5: Uber design Direct Slave Address Map
	Table 6: Uber Design Simple Test Block Address Map
	Table 7: Uber Design Simple Test Block DATA Register (0x00000000)
	Table 8: Uber Design Clock Read Block Address Map
	Table 9: Uber Design Clock Read Block SEL Register (0x00000040)
	Table 10: Uber Design Clock Read Block CTRL/STAT Register (0x00000044)
	Table 11: Uber Design Clock Read Block FREQ Register (0x00000048)
	Table 12: Uber Design GPIO Test Block Address Map
	Table 13: Uber Design GPIO Test Block XRM_GPIO_DA_TRI Register (0x00000200)
	Table 14: Uber Design GPIO Test Block XRM_GPIO_DA_DATA Register (0x00000204)
	Table 15: Uber Design GPIO Test Block XRM_GPIO_DB_TRI Register (0x00000208)
	Table 16: Uber Design GPIO Test Block XRM_GPIO_DB_DATA Register (0x0000020C)
	Table 17: Uber Design GPIO Test Block XRM_GPIO_DC_TRI Register (0x00000210)
	Table 18: Uber Design GPIO Test Block XRM_GPIO_DC_DATA Register (0x00000214)
	Table 19: Uber Design GPIO Test Block XRM_GPIO_DD_TRI Register (0x00000218)
	Table 20: Uber Design GPIO Test Block XRM_GPIO_DD_DATA Register (0x0000021C)
	Table 21: Uber Design GPIO Test Block XRM_GPIO_CS_TRI Register (0x00000220)
	Table 22: Uber Design GPIO Test Block XRM_GPIO_CS_DATA Register (0x00000224)
	Table 23: Uber Design GPIO Test Block PN4_GPIO_P_TRI Register (0x00000228)
	Table 24: Uber Design GPIO Test Block PN4_GPIO_P_DATA Register (0x0000022C)
	Table 25: Uber Design GPIO Test Block PN4_GPIO_N_TRI Register (0x00000230)
	Table 26: Uber Design GPIO Test Block PN4_GPIO_N_DATA Register (0x00000234)
	Table 27: Uber Design GPIO Test Block PN6_GPIO_MS_TRI Register (0x00000238)
	Table 28: Uber Design GPIO Test Block PN6_GPIO_MS_DATA Register (0x0000023C)
	Table 29: Uber Design GPIO Test Block PN6_GPIO_LS_TRI Register (0x00000240)
	Table 30: Uber Design GPIO Test Block PN6_GPIO_LS_DATA Register (0x00000244)
	Table 31: Uber Design Interrupt Test Block Address Map
	Table 32: Uber Design Interrupt Test Block SET Register (0x000000C0)
	Table 33: Uber Design Interrupt Test Block CLEAR/STAT Register (0x000000C4)
	Table 34: Uber Design Interrupt Test Block MASK Register (0x000000C8)
	Table 35: Uber Design Interrupt Test Block ARM Register (0x000000CC)
	Table 36: Uber Design Interrupt Test Block COUNT Register (0x000000D0)
	Table 37: Uber Design Info Block Address Map
	Table 38: Uber Design Info Block DATE Register (0x00000140)
	Table 39: Uber Design Info Block TIME Register (0x00000144)
	Table 40: Uber Design Info Block SPLIT Register (0x00000148)
	Table 41: Uber Design Info Block BASE Register (0x0000014C)
	Table 42: Uber Design Info Block MASK Register (0x00000150)
	Table 43: ADB3 OCP Master Signals
	Table 44: ADB3 OCP Slave Signals

	Figures
	Figure 1: Structure of the ADM-XRC Gen 3 SDK
	Figure 2: SYSMON user interface - device information
	Figure 3: SYSMON user interface - sensor readings
	Figure 4: SYSMON user interface - sensor display
	Figure 5: Simple Design Testbench And Top Level Block Diagram
	Figure 6: Uber Design Top Level Hierarchy
	Figure 7: Uber Design Package Dependencies
	Figure 8: Uber Design Testbench And Top Level Block Diagram
	Figure 9: Uber Design Internal Clock Generation (MMCM)
	Figure 10: Uber Design Clock Buffering/Extraction
	Figure 11: Uber Direct Slave Block Diagram
	Figure 12: Uber DMA Block Diagram
	Figure 13: Uber Design Testbench Hierarchy
	Figure 14: Single Beat Write
	Figure 15: Single Beat Read
	Figure 16: Burst Write
	Figure 17: Burst Read

	Alpha Data Website

