e,ALPHA DATA

ADM-XRC Gen 3
SDK User Guide

Revision: 1.1
Date: 26th July 2010

@ALPHA DATA

/ADM-XRC Gen 3 SDK User Guide
(v1.1-26th July 2010)

prior written consent from Alpha Data Parallel Systems Lii

Address

Telephone

Fax

email
website

©2010 Copyright Alpha Data Parallel Systems Ltd.
i d.

All rights reserved.
This publication is protected by Copyright Law, with all rights reserved. No
part of this publication may be reproduced, in any shape or form, without
d

Head Office

4 West Silvermills Lane,
Edinburgh, EH3 58D, UK

+44 131 558 2600

+44 131 558 2700

Us office
2570 North First Street, Suite 440
San Jose, CA 95131

(408) 467 5076 General

(408) 916 5713 Sales

(408) 436 5524
(866) 820 9956 Lol free

com

com

ADM-XRC Gen 3 SDK User Guide
(VL1 - 26th July 2010)

@ALPHA DATA

Table Of Contents
1 1
1.1 Supported operating system: 1
1.2 Supported Alpha Data hardware N
1.3 Installation 1
1.3.1 Installation in Windo\ 1
1.3.2 Installation in Linu: 1
1.3.3 Installation in VxWork: 2
1.4 Structure of this SDK 2
2 Getting started. 4
2.1 Getting started in Windows 2000 / XP / Server 2003 4
2.2 Getting started in Windows Vista and later 5
2.3 Getting started in Linux 7
3 Example 9
3.1 Building the example 9
3.1.1 Building the example in Wind 9
3.1.2 Building the example in Linu 9
3.2 DUMP utilty. 10
3.2.1 Usage 10
3.3 FLASH utility. 13
3.3.1 Usage 13
3.4 INFO utility 16
3.4.1 Usage 16
3.5 ITEST example. 19
3.5.1 Usage 19
3.6 MONITOR utility 21
3.6.1 Usage 21
3.7 SIMPLE example. 22
3.7.1 Usage 22
3.8 SYSMON utility. 23
3.8.1 Usage 23
3.8.2 Building SYSMON in Linu 25
3.9 VPD utility. 26
3.9.1 Usage 26
4 Example HDL FPGA Designs 29
4.1 Introduction. 29
4.2 Design Simulation Using Modelsim. 2
4.3 Bitstream Build Using ISE 29
4.3.1 Building All Example Bitstreams 29
4.3.2 Building Specific D Bitstreams 30
4.4 Simple Example FPGA Design. 31
4.4.1 Design Description 31
4.4.1.1 Clock Generation. 33
4.4.1.1.1 Internal Clock Generation. 33

@ALPHA DATA

/ADM-XRC Gen 3 SDK User Guide
(v1.1-26th July 2010)

4.4.1.2 MPTL Interfag

4.4.2 Board Support

4.4.3 Source Location

4.4.4 Testbench Decription,

4.4.4.1 Clock Generation.

4.45 Design Simulation

4.4.6 Bitstream Build

4.4.7 ISE Constraint File:

4.5 Uber Example FPGA Design

4.5.1 Design Description

4.4.1.1.2 External Clock Buffering (Non-MGT Sourced) 33
4.4.1.1.3 External Clock Extraction (MGT Sourced) 33
4.4.1.1.4 MPTL interface clock generation 2
33

4.4.1.3 OCP Direct Slave Channel 33
4.4.1.3.1 Simple Test Register: =
4.4.1.3.1.1 Description 33
4.4.1.3.1.2 Register Interface 34

34

34

35

35

4.4.4.1.1 Simple Example Design Clocks 35
4.4.4.1.2 Testbench Clock: 35
4.4.4.2 Test Direct Slave Interface 35
4.4.42.1 Simple Test 35
4.4.4.2.2 Bridge MPTL interface 35
4.4.4.2.3 OCP test probe 36
36

4.45.1 Initialisation Result 36
4.455.2 Direct Slave Test Results 36
4.4,5.3 Completion Results 36
36

37

38

38

455.1.1 Clock Generation Block 43
45.1.1.1 Internal Clock Generation (MMCM). 3
45.1.1.2 Internal reset generation 3
455.1.1.3 External Clock Buffering (Non-MGT Sourced) 3
45.1.1.4 External Clock Extraction (MGT Sourced) 3
45.1.1.5 MPTL interface clock generation 3
4.5.1.2 MPTL Interface Block 6
4.5.1.3 OCP Direct Slave Interface Block 6
45.1.3.1 OCP Address Space Splitter Block 8
45.1.3.2 Simple Test Block 8
45.1.3.2.1 Description 8
45.1.3.2.2 Register Interf 8
45.1.3.3 Clock Read Block 8
455.1.3.3.1 Description 49
45.1.3.3.2 Register Interface 49
45.1.3.4 GPIO Test Block 50
455.1.3.4.1 Description 50
45.1.3.4.2 Register Interface 50

53

4.5.1.3.5 Interrupt Test Block.

ADM-XRC Gen 3 SDK User Guide

(V1.1 - 26th July 2010) @ ALPHA DATA

45.1.3.5.1 Description 53
45.1.3.5.2 Register Interf 53
45.1.36 Info Block 54
45.1.3.6.1 Description 54
45.1.3.6.2 Register Interf 54
45.1.3.7 BRAM Interface Block 55
4.5.1.4 OCP DMA Interface Block 56
45.1.4.1 OCP Channel Mux Block 58
45.1.4.2 OCP To Parallel Interface Block 58
45.1.4.3 BRAM Block 58
45515 ChipScope Connection Block (optional) 58
4.5.2 Board Support 58
4.5.3 Source Location 58
4.5.4 Testbench Description 5
4.5.4.1 Clock Generation. 61
45.4.1.1 Uber Example Design Clock: 61
45.4.1.2 Testbench Clock: 61
4.5.4.2 Test Direct Slave Interface 61
45.4.2.1 Simple Test. 61
45.4.2.2 Clock Read Test 61
45.4.2.3 Front 10 (XRM GPIO) Test 62
45.4.2.4 Rear 10 (PN4/PNG GPIO) Test 62
45.4.25 Interrupt Test 62
45.4.2.6 Info Test 63
45.4.2.7 BRAM Test 63
45.4.3 Test DMA Interface. 63
4.5.4.3.1 DMA Write Channel Proce: 63
455.4.3.2 DMA Read Channel Proce 63
4.5.4.4 Bridge MPTL interface. 63
45455 OCP test probe: 64
4.5.5 Design Simulation 64
4.5.5.1 Date/Time Package Generation Result 64
4.5.5.2 Initialisation Result 64
4.5.5.3 Test Direct Slave Block Test Result 64
45.5.3.1 Simple Test Result o
45.5.3.2 Clock Read Test Result 65
45.5.3.3 Front 10 (XRM GPIO) Test Result 65
45.5.3.4 Rear 10 (PN4/PNG GPIO) Test Results. 65
45535 Interrupt Test Results 66
45.5.3.6 Info Test Result P
45.5.3.7 BRAM Test Results 67
4.5.5.4 Test DMA Block Test Results 67
4555 Completion Result o
4.5.6 Bitstream Build 67

4.5.6.1 DatelTime Package Generation Result 68

@ALPHA DATA

/ADM-XRC Gen 3 SDK User Guide
(v1.1-26th July 2010)

5 Common HDL

5.2 MPTL Library.

6 FPGA design guide

7 The ADMXRC3 API

Tables

Table 1:
Table 2:
Table 3:
Table 4:

Table 5:

4.5.7 ISE Constraint File 69
70

5.1 ADB3 OCP Library 70
5.1.1 adb3_ocp_pkg Packags 70
5.1.2 adb3_ocp_cross_clk_dom Component 70
5.1.3 adb3_ocp_mux Component 70
5.1.4 adb3_ocp_reg_split Component 70
5.1.5 adb3_ocp_simple_bus_if Component. 70
70

5.2.1 mptl_pkg Package. 70
5.2.2 mptl_if_bridge_wrap Component 70
5.2.2.1 OCP-OCP Simulation .
5.2.2.2 OCP-MPTL-OCP Simulation 70
5.2.23 Synthesi 70
5.2.3 mptl_if_target_wrap Component 70
5.2.3.1 OCP-OCP Simulation .
5.2.3.2 OCP-MPTL-OCP Simulation 7
5.2.33 Synthesi 7

5.3 ADB3 Target Library 7
5.3.1 adb3_target_types_pkg Package. 71
5.3.2 adb3_target_pkg Package 7
5.3.3adb3_target_th_pkg Package 7
5.4 ADB3 Probe Library. 7
5.4.1adb3_probe_pkg Package 7
5.4.2 adb3_ocp_transaction_probe_sim Component 7
5.5 ADCOMMON Library. 7
5.5.1 cdc_pkg Package 7
5.5.2 clock_speed_pkg Package. 71
5.5.2.1 clock_speed Component 7
5.5.3 rst_pkg Package 7
5.5.3.1 rst_sync Component 72

73

6.1 ADB3 OCP Protocol Referent 73
6.1.1 Introduction. 73
6.1.2 Timing Diagrams 73
78

FPGA Designs/Host 29

Simple Design Simple Test Block Address Map 34

Simple Design Simple Test Block DATA Register. 34

Uber design Direct Slave Address Map a8

Uber Design Simple Test Block Address Map 48

Uber Design Simple Test Block DATA Register 48

Table 6:

ADM-XRC Gen 3 SDK User Guide
(VL1 - 26th July 2010)

@ALPHA DATA

Table 7:

Table 8:

Table 9:

Table 10:
Table 11:
Table 12:
Table 13:
Table 14:
Table 15:
Table 16:
Table 17:
Table 18:
Table 19:
Table 20:
Table 21:
Table 22:
Table 23:
Table 24:
Table 25:
Table 26:
Table 27:
Table 28:
Table 29:
Table 30:
Table 31:
Table 32:
Table 33:
Table 34:
Table 35:
Table 36:
Table 37:
Table 38:
Table 39:
Table 40:
Table 41:
Table 42:
Table 43:

Figures

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:

Uber Design Clock Read Block Address Map
Uber Design Clock Read Block SEL Register

Uber Design GPIO Test Block Address Map

Uber Design Info Block Address Map

Uber Design Info Block DATE Register

Uber Design Info Block TIME Register

Uber Design Info Block SPLIT Register.

Uber Design Info Block BASE Register

Uber Design Info Block MASK Register

ADB3 OCP Master Signal

ADB3 OCP Slave Signal

Structure of the ADM-XRC Gen 3 SDK

SYSMON user interface - device information

SYSMON user interface - sensor reading

SYSMON user interface - sensor display

49

49

Uber Design Clock Read Block CTRL/STAT Register 49
Uber Design Clock Read Block FREQ Register 50
50

Uber Design GPIO Test Block XRM_GPIO_DA_TRI Register 51
Uber Design GPIO Test Block XRM_GPIO_DA_DATA Register 51
Uber Design GPIO Test Block XRM_GPIO_DB_TRI Register 51
Uber Design GPIO Test Block XRM_GPIO_DB_DATA Register 51
Uber Design GPIO Test Block XRM_GPIO_DC_TRI Register 51
Uber Design GPIO Test Block XRM_GPIO_DC_DATA Register 51
Uber Design GPIO Test Block XRM_GPIO_DD_TRI Register 51
Uber Design GPIO Test Block XRM_GPIO_DD_DATA Register 52
Uber Design GPIO Test Block XRM_GPIO_CS_TRI Register 52
Uber Design GPIO Test Block XRM_GPIO_CS_DATA Register 52
Uber Design GPIO Test Block PN4_GPIO_P_TRI Register 52
Uber Design GPIO Test Block PN4_GPIO_P_DATA Register. 52
Uber Design GPIO Test Block PN4_GPIO_N_TRI Register. 52
Uber Design GPIO Test Block PN4_GPIO_N_DATA Register 52
Uber Design GPIO Test Block PN6_GPIO_MS_TRI Register. 53
Uber Design GPIO Test Block PN6_GPIO_MS_DATA Register. 53
Uber Design GPIO Test Block PN6_GPIO_LS_TRI Register 53
Uber Design GPIO Test Block PNG_GPIO_LS_DATA Register. 53
Uber Design Interrupt Test Block Address Map 53
Uber Design Interrupt Test Block SET Register. 54
Uber Design Interrupt Test Block CLEAR/STAT Register. 54
Uber Design Interrupt Test Block MASK Register 54
Uber Design Interrupt Test Block ARM Register. 54
Uber Design Interrupt Test Block COUNT Register 54
55

55

55

55

55

55

73

73

3

23

24

24

32

Simple Design Testbench And Top Level Block Diagram

@ALPHA DATA

/ADM-XRC Gen 3 SDK User Guide
(v1.1-26th July 2010)

Figure 6: Uber Design Top Level Hierarchy 39
Figure 7: Uber Design Package D: 40
Figure 8: Uber Design Testbench And Top Level Block Diagram a2
Figure 9: Uber Design Internal Clock Generation (MMCM) a4
Uber Design Clock a5
Uber Direct Slave Block Diagram a7
Uber DMA Block Diagram s
Uber Design Testbench Hierarchy 60
Single Beat Write 74
Single Beat Read 75
Burst Writ 7%
Figure 17: Burst Read 77

ADM-XRC Gen 3 SDK User Guide

(v1.1- 261 July 2010) @ALPHA DATA

1 Introduction
This document describes the ADM-XRC Gen 3 Software Development Kit (SDK), which provides resources for

developers working with the third generation of reconfigurable computing hardware from Alpha Data. The ke features
of the SDK are:

+ Example applications that use the ADMXRC3 API

+ Example HDL FPGA designs that target third generation Alpha Data hardware such as the ADM-XRC-6TL.
These designs are built from a number of HDL components that are also provided in this SDK.

+ Utiities for working with third generation Alpha Data hardware.

1.1 Supported operating systems

This SDK supports the following operating systems:

+ Windows NT-based operating systems beginning with Windows 2000. Both 32-bit and 64-bit editions are
supported.
+ Linux distributions running a 2.6.x kernel.

1.2 Supported Alpha Data hardware

The example applications and HDL code in this SDK support the following models in Alpha Data's range of
reconfigurable computing hardware:

© ADM-XRC-6TL
+ ADM-XRC-6T1

1.3 Installation

1.3.1 Installation in Windows

The default installation location depends upon whether the operating system is a 32-bit or 64-bit edition of Windows:

. 9%ProgramFiles%\ADMXRCG3SDK:-release in 32-bit editions of Windows.

. 9%ProgramFiles(x86)%\ADMXRCG3SDK-release in 64-bit editions of Windows.
where release is the release number of this package
During installation, the installer automatically creates an environment variable ADMXRC3_SDK that points to where the
SDK s installed. Certain example applications use this environment variable to locate FPGA bitstream (BIT) files. A
user need not manually set this variable, but if using several versions of the SDK, it can be set manually according to
which version of the SDK is in use.

1.3.2 Installation in Linux
This SDK is supplied as a tarball (.tar.gz extension) that should normally be extracted to the /opt directory, which places
the root of the SDK at/opt/admxrcg3sdk-release directory, where release is the release number of this package.
After installation, an environment variable ADMXRC3_SDK must be defined that points to where the SDK is installed
Certain example applications use this environment variable to locate FPGA bitstream (BIT) files. A convenient way to
permanently define this variable for a given user is to add the following to the user's .bash_profile:
ADMXRC3_SDK=/opt/admxrcg3sdk-<i>release</i>
export ADMXRC3_SDK

Introduction Page 1
AD-UG-0004 Alpha Data Parallel Systems Ltd

/ADM-XRC Gen 3 SDK User Guide

@ALPHA DATA (v1.1-26th July 2010)

1.3.3 Installation in VxWorks

Since VxWorks normally requires a Windows, Linux or UNIX host, this SDK must be installed on a Windows or Linux
host as described in Section 1.3.1, “Installation in Windows" or Section 1.3.2, “Installation in Linux"

1.4 Structure of this SDK

Page 2 Introduction
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK User Guide

@ALPHA DATA

(VL1 - 26th July 2010)
(1001) The root of the SDK, e.g. loptiadmxreg3sdk-1.1.0
[apps Example appl d utities
linux— Makefiles and project files for Linux

dump
flash

wing2

Project files for Windows
dump
flash

s — Source code for example applications

common Source code shared by multple example appiications.
platform
linux Linux-specific portabilty source code
win32 Windows-specific portabilty source code
aump - Source code for DUMP utilty
flash Source code for FLASH ity
L bin Prebuit binaries for example applications
L winzz
64 Prebuilt binaries for x64 editions of Windows
86 Prebuilt binaries for x36 editions of Windows
I bit Prebuit example FPGA designs.
= simple
uber
— doc for SDK; contains this d t
= hat
L vhat
common Common VHDL liraries; shared by multple example FPGA designs
adb3_ocp
adb3_probe
examples — Example VHDL FPGA designs
simple SIMPLE example FPGA design
admacet ADM-XRC-GTL-specifc code for SIMPLE example FPGA design
admucot. ADM-XRC-6T1-specific code for SIMPLE example FPGA design
common ———— Model-independent code for SIMPLE example FPGA design
uber — UBER example FPGA design
admactl ADM-XRC-6TL-specifc code for UBER example FPGA design

admurcetl ADM-XRC-6T1-specific code for UBER example FPGA design

common Model-independent code for UBER example FPGA design

API header files

AP libary files

DLL import libraries for x64 editions of Windows
DLL import ibraries for x86 editions of Windows

Figure 1: Structure of the ADM-XRC Gen 3 SDK

Introduction
AD-UG-0004 Alpha Data Parallel Systems Ltd.

Page 3

/ADM-XRC Gen 3 SDK User Guide

@ALPHA DATA (v1.1-26th July 2010)

2 Getting started

2.1 Getting started in Windows 2000 / XP / Server 2003

|Nme: This section also applies to Windows Vista and later when User Account Control (UAC) is disabled

This section describes how to run a basic confidence test on Alpha Data hardware, in Windows 2000 / XP / Server
2003. This confidence test assumes the following:

1. Allfeatures of the SDK were installed, as described in Section 1.3, “Installation”
2. Any model from Alpha Data's reconfigurable computing range that is supported by this SDK is installed in the
machine. For a list of hardware supported, refer to section Section 1.2, "Supported Alpha Data hardware",
3. TheADB3 driver is installed. The ADB3 driver for Windows s available from Alpha Data's public FTP site:
ftp:/ftp.alpha-data.com/publadmxrcg3iwindows.
4. Youare logged on as a user that is a member of the Administrators group.
First, start an SDK command prompt by clicking on the 'SDK Command Prompt’ shortcut from the ‘ADM-XRC Gen 3
SDK' group on the Windows start menu. This command prompt automatically starts with the working directory set to the
bin/win32/x86/ folder of the SDK and also ensures that the ADMXRC3_SDK environment variable is set correctly.
Next, run the info utilty. The output looks like this:
API infornation
brary version 1.1.0
Driver version 1100

card infornation
Nodel ADI-XRC-6TL
serial number 101(0x65)
Nunber of programmable clocks 1

Nunber of DMA channels
Nunber of target FPGAS
Number of local bus windows
Nunber of sensors 40

.

Nuriber of 1/0 nodule sites 1

Nunber of local bus windows 4

Nunber of memory banks 4

Bank presence bitnap oxF

Target FPGA information

FPGA O XCOVIX240tFF1759

Nemory bank information

Bank 0 SORAI, DORS, 6S536(0x10000) kil x 3240 bits
303.0 NHz
Connecti; vlty mas|

Bank 1 SORAM, DDR3, 65536(0x100m) Kill x 32+0 bits
303.0 Wz - 6333 1
Connectivity m

Bank 2 SDRAM, DDR3, 65536(0xwum) kil x 32+0 bits

303.0 MHz - 533.3 Wi
Connectivity mask o

Bank 3 SORAI, DOR3, GSS35(0A0000) W x 3240 bles
303.0 WHz - 533.3 Wi
Connectivity mask o

Local bus window information

Window 0 (Target FPGA O pre Bus base OxF5400000 size 0x400000

Page 4 Getting started
Alpha Data Parallel Systems Ltd. AD-UG-0004

ADM-XRC Gen 3 SDK User Guide
(V1.1 - 26th July 2010) @ ALPHA DATA

Local base Ox0 size 0x400000

X400000

Window 1 (Target FPGA O non Bus base OXFACO0000 size 0x400000
Local base OxO size 0x400000
Virtual size 0x400000

Window 2 (ADM-XRC-GTL-speci Bus base OXFAAFFO00 size 0x1000
Local base 0x0 size 0x0
Virtual size 0x1000

Window 3 (ADB3 bridge regis Bus base OXFAAFEQ00 Size 0x1000
Local base 0x0 size 0x0
Virtual size 0x1000

Now run the simple example application. It prompts the user to enter hexadecimal values (up to 32 bits), and displays

these value nibble-reversed. The nibble-reversal is performed by the target FPGA. Hitiing CTRL-Z exits this example.
The output looks ke this:

Enter values for 1/0
(use 5584 to exit)

1234abcd
o= Ox1234abed,

Oxdcbad321

OUY = 0x000055aa, IN = 0xaaS50000
If everything works s described above, then the hardware, driver and SDK are all correctly installed and substantially
working. Possible next steps are:
Experiment with modifying and rebuilding the simple example application in order to become familiar with
the basics of the ADMXRC3 API
Experiment with modifying and rebuilding the simple example FPGA design in order to become familiar with
creating FPGA designs for Alpha Data hardware

2.2 Getting started in Windows Vista and later

Note: If User Account Control is disabled, please refer instead to the instructions in Section 2.1, "Getting
started in Windows 2000 / XP / Server 2003".

This section describes how to run a basic confidence test on Alpha Data hardware, in versions of Windows that have
User Account Control (UAC) such as Windows Vista and later. This confidence test assumes the following:

1. Allfeatures of the SDK were installed, as described in Section 1.3, "Installation”.

2. Any model from Alpha Data's reconfigurable computing range that is supported by this SDK is installed in the
machine. For a list of hardware supported, refer to section Section 1.2, "Supported Alpha Data hardware""

3. TheADBS3 driver is installed. The ADB3 driver for Windows is available from Alpha Data's public FTP site:
ftp://ftp.alpha-data.com/publadmxrcg3iwindows.

4.

You are logged on as a user that is a member of the Administrators group.
Because of User Account Control (UAC), it is not possible to make use of the 'SDK Command Prompt' shortcut that is
installed along with the SDK. Instead, start a command prompt by right-clicking on the ‘Command Prompt’ shortcut in
the ‘Accessories' program group and selecting ‘Run as administrator'. This willtypically incur a UAC confirmation
prompt. Then, enter the following command (do not omit the double quotes)

“Hadmxrc3_sdkaenv”

Getting started Page 5
AD-UG-0004 Alpha Data Parallel Systems Ltd.

/ADM-XRC Gen 3 SDK User Guide

@ALPHA DATA (v1.1-26th July 2010)

This executes the env.bat batch file, which sets up the environment and changes to the folder containing the prebuilt
example application binaries. In order for this to work correctly, the ADMXRC3_SDK system environment variable must
be correctly defined. The installer normally sets this variable, but f not, it must be set as a system environment variable
10 point to where the SDK is installed, using the Windows Control Panel
Next, run the info utlity. The output looks like this

API information

API Tibrary version 1.1.0
Driver version -1.0

Card infornation

Nodel ADI-XRC-6TL
serial number 101(0x65)

Nunber of programmable clocks 1

Nunber of DA channels 1

Nunber of 1

Nunber of a

Nunber of 40

Nunber of 1

Nunber of 4

Nunber of 4

Bank pi oxF

Target

FPGA O XCOVIX240tFF1759

Nemory n

Bank 0 SORAY, ODR3, 6536(0X10000) kil x 3240 bits
303.0 M
Comnact

Bank 1 SDRAM, DDR3, 65536(0xwum) kil x 32+0 bits
303.0 Wiz - 5333 1
Connect

Bank 2 SDRAM, DDR3, sssae(uxmnoa) kil x 32+0 bits
202.0 Wz - 5333
Connect

Bank 3 SDRAM, DDR3, 65536(0x10000) kil x 3240 bits
303.0 NHz
Connect o Ot

Local bus window information
Window 0 (Target FPGA O pre Bus base OxF5400000 Size 0x400000
Local base 0x0 size 0x400000
Virtual size 0x400000
ndow 1 (Target FPGA O non Bus base OXFACO0000 Size 0x400000
Local base 0x0 Size 0x400000
Virtual size 0x400000
ndow 2 (ADM-XRC-6TL-speci Bus base OXFAAFFO00 size 0x1000
Local base Ox0 size Ox0
Virtual size 0x1000
Window 3 (ADB3 bridge regis Bus base OXFAAFEQ00 size 0x1000
Local base 0x0 size 0x0
Virtual size 0x1000

Now run the simple example application. It prompts the user to enter hexadecimal values (up to 32 bits), and displays
these value nibble-reversed. The nibble-reversal is performed by the target FPGA. Hitiing CTRL-Z exits this example.
The output looks like this:

Enter values for 1/0
(use 55AA to exit)

1234abed
0UT = Ox1z3aabed. IN = Oxdebadsz1

Page 6 Getting started
Alpha Data Parallel Systems Ltd. AD-UG-0004

ADM-XRC Gen 3 SDK User Guide
(V1.1 - 26th July 2010) @ ALPHA DATA

T = 0x000055aa, IN = 0xaa550000

If everything works as described above, then the hardware, driver and SDK are all correctly installed and substantially
working. Possible next steps are:

+ Make acopy of the SDK in your own filespace, and use the copy to experiment with modifying and rebuilding
the simple example application in order to become familiar with the basics of the ADMXRC3 AP

+ Make acopy of the SDK in your own filespace, and use the copy to experiment with modifying and rebuilding
the simple example FPGA design in order to become familiar with creating FPGA designs for Alpha Data
hardware

2.3 Getting started in Linux

This section describes how to run a basic confidence test on Alpha Data hardware, in Linux. This confidence test
assumes the following:

1 This SDK is installed as described in Section 1.3, “Installation™, and the ADMXRC3_SDK environment
variable is set to point to where the SDK has been installed.
Any model from Alpha Data's reconfigurable computing range that is supported by this SDK is installed in the
machine. For a list of hardware supported, refer to section Section 1.2, “Supported Alpha Data hardware"
3. The ADB3 driver is installed. The ADB3 driver for Linux is available from Alpha Data’s public FTP site: ftp://
ftp.alpha-data.com/publadmxrcg3/linux.

Note: In the following text, it is assumed that itis possible to log in as oot If a Linux distribution is used
where users are expected to use 'sudo’ rather than logging in as root, then in all of the following instructions,
commands should be prefixed with 'sudo' so that the effect is the same as 'S’ to ‘root'.

Log in as root (if possible), change directory to where the SDK has been installed, and then run the configure script:
S cd SADUXRC3_SDK
$./configure
This detects certain features of the operating system environment so that the example applications can be built. Next,
change directory to the Linux application directory.
$ cd apps/|
$ make clean all

Having built the example applications, run the info utilty:
$ info/info

The output looks ke this:

1 tibrary version 1.1.0
Driver version 1.1.0
Card infornation
Nodel ADII-XRC-6TL
Serial nunber 101(0x65)
Nunber of programmable clocks 1
Nunber of DA channels 1
Nunber of target FPGAS 1
Nunber of local bus windows 4
Nunber of sensors 40
Number of 1/0 module sites 1
tunber of focal bus windors 4
Nunber of memory banks 4
Bank presence bitnap oxF
Getting started Page 7

AD-UG-0004 Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK User Guide
@ ALPHA DATA (v1.1- 26th July 2010)

Target FPGA information

FPGA O XCOVIX240LFF1759

Nemory bank information

Bank 0 SORAY, DOR3, G5535(0X10000) ki x 3210 bits
303.0 MHz - 533.3
Connecti

Bank 1 oA DDRS, G3596(DX10000) KW x 3240 bits

303.0 Wz - 533.3 Iz

onnect
Bank 2 SORAW, DDR3, 65536(0)(10000) Kill x 3240 bits
303.0 WHz -
Connec
Bank 3 SORAN, DDR3, 65536(0x100m) KiW x 32+0 bits
303.0 MHz - 533.3 M
Comnectivity nask 0xt

Local bus window information
Window 0 (Target FPGA O pre Bus base (XFS400000 size 0xa00000
Local base Ox0 size 0x40000(

Virtual size 0x400000

ndow 1 (Target FPGA O non Bus base OXFACO0000 size 0x400000
Local base Ox0 size 0x400000
Virtual size 0x400000

Window 2 (ADM-XRC-GTL-speci Bus base OXFAAFFO00 size 0x1000

Local base 0x0 size 0x0

Virtual size 0x1000

Bus base OXFAAFEQ00 Size 0x1000

Local base 0x0 size 0x0

Virtual size 0x1000

ndow 3 (ADB3 bridge regi

Now run the simple example application
s sinple/sinple

It prompts the user to enter hexadecimal values (up to 32 bits), and displays these value nibble-reversed. The
nibble-reversal is performed by the target FPGA. Hitting CTRL-D exits this example. The output looks like this:

Enter values for 1/0
(use 55AA to exit)

1234abed
OUT = 0x1234abed. 1N = Oxdebadsz1
o = 0x000055aa, IN = 0xaa550000

If everything works as described above, then the hardware, driver and SDK are all correctly installed and substantially
working. Possible next steps are:

+ Experiment with modifying and rebuilding the simple example application i order to become familiar with
the basics of the ADMXRC3 API

+ Experiment with modifying and rebuilding the simple example FPGA design in order to become familiar with
creating FPGA designs for Alpha Data hardware

Page 8 Getting started
Alpha Data Parallel Systems Ltd. AD-UG-0004

ADM-XRC Gen 3 SDK User Guide

(v1.1- 261 July 2010) @ALPHA DATA

3 Example applications

The example applications and utilties are described in the following subsections.

bump Uity for reading and writing memory access windows

FLASH Uity for programming FPGA bitstream (.BIT) files in user-programmable Flash memory

INFO Utilty for displaying information about a reconfigurable computing device

ITEST Example demonstrating how to consume target FPGA interrupt notifications in an application

MONITOR Uiilty that displays sensor readings

SIMPLE Example demonstrating how to read and write registers in a target FPGA

Ssvsvon Uty that combines the functionality of the INFO and MONITOR utites in a graphical user
interface

vPD Uity that allows the Vital Product Data of a reconfigurable computing device to be read or writen

3.1 Building the example applications

3.1.1 Building the example applications in Windows

A Microsoft Visual Studio 2008 solution s provided, containing all of the Windows examples. This file is
9%ADMXRC3_SDK6\apps\win32\apps.sin. To build all of the examples, use the "Batch Build" command in Visual
Studio.

3.1.2 Building the example applications in Linux

o build all of the example applications, excluding the SYSMON utiity, at once, enter the following shell commands in a
BASH shell:

$ cd SADMXRC3_SDK/apps/linux

s _/configure

S make clean all
When compiling on 64-bit bi-architecture machine such as x86_64, two executables are built for each example
application: a 64-bit native version and a 32-bit version. For example, the native version of INFO is named info, and the
32-bit version is info32. For machines that are not bi-architecture, only the native version is built. The configure script
determines whether or not to build bi-architecture versions of the example applications,
The SYSMON utiity must be built separately, because it depends upon certain packages being present in the system.
For further details, refer to Section 3.8.2, "Building SYSMON in Linux".

Example applications Page 9
AD-UG-0004 Alpha Data Parallel Systems Ltd

/ADM-XRC Gen 3 SDK User Guide

@ALPHA DATA (v1.1-26th July 2010)

3.2 DUMP utility
3.2.1 Usage

Command line

dump [option ...] rb window offset [n]
duny n 121 rw window offset [n]
dunp [option ...]
dump [option ...] [}
dunp [option ...]]
dunp [option ...]]
dunp [option ... t [n]
dump [opt ...1 g window offset [n] [data
where
window is the memory window to read or write
oftset is the offsetnto the window at which to beginreading or wiing
n is the number of bytes o read or write
data is an optonal data tem, validfor wite commands

and the following options are accepted;

-index <index> ‘Specifies the index of the card to open (default 0).
s <> ‘Specifies the serial number of the card to open
-be Causes the data to be read or writen [0 be treated s fitle-endian (default)
+be Causes the data (0 be read or writen [0 be Ureated as big-endian
-hex ‘Causes write values to be interpreted as decimal unless prefixed by ‘0x' (default).
+hex ‘Causes write values to be inferpreted as hexadecimal always.
Summary

Displays data read from a memory access window, or writes data to a memory access window.
Description

The DUMP utilty operates in of two modes:

+ Reading data from a memory access window and displaying it; for this mode, use the rb, rw, rd or rq
commands.
+ Wiiting data to a memory access window; for this mode, use the wb, ww, wd or wg commands.
In either mode, the option +be may be passed, before the command. This causes the DUMP utility to adopt big-endian
byte ordering convention as opposed to little-endian (the default).
Read mode

The read command implies the radix for displaying data:

Byte (8-bit) reads; data is displayed as bytes.

Page 10 Example applications
Alpha Data Parallel Systems Ltd Al

ADM-XRC Gen 3 SDK User Guide
(V1.1 - 26th July 2010) @ ALPHA DATA

w

Word (16-bit) reads; data is displayed as words

rd

Doubleword (32-bi) reads; data is displayed as doublewords

rq
Quadword (64-bi) reads; data is displayed as quadwords.

After the read command, a window index and an offset must be supplied, in that order. This specifies the memor
access window to be read, and where in that window to begin reading data. An optional length parameter, in bytes, can
also be supplied. If omitted, the length is equal to the radix implied by the read command. If present, the length
parameter specifies how many bytes to read and display. The length should be an integer multiple of the width; if not,
the length is rounded down.
For example, the command

dunp rw 0 0xB0000 0X60
produces output of the form

Window 0 offset 0x80000 mapped @ 0x00150000

Dunp of memory at 0x00150000 + 96(0x60) bytes:

00 02 04 06 08 O

2 a 0c O
0x00150000: 000 b456 c567 d678 Sasa eeee

0x00150010: ee22 eece eeee ecee eece eeee
0X00150020: ecee eece eeee ecee eece eeee
0x00150030: 445d 8232 163f 8414 1dle 171b

cd61 d464 d39d leed 69F8 F13d
0x00150050: 5858 489 20ff b77b ef92 ad3a 6a27 €620

Write mode

The write command implies the radix (that is, word size) to be used when performing writes:

wh
Data is written s bytes (8-bit).

o ww
Data is written as words (16-bit).
¢ wd

Data is written as doublewords (32-bit).

wq
Data is written as quadwords (64-bit)

After the write command, a window index and an offset must be supplied, in that order. This specifies the memory
access window to be read, and where in that window to begin writing data. An optional length parameter, in bytes, can
also be supplied. If omitted, the length is equal to the radix implied by the write command. If present, the length
parameter specifies how many bytes to write. The length should be an integer multiple of the width; if not, the length is
rounded down.

The program obtains the values to be written in two ways: from any additional parameters on the command line after
the length parameter, and then from the standard input stream (stdin). This works as follows:

1. Anyremaining command line arguments, if present after the length parameter, are interpreted as data values
to be written. These values are assumed to be of the radix implied by the command, and are written to the
memory window, incrementing the offset with each word written. I there are enough values passed on the
command line to satisfy the byte count, the program terminates.

Example applications

Page 11
AD-UG-0004 Alpha Data Parallel Systems Ltd

ADM-XRC Gen 3 SDK User Guide
@ ALPHA DATA (v1.1- 26th July 2010)

If there are insufficient data values passed on the command line, the program waits for values to be entered
on the standard input stream. Values entered this way are also assumed to be of the radix implied by the
command, and are written to the memory window, incrementing the offset with each word written. When the
entire byte count that was specified in the length parameter has been satisfied or end-of-file is encountered,
the program terminates.
An example session looks like this:

C>dump rd 0 0xB000D 0x40

Window 0 offset 0x80000 mapped @ 0x002D0000

Dump of memory at 0x002D0000 + 80(0x40) bytes:

00 04 08 0c
0x002d0000: 00000000 00000000 00000000 00000000
0x002d0010: 00000000 00000000 00000000 00000000
0x002d0020: 00000000 00000000 00000000 00000000
0x00240030: 00000000 00000000 00000000 00000000
C>dump wd 0 0x80004 0x8 Oxdeadbeef
Window 0 offset 0xB0004 mapped & 0x00110004
0xB0004: OXDEADBEEF
0x80008: Oxcafeface
C>dump rd 0 0xB0000 0x40
Window 0 offset 0x80000 mapped @ 0x00110000
Dump Of memory at 0x00110000 + 64(0x40) bytes:
00

0x00110000: 00000000 deadbeef cafeface 00000000

0x00110020: 00000000 00000000 00000000 00000000
0x00110030: 00000000 00000000 00000000 00000000

Remarks

When entering data for write commands, values are expressed in decimal by default. To express data as hexadecimal,
prefix it with '0x or use the +hex option.

The DUMP utility uses store instructions for writes that are equal to the width specified on the command line, if
possible. This is not possible if the CPU architecture in use does not have store instructions of the required width or if
the offset specified on the command line would result in unaligned stores. In the case of an unaligned offset, writes are
performed as a sequence of byte stores, because unaligned stores are illegal on some CPU architectures,

Example applications
Al

Page 12
Alpha Data Parallel Systems Ltd.

ADM-XRC Gen 3 SDK User Guide

(V1.1 - 26th July 2010) @ ALPHA DATA

3.3 FLASH utility

3.3.1 Usage

WARNING: Incorrect use of the +failsafe option may impact long-term reliability of a reconfigurable
computing card. Please refer to {{iink :section:Failsafe bitstream mechanism:Sr}) below for an explanation of
the +failsafe option and how it may be used.

Command line

chkblank
erase
sh-[option program
flash [option verify
where
target-index is the index of a target FPGA
filename is the name of a BIT file (program or verify commands only)

and the following options are accepted;

-index <index> Specifies the index of the card to open (defauit).
“sn<i> Specifies the serial number of the card to open

failsafe ‘Causes the normal image to be erased / programmed / verified (defaut).
©taisate Causes the ge to be erased / verified; see

mechanism below.
auses a mismatch between the target FPGA device and the .BIT file device to result in an

force error (default)
+force ‘Causes a mismatch between the target FPGA device and the BIT fle device to be ignored.
Summary

Blank-checks, erases, programs or verifies a target FPGA bitstream image in the user-programmable Flash memory of
a device.

Description
The FLASH utility has four commands:

+ chkblank <target-index>
Verifies that an image is blank, ie. all bytes are OxFF.

+ erase <targetindex>
Erases an image so that it becomes become, ie. all bytes are OxFF.

+ program <target-index> <filename>
Programs the specified bitstream (BIT) file into an image so that the target FPGA is configured from the
image at power-on o reset.

+ verily <target-index> <filename>
Verifies that an image contains the specified bitstream (.BIT) file.

chkblank command

Example applications Page 13
AD-UG-0004 Alpha Data Parallel Systems Ltd.

/ADM-XRC Gen 3 SDK User Guide

@ALPHA DATA (v1.1-26th July 2010)

The chkblank command verifies that a target FPGA image is blank, i.e. all bytes are OxFF, but does not modify the
Flash memory bank. Following the command, an index of a target FPGA in the device must be specified. The index of
the target FPGA is normally zero but may be nonzero in in models with multiple target FPGAS
For example, to blank-check the default image for target FPGA 0

flash program 0 /path/to/my_design.bit

erase command
The erase command erases a target FPGA image so that it becomes blank, i.e. all bytes are OXFF. It automatically
performs a blank-check after erasing. Following the command, an index of a target FPGA in the device must be
specified. The index of the target FPGA is normally zero but may be nonzero in in models with multiple target FPGAS.
For example, to erase the default image for target FPGA 0:

flash erase 0

program command
The program command programs a target FPGA image with the data in the specified bitstream (BIT) file. Following
the command, an index of a target FPGA in the device and the name of a bitstream (BIT) filename must be specified.
The index of the target FPGA is normally zero but may be nonzero in in models with multiple target FPGASs.
If the device in the _BIT file does not match the target FPGA, this command fails with an error and does not program the
target FPGA image, unless the +force option is passed. Verification is automatically performed after programming.
For example, to program the defaultimage for target FPGA 0 with a bitstream file called my_design.bit:

flash program 0 /path/to/my_design.bit

verify command
The verify command verifies that a target FPGA image contains the data in the specified bitstream (.BIT) file, but does
not modify the Flash memory bank. Following the command, an index of a target FPGA in the device and the name of a
bitstream (.BIT) filename must be specified. The index of the target FPGA is normally zero but may be nonzero in in
models with multiple target FPGASs.
If the device in the .BIT file does not match the target FPGA, this command fails with an error unless the +force option
is passed. If discrepancies between the target FPGA image and the data in the .BIT file are found, they are displayed
(up to a certain number of erroneous bytes), followed by a failure message.
For example, to verify that the default image for target FPGA 0 contains the data in a bitstream file called
my_design.bit:

flash verify 0 /path/to/my_design.bit

Failsafe bitstream mechanism

Due to errata in certain Xilinx™ FPGA families, the following Gen 3 models have a "failsafe bitstream” mechanism:

+ ADM-XRC-6TL
+ ADM-XRC-6T1
In the above models, each target FPGA has two images: a defaultimage, and a failsafe image. Alpha Data
factory-programs a known-good “null bitstream” into the failsafe image. When power is applied to a card, the firmware
on the card first looks for a valid bitstream in the default image. If no bitstream is found, the firmware uses the nul
bitstream in the failsafe image to configure the target FPGA. In this way, the firmware ensures that the target FPGA is
always configured with something when it is powered-on.
Because the purpose of the failsafe image is to protect the target FPGA from sub-micron effects that would otherwise
degrade the performance of the target FPGA over time, Alpha Data recommends that the failsafe image should never
be erased. If overwitten, a customer must ensure that the bitstream is valid, known-good and satisfies the
requirements for protecting the target FPGA from sub-micron effects

Page 14 Example applications
Alpha Data Parallel Systems Ltd. Al

ADM-XRC Gen 3 SDK User Guide

(v1.1- 261 July 2010) @ALPHA DATA

Xilinx™ answer record 35055 elaborates on protecting Virtex-6 GTX transceivers from performance degradation over
time.

Example applications Page 15
AD-UG-0004 Alpha Data Parallel Systems Ltd

http://www.xilinx.com/support/answers/35055.htm

/ADM-XRC Gen 3 SDK User Guide

@ALPHA DATA (v1.1-26th July 2010)

3.4 INFO utility
3.4.1 Usage

Command line
info [option ...]

where the following options are accepted:

-index <index- ‘Specifies the index of the card o open (default).
“sn <> Specifes the serial number of the card o open.
-flash Causes Flash bank information not to be shown (default).
+flash ‘Causes Flash bank information to be shown
o Causes /0 module information not o be shown (default)
+io Causes 10 modle information to be shown.
sensor Causes sensor information not o be shown (defaul)
+sensor Causes sensor information (o be shown.
Summary

Displays information about a reconfigurable computing device.

Description

The INFO utility demonstrates the use of most of the informational functions in the ADMXRC3 API. It uses
ADMXRC3_OpenEx to open a device in passive mode, meaning that an unprivileged user can successfully run it. The
output consists of several sections, the first of which is obtained using ADMXRC3_GetVersioninfo:

APY infornation

APY Tibrary version 1.1.0

Driver version 1.1.0

The second section shows information obtained using ADMXRC3_GetCardinfoEx, and shows the information in the
ADMXRC3_CARD_INFOEX structure:

Card infornation

Nodel ADI-XRC-6TL

serial number 101(0x65)

Nuriber of progranmable clocks 1

Nunber of DA channels 1

Number of target Fi

Nunber of local bus windows 4

Nunber of sensors 10

Nunber of 1/0 module sites 1

Nunber of local bus windows 4

Nunber of merory banks

Bank presence bitmap OxF

The third section uses the NumTargetFpga member of the ADMXRC3_CARD_INFOEX structure and
ADMXRC3_GetFpgalnfo to enumerate the target FPGAS in the device:
Target FPGA informa
FPGA O XCOVIX240tFF1759

The fourth section uses the NumMemoryBank member of the ADMXRC3_CARD_INFOEX structure and
ADMXRC3_GetBankinfo to enumerate the memory banks (non-Flash) in the device:
Nenory bank information

Page 16 Example applications
Alpha Data Parallel Systems Ltd Al

ADM-XRC Gen 3 SDK User Guide
(V1.1 - 26th July 2010) @ ALPHA DATA

Bank 0 SDRAM, DDR3, 65536 kiWord x 32+0 bits

Bank 1

X 3240 bits
302.0 Wiz - 5353 iz
Connect
Bank 2 SORAM, DDR3, 65536 Killord x 32+0 bits
303.0 MHz - 533.3 Wi
Connectivity mask Ox1
Bank 3 SDRAM, DDR3, 65536 klwurd X 32+0 bits
303.0 MHz - 533.3 Wi
Connectivity mask o

The fourth section uses the NumWindow member of the ADMXRC3_CARD_INFOEX structure and
ADMXRC3_GetWindowinfo to enumerate the memory access windows in the device:
Local bus window information
Window 0 (Target FPGA O pre Bus base OxF5400000 size 0x400000
Local base 0x0 size 0x400000
Virtual size 0x400000
Window 1 (Target FPGA O non Bus base OXFACO0000 Size 0x400000
Local base 0x0 size 0x400000
Virtual size 0x400000
ndow 2 (ADM-XRC-GTL-speci Bus base OXFAAFFO0O Size 0x1000
Local base Ox0 size Ox0
Virtual size 0x1000
ndow 3 (ADB3 bridge regis Bus base OXFAAFEQ00 size 0x1000
Local base 0x0 size Ox0
Virtual size 0x1000

The next section appears if the +flash option is passed on the command line. It uses the NumFlashBank member of
the ADMXRC3_CARD_INFOEX structure and ADMXRC3_GetFlashinfo to enumerate the Flash memory banks in the
device:
Flash bank infornation
Bank 0 Intel 28F256P30, 65536(0x10000)
Useable area 0x1200000-0x3FFFFFF

The next section appears if the +io option is passed on the command line. It uses the NumModuleSite member of the
ADMXRC3_CARD_INFOEX structure and ADMXRC3_GetModulelnfo to enumerate the I/O module sites in the device
and show what s fited, if anything

170 module information

Module 0 Not present
The final section appears if the +sensor option is passed on the command line. It uses the NumSensor member of the
ADMXRC3_CARD_INFOEX structure and ADMXRC3_GetSensorInfo to enumerate the sensors in the device:

Sensor information

sensor 0 1V supply rai
V, double, exponent 0, error 0.0
sensor 1 1.5V supply rail
double, exponent 0, error 0.0
Sensor 2 1
V. double, exponent 0, error 0.0
sensor 3 2.5V supply rail
V. double, exponent 0, error 0.1
sensor 4 3.3V supply rail
V. double, exponent 0, error 0.1
sensor 5 5V supply rail
error 0.1
sensor 6
V. double, exponent 0, error 0.2
sensor 7 XRI 1/0 voltage
V, double, exponent 0, error 0.1
sensor 8 LN87 internal temperature
Example applications Page 17

AD-UG-0004 Alpha Data Parallel Systems Ltd.

/ADM-XRC Gen 3 SDK User Guide

@ALPHA DATA (v1.1-26th July 2010)

deg. C, double, exponent 0, error 3.0
Sensor 9 Target FPGA temperature
deg. C, double, exponent O, error 4.0

Page 18 Example applications
Alpha Data Parallel Systems Ltd AD-

ADM-XRC Gen 3 SDK User Guide
(v1.1- 261 July 2010) @ALPHA DATA

3.5 ITEST example
3.5.1 Usage

Command line
itest [option ...]

where the following options are accepted:

-index <index- ‘Specifies the index of the card o open (default).
“sn <> Specifes the serial number of the card o open.

Summary

D of FPGA interrupt

Description

This example demonstrates how to consume FPGA interrupt notifications in an application. It uses the interrupt test
block of the UBER example FPGA design, described in Section 4.5.1.3.5, "Interrupt Test Block” as a means of
generating FPGA interrupt notifications, and starts a thread whose purpose is to wait for and acknowledge interrupts
from the target FPGA.
When ITEST is started, the main thread first configures target FPGA 0 with the Section 4.5, “Uber Example FPGA
Design”. The main thread then launches an interrupt thread that waits for notifications, in loop. The main thread then
proceeds to wait for input, also in a loop. At this point, the user may press RETURN to generate an interrupt, or enter ‘g'
to terminate the program. On termination, the program displays the number of FPGA interrupt notifications that the
interrupt thread consumed during execution.
Asample session looks like this:
Enter "q" to quit, or anything else to generate an
Interrupt thread started

terrupt:

Enter *q° to quit, or anything else to generate an

terrupt:
Enter *q" to quit, or anything else to generate an

terrupt:
Enter *q" to quit, or anything else to generate an

terrupt:
Enter "q" to quit, or anything else to generate an

terrupt:
Enter *q" to quit, or anything else to generate an interrupt:

q
Generated 5 interrupts
Interrupt thread saw 5 interrupt(s)

The blank lines in the above session are simply empty lines where the user has pressed return. As can be seen, each
of the 5 interrupts generated results in the interrupt thread consuming a notification.

Remarks

Example applications Page 19
AD-UG-0004 Alpha Data Parallel Systems Ltd

ADM-XRC Gen 3 SDK User Guide
@ ALPHA DATA (v1.1- 26th July 2010)

As noted in the ADMXRC3 API Specification (see functions ADMXRC3_RegisterWin32Event,

ADMXRC3_Register m and ADMXRC3_ the ADMXRC3 API does not queue each type
of notification. Therefore, this example works as expected as long as the frequency of target FPGA interrupt
notifications is not too fast for the interrupt thread. Since the rate of generation of notifications in this example s limited
the user's keyboard input rate, the interrupt thread should be able to keep up (as long as the machine is not heavily
Ioaded with other processes). Nevertheless, it is important to note that in this simple example, there is no mechanism
for throtting the rate of notifications so that notifications cannot be lost. In a real application, the preferred design
approaches are:

1. Architect the FPGA design and host application so that they tolerate out-of-date notifications being missed.
For example, if the target FPGA generates an interrupt when data arrives via an I/O interface, it does not
matter if the host application does not succeed in consuming every target FPGA interrupt notification,
because the notifications before the latest one are considered out-of-date. When the host application handies
a notification, it reads a register in the target FPGA to determine the amount of new data rather than using
the number of notifications consumed. What matters is that regardless of how many times the target FPGA
generates an interrupt, the host application is guaranteed to eventually wake up and check for new data.

2. Useafully handshaked system, where the host application must positively acknowledge a target FPGA
interrupt before the target FPGA generates a new interrupt.

In fact, the above two approaches are best used together, because minimizing the number of FPGA interrupts

minimizes unnecessary context switches in the operating system.

Page 20 Example applications
Alpha Data Parallel Systems Ltd. Al

ADM-XRC Gen 3 SDK User Guide
(VL1 - 26th July 2010)

@ALPHA DATA

3.6 MONITOR utility
3.6.1 Usage

Command line
monitor [option ...

where the following options are accepted:

-index <index- ‘Specifies the index of the card o open (default).
“sn <> Specifes the serial number of the card o open.
-period <delay> Specifies the update period, in seconds.

Specifies the number of repetitions (default 0)
repeat <n> i
Avalue of zero means “repeat for ever"
Summary

Displays readings from all sensors.

Description

The MONITOR utilty repeatedly displays sensor readings in the command shell at the interval specified by the -period
option. The number of updates to perform before terminating can be specified on the command line using the -repeat

option, but by default, the program runs until interrupted with CTRL-C.

It makes use of the ADMXRC3, and ADMXRC3, function:

from the ADMXRC3 API, and

because it opens a device in passive mode using ADMXRC3_OpenEx, it can run alongside other reconfigurable

computing applications without disturbing them.
The output looks like this:

Model 257 (0x101) => ADM-XRC-6TL

Sei ber: 101 (0x65;

Number of sensors: 10
Sensor 0 1V supply
Sensor
Sensor
Sensor
sensor
Sensor
Sensor
Sensor
Sensor
Sensor

0.987000 V.

CmNonrwN R

87
Target FPGA temperature: 57.000000 deg C

Example applications
AD-UG-0004 Alpha Data Parallel Systems Ltd

Page 21

ADM-XRC Gen 3 SDK User Guide
@ ALPHA DATA (v1.1- 26th July 2010)

3.7 SIMPLE example
3.7.1 Usage

Command line
simple [option ...]
where the following options are accepted:

-index <index> ‘Specifles the index of the card (o open (default 0).

“sn <> Specifies the serial number of the card o open
-uber Uses SIMPLE FPGA design (default).
+uber Uses UBER FPGA design.

Summary

Demonstrates access to target FPGA registers.
Description

The SIMPLE example application demonstrates accessing FPGA registers in its simplest form. I first configures target
FPGA 0 with the Section 4.4, "Simple Example FPGA Design” and then waits for input from the user. The user
enters a hexadecimal value (up to 32 bits in length), and the program writes each one to a register in the target FPGA
The target FPGA nibble-reverses the value (i.e. swaps bits 31:28 with 3:0, 27:24 with 7:4 etc.) and the program reads
back the nibble-reversed value and displays t. The program terminates when the value 55AA (hex) is entered.

A sample session looks like this:

Enter values for 1/0
(use 55AA to exit)

12345678

OUT = 0x12345678, IN = 0x87654321
deadbe

UT = Oxdeadbeef, IN = Oxfeebdaed
cafef:

OUT = Oxcafeface, Oxecafefac
5

s55aa
OUT = 0x000055aa, 0xaa550000

Page 22 Example applications
Alpha Data Parallel Systems Ltd. Al

ADM-XRC Gen 3 SDK User Guide
(V1.1 - 26th July 2010) @ ALPHA DATA

3.8 SYSMON utility
3.8.1 Usage

Command line

sysmon

Summary
Utiity presenting device information and hardware sensors in a graphical user interface.
Description

The SYSMON utilty combines the information shown by the INFO and MONITOR utilies with a graphical user
interface. Its main function is graphical display of hardware sensor data, and it can be minimized to the notification area
of the deskiop (the "System Tray" in Windows) in order to run unobtrusively.

It makes use of the ADMXRC3_ and ADMXRC3_f functions from the ADMXRC3 AP, and
because it opens a device in passive mode using ADMXRC3_Open€Xx, it can run alongside other reconfigurable
computing applications without disturbing them.

The user interface of the Linux version of SYSMON is as follows upon starting the uilty:

-G 'ADMXRC3 Diagnostics VoW
Device |Index 0 ADM-XRC-6TLSN #101 v | Update period |15 | About...|
D Informati Sensor Informat Sensor Readout.

- APl information

|- APIversion 110
Driver version 110
< summary information
| Model 257 (0x101) => ADM-XRC-6TL
Serial Number 101 (65)
Number of target FPGAS 1 1
Number of clock generators 1
Number of DMA channels 1
L Number of windows 4
Number of sensors 10

Number of I/0 module sites 1

Figure 2: SYSMON user interface - device information

‘The Windows version of SYSMON offers equivalent functionality, but uses a different GUI technology to that of the
Linux version. The second tab shows sensor readings in tabular form:

Example applications Page 23
4

AD-UG-000: Alpha Data Parallel Systems Ltd.

/ADM-XRC Gen 3 SDK User Guide

@ALPHA DATA (v1.1-26th July 2010)

- ADMXRC3 Diagnostics. 0o

Device | Index 0 ADM-XRC-6TLSN #101 v | Update period |1s v About

Device Information| Sensor Information | Sensor Readout

| Description Value | Unit

1 1.5V supply rail 151 Vv

2 1.8V supply rail 18 v

3 2.5V supply rail 251 v
433V supply rail 327 vV

5 5V supply rail 502 Vv

6 XMCvariable powerrail 12V

7 XRM /O voltage 25 v

8 LM87 intemal temperature 49 deg.C
9 Target FPGA temperature 58 deg.C

Figure 3: SYSMON user interface - sensor readings

The third tab displays sensor readings in graphical form:

- ADMXRC3 Diagnostics. PO

Device | Index 0 ADM-XRC-6TLSN #101 v | Update period |15 v About

el
Device Information asm Information| Sensor Readout

Figure 4: SYSMON user interface - sensor display

Page 24 Example applications
Alpha Data Parallel Systems Ltd. AD-UL

ADM-XRC Gen 3 SDK User Guide
(V1.1 - 26th July 2010) @ ALPHA DATA

Initially, the ‘scope is empty and displays no sensors. The above figure shows the effect of clicking the voltage button,
labelled 2 in the above figure. The user interface elements of the 'scope toolbar are as follows:

1. The temperature button sets the 'scope to display all temperature sensors in the device. Once some sensors
are displayed, updates begin

2. The voltage button sets the 'scope to display all voltage sensors in the device. Once some sensors are
displayed, updates begin.

3. The current button sets the ‘scope to display all current sensors in the device. Once some sensors are
displayed, updates begin.

4. The key can be moused-over to show which sensor corresponds to which colored trace.

5. The pause / resume button can be used to pause and resume update of the 'scope.

6. Item 6 s a button that adds another ‘scope when clicked, to a maximum of 4, o that various types of sensor
can be viewed at the same time.
7. ltem 7 is a button that destroys a ‘scope when clicked. If there is only one 'scope, the button is disabled.

3.8.2 Building SYSMON in Linux
The Linux version of the SYSMON utiity uses GTKMM-2.4. This package is present in recent Linux distributions such
as Fedora Core 13, but may not be present in al Linux distributions. For this reason, SYSMON is built separately from
the other example applications. A non-exhaustive list of the packages that are required to build SYSMON is s follows:

gtkmm24-devel cairomm-devel
libsige++20-devel glibmm24-devel
pangomm-devel pkgeonfig

o run SYSMON, the corresponding runtime packages are required:

gtkmm24. cairomm
libsige++20 glibmm24.
pangomm

To build the "Release" configuration of SYSMON, enter the following commands in a BASH shell:

$ cd SADNXRC3_SDK/apps/ |
$./configure

nux

$ make CONFIG=Release clean al
The executable's path is then SADMXRC3_SDI

Example applications Page 25
AD-UG-0004 Alpha Data Parallel Systems Ltd.

@ALPHA DATA

/ADM-XRC Gen 3 SDK User Guide
(v1.1-26th July 2010)

3.9 VPD utility
3.9.1 Usage

Command line

vpd [option
vpd [option
vpd [option
vpd [option
vpd [opt
vpd [opt
vpd [opti
vpd [opti
vpd [opt
vpd [opt
vpd [opti
vpd [opti
vpd
vpd

where

address
n

data
stiing

-
2

address

fu address

o
fq
s
b

2

rd

£53

wd

=z
G5

address

n [data]

n [string]

s [n]

[n1
[n]

[n] [string .

s the address in VPD memory at which to begin reading or writing

s the number of bytes to read or write

s an numeric data item, valid for il and write commands

s an string data item, valid for fill and write commands

and the following options are accepted;

-index <index>
-sn <>
-hex

+hex

Summary

‘Specifies the index of the card to open (default 0).

Specifies the serial number of the card to open.

Causes numeric data values to be interpreted as decimal unless prefixed by ‘0x”(defau).

Causes numeric data values to be interpreted as hexadecimal always.

Displays data read from VPD memory, or writes data to VPD memory.

Description

The VPD utility operates in one of three modes

. Filling a region of VPD memory with a value or string; for this mode, use the fb, fw, fd, fq or fs commands.

+ Reading data from VPD memory and displaying it,for this mode, use the rb, rw, rd or rq commands.

+ Wiiting numeric or string data to a region of VPD memory; for this mode, use the wb, ww, wd, wq or ws
ds.

comman

Fill mode

When fillng a region of VPD memory with data, the fill command specifies whether the data is numeric or string data. In
the case of numeric data, the command also implies the radix (i.e. word size) of the data. The available fill commands

are:

Page 26

Example applications
Alpha Data Parallel Systems Ltd Al

ADM-XRC Gen 3 SDK User Guide

(V1.1 - 26th July 2010) @ ALPHA DATA

<o
Fill value is a byte (8-bit).
w

Fill value is a word (16-bit).
Fill value is a doubleword (32-bit).

fq

Fill value is a quadword (64-bit).

Fill value is an ASCII string (8-bit characters).
The next 3 arguments after the fill command must be:

(@ address - the byte address within VPD memory at which to begin filling
(b) n-byte count; the number of bytes of VPD memory to fill
(c) data or string - the numeric or string value to place in the specified region of VPD memory

If the command is s and the string value is shorter than the byte count n, the string is repeated untilthe byte count is
satisfied. If the string is longer than the byte count n, only the first n characters are used. If a string contains spaces, it
must be quoted on the command line so that it is not interpreted by the shell as two or more separate arguments,

For the numeric fil commands b, fw, fd and fa, the numeric value is repeated until the byte count is satisfied.

Read mode

The read command implies the radix (i.e. word size) used for displaying the data:

Byte (8-bit) reads; data is displayed as bytes.

w

‘Word (16-bit) reads; data is displayed as words.

Doubleword (32-bit) reads; data is displayed as doublewords.

rq

Quadword (64-bit) reads; data is displayed as quadwords.

After the read command, an address must be supplied, which specifies where in VPD memory to begin reading. An
optional length parameter, in bytes, can also be supplied. If omitted, the length is equal to the radix implied by the read

command. If present, the length parameter specifies how many bytes to read and display. The length should be an
integer multiple of the width; if not, the length is rounded down.

Write mode

The write command specifies whether the data is numeric or string data. In the case of numeric data, the command
also implies the radix (ie. word size) of the data. The available write commands are:

Data is written as bytes (8-bi).
ww

Data is written as words (16-bif).

Data is written as doublewords (32-bi).

wq
Data is written as quadwords (64-bit).

Example applications Page 27
AD-UG-0004 Alpha Data Parallel Systems Ltd

ADM-XRC Gen 3 SDK User Guide
’ALF“‘ DATA (v1.1- 26th July 2010)

©ws
Data is supplied as one or more ASCII trings (8-bit characters),

After the write command, an address must be supplied, which specifies where in VPD memory to begin writing data. An

optional length parameter, in bytes, can also be supplied. If omitted, the length is equal to the radix implied by the write

command. If present, the length parameter specifies how many bytes to write. The length should be an integer multiple

of the width; if not, the length is rounded down.

The program obtains the values to be written in two ways: from any additional parameters on the command fine after

the length parameter, and then from the standard input stream (stdin). This works as follows:

1. Anyremaining command line arguments, if present after the length parameter, are interpreted as data values
to be written. Numeric values are assumed to be of the radix implied by the command parameter. As each
value it written to VPD memory, the address is incremented. If there are enough values passed on the
command line to satisfy the byte count, the program terminates.

2. Ifthere are insufficient data values passed on the command line, the program waits for values to be entered
on the standard input stream. Numeric values entered this way are also assumed to be of the radix implied
by the command. As each value it written to VPD memory, the address is incremented. When the entire byte
count that was specified in the length parameter has been satisfied or end-of-file is encountered, the program
terminates.

Example session
The following session was captured under Linux using an ADM-XRC-6TL. The base address 0x100000 is used
because that is the VPD-space address of the user-definable area of VPD memory in the ADM-XRC-6TL.

$./vpd rb 0x100000 0x60 OXFf
Dump of VPD at 0x100000 + 96(0x60) bytes:

00 01 02 03 04 05 06 07 08 09 0a Ob Oc 0d Oe
0x00100000: Ff Ff Ff Ff Ff £f f f ff ff ff ff ff f
0x00100010: Ff Ff Ff Ff f £f £f £f £f £f ff ff Ff ff
0x00100020: Ff Ff ff ff f f £f ff ff ff ff ff ff f
0x00100030: Ff Ff Ff Ff Ff ff Ff f f Ff f ff Ff f
0x00100040: Ff Ff Ff Ff Ff Ff f f f ff f ff ff f
0x00100050: Ff Ff Ff Ff f f £f £f ff £f ff ff £f ff
$./vpd fs 0x100008 20 “hello world!®
$./vpd wd 0x100020 12
"
ace
78

$./vpd fw 0x100031 10 OxaS5a
$ _/vpd rb 0x100000 0x60
Dump of VPD at 0x100000 + 96(0x60) bytes:

01 02 03 04 05 06 07 08 09 0a Ob Oc
0x00100000: Ff Ff Ff Ff Ff ff Ff TF 68 65 6¢ 6c 6T
000100010 C 64 21 68 65 6C 6C 6T 20 77 6T Tf
0x00100020: ef be ad de ce fa fe ca 78 56 34 12 FF
0x00100030: ff 5a a5 5a a5 5a a5 5a a5 5a a5 ff ff
000100040 Ff Ff £f Ff Ff ff ff If f Ff f f Ff
0x00100050: FF Ff Tf FF Tf Tf TF £f Tf TF £ I1 1F

3233388
2223339

Remarks

When entering data for fil or write commands, values are expressed in decimal by default. To express data as
hexadecimal, prefix it with ‘0 or use the +hex option.

In the current version of the VPD utily, data is always read from and written to VPD memory in litle-endian byte order

Page 28 Example applications
Alpha Data Parallel Systems Ltd AD-

ADM-XRC Gen 3 SDK User Guide

(v1.1- 261 July 2010) @ALPHA DATA

4 Example HDL FPGA Designs

4.1 Introduction
A number of example FPGA designs are included with the SDK. The purpose of these is to demonstrate functionality
available on the Virtex 6 based ADM-XRC series of cards and also to serve as customisable starting points for
user-developed designs. A testbench and simulation/build scripts are also included with each example design.
The example applications use these example designs to demonstrate how software running on the host CPU can
interact with an FPGA design.
The table below lists the example FPGA designs and their related applications:

FPGA Design Host Application Purpose

simple: simple Demonstrates implementation of host-accessible registers. Uses a signal naming
convention consistent with the Local Bus in earler generations of the ADM-XRC.

uber simple Demonstrates implementation of host-accessible registers.

uber itest Demonstrates implementation of FPGA interrupts

Table 1: FPGA Designs/Host applications

Example designs are located in the %ADMXRC3_SDK%\hdl\vhdl\examples directory.

4.2 Design Simulation Using Modelsim

Atestbench design and macro files compatible with Modelsim are provided for simulation of each example FPGA
design. For details specific to each example design, refer to its Design Simulation section.

4.3 Bitstream Build Using ISE

Bitstreams for all supported combinations of example FPGA design, board, and device are supplied pre-built in the
9%ADMXRC3_SDKU\bit directory of the SDK. This directory is the equivalent of the %ADMXRC3_SDK%\bin directory
for the example applications. The sources files required to re-build all bitstreams are supplied in the
9%ADMXRC3_SDK96\hdl directory. Bitstream build using the Windows environment requires the use of the Visual
Studio nmake command. Bitstream build using the Linux environment requires the use of the GNU Make command.

4.3.1 Building All Example Bitstreams

Amakeile is provided for building all bitstreams for all example FPGA designs. It is located in the
9%ADMXRC3_SDK%\hdl\vhdilexamples directory. As many bitstream files will be generated, it may take from minutes
o hours to run to completion. To perform the build using Windows, start a shell and issue the following commands:

cd /d %ADMXRC3_SDKW\hdI\vhdI\examples

nmake clean al

Similarly using Linux, start a shell and issue the following commands:
cd SADNXRC3_SDK/hd1/vhdl/examples
make clean all
o perform a build and install the resulting bitstrea files in the %ADMXRC3_SDK9\bit directory using Windows, start
a shell and issue the following commands:
cd /d HADMXRC3_SDK#\hdI\vhdI\examples

nmake clean instal

Similarly using Linux, start a shell and issue the following commands:

cd $ADMXRC3_SDK/hd1/vhdl/examples
make clean instal

Example HDL FPGA Designs Page 29
AD-UG-0004 Alpha Data Parallel Systems Ltd

/ADM-XRC Gen 3 SDK User Guide

@ALPHA DATA (v1.1-26th July 2010)

4.3.2 Building Specific Example/Board/Device Bitstreams

For each example FPGA design, a makefile s provided for building all ts bitstreams, or a specific board/device
bitstream. For details specific to each example design, refer to its Bitstream Build section.

Page 30 Example HDL FPGA Designs
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK User Guide
(V1.1 -26th July 2010) CT

DATA

4.4 Simple Example FPGA Design

4.4.1 Design Description

The Simple example FPGA design demonstrates direct slave register access on the Virtex 6 series of ADM-XRC
boards. The design includes the following functional areas:

- Clock Generation

+ Internal clock generation
+ External clock buffering (non-MGT sourced) and extraction (MGT sourced)

- MPTL Interface (mptl_if_target_wrap)

- OCP Direct Slave Channel

« Simple test using host-accessible registers
The Simple example FPGA design top level simple_Lvhd is located in
9%ADMXRC3_SDK6\hdlvhdl\examples\simple\common. It consists of the following blocks:

+ MPTLinterface block (mpt_if_target_wrap)
+ OCP Direct Slave interface block (adb3_ocp_simple_bus_if)

Atop level block diagram of the Simple example design is shown in Figure 5, "Simple Design Testbench And Top

Level Block Diagram’”.

Example HDL FPGA Designs
AD-UG-0004 Alpha Data Parallel Systems Ltd

Page 31

@ALPHA DATA

ADM-XRC Gen 3 SDK User Guide
(VL1 - 26th July 2010)

st simple
)
. brisge ot it trge
werLgar ezr
e Sdenans
G Ce oAl
oceom
oce sumutus ocros, [ocros,
aab3.ocp_simple_bus i
WPTL clock Simole
negstr
MGT elocks b byt clock [
Non MGT clocks b+ usr ek
f3_0co_ansacton probe

10 wilh VHDL record type defined in adb3_target_inc_pkg. ——— OCP DMA interface
—— Record defiiionis dependent on board i simulation ——— OCP DM intertace
For example ADM-XRC-6TL uses adb3_targetinc_sim_ocp_61. —— ocP DS inerface

Figure 5: Simple Design Testbench And Top Level Block Diagram

Page 32

Alpha Data Parallel Systems Ltd.

Example HDL FPGA Designs
AD-UG-0004

ADM-XRC Gen 3 SDK User Guide

(v1.1- 261 July 2010) @ALPHA DATA

4.4.1.1 Clock Generation

This function includes the following functional areas:

+ Internal clock generation

+ Extemal clock buffering (non-MGT sourced)
+ External clock extraction (MGT sourced)

+ MPTLinterface clock generation

4.4.1.1.1 Internal Clock Generation

Auser clock usr_clk is generated from a buffered version of the ref_clk input.

4.4.1.1.2 External Clock Buffering (Non-MGT Sourced)

Non-MGT clock inputs are buffered. Clock support is dependent on board selected. Refer to Figure 10, "Uber Design
Clock Buffering/Extraction”.

4.4.1.1.3 External Clock Extraction (MGT Sourced)
MGT clock inputs are converted from double-ended to single-ended and then buffered. The buffered clocks are

connected to the clk_vec signal. The connection order is defined in the uber_pkg.vhd file. Clock support is dependent
on board selected.

4.4.1.1.4 MPTL interface clock generation
The MPTL interface block requires an mptl_clk clock input. This is generated from an FPGA MGT clock input. The
mptl_clk signal may be single or double ended depending on the board in use. Its type mptl_clk_tis defined in the
board specific package adb3_target_inc_pkg which is located in the board directory in
%ADMXRC3_SDK%\fpga\commoniadb3_target.
During simulation, the mptl_clk_t record needs to contain both single and double ended clock record elements. Only
the record elements appropriate to the board being simulated are driven
During synthesis, the mptl_clk_t record need only contain the clock record elements specific to the board being built.
Two functions: sgl_to_mptl_clk_t and dbl_to_mpti_clk_t are provided in the board specific package
adb3_target_inc_pkg to convert from the MGT clock input type to the mptl_clk_t type.

4.4.1.2 MPTL Interface
“This function is implemented using the MPTL library component mptl_if_target_wrap. Refer to Section 5 for a
functional description.

4.4.1.3 OCP Direct Slave Channel

The OCP Direct Slave Channel function consists of an OCP to parallel interface block, and a register section. The
MPTL interface OCP Direct Slave channel connects to the OCP to parallel interface block. This block is implemented
using the ADB3 OCP library component adb3_ocp_simple_bus_if. Refer to Section 5 for a functional description.

4.4.1.3.1 Simple Test Registers

4.4.1.3.1.1 Description

The OCP to parallel interface block connects to the Simple test registers. Write accesses are controlled by the write
enable bus and/or the write signal. Read accesses are controlled by the read signal. The address bus is used to select
the register to be accessed and data is transferred on the data busses.

Example HDL FPGA Designs Page 33
AD-UG-0004 Alpha Data Parallel Systems Ltd

/ADM-XRC Gen 3 SDK User Guide

@ALPHA DATA (v1.1-26th July 2010)

4.4.1.3.1.2 Register Interface

The Simple FPGA design implements registers in the Direct Slave OCP address space as follows:

\ Rame [| pawess |
[owa [rw | oocomon0 |

Table 2: Simple Design Simple Test Block Address Map

(o [womonc [ope | Fancion \
\

[at0 Jomm W[Indcates th bl reversed version of e ot cta wien |

Table 3: Simple Design Simple Test Block DATA Register

4.4.2 Board Support
The Simple FPGA design is compatible with all Virtex 6 based boards

4.4.3 Source Location
The Simple FPGA design is located in %ADMXRC3_SDK%\fpgalexamples\simple. Source files common to all boards
and are located in the \common directory. These include the design and testbench top levels.
For a complete st of the source files used during simulation, refer to the appropriate Modelsim macro file located in the
board design directory, for example: \admxrcétisimple-admxrcétl.do for the ADM-XRC-6TL.
For a complete st of the source files used during synthesis, refer to the appropriate XST project file located in the
board design directory, for example: \admxrcét1\simple-admxrc6t1.prj for the ADM-XRC-6T1.

Page 34 Example HDL FPGA Designs
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK User Guide
(v1.1- 261 July 2010) @ALPHA DATA

4.4.4 Testbench Decription
The Simple example FPGA design testbench test_simple.vh is located in
%ADMXRC3_SDK%\hdl\vhdl\examples\simple\common. Refer to Figure 5, “Simple Design Testbench And Top
Level Block Diagram"”.
The design testbench consists of the following functional areas:

+ Clock generation
. Test Direct Slave Interface

+ Bridge MPTL interface (mptl_if_bridge_wrap)

+ OCP test probe (adb3_ocp_transaction_probe)

4.4.4.1 Clock Generation
4.4.4.1.1 Simple Example Design Clocks

+ The Simple example design clks_non_mat input is dependent on the board selected. Itis connected to
appropriate clocks generated in the testbench. Refer to the testbench file for connection information for each
board,

+ The Simple example design clks_mgt input is dependent on the board selected. It is connected to
appropriate clocks generated in the testhench. Refer to the testbench file for connection information for each
board,

4.4.4.1.2 Testbench Clocks
The Bridge MPTL Interface mptl_if_bridge_wrap input ocp_clk connection is dependent on the type of simulation
selected.

+ During OCP-OCP simulation, it must be driven by the same clock as the Simple example design MPTL
Interface mptl_if_target_wrap input ocp_clk. This signal is transferred to the testbench using the
mptl_t2b.target_ocp_clk record element.

The Bridge MPTL Interface mptl_if_bridge_wrap input mptl_clk connection is dependent on the type of board
selected. Refer to the testbench file for connection information for each board.

4.4.4.2 Test Direct Slave Interface
This function connects to the mptl_if_bridge_wrap OCP direct slave interface and contains the following sections:
4.4.4.2.1 Simple Test

This section communicates with the Simple Test block registers as follows:

Write (32-bit), set DATA = Ox"cafeface"
Read (32-bit), exp DATA = Ox“cafeface"

Section complete and passfail indications are returned using the simple_complete and simple_passed signals
respectively.
4.4.4.2.2 Bridge MPTL interface

This function is implemented using the MPTL library component mpt_if_bridge_wrap. Refer to Section 5 for a
functional description.

Example HDL FPGA Designs Page 35
AD-UG-0004 Alpha Data Parallel Systems Ltd

ADM-XRC Gen 3 SDK User Guide
@ ALPHA DATA (v1.1- 26th July 2010)

The mptl_if_bridge_wrap component output bridge_gtp_online_n is combined with the Simple example design
output target_gtp_online_n to produce the mptl_online_long signal. This indicates that the MPTL interface is active
and stable. This signal is monitored and will terminate the simulation if it goes inactive.

4.4.4.2.3 OCP test probes

This function monitors the direct slave OCP interface for transaction errors using the ADB3 Probe library component
adb3_ocp_transaction_probe_sim. Refer to Section 5 for a functional description.

4.4.5 Design Simulation
Modelsim macro files are located in %ADMXRC3. SDK%\fpga\examples\s\mp\e in each of the board design
directories. For example \admxrcétl\simple-admxrcétl.do for the ADM-XRC-6"
Modelsim simulation is initiated using the vsim command with the appropriate macro file. For example, to perform a
modelsim simulation using windows and the ADM-XRC-6TL, start a shell and issue the following commands:
cd /d %ADMXRC3_SDK¥\hdI\vhdI\examples\simple
vsim -do "simple-admxrc6tl.do"

Expected simulation results are shown below.

4.4.5.1 Initialisation Results

Modelsim output during initialisation of simulation wil be similar to the following example:
* Note: Board Type : adn xrc_6tl

0 Heration: 0_instane: /tesk simle
Target Use : sin_ocp

0bs. Iteration: o Instance: /test_sirple

Vaiting for ATL ontine.

¥ Tine: 0ps teration: 0 Instance: /test sirple

4.4.5.2 Direct Slave Test Results
Modelsim output during simulation will be similar to the following example:
£ ot ot Sinple UDTA & bytes ORSEPACE WU eable OV 10 e sress O

Tine: 1687500 ps

4.4.5.3 Completion Results

Modelsim output on successful completion of simulation will be similar to the following example:

_/comon/test_sinple.vhd

ple.vhd Tine 244

" WAGRO./atople-admercoti o PAVSED se Hine 34

4.4.6 Bitstream Build
A makefile is provided for building all bitstreams, or a specific board/device bitstream, for the Simple FPGA example
design. Itis located in the %ADMXRC3_SDK%\hdl\vhdl\examples\simple directory. In order to use these re-built
bitstream with the example applications, they must be copied to the %ADMXRC3_SDK%\bit\simple directory. This can
be performed automatically using the install makefile option. A "clean up" of the files produced by the build process can
be performed using the clean makefile option. Examples are as follows:
o perform a build of all Simple design bitstreams using Windows, start a shell and issue the following commands:

cd /d %ADMXRC3_SDKW\hdI\vhdI\examples\sinple

Page 36 Example HDL FPGA Designs
Alpha Data Parallel Systems Ltd. AD-UG-0004

ADM-XRC Gen 3 SDK User Guide

(v1.1- 261 July 2010) @ALPHA DATA

nmake clean all
Similarly using Linux, start a shell and issue the following commands:

cd $ADMXRC3_SDK/hd1/vhdl/examples/simple
make clean all

To perform a build and install the resulting bitstreams using Windows, start a shell and issue the following commands:
cd /d %ADMXRC3_SDK¥\hdI\vhdI\examples\sinple
nmake clean install
Similarly using Linux, start a shell and issue the following commands:
o SADUXRC3, SDK/hd/vhll/examples/sinple
make clean St
o perform a build for an ADM-XRC-6TL board fitted with an 6VLX240T device using Windows, start a shell and issue
the following commands:

cd /d %ADMXRC3_SDK¥\hdI\vhdI\examples\simpl
nmake bit_admxrcétl_6vIx240t

Similarly using Linux, start a shell and issue the following commands:

cd SADMXRC3_SDK/hd1/vhdl/examples/simple
make bit_admxrcétl_t

To perform a build and install for an ADM-XRC-6TL board fitted with an 6VLX240T device using Windows, start a shell
and issue the following commands:
cd /d %ADMXRC3_SDK¥\hdI\vhdI\examples\simpl
nnake inst_admxrc6tl_6vIx240t
Similarly using Linux, start a shell and issue the following command

cd SADNXRC3_SDK/hd1/vhdl/examples/simple
make inst_admxrc6tl_6vIx240t

o perform a clean for an ADM-XRC-6TL board fitted with an 6VLX240T device using Windows, start a shell and issue
the following commands:

cd /d HADMXRC3_SDK¥\hdI\vhdI\examples\simple

nmake clean_admxrc6tl_6vIx240t

Similarly using Linux, start a shell and issue the following commands:

cd SADMXRC3_SDK/hd1/vhdl/examples/simple
nmake clean_admxrc6tl_6vIx240t

The full path and filename of bitstreams built using Windows will be:

$%ADMXRC3_SDK%\hd I\vhd I Pl Pl put’ i board>-<device>.bit

The fullpath and flename of bitsireams buitusing Linux will be:
$ADMXRC3_SDK/hd1/vhd1 P P P i board>-<devi

4.4.7 ISE Constraint Files

Constraint files for building Simple design bitstrea files using ISE are provided. These files are located in
9%ADMXRC3_SDK%\fpgalexamples\simple in each of the board design directories, for example
\admxrc6ti\simple-admxrcétl.ucf for the ADM-XRC-6TL.

Example HDL FPGA Designs Page 37
AD-UG-0004 Alpha Data Parallel Systems Ltd

/ADM-XRC Gen 3 SDK User Guide

@ALPHA DATA (v1.1-26th July 2010)

4.5 Uber Example FPGA Design

4.5.1 Design Description
The Uber example FPGA design demonstrates functionality available on the Virtex 6 series of ADM-XRC boards. The
design includes the following functional areas:
- Clock Generation (blk_clocks)

+ Internal clock generation
. Internal reset generation
+ External clock buffering (non-MGT sourced) and extraction (MGT sourced)

- MPTL Interface (mptl_if_target_wrap)

- OCP Direct Slave Channel (blk_direct_slave)

+ Direct Slave address space splitter (adb3_ocp_reg_spit)
+ Simple test using host-accessible registers (blk_ds_simple_test)

+ Clock frequency measurement using host-accessible registers (blk_ds_clk_read)

. GPIO test using h ible registers (blk_ds_io_test)

* Interrupt test using host-accessible registers (blk_ds_int_test)

+ General purpose host-acessible registers including date and time stamps (blk_ds_info)
+ Interface to BRAM in OCP DMA Block (adb3_ocp_cross_clk_dom)

- OCP DMA Channels (blk_dma)
+ OCP DMA channel multiplex (adb3_ocp_mux)
+ Interface to Block RAM (adb3_ocp_simple_bus_if)
- ChipScope Connection (optional)(blk_chipscope)
+ ChipScope connection to OCP channels

A hierarchical diagram of the top level of the Uber example design is shown in Figure 6, “Uber Design Top Level
Hierarchy". A diagram of the package dependencies in then Uber example design is shown in Figure 7, “Uber Design
Package Dependencies"

Page 38 Example HDL FPGA Designs
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK User Guide.
(VL1 - 26th July 2010)

@ALPHA DATA

Bk cocks |
B docs

Direct Slave OCP Interace
DMA OCP Intertace
Alpha Data MPTL nterface

‘Alpha Data MPTL Inertace Core

gt

B oma) gt wap
bicama o

a0h3_ocp.mox et sm o et s

[y ‘ ‘ [T ‘ ‘ [T ‘

Simulation (All Boards) Build (A1 Boards)

mpi128 etce trge 61|
o128 ertoce e 61

g netace_ge o1

[EET— ‘

Build (ADMXRC-6TL core) Build (ADM-XRC6TL Core)

S

Example HDL FPGA Designs

Figure 6: Uber Design Top Level Hierarchy

AD-UG-0004

Alpha Data Parallel Systems Ltd.

Page 39

@ALPHA DATA

/ADM-XRC Gen 3 SDK User Gui

ide

(v1.1-26th July 2010)

Board-Specific Packages (ADM-XRC-6TL)

adb3_target_types pkg

[e]

adb3 targel_inc_pkg

adb3

rgetto_pkg adb3 target_pkg

e o -

Example Design-Specific Packages (Uber)

L

Example Design Top Level (Uber)

uber_tb_pkg uber_pkg.
L uber_th_pkg.vhd uber_pkg.vhd ,:_g
1 I,

test_uber uber

[T
[

Figure 7: Uber Design Package Dependencies

Page 40

Alpha Data Parallel Systems Ltd.

Example HDL FPGA Desig
Al

ns

0004

ADM-XRC Gen 3 SDK User Guide
(VL1 - 26th July 2010)

@ ALPHA DATA

The Uber example FPGA design top level uber.vhd is located in

%ADMXRC3_SDK%\hdl\vhdllexamples\uber\common. It consists of the following blocks:

Clock generation block (blk_clocks)

MPTL interface block (mptl_if_target_wrap)

OCP Direct Slave interface block (blk_direct_slave)
OCP DMA interface block (blk_dma)

ChipScope connection block (optional)(blk_chipscope)

Atop level block diagram of the Uber example design is shown in Figure 8, “Uber Design Testbench And Top Level
Block Diagram".

Example HDL FPGA Designs

AD-UG-0004

Alpha Data Parallel Systems Ltd

Page 41

@ALPHA DATA

ADM-XRC Gen 3 SDK User Guide
(VL1 - 26th July 2010)

st uber
iber)
st uber_ama oL B
aar oc e
28
=y
bl clocks
Lot ron ot
st
Pt
e
o= bk siect save
{ast_uber probes
oce o
5 oceos

10 wilh VHDL record ype defined in adb3_targe._inc_pkg. ——— OCP DMAnterface.
Record definiion s dependent on board in simulation. ——— oCP DM iterface.
For example ADM-XRC-6TL uses adb3_target inc_sim_ocp_6il_pko.vhd OCP DS inerface.

Page 42

Figure 8: Uber Design Testbench And Top Level Block Diagram

Alpha Data Parallel Systems Ltd.

Example HDL FPGA Designs
AD-UG-0004

ADM-XRC Gen 3 SDK User Guide

(v1.1- 261 July 2010) @ALPHA DATA

4.5.1.1 Clock Generation Block

The clock and reset generation block is located in %ADMXRC3_SDK9%\fpgalexamples\ubericommon in the file
blk_clocks.vhd. It includes the following functional areas:

+ Internal clock generation (MMCM)

+ Intemal reset generation

+ External clock buffering (non-MGT sourced)
+ External clock extraction (MGT sourced)

+ MPTLinterface clock generation

4.5.1.1.1 Internal Clock Generation (MMCM)
Two user clocks are generated from the MMCM: pil_ref_clk; and pil_ust_clk. These are used to drive the high speed
(OCP DMA) and low speed (OCP Direct Slave) areas of the design. Refer to Figure 9, “Uber Design Internal Clock
Generation (MMCM)".

4.5.1.1.2 Internal reset generation
Two user resets are generated: pl_ref_rst; amd pll_usr_rst. These are used to drive the high speed (OCP DMA) and
low speed (OCP Direct Slave) areas of the design. Refer to Figure 9, "Uber Design Internal Clock Generation
(MMCM)".
The resets are generated from their respective clocks: pll_ref_clk; and pll_usr_clk using the ADCOMMON library
ccomponent rst_sync. Refer to Section 5 for a functional description.

4.5.1.1.3 External Clock Buffering (Non-MGT Sourced)

Non-MGT clock inputs are buffered. Clock support is dependent on board selected. Refer to Figure 10, “Uber Design
Clock Buffering/Extraction”.

4.5.1.1.4 External Clock Extraction (MGT Sourced)

MGT clock inputs are converted from double-ended to single-ended and then buffered. The buffered clocks are
connected to the clk_vec signal. The connection order is defined in the uber_pkg.vhd file. Clock support is dependent
on board selected. Refer to Figure 10, “Uber Design Clock Buffering/Extraction".

4.5.1.1.5 MPTL interface clock generation
Refer to Figure 10, "Uber Design Clock Buffering/Extraction”.
The MPTL interface block requires an mptl_clk clock input. This is generated from an FPGA MGT clock input. The
mpti_clk signal may be single or double ended depending on the board in use. Its type mptl_clk_tis defined in the
board specific package adb3_target_inc_pkg which is located in the board directory in
%ADMXRC3_SDK%\fpga\common\adb3_target.
During simulation, the mptl_clk_t record needs to contain both single and double ended clock record elements. Only
the record elements appropriate to the board being simulated are driven.
During synthesis, the mptl_clk_t record need only contain the clock record elements specific to the board being built.
Two functions: sgl_to_mpt_clk_t and dbl_to_mpti_clk_t are provided in the board specific package
adb3_target_inc_pkg to convert from the MGT clock input type to the mptl_clk_t type.

Example HDL FPGA Designs Page 43
AD-UG-0004 Alpha Data Parallel Systems Ltd

@ALPHA DATA

ADM-XRC Gen 3 SDK User Guide

(VL1 - 26th July 2010)

VACH_BASE

m ,.,,:KI Puron
V

Bet st

cussour
© cuma

chs_non_moure_ckp - ovre
e on_mtre_cn ——] cuouns
cuours
cuxourse
100 Goneric Toput vaiue i
cuouts

= = (cuxmwsecuxssoon Mo 5)/ Grvcrs_DrvIoe) p— .

CLKGOTO = (CLKINI CLAFDOUT_ NULT_P) / (DIVELX_DIVIDRSCLAOUT0_DIVEDR_F) = (20005.000)/(175.000) = 200 ks

CLEOUTL = (CLKINIYCLEFDOUT MOLT)/ (DIVELK DIVIDECLIOUEL DIVIDE = (200%5.000)/(1712) =

otk

Lok

Figure 9: Uber Design Internal Clock Generation (MMCM)

Page 44

Alpha Data Parallel Systems Ltd.

Example HDL FPGA Designs
AD-UG-0004

ADM-XRC Gen 3 SDK User Guide
(VL1 - 26th July 2010)

@ ALPHA DATA

18UFDS

s mgtmgu12_ca0p.

mgL_ck bUOIGTZ_CLKO_NUM) e vec
ets_ matgu2_cxon —Q 18
oovz

| BUFDS

s mgtmgi13_ca0p. o=
o

mat_cl_ BUGTLLS_ CLKO_NUM) e b

e maungu1s_cxon —Q

ooz

1BUFDS.

s mgtngua7_cop. i mgt_el BMGTILT_CLKO_NUM)

GTXEL

s mgtmgu7_cxon —qj 18
ooz

GMGTLLZ_CLKD_ NUM)

roMGT113_CLK0_ NUM)

JoMGTLL7_CLKo_ NUM)

ADM-XRC-6TL

JorLou_un

ks on_ mguam._ckp.
ek vee

eiks_non_mgtam_ckn

I
>

g0 _CLIIN UM

cicvee

ADM-XRC-6TL mpti_clk generation i vec_bulgMGT114_CLKD_NUM) otk
s mgtngus_ cko otk

ADM-XRC-6T1 mpt_clk generation - m“" ":ms mj m:” m:

Figure 10: Uber Design Clock Buffering/Extraction

Example HDL FPGA Designs
0004

AD-UG Alpha Data Parallel Systems Ltd

Page 45

/ADM-XRC Gen 3 SDK User Guide

@ALPHA DATA (v1.1-26th July 2010)

4.5.1.2 MPTL Interface Block
This block is implemented using the MPTL library component mptl_if_target_wrap. Refer to Section 5 for a functional
description.
The Uber design output signal mptl_target_configured_n indicates that the FPGA s ready to communicate with the
bridge via the MPTL interface. This output should be generated by combining the mpti_if_target_wrap output
mpti_target_configured_n with any other FPGA signals indicating readiness. In the case of the Uber design, this
output is ORed with each of the MMCM clock domain reset signals (active high). This ensures that communication is
not initiated until the MMCM is locked and the resets are inactive.

4.5.1.3 OCP Direct Slave Interface Block

The OCP Direct Slave interface block is located in %ADMXRC3_SDK9%\fpgalexamplesiubericommon in the file
bik_direct_slave.vhd. It includes the following blocks:

+ OCP address space splitter block (adb3_ocp_reg_split)
+ Simple test block (blk_ds_simple_test)
+ Clock read block (blk_ds_clk_read)
« GPIO test block (blk_ds_io_test)
+ Interrupt test block (blk_ds_int_test)
+ Info block (blk_ds_info)
+ BRAM interface block (adb3_ocp_cross_clk_dom)
A block diagram of the OCP direct slave interface block is shown in Figure 11, “Uber Direct Slave Block Diagram’”

Page 46 Example HDL FPGA Designs
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK User Guide.

(VL1 - 26th July 2010)

@ALPHA DATA

.t e m:,m,w,sm—,_:-
e — gy
o e | LS p— e
T] ’_l:-
-]
plusr-ak blk_ds _io_test
e .
e paba _de
Figure 11: Uber Direct Slave Block Diagram
Example HDL FPGA Designs Page 47
AD-UG-0004 Alpha Data Parallel Systems Ltd.

/ADM-XRC Gen 3 SDK User Guide

@ALPHA DATA (v1.1-26th July 2010)

4.5.1.3.1 OCP Address Space Splitter Block
This block is implemented using the ADB3 OCP library component adb3_ocp_reg_split. Refer to Section 5 for a
functional description. It splits the upstream OCP interface into multiple downstream OCP interfaces. The split is
controlled by an address space range table which is defined using the ADDR_RANGE_TABLE constant in package
uber_pkg
The Uber example design OCP direct slave address space is split as follows:

Block Type ‘Addr Range Data Widih
Simple Registers 0<00000000-0x0000003F 3201

Clock Read Registers 0x00000040-0x0000007F 3201

ntermupt Registers 0x000000C0-0x000000FF___|32:0it

nfo Registers 0x00000140-0x0000017F 3201

) Registers 0x00000200-0x0000027F 3201

BRAM Interface | BRAM 0x00080000-0x000FFFFF 12801t

Table 4: Uber design Direct Slave Address Map
Note: Read transactions to undefined areas of the address space will return data containing Ox'DEADCODE"

4.5.1.3.2 Simple Test Block

4.5.1.3.2.1 Description
The simple test block is located in %ADMXRC3_SDK%\fpga\examples\uber\common in the file
blk_ds_simple_test.vhd. It consists of an OCP to parallel interface block, and a register section. The split OCP Direct
Slave channel connects to the OCP to parallel interface block. This block is implemented using the ADB3 OCP library
component adb3_ocp_simple_bus_if. Refer to Section 5 for a functional description.
The simple test block performs a nibble reverse function using ts register interface.

4.5.1.3.2.2 Register Interface
The OCP to parallel interface block connects to the Simple registers. Write accesses are controlled by the write enable
bus and/or the write signal. Read accesses are controlled by the read signal. The address bus is used to select the
register to be accessed and data is transferred on the data busses.
The Simple test block implements registers in the Direct Slave OCP address space as follows:

I T [owe [pasess
[oam T

Table 5: Uber Design Simple Test Block Address Map

T Farcion |
a0 [oam [[idcates the mbble-eversed version of h st cea witn |

Table 6: Uber Design Simple Test Block DATA Register

4.5.1.3.3 Clock Read Block

Page 48 Example HDL FPGA Designs
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK User Guide
(v1.1- 261 July 2010) @ALPHA DATA

4.5.1.3.3.1 Description

The Clock Read Block is located in %ADMXRC3_SDK9%\fpgalexamples\ubericommon in the file
blk_ds_clk_read.vhd. It consists of clock frequency measurement blocks, an OCP to parallel interface block, and a
register section. The clock frequency measurement blocks are implemented using the ADCOMMON library component
clock_speed. Refer to Section 5 for a functional description. The split OCP Direct Slave channel connects to the OCP
to parallel interface block. This block is implemented using the ADB3 OCP library component
adb3_ocp_simple_bus_if. Refer to Section 5 for a functional description.

The clock read block allows the frequencies of all FPGA clocks to be read using its register interface.

4.5.1.3.3.2 Register Interface

The OCP to parallel interface block connects to the Clock Read registers. Write accesses are controlled by the write
enable bus and/or the write signal. Read accesses are controlled by the read signal. The address bus is used to select
the register to be accessed and data is transferred on the data busses.

The Clock Read block implements registers in the Direct Slave OCP address space as follows:

Name Type ‘Address

SEC RW 0100000040
CTRUSTAT RW 0100000044
FREQ RO 0400000048

Table 7: Uber Design Clock Read Block Address Map

Bis Mnemonic Type Function
315 Unused
40 |SEL_CLK RW | Controls selection of the FPGA clock data to be accessed using the STAT and FREQ

registers. Selection s as follows
00 s1_clk (Intemal user clock derived from ref_clk)
00001 => pil_ref_cik Internal 200 MH reference ciock)
Ick (External)

11010 => mgt116_clkO (Extemal MGT clock)
11100 => mgt117_clk0 (Extemal MGT clock)

Table 8: Uber Design Clock Read Block SEL Register

Example HDL FPGA Designs

Page 49
AD-UG-0004 Alpha Data Parallel Systems Ltd

/ADM-XRC Gen 3 SDK User Guide

@ALPHA DATA (v1.1-26th July 2010)

Bits Mnemonic Type Function
31 [CLR_UPDATE R e conlm\slrewencymeasuvememupﬂa‘eﬂﬂags
1= measurement updated flag
32N,

ction.
Readt ndicaes selecte requency measurement update siatus
1= Measurement updated

0 = Measurement not updated.

30 |CLKvALD RO |Indicates selected board clock valid status:

1= Clock valid on this board.

0= Clock not valid on this board,

29 |CLK.RUNNING | RO |indicates selected clock running status:
1= Clock running

0= Clock not running.

280 Unused

Table 9: Uber Design Clock Read Block CTRL/STAT Register

[[vneronc [e | Funcion \

oo [rree [R0 [indcate seloid clock equency measurementn iz |

Table 10: Uber Design Clock Read Block FREQ Register

4.5.1.3.4 GPIO Test Block

4.5.1.3.4.1 Description

The GPIO test block is located in %ADMXRC3_SDK%\fpgalexamplesiuber\common in the fle bik_ds_io_test.vhd
it consists of an OCP to parallel interface block, and a register section. The split OCP Direct Slave channel connects to
the OCP to parallel interface block. This block is implemented sing the ADB3 OCP library component
adb3_ocp_simple_bus_if. Refer to Section 5 for a functional description.

The GPIO test block controls the XRM, PN4, and PN6 GPIO bi-directional interfaces. Each bit of each interface may be
controlled individually using its register interface.

4.5.1.3.4.2 Register Interface
The OCP to parallel interface block connects to the GPIO test block registers. Write accesses are controlled by the
write enable bus and/or the write signal. Read accesses are controlled by the read signal. The address bus is used to
select the register to be accessed and data is transferred on the data busses.
The GPIO test block implements registers in the Direct Slave OCP address space as follows:

Name. Type Address
XRM_GPIO_DA_TRI RW 0x00000200
XRM_GPIO_DA_DATA RW 0x00000204
XRM_GPIO_DB_TRI RW 0x00000208
XRM_GPIO_DB_DATA RW 0x0000020C
XRM_GPIO_DC_TRI RW 0x00000210
XRM_GPIO_DC_DATA RW 0x00000214
XRM_GPIO_DD_TRI RW 0x00000218
XRM_GPIO_DD_DATA RW 0x0000021C
XRM_GPIO_CS_TRI RW 0x00000220
XRM_GPIO_CS_DATA RW 0x00000224

Table 11: Uber Design GPIO Test Block Address Map (continued on next page)

Page 50 Example HDL FPGA Designs
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK User Guide
(VL1 - 26th July 2010)

@ ALPHA DATA

Name Type ‘Address
PN4_GPIO_P_TRI RW 000000228
PN4_GPIO_P_DATA RW 0:0000022C
PNa_GPIO_N_TRI RW 0100000230
PN4_GPIO_N_DATA RW 0400000234
PN6_GPIO_MS_TRI RW 0100000238
PN6_GPIO_MS_DATA RW 0:0000023C
PN6_GPIO_LS_TRI RW 0100000240
PN6_GPIO_LS_DATA RW 0400000244

Table 11: Uber Design GPIO Test Block Address Map

[om [wnemone [e |

Function

‘ 310 |DATRI RW

Wiite: controls trstate enables of da_p(15:0), da_n(15:0) 10 ports.
Read: indicates trstate enables of da_p(15:0), da_n(15:0) IO ports.

Table 12: Uber Design GPIO Test Block XRM_GPIO_DA_TRI Register

[[vnemonc [e |

Function

‘ 310 ‘DA DATA ‘ RW

Wiite: controls data writien to da_p(15:0), da_n(15:0) IO ports,
Read: indicates data read from da_p(15:0), da_n(15:0) IO ports

Table 13: Uber Design GPIO Test Block XRM_GPIO_DA_DATA Register

s [nenone [e |

Function

‘ 310 ‘najm ‘ RW

Wite: controls tristate enables of db_p(15:0), db_n(15:0) 10 pors.
Read: indicates tristate enables of db_p(15:0), db_n(15:0) IO ports.

Table 14: Uber Design GPIO Test Block XRM_GPIO_DB_TRI Register

[[vneronc [e |

Function

‘ 310 ‘DBJ)AYA ‘ RW

Wiite: controls data writien to db_p(15:0), db_n(15:0) IO ports.
Read: indicates data read from db_p(15:0), db_n(15:0) IO ports.

Table 15: Uber Design GPIO Test Block XRM_GPIO_DB_DATA Register

o5 [nenonc [e |

Function

‘ 310 ‘ DC_TRI RW

Write: controls trstate enables of dc_p(15:0), dc_n(15:0) IO ports.
Read: indicates trstate enables of dc_p(15:0). de_n(15:0) 10 ports.

Table 16: Uber Design GPIO Test Block XRM_GPIO_DC_TRI Register

S5 | wnemonc | Tope |

Function

310 |DC_DATA ‘ RW

Write: controls data writien to de_p(15:0), dc_n(15:0) 10 ports.
Read: indicaes data read from dc_p(15:0), dc_n(15:0) IO ports,

Table 17: Uber Design GPIO Test Block XRM_GPIO_DC_DATA Register

Example HDL FPGA Designs

AD-UG-0004 Alpha Data Parallel Systems Ltd

Page 51

@ALPHA DATA

/ADM-XRC Gen 3 SDK User Guide
(v1.1-26th July 2010)

Bts | Mnemonc | Type | Function

Wite: controls tristate enables of dd_p(15:0), dd_n(15:0) 10 port.

310 |DD_TRI RW
Read: indicates trstate enables of dd_p(15:0), dd_n(15:0) IO ports.

Table 18: Uber Design GPIO Test Block XRM_GPIO_DD_TRI Register

B | wnemonc | e | Foncion

310 | DD_DATA RW | Write: controls data written to dd_p(15:0), dd_n(15:0) IO pors.

Read: indicaes data read from dd_p(15:0), dd_n(15:0) 10 pors.

Table 19: Uber Design GPIO Test Block XRM_GPIO_DD_DATA Register

Bits Mnemonic Type Function

170 |cs_TRI RW [Wite: controls tristate enables of sa, sb, sc, sd, dd_cc_p, dd_cc_n, dc_cc_p, dc_cc_n,
Ib_cc_p, db_cc_n, da_cc_p, da_cc_n 10 pors.

Read: ndcaes istae enales of s, b 5c, . 6d_ccp.dd ce_n. do_cc p, o .

db_cc_p, db_cc_n, da_cc_p, da_cc_n 10 ports

Table 20: Uber Design GPIO Test Block XRM_GPIO_CS_TRI Register

Bits. Mnemonic Type Function

170 |Cs_DATA RW | Write: controls data witien to sa, sb, sc, sd, dd_cc_p, dd_cc_n, dc_cc_p, dc_cc_n,
Ib_cc_p, db_cc_n, da_cc._p, da_cc_n 10 pors.

Read: indicaes data read from sa, sb, sc, sd, dd_cc_p, dd_cc_n, dc_cc_p, dc_cc_n,

db_cc_p, db_cc_n, da_cc_p, da_cc_n 10 ports

Table 21: Uber Design GPIO Test Block XRM_GPIO_CS_DATA Register

w [inemane] e | Funcion

Wiite: controls tristate enables of gpio_p(PN4_GPIO_WIDTH-1:0) 10 ports.™

PN4_GPIO_WIDTH-10 | P_TRI RW
Read: indicates tristate enables of gpio_p(PN4_GPIO_WIDTH-L:0) 10 ports.**

Table 22: Uber Design GPIO Test Block PN4_GPIO_P_TRI Register

5 [iemane]_ype | Functon

Wiite: controls data written (o gpio_p(PN4_GPIO_WIDTH-L0) IO ports.**

PN4_GPIO_WIDTH-L0 |P_DATA | RW
Read: indicates data read from gpio_p(PN4_GPIO_WIDTH-1:0) IO ports.**

Table 23: Uber Design GPIO Test Block PN4_GPIO_P_DATA Register

Bits [nemonic] Type Function

Wiite: controls tristate enables of gpio_n(PN4_GPIO_WIDTH-1:0) 10 ports.

PN4_GPIO_WIDTH-10 | N_TRI RW
Read: indicates tristate enables of gpio_n(PN4_GPIO_WIDTH-1:0) 10 ports.*

Table 24: Uber Design GPIO Test Block PN4_GPIO_N_TRI Register

o o] e | Functon

Wiite: controls data written to gpio_n(PN4_GPIO_WIDTH-L0) IO ports.**

PN4_GPIO_WIDTH-10 |N_DATA | RW.
Read: indicales data read from gpio_n(PN4_GPIO_WIDTH-10) IO ports.**

Table 25: Uber Design GPIO Test Block PN4_GPIO_N_DATA Register

Page 52

Alpha Data Parallel Systems Ltd

Example HDL FPGA Designs
AD-UG-0004

ADM-XRC Gen 3 SDK User Guide
(VL1 - 26th July 2010)

@ ALPHA DATA

** The PN4_GPIO_WIDTH constant is defined in the adb3_target_inc_pkg package.

Bits Mnemonic| Type

Function

PN6_GPIO_WIDTH33:0 |MS_TRI | RW

Wite:conrls st enables of gpio(PVG_GPIO_WIDTH-3352) 0 port.++
ead 0(PNE_GPIO, 10 ports.++
Note register is applicable only on boards where PNG_GPIO_WIDTH > 32

Table 26: Uber Design GPIO Test Block PN6_GPIO_MS_TRI Register

Bits Mnemonic| _Type

Function

PN6_GPIO_WIDTH33:0 |MS_DATA| RW

Wiite: controls data written (o gpio(PNG_GPIO_WIDTH-33:32) IO ports.++
Read: indicates data read from gpio(PNG_GPIO_WIDTH-33:32) IO ports.++
Note: this register s applicable only on boards where PNG_GPIO_WIDTH > 32

Table 27: Uber Design

GPIO Test Block PN6_GPIO_MS_DATA Register

Bits Mnemonic| Type

Function

PN6_GPIO_WIDTH-10 |LS_TRI | RW

Wiite: controls trstate enables of gpio(PN6_GPIO_WIDTH-1.0) IO ports.++
Read: indicates tristate enables of gpio(PNG_GPIO_WIDTH-L'0) 10 ports.++
Note: on boards where PNG_GPIO_WIDTH > 32 the register width is (3L0).

Table 28: Uber Design GPIO Test Block PN6_GPIO_LS_TRI Register

Bils Mnemonic| _Type

Function

PN6_GPIO_WIDTH-L0 | LS_DATA| RW.

Wiite: controls data written (0 gpio(PNG_GPIO_WIDTH-1:0) 10 ports.++
Read: indicates data read from gpio(PNG_GPIO_WIDTH-10) 10 ports.++
Note: on boards where PN6_GPIO_WIDTH > 32 the register widih is (31:0).

Table 29: Uber Design

GPIO Test Block PN6_GPIO_LS_DATA Register

++ The PN6_GPIO_WIDTH constantis defined in the adb3_target_inc_pkg package.

4.5.1.3.5 Interrupt Test Block

4.5.1.3.5.1 Description

The Interrupt test block s located in %ADMXRC3_SDK%\fpgalexamplesiubercommon in the file
blk_ds_int_test.vhd. It consists of an OCP to parallel interface block, a register section, and interrupt generation. The
split OCP Direct Slave channel connects to the OCP to parallel interface block. This block is implemented using the

ADB3 OCP library component adb3_ocp_si
The interrupt test block controls the generati

4.5.1.3.5.2 Register Interface

imple_bus_if. Refer to Section 5 for a functional description.
jon of the interrupt output using its register interface.

The OCP to parallel interface block connects to the Interrupt registers. Write accesses are controlled by the write
enable bus and/or the write signal. Read accesses are controlled by the read signal. The address bus is used to select
the register to be accessed and data is transferred on the data busses.

The Interrupt test block implements registers in the Direct Slave OCP address space as follows:

Example HDL FPGA Designs

AD-UG-0004 Alpha Data Parallel Systems Ltd

Page 53

@ALPHA DATA

/ADM-XRC Gen 3 SDK User Guide
(v1.1-26th July 2010)

Name Type ‘Address
SseT wo 0:000000C0
CLEARISTAT RW 0:000000C4
MASK RW 0:000000C3
ARM RW 0:000000CC
COUNT RW 0100000000

Table 30: Uber Design Interrupt Test Block Address Map

[eis | wnemonc | mype | Function |
30 |ser WIS | Controls the setting of individual bis in the STAT register. This vl activate the interrupt
output f these bits are not masked by the MASK register
Table 31: Uber Design Interrupt Test Block SET Register
[Bis [wnemonc | mwe | Function |
310 |CLEARISTAT | RWIC |Write: controls the clearing of indvidual bits in the STAT register.
Read: indicates the contents of the STAT register
Table 32: Uber Design Interrupt Test Block CLEAR/STAT Register
[eis | wnemonic | mype | Function |
[a0 [mask | Rw | Contolsiindicates the masking (1) or enabiing (0) of individual bit in the STAT register. _|
Table 33: Uber Design Interrupt Test Block MASK Register
[Bts | wnemonc | mpe | Function |
a0 [aRm | Rw_[Awite to his regiser wil force the FPGA intermupt output 0 s inactive state. |
Table 34: Uber Design Interrupt Test Block ARM Register
[Bis [wmemonic | Type | Function |
COUNT RW

‘ 310

Write: if STAT register i zero, then write to the COUNT register to iniialise.
Read: indicates elapsed cycle count from STAT register becoming non-zero.

Table 35: Uber Design Interrupt Test Block COUNT Register

4.5.1.3.6 Info Block

4.5.1.3.6.1 Description

The Info block is located in %ADMXRC3_SDK9%\fpgalexamplesiubericommon in the file bik_ds_info.vhd. It consists
of an OCP to parallel interface block, and a register section. The split OCP Direct Slave channel connects to the OCP
to parallel interface block. This block is implemented using the ADB3 OCP library component
adb3_ocp_simple_bus._if. Refer to Section 5 for a functional description.

The Info block allows read access to its register interface.

4.5.1.3.6.2 Register Interface

Page 54

Alpha Data Parallel Systems Ltd

Example HDL FPGA Designs
AD-UG-0004

ADM-XRC Gen 3 SDK User Guide

(VL1 - 26th July 2010)

@ ALPHA DATA

The OCP to parallel interface block connects to the Info registers. Wite accesses are controlled by the write enable bus
andfor the write signal. Read accesses are controlled by the read signal. The address bus is used to select the register
10 be accessed and data s transferred on the data busses

The Info block implements registers in the Direct Slave OCP address space as follows:

Name Type ‘Address
DATE RO 0400000140
TIME RO 0400000144
spuT RO 000000148
BASE RO 0:0000014C
MASK RO 0400000150

Table 36: Uber Design Info Block Address Map

Bits Mnemonic | Type Function
310 DATE RO Date of build (DD/MM/YYYY) in BCD format where:
D of
MM = Month of year
YYYY = Year
Table 37: Uber Design Info Block DATE Register
Bits Mrnemonic | _Type Function
30 |TME RO | Time of build (HHMMISS/LL) in BCD format where:
HH
LL = Milisecond of second.
Table 38: Uber Design Info Block TIME Register
B [wnemonc | e | Funcion]
[“ause_[seur [Ro_[Spit block outof range address OGP wite command count |
[0 Jseur R0 pi lockout of range adress OGP read command count |
Table 39: Uber Design Info Block SPLIT Register
[o [wnemonc [e | Functon]
oo Jonse | RO__| VA BRAN base address I OMAOCP address space |
Table 40: Uber Design Info Block BASE Register
B [nemonc | e | Funcion]
a0 Jwask | RO__| OMABRAM mask address i VA GCP address pace. |
Table 41: Uber Design Info Block MASK Register
4.5.1.3.7 BRAM Interface Block

Example HDL FPGA Designs

AD-UG-0004

Alpha Data Parallel Systems Ltd

Page 55

/ADM-XRC Gen 3 SDK User Guide

@ALPHA DATA (v1.1-26th July 2010)

The BRAM interface block connects the split Direct Slave OCP channel to the OCP DMA block BRAM. This block is
implemented using the ADB3 OCP library component adb3_ocp_cross_clk_dom. Refer to Section 5 for functional
description

4.5.1.4 OCP DMA Interface Block
The OCP DMA interface block is located in %ADMXRC3_SDK%\fpga\examples\uber\common in the file
blk_dma.vhd. It includes the following blocks:
+ OCP channel mux block (adb3_ocp_mux)
. OCP to parallel interface block (adb3_ocp_simple_bus_if)
+ BRAM block (bram_single_wrap)
A block diagram of the OCP DMA interface block is shown in Figure 12, "Uber DMA Block Diagram™.

Page 56 Example HDL FPGA Designs
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK User Guide

(VL1 - 26th July 2010)

@ALPHA DATA

«—+{ et Siaoans

e gz
weTLT28

acb3 ocp mu aab3_ocp_simple bus

ram,_single_wrap

E

oce

e e

b arect siave

Figure 12: Uber DMA Block Diagram

Example HDL FPGA Designs

AD-UG-000:

4

Alpha Data Parallel Systems Ltd.

Page 57

/ADM-XRC Gen 3 SDK User Guide

@ALPHA DATA (v1.1-26th July 2010)

4.5.1.4.1 OCP Channel Mux Block
The OCP channel mux block connects the DMA and Direct Slave OCP address spaces to the BRAM interface block.
The mux block is implemented using the ADB3 OCP library component adb3_ocp_mux. Refer to Section 5 for a
functional description.

4.5.1.4.2 OCP To Parallel Interface Block
The OCP to parallel interface block connects the OCP Channel Mux Block to the BRAM block. This block is

implemented using the ADB3 OCP library component adb3_ocp_simple_bus_if. Refer to Section 5 for a functional
description

4.5.1.4.3 BRAM Block
The BRAM block instantiates 128 off the Xilinx™ BRAM_SINGLE_MACRO macro (36Kb x 1).

4.5.1.5 ChipScope Connection Block (optional)

The ChipScope connection block may be inserted in the Uber design if required. It s located in
9%ADMXRC3_SDK%%\fpgalcommonichipscope in the file bik_chipscope.vhd. It consists of three instantiations of the
Xilink™ ChipScope ILA block and a single instantiation of the Xilinx™ ChipScope ICON block. Each of the ILA blocks is
connected to a single ChipScope connection block OCP channel.
Prior to the initial bitstream build of a design using the ChipScope connection block, the ChipScope ILA core
chipscope_ila.nge and ChipScope ICON core chipscope_icon.nge need to be generated. These cores are
generated using a script file. Examples are as follows:
To generate cores for Virtex 6 6vx240t devices using windows, start a shell and issue the following commands:

cd /d %ADMXRC3_SDK¥\hdI\vhdI\common\chipscope

gen_chipscope.bat 6vIx240t
Similarly using Linux, start a shell and issue the following commands:

cd SADMXRC3_SDK/hd1/vhd1/conmon/chipscope

~/gen_chipscope..bash 6vIx240t

4.5.2 Board Support
The Uber FPGA design is compatible with all Virtex 6 based boards.

4.5.3 Source Location
The Uber FPGA design is located in %ADMXRC3_SDK9&hdlivhdilexamplesiuber. Source files common to all boards
are located in the \common directory. These include the design and testbench top levels.
For a complete list of the source files used during simulation, refer to the appropriate Modelsim macro file located in the
board design directory, for example: \admxrcéthsimple-admxrcétl.do for the ADM-XRC-6TL.
For a complete list of the source files used during synthesis, refer to the appropriate XST project file located in the
board design directory, for example: \admxrcét1\simple-admxrc6t1.prj for the ADM-XRC-6T1.

4.5.4 Testbench Description

The Uber example FPGA design testbench test_uber.vhd is located in
%ADMXRC3_SDK%\hdl\vhdl\examples\uber\common. Refer to Figure 8, "Uber Design Testbench And Top Level
Block Diagram”.

The design testbench consists of the following functional areas:

+ Clock generation

Page 58 Example HDL FPGA Designs
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK User Guide
(VL1 - 26th July 2010)

@ ALPHA DATA

The hierarchical structure of the design testbench is shown in Figure 13, “Uber Design Testbench Hierarchy"

Test Direct Slave interface (test_uber_ds)
Test DMA interface (test_uber_dma)
Bridge MPTL interface (mptl_if_bridge_wrap)
OCP test probes (test_uber_probes)

Example HDL FPGA Designs

AD-UG-0004

Alpha Data Parallel Systems Ltd

Page 59

@ALPHA DATA

ADM-XRC Gen 3 SDK User Guide
(VL1 - 26th July 2010)

oooomo

e

-
ama

TesLuber_proves. |
‘ostuborprobes

. i_rdgn_wap
o e wap

an_prve.
a0b3 ocp_ransacion_ prose

o pove |
3. ocp_anacion_prose

ma_probe|

o onp s

rsacion_probe

Uber exampe design
Direct Save (0S) test stimulus

Dirct Master (OM)tst simulus

Dirct Memory Access (OMA) test simuius
Alpha Data MPTL interace

‘Alpha Data OGP transaction checking

"
. rige_sim

Figure 13: Uber Design Testbench Hierarchy

Page 60

Alpha Data Parallel Systems Ltd.

Example HDL FPGA Designs
AD-UG-0004

ADM-XRC Gen 3 SDK User Guide
(v1.1- 261 July 2010) @ALPHA DATA

4.5.4.1 Clock Generation

4.5.4.1.1 Uber Example Design Clocks
The Uber example design requires clock inputs on the clks_non_mgt and clks_mgt signals.

The clks_non_mgt input is a record defined in the adb3_target_inc_pkg package. lts definition is dependent
on the board selected. It is connected to appropriate clocks generated by the testbench. Refer to the
testbench file for connection information for each board

+ Theclks_mgtinputis a record defined in the adb3_target_inc_pkg package. Its definition is dependent on
the board selected. It is connected to appropriate clocks generated by the testbench. Refer to the testbench
file for connection information for each board.

4.5.4.1.2 Testbench Clocks
The Bridge MPTL Interface mptl_if_bridge_wrap input ocp_clk connection is dependent on the type of simulation
selected.
During OCP-OCP simulation, it must be driven by the same clock as the Simple example design MPTL
Interface mptl_if_target_wrap input ocp_clk. This signal s transferred to the testbench using the
mptl_t2b.target_ocp_clk record element.
. During OCP-MPTL-OCP simulation, it may be driven by an independent clock.
The Bridge MPTL Interface mptl_if_bridge_wrap input mptl_clk connection is dependent on the type of board
selected. Refer to the testbench file for connection information for each board.

4.5.4.2 Test Direct Slave Interface
This function is implemented using the test_uber_ds entity. It connects to the mptl_if_bridge_wrap OCP direct slave
interface and contains the following sections:

4.5.4.2.1 Simple Test
This section communicates with the Simple Test block registers as follows:
- , set DATA Ox"cafeface"
Read (32— |t) . exp DATA = Ox"cafeface"
Section complete and pass/fail indications are returned using the ds_comp.simple_complete and
ds_pass.simple_passed signals respectively.

4.5.4.2.2 Clock Read Test
This section communicates with the Clock Read block registers as follows:
). set CLR_UPDATE = *1*
set SEL_CLK = PLL_USR_CLK_SEL
exp CLR_UPDATE = *1°
exp FREQ = 0x'00000053"
set SEL_CLK = PLL_REF_CLK_SEL
exp CLR_UPDATE
exp FREQ = 0x"000000C8"
set SEL_CLK = MGTLL3 CLKO_SEL
exp CLR_UPDATE =
exp FREQ = Board Dependent

Example HDL FPGA Designs Page 61
AD-UG-0004 Alpha Data Parallel Systems Ltd

@ALPHA DATA

/ADM-XRC Gen 3 SDK User Guide
(v1.1-26th July 2010)

Section complete and passffail indications are returned using the ds_comp.clock_complete and

ds_pass.clock_passed signals respectively.

4.5.4.2.3 Front IO (XRM GPIO) Test

This section communicates with the GPIO Test block registers as follows:

). set XRM_GP10_DD_DATA
). set XRM_GP10_DD_TRI
it), exp XRM_GPI0_DD_DATA

0x"76543210"

Section complete and pass/fail indications are returned using the ds_comp.frontio_complete and

s_pass.frontio_passed signals respectively.

4.5.4.2.4 Rear |0 (PN4/PN6 GPIO) Test
This section communicates with the GPIO Test block registers as follows:

(32-1
(321

PN4_GP10_P_DATA
PN4_GPI0_N_DATA
PN4_G _TRI
PN4_GPIO_N_TRI
PN4_GP10_P_DATA
PN4_GPI0_N_DATA
PN4_GPI0_P_TR
PN4_GPI0_N_TRI
PNG_GPI0_NS_DATA
PN6_GPI0_LS_DATA
PNG_GP10_NS_TRI

set
set

PN6_GP10_MS_TRI
PN6_GPI0_LS_TRI

0x"'AABBCCDD'

Ox""AABBCCDD

""55443322"
FFFFFFF™
Dx"FFFFFFFF"

Dx CCCCDDDD!
0X"00000000
0x"00000000

X" AAAABBBE’
0X*"CCCCDDDD
OX""FFFFFFFF
OX""FFFFFFFF™

** Data tested will be determined by the PN4_GPIO_WIDTH constant defined in the adb3_target_inc_pkg package.
++ Data tested will be determined by the PNG_GPIO_WIDTH constant defined in the adb3_target_inc_pkg package.
Section complete and pass/fail indications are returned using the ds_comp.reario_complete and

s_pass.reario_passed signals respectively.

4.5.4.25 Interrupt Test

Thi secton commuricates with th Intemupt Test blockregisters as olows:

Read (32-bit). exp COUNT

for n in0 €0 31 loop
2**n

nterrupt active
), exp CLEAR/STAT = 2%
Write (32-bit), set CLEAR/STAT = 2**n
Write (32-bit), set ARM = Don"t Care

end loop
Read (32-bit), exp CLEAR/STAT = 0x"00000000"

Section complete and passffail indications are returned using the ds_comp.int_complete and ds_pass.int_passed
signals respectively.

Page 62 Example HDL FPGA Designs
AD-UL

Alpha Data Parallel Systems Ltd -UG-0004

ADM-XRC Gen 3 SDK User Guide
(v1.1- 261 July 2010) @ALPHA DATA

4.5.4.2.6 Info Test
This section communicates with the Info Test block registers as follows:
Read (32-| bn). exp DATE

0x'"00080000"

Read (32-bit), exp MASK = Ox"0007FFFF"
Section complete and pass/fail indications are returned using the ds_comp.info_complete and ds_pass.info_passed
signals respectively.

4.5.4.2.7 BRAM Test

This section communicates with the BRAM block in the OCP DMA Interface block as follows:

Write (32- addr = 0x"00080000", data = Ox"2389EF45"
Read addr = 0x"00080000", exp = OX"2389EF45"
Write , addr = 0x"0007FFFC", data = Ox"“369CF258"
Read (32—b|t), addr = Ox"0007FFFC", exp = Ox"DEADCODE"

addr = 0x'00100000", data = Ox"258BE147"
0x""DEADCODE’
0x"'147ADO36’
0x"147AD036"

Write (32-
Read (32-bit). addr = 0x"00100000", exp

Write (32-bit), addr = 0x"000F000C", data
(32-bit),

Read addr = 0X"000FO0OC", exp

Section complete and pass/fail indications are returned using the ds_comp.bram_complete and
ds_pass.bram_passed signals respectively.

4.5.4.3 Test DMA Interface
This function is implemented using the test_uber_dma entity. It connects to the mptl_if_bridge_wrap OCP DMA
interface and contains the following sections:

4.5.4.3.1 DMA Write Channel Process
This process communicates with the BRAM block in the OCP DMA Interface block as follows:

for n in 0 to (OMA_SIZE/96)-1 loop
Wi e (96-byte), addr = DMA_ADDR_WR, data = 96 bytes incrementing patten
end loop

Section complete and passffail indications are returned using the dma_comp.dma_write_complete and
dma_pass.dma_write_passed signals respectively.
The DMA_SIZE and DMA_ADDR_WR constants are defined in the uber_tb_pkg package.

4.5.4.3.2 DMA Read Channel Process

This process communicates with the BRAM block in the OCP DMA Interface block as follows:
for n in 0 to (DMA_SIZE/64)-1 loop
Read (64-byte), addr = DMA_ADDR_RD, exp = 64 bytes incrementing patten
end loop

Section complete and pass/fail indications are returned using the dma_comp.dma_read_complete and

dma_pass.dma_read_passed signals respectively.

The DMA_SIZE and DMA_ADDR_RD constants are defined in the uber_tb_pkg package.

4.5.4.4 Bridge MPTL interface

Example HDL FPGA Designs Page 63

AD-UG-0004 Alpha Data Parallel Systems Ltd

/ADM-XRC Gen 3 SDK User Guide

@ALPHA DATA (v1.1-26th July 2010)

This function is implemented using the MPTL library component mptl_if_bridge_wrap. Refer to Section 5 for a
functional description.

The mptl_if_bridge_wrap component output bridge_gtp_online_n is combined with the Uber example design output
target_gtp_online_n to produce the mptl_online_long signal. This indicates that the MPTL interface is active and
stable. This signal is monitored and wil terminate the simulation if it goes inactive.

4.5.4.5 OCP test probes
This function is implemented using the test_uber_probes entity. It monitors each of the OCP interfaces for transaction
errors using the ADB3 Probe library component adb3_ocp_transaction_probe_sim. Refer to Section 5 for a functional
description.

4.5.5 Design Simulation
Modelsim macro files are located in %ADMXRC3_SDK%\fpgalexamplesiuber in each of the board design directories.
For example \admxrcéti\uber-admxrcétl.do for the ADM-XRC-6TL.
Modelsim simulation is initiated using the vsim command with the appropriate macro file. For example, to perform a
modelsim simulation using windows and the ADM-XRC-6TL, start a shell and issue the following commands:

cu /d HADNXRC3_SDKS\hdI \vhdI\exanples\uber
do “uber-admxrc6tl .do"

Expected simulation results are shown below.

45.5.1 Date/Time Package Generation Results

Before compiing HDL and initiating simulation, the macro file runs a script to generate the gen_today_pkg.vhd file. This
file contains HDL constant definitions containing the date and time at which the script was run. The script executed will
be gen_today_pkg.bat using windows, and gen_today_pkg.bash using Linux. Script output will be similar to the
following example:

Running gen_today_pkg.bat. ..
"

#
Date Fornat: da/nyy

4 Date Read: 20/07/2010
pate stanp: 20072010
#

Tine Fornat: HHzm:ss
Tine Read: 15:67:14.49
Tire Stanp: 15571449

4 Output File: .\comon\today_pkg.vhd

Baten file complete

4.5.5.2 Initialisation Results

Modelsim output during initialisation of simulation will be similar to the following example:

#+ ote: oara Type : aan xrc 6
ine: 0 ps Iteration: 0 Instance: /test_simple

: Target Use : sin_ocp
% Tine: 0 ps Iteration: 0 Instance: /test_simple
** Note: Waiting for WPTL ontine. .

Time: 0 ps Iteration: 0 Instance: /test_sinple

4.5.5.3 Test Direct Slave Block Test Results

4.5.5.3.1 Simple Test Results

Page 64 Example HDL FPGA Designs
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK User Guide
(VL1 - 26th July 2010)

@ALPHA DATA

Modelsim output during simulation will be similar to the following example:

Wrote sinple WDATA 4 bytes OXCAFEFACE with enable 001111 to byte address O
1830 s Iteration: r_d

address 0
Instance: /test sberytest. uber_ds_ i
Test Sinple corpleted: PASSED.

4.5.5.3.2 Clock Read Test Results

Modelsim output during simulation will be similar to the following example:

1

Note: Wrote Clear Al CTRL 4 bytes 0X80000000 nable 0b1111 to byte address 68
L 705 e Maration. 13 netance: /tcet ubor/test uber de.

Wrote PLL_USA G m sel SEL 4 ytes CKUOOO0000 with st Ch1111 t0 byte address &4
: 2315 1 toration: 13 Instance: /test uber/test_ubor o
o PLL_Un e FRED 4 byene 0000053 from byes sadrens 72
Sa72s00 e Teration: 13 Instanco st uberstest uber . |

e
Instance: /test_uber/test_uber_ds_i

yte address 72
4412500 bz Tesration: 13 Instance: /test ber/test uber s

Tine: 010500 pe. aratton: 13 Instance: /test_uber/test_uer_ds

e freq = 200 iz
- 4412500 ps Iteration: 13 Instance: /test_uber/test uber_ds_i

tor: 13 Ins /test_uber/test_uber_
Read NGT113 CLKO FREQ 4 bytes 0x0DOODFA fron byte address 72
3 Instance: /test_uber/test_uber_ds |

Instance: /test_uber/test_uber_ds_i

13 Instance: /test_uber/test_uber_ds_i
d conpleted: PASSED.
o2 4952500 ps Iteration: 13 Instance: /test_uber/test uber_ds_i

4.5.5.3.3 Front 10 (XRM GPIO) Test Results

Modelsim output during simulation will be similar to the following example:

P

ot Wrote JLGPIO_DA DATA 4 bytes OCTGSASZI0 with erable Q01111 0 byts address S40
Tine:
ot

</ er/test_uber_ds_i
4 bytos GHFFREEFEE with enale ObULIL £ byte airess 536
5630 ns 1 3 Instance: /test_uber/test_uber_ds i

Teat Front 10 conplotad: PASGED

5630 ns Iteration: 13 Instance: /test_uber/test_uber_ds |

4.5.5.3.4 Rear |0 (PN4/PN6 GPIO) Test Results

Modelsim output during simulation will be similar to the following example:

G
"

0.2 DATA 4 bytes OrAGBCCDD with enable OBLLLL to byte address 556
< 5640 ns Iteration: 13 /test_uber/test_uber

Vrote 7Aa.Go10.N DATA 4 byses DXS5443327 with weite ORI to byt address 564

Iteration: 13 Instance: ioer_ds._

SPI0.P TRI 4 bytes 0X0000000 anaste OB €0 byte address 552
Time: 5660 ns Iteration: 13 Instance: /test_uber/test.
Tove: Wrote. P14 Go1o.N ThI 4 tyves. GxGan0000 wieh crable OvLLE] o byto address 560
Time: 5670 ns Iteration: 13 Instance: /test_uber/test_uber_ds. &

Example HDL FPGA Designs

AD-UG-0004

Alpha Data Parallel Systems Ltd.

Page 65

/ADM-XRC Gen 3 SDK User Guide

@ALPHA DATA (v1.1-26th July 2010)

** llote: Read PNa_GPIO_P DATA 4 bytes OXAABBCCDD from byte address 556
Tine: 6212500 ps Iteration:

=+ Note: Read PNA_GPIO_N DATA 4

#

e 552

"

- 560

" - s_t

e ovas Wrons PHGP1c.MS YOATA. £ myees OXMAMBERD e arabte DVTALL T0 byte address 572
0 eration: 13 Instance: /test_uber/test_uber_ds

=+ Note: lirote PN6_GP10_LS IDATA 4 bytes OXCCCCDOOD with enable Ob11il o byte address 580
" : Instance: /test_uber/test_uber_ds._§

" Wrote PNG_GPIO_S TRI 4 bytes 0x00000000 with enable Ob1111 to byte address 568

e 6501 nsta _uber/test_uber_ds_

" Wrote PNG_GPI0_LS TRI 4 bytes 0x00000000 with enable Ob1111 to byte address 576
" e: 6510 ns Itera 3 instance: /test ubi _uber_ds i

P

" n

e Read PNG_GPIO_LS RDATA 4 bytes OXCCCCDDDD fron byte address 580

an r/test_uber_ds L

o F h enable 001111 to byte address 568
" 60 : 13 Instance: /test_uber/test_uber_ds_

" GPIO_LS TRI 4 bytes OXFFFFFFFF with enable 0b1111 to byte address 576

7370 Instance: /test_uber/test_uber_ds_

= Note: Teat 15 conptates: FhSSED:

Time: 7370 ns Iteration: 13 Instance: /test_uber/test_uber_ds i

4.5.5.3.5 Interrupt Test Results
Modelsim output during simulation will be similar to the following example:
% Note: Wrote Interrupt WASK 4 bytes 0X00000000 with enable Ob1i1l to byte address 200

Interrupt Handler: Cleared interrupt(s). masked STAT = oxcaonaoz

" < 9265 ns Iteration: 13 Instance: /test uber/test_uber ¢
- Interrupt Nonitor edge on Tints

" o1 26340 1s Hearation: 12 nstan st

=+ Note: Interrupt Handler: Cleared interrupt(s), nasked STAT

Zoges ne e tance: /test_uber/test_uber

o R Intarrugt. STAT 4 bytes 0X00000000 fron byte sgress 196

" 27032500 ps 1 Instance: /test_uber/test_uber_ds_i
¥+ Note: Test Intorrupt comploted: PASSED

4.5.5.3.6 Info Test Results

Modelsim output during simulation will be similar to the following example:

** Note: Read Info NASK 4 bytes OxO0OTFFFF fron byte address 336
% Tine: 28137500 ps Iteration: 13 Instance: /test uber/test uber ds i

Page 66 Example HDL FPGA Designs
Alpha Data Parallel Systems Ltd. AD-UG-0004

ADM-XRC Gen 3 SDK User Guide
(VL1 - 26th July 2010)

@ALPHA DATA

** lote: Test Info conpleted: PASSED.

4.5.5.3.7 BRAM Test Results

Modelsim output during simulation will be similar to the following example:

** llote: Wrote BRAN Addr base 4 bytes OXx2389EF4S with enable OBLI1L to byte address 521288
a5 t

& Tine:
** ot
Tine
Note:
Tine
“ Note: R
Tine:

1

Tine: 296: nstance: per.

= Roto: Raad Sal Addy t0p 4 bytes OXA4APUSD fron byee adiress 10RSTZ
Tine: 29912500 ps Iteration: 13 Instance: /test_uber/test_uber_ds

“* Note: Test BRAV conpleted: PASSED

Tine: 29912500 ps Iteration: 13 Instance: /test uber/test uber ds i

4.5.5.4 Test DMA Block Test Results

Modelsim output during simulation will be similar to the following example:

ed
Instance: /test_uber/test_uber_dna_i
"

3 Instance: /test_uber/test_uber_dna i
eted

Instance: /test_uber/test_uber_dna_i
Instance: /test_uber/test_uber_dna_i
- ted

stacas /Cant uber/test_ubar_an.|

T Instance: est.ubor/test_uber_dna_i
- seD.

Time: 34225 ns Iteration: 13 Instance: /test_uber/test_uber_dna_i

4.5.5.5 Completion Results

Modelsim output on successful completion of simulation will be similar to the following example:

n UBER completed: PASSED.

 Process test results.p ot ../coron/test uber.via
e

ulation Breakpoint: Breat
” HACRD fuber-acechet.co, PAUSED ot 1

4.5.6 Bitstream Build

31230 ns Iteration: 15 Process: /test_uber/test_results p File:

K In Process test_resulta_p at L eareonstest_wber.vna

Amakeile is provided for building all bitstreams, or a specific board/device bitstream, for the Uber FPGA example
design. Itis located in the %ADMXRC3_SDKhdivhdliexamplestuber directory. In order to use the re-built bitstream
with the example applications, they must be copied to the %ADMXRC3_SDK9%\bitluber directory. This can be
performed automatically using the install makefile option. A “clean up" of the files produced by the build process can be

performed using the clean makefile option. Examples are as follows:

o perform a build of all Uber design bitstreams using windows, start a shell and issue the following commands:

cd /d %ADMXRC3_SDK¥\hdI\vhdI\examples\uber
nmake clean al

Example HDL FPGA Designs
AD-UG-0004 Alpha Data Parallel Systems Ltd.

Page 67

/ADM-XRC Gen 3 SDK User Guide

@ALPHA DATA (v1.1-26th July 2010)

Similarly using Linux, start a shell and issue the following commands:
cd SADMXRC3_SDK/hd1/vhdl/examples/uber
make clean all

o perform a build and install the resulting bitstreams using windows, start a shell and issue the following commands:
cd /d %ADMXRC3_SDK¥\hdI\vhdI\examples\uber

nmake clean instal

Similarly using Linux, start a shell and issue the following commands:

©d SADMXRC: /vhd1/examples/uber
make clean

To perform a build for an ADM-XRC-6TL board fitted with an 6VLX240T device using windows, start a shell and issue
the following commands:

cd /d %ADMXRC3_SDK¥\hdI\vhdI\examples\uber

nnake bit_adnxrc6tl_6vix240t
Similarly using Linux, start a shell and issue the following commands:

cd SADMXRC3, SDK/hdI/vhdI/examples/uber
make bit_admxrc6tl

To perform a build and install for an ADM-XRC-6TL board fitted with an 6VLX240T device using windows, start a shell
and issue the following commands:

cd /d KADMXRC3_SDK'\hd1\vhdl\examples\uber

nmake inst_admxrc6tl_6vix240t
Similarly using Linux, start a shell and issue the following commands:

cd SADMXRC3, sDK/hdI/vhdl/examples/uber
make inst_admxrcétl_¢

To perform a clean for an ADM-XRC-6TL board fitted with an 6VLX240T device using windows, start a shell and issue
the following commands:
od 70 HADIXRCS_SDKIAdINuhdIexanples\uber
nmake clean_admxrc6tl_6vix2
Similarly using Linux, start a shell and issue the following commands:
cd SADMXRC3_SDK/hd1/vhdl/examples/uber
make clean_admxrc6tl_6vIx240t
The full path and filename of bitstreams built using Windows wil be:
HADMXRC3_SDK3\hdI\vhd I P \output ign>-<board>-<device>.bit

The full path and filename of bitstreams built using Linux will be:
SADMXRC3_SDK/hd 1 /vhd p utput/<design>-<board>-<device>.bit

4.5.6.1 Date/Time Package Generation Results

If XST s required to be run during bitstream build, the makefile runs a script to generate the gen_today_pkg.vhd file.
This file contains HDL constant definitions containing the date and time at which the script was run. The script executed
will be gen_today_pkg.bat using windows, and gen_today_pkg.bash using Linux. Script output will be similar to the
following example:

Running gen_today_pkg.bat. ..
“

#
Date Fornat: dd/i/yyyy
4 Date Read: 20/07/2010
pate stanp: 20072010
#

Tine Fornat: HHzmm:ss

Page 68 Example HDL FPGA Designs
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK User Guide
(VL1 - 26th July 2010)

@ ALPHA DATA

Tine Read: 15:57:14.49
Tive Stanp: 15571449

#
Output File: .\comon\today_pkg.vhd

#
Baten file complete

4.5.7 ISE Constraint Files

Constraint files for Uber design bitstream files using ISE are provided. These files are located in
9%ADMXRC3_SDK%\hdl\vhdilexamplesiuber in each of the board design directories, for example
\admxrc6tiluber-admxrcétl.ucf for the ADM-XRC-6TL.

Example HDL FPGA Designs
AD-UG-0004 Alpha Data Parallel Systems Ltd

Page 69

/ADM-XRC Gen 3 SDK User Guide

@ALPHA DATA (v1.1-26th July 2010)

5 Common HDL components

The ADM-XRC Gen 3 SDK provides a number of HDL components that are used in the example FPGA designs. These
components may also be used in customer FPGA designs, and this section details their interfaces and usage.

5.1 ADB3 OCP Library

TBA

5.1.1 adb3_ocp_pkg Package
TBA

5.1.2 adb3_ocp_cross_clk_dom Component
TBA

5.1.3 adb3_ocp_mux Component
TBA

5.1.4 adb3_ocp_reg_split Component
TBA

5.1.5 adb3_ocp_simple_bus_if Component

TBA

5.2 MPTL Library

TBA

5.2.1 mptl_pkg Package
TBA

5.2.2 mptl_if_bridge_wrap Component
TBA

5.2.2.1 OCP-OCP Simulation
TBA

5.2.2.2 OCP-MPTL-OCP Simulation
TBA

5.2.2.3 Synthesis
TBA

5.2.3 mptl_if_target_wrap Component

5.2.3.1 OCP-OCP Simulation

Page 70 Common HDL components.
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK User Guide

(v1.1- 261 July 2010) @ALPHA DATA

TBA
5.2.3.2 OCP-MPTL-OCP Simulation

TBA

5.2.3.3 Synthesis
TBA
TBA
5.3 ADB3 Target Library
TBA
5.3.1 adb3_target_types_pkg Package
TBA

5.3.2 adb3_target_pkg Package
TBA

5.3.3 adb3_target_tb_pkg Package
TBA

5.4 ADB3 Probe Library

TBA

5.4.1 adb3_probe_pkg Package
TBA

5.4.2 adb3_ocp_transaction_probe_sim Component
TBA

5.5 ADCOMMON Library

TBA

5.5.1 cdc_pkg Package
TBA

5.5.2 clock_speed_pkg Package
TBA

5.5.2.1 clock_speed Component
TBA

5.5.3 rst_pkg Package
TBA

Common HDL components Page 71
AD-UG-0004 Alpha Data Parallel Systems Ltd

/ADM-XRC Gen 3 SDK User Guide

@ALPHA DATA (v1.1-26th July 2010)

5.5.3.1 rst_sync Component
TBA

Page 72 Common HDL components.
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK User Guide
(v1.1- 261 July 2010) @ALPHA DATA

6 FPGA design guide

This section provides guidelines for FPGA designs targetting third generation Alpha Data hardware.
6.1 ADB3 OCP Protocol Reference

6.1.1 Introduction
This document describes the ADB3 OCP Protocol used by the MPTL Interface block in the target FPGA. The protocol
is based on the OCP-IP standard which allows flexible connection between modules which share the OCP protocol.
Differences in the implemented subset of OCP signals can be overcome by tieing the mismatching signals to default
values. In general however most designs should simply stick to using the ADB3 OCP Protocol for module design,
unless exisiting OCP-IP with a different protocol is included.
OCP-IP Protocols in general allow interfacing between 2 IP modules, with one module the master (in control of the
transactions) and one module the slave. Each OCP-IP Protocol must have at least a command (Cmd) signal however
the definition of other sideband signals is fairly flexible. The main groupings of signals used in the ADB3 OCP protocol
re a Command Group, synchronous to the Cmd signal, and Data transfer groups both from Master to Slave (Write)
and Slave to Master (Read Response). Each of these groupings is acknowledged independently allowing the flow to
be controlled.

signal Group Type Description
cmd Command ocp cmd dle Wiite or Read
Addr Command 64 bit td_logic_vector Address
BursiLengih Command 12 bit std_logic_vector Length of ransfer
Data Data 128 bit s1d_logic_vector Wiite Data to Slave,
DataByteEn Data 16 bit td_logic_vector Byte Enables for Data
Datavalid Data std_logic Quaifie for Data.
RespAccept Response std_logic Flow Control for response
Tag Command 8 bitsd_logic_vector Tag for Read response data

Table 42: ADB3 OCP Master Signals

signal Group. Type Description
CmdAccept Command std_logic Fiow Control for commands
DataAccept Data std_logic Flow Control for write Data.
Data Response. 128 bit std_logic_vector Response Data (o Master
Resp Response. OCP Resp Qualifie for Response Data
Tag Response. 8 bit std_logic_vector Tag for Read response data

Table 43: ADB3 OCP Slave Signals

In the VHDL code, the master and slave are grouped into record types to simplify the high level abstract system
design, allowing the upper level modules to be specified in terms of module master to slave connections, rather than
fouting individual siganis

6.1.2 Timing Diagrams

This section contains timing diagrams for most common transactions and highlight the main operation of the protocol.

FPGA design guide Page 73
AD-UG-0004 Alpha Data Parallel Systems Ltd

ADM-XRC Gen 3 SDK User Guide
’ALPN‘ DATA (v1.1- 26th July 2010)

Clk I WA WA W W W WA W AAW I WA W AW AW S WA WA
Master

cmd TOLE—)(WR X iR TBLE

Addr o AT

BurstLength T T

Data 0 o

D B0 L

Datavalid [

D

Tag ™ T

Slave
CmdAccept
DataAccept \

Data

Resp NORE

Tag

Figure 14: Single Beat Write

Figure 14, "Single Beat Write" shows 2 single beat write commands. The address, burst length and tag are all
presented at the same time as the Cmd is set to Write. The Cmd is acknowledged within 1 clock cycle in the first case
and so the Cmd is returned to Idle after a single clock cycle. In the first case, the Data and Byte Enables are asserted
and accepted also in the same clock cycle. In the second case, the Write command is not accepted untilthe 4th cycle
after it is asserted (possible due to teh Slave being busy). The master in this case also does not assert the Data Valid
signal until after the Cmd. The data accept s also not accepted immediately and therefore the Data Valid must remain
high until the data beat is accepted. All these cases constitute legal OCP transfers with the protocol.

Page 74 FPGA design guide
Alpha Data Parallel Systems Ltd

ADM-XRC Gen 3 SDK User Guide
(VL1 - 26th July 2010)

@ ALPHA DATA

Clk I AWAWAWAWRWAWAWAW RWAWAWAW

Master

cmd TOLE (> X 0) TBLE

Addr o AT

BurstLength T T

Data

D

Datavalid

D

Tag ™ T

Slave

CmdAccept

DataAccept

Data % oL

Resp WoRE VAL NoE VLT

NORE

Tag i ™

Figure 15: Single Beat Read

Figure 15, “Single Beat Read" shows 2 single beat read commands. in the first case the read request is immediately
accepted. The slave responds with a response (Q0) on the following clock cycle. The Tag send with the read
command s returned with the response. The second example shows a delayed command accept, a delayed response

and a delayed response accept, all of which are legal with the protocol,

FPGA design guide
AD-UG-0004 Alpha Data Parallel Systems Ltd

Page 75

/ADM-XRC Gen 3 SDK User Guide

’ALPN‘ DATA (v1.1-26th July 2010)
Clk I WA WA W W W WA W AAW I WA W AW AW S WA WA
Master
cmd [T 0 S W YBLE
Addr 7 g
BurstLength. 4 z
Data Do b1 Xp2z Y03 D4 D5
D BE0)(BEL) e (BES Ber BEs

Datavalid & /. [/ /

D

Tag ™ T

Slave
CmdAccept
DataAccept /1 Y U

Data

Resp NORE

Tag

Figure 16: Burst Write

Figure 16, "Burst Write" shows 2 burst writes. A single command is issued for multiple data word transfers. The
command protocol operates in exactly the same manner as for single beat transfers. Multiple data transfers occur for
each command. Data transfers only occur when both DataValid and DataAccept are asserted. The master must wait

on DataAccept being asserted before presenting the next data word. The slave must check that DataValid is asserted
when receiving data. The slave may assert DataAccept even if DataValid is not asserted.

Page 76 FPGA design guide
Alpha Data Parallel Systems Ltd

ADM-XRC Gen 3 SDK User Guide
(VL1 - 26th July 2010)

@ ALPHA DATA

Clk _
Master

Cmd

e

Addr

BurstLength

Data

D

Datavalid

RespAccept_|

Tag

Slave

CmdAccept

DataAccept

Data

o

Resp

NORE

VAL

YoNE(VAL

NORE

Tag

i)

Figure 17: Burst Read

Figure 17, "Burst Read" shows a read burst. The response should be held valid and the read tag retumned by the
slave for all data transfers. Each data transfer required the Response to be Valid and RespAccect to be asserted.

FPGA design guide

AD-UG-0004

Alpha Data Parallel Systems Ltd

Page 77

/ADM-XRC Gen 3 SDK User Guide

@ALPHA DATA (v1.1-26th July 2010)

7 The ADMXRC3 API

The ADMXRC3 API is the application programming interface that applications, including the ones in this SDK, use to
communicate with third generation Alpha Data hardware. This API is documented in the ADMXRC3 AP Specification

Page 78 The ADMXRC3 API
Alpha Data Parallel Systems Ltd AD-UG-0004

ADM-XRC Gen 3 SDK User Guide

(V1.1 - 26th July 2010) @ ALPHA DATA

Page Intentionally left blank.

The ADMXRC3 API Page 79
AD-UG-0004 Alpha Data Parallel Systems Ltd

@ALPHA DATA

/ADM-XRC Gen 3 SDK User Guide

(v1.1-26th July 2010)

Revision History:

Date Revision Nature of Change.
2010512010 10 Initial version

Updated for release 1.1.0
2610712010 11 ‘Added SDK structure diagram.

‘Added information about example applications.

© 2010 Alpha Data Parallel Systems Ltd. All rights reserved. All other trademarks and registered trademarks are the

property of their respective owners.

Adress: 4 West Sikermills Lane.
Egnburg, 13 300, Uc
2600

Tlephone: 1413

B w0
les@alphadai

bt T A dermcom

Address:

emal
Websie:

2570 Norh s e, e 40

o lph:deta com

	1 Introduction
	1.1 Supported operating systems
	1.2 Supported Alpha Data hardware
	1.3 Installation
	1.3.1 Installation in Windows
	1.3.2 Installation in Linux
	1.3.3 Installation in VxWorks

	1.4 Structure of this SDK

	2 Getting started
	2.1 Getting started in Windows 2000 / XP / Server 2003
	2.2 Getting started in Windows Vista and later
	2.3 Getting started in Linux

	3 Example applications
	3.1 Building the example applications
	3.1.1 Building the example applications in Windows
	3.1.2 Building the example applications in Linux

	3.2 DUMP utility
	3.2.1 Usage

	3.3 FLASH utility
	3.3.1 Usage

	3.4 INFO utility
	3.4.1 Usage

	3.5 ITEST example
	3.5.1 Usage

	3.6 MONITOR utility
	3.6.1 Usage

	3.7 SIMPLE example
	3.7.1 Usage

	3.8 SYSMON utility
	3.8.1 Usage
	3.8.2 Building SYSMON in Linux

	3.9 VPD utility
	3.9.1 Usage

	4 Example HDL FPGA Designs
	4.1 Introduction
	4.2 Design Simulation Using Modelsim
	4.3 Bitstream Build Using ISE
	4.3.1 Building All Example Bitstreams
	4.3.2 Building Specific Example/Board/Device Bitstreams

	4.4 Simple Example FPGA Design
	4.4.1 Design Description
	4.4.1.1 Clock Generation
	4.4.1.1.1 Internal Clock Generation
	4.4.1.1.2 External Clock Buffering (Non-MGT Sourced)
	4.4.1.1.3 External Clock Extraction (MGT Sourced)
	4.4.1.1.4 MPTL interface clock generation

	4.4.1.2 MPTL Interface
	4.4.1.3 OCP Direct Slave Channel
	4.4.1.3.1 Simple Test Registers
	4.4.1.3.1.1 Description
	4.4.1.3.1.2 Register Interface

	4.4.2 Board Support
	4.4.3 Source Location
	4.4.4 Testbench Decription
	4.4.4.1 Clock Generation
	4.4.4.1.1 Simple Example Design Clocks
	4.4.4.1.2 Testbench Clocks

	4.4.4.2 Test Direct Slave Interface
	4.4.4.2.1 Simple Test
	4.4.4.2.2 Bridge MPTL interface
	4.4.4.2.3 OCP test probes

	4.4.5 Design Simulation
	4.4.5.1 Initialisation Results
	4.4.5.2 Direct Slave Test Results
	4.4.5.3 Completion Results

	4.4.6 Bitstream Build
	4.4.7 ISE Constraint Files

	4.5 Uber Example FPGA Design
	4.5.1 Design Description
	4.5.1.1 Clock Generation Block
	4.5.1.1.1 Internal Clock Generation (MMCM)
	4.5.1.1.2 Internal reset generation
	4.5.1.1.3 External Clock Buffering (Non-MGT Sourced)
	4.5.1.1.4 External Clock Extraction (MGT Sourced)
	4.5.1.1.5 MPTL interface clock generation

	4.5.1.2 MPTL Interface Block
	4.5.1.3 OCP Direct Slave Interface Block
	4.5.1.3.1 OCP Address Space Splitter Block
	4.5.1.3.2 Simple Test Block
	4.5.1.3.2.1 Description
	4.5.1.3.2.2 Register Interface

	4.5.1.3.3 Clock Read Block
	4.5.1.3.3.1 Description
	4.5.1.3.3.2 Register Interface

	4.5.1.3.4 GPIO Test Block
	4.5.1.3.4.1 Description
	4.5.1.3.4.2 Register Interface

	4.5.1.3.5 Interrupt Test Block
	4.5.1.3.5.1 Description
	4.5.1.3.5.2 Register Interface

	4.5.1.3.6 Info Block
	4.5.1.3.6.1 Description
	4.5.1.3.6.2 Register Interface

	4.5.1.3.7 BRAM Interface Block

	4.5.1.4 OCP DMA Interface Block
	4.5.1.4.1 OCP Channel Mux Block
	4.5.1.4.2 OCP To Parallel Interface Block
	4.5.1.4.3 BRAM Block

	4.5.1.5 ChipScope Connection Block (optional)

	4.5.2 Board Support
	4.5.3 Source Location
	4.5.4 Testbench Description
	4.5.4.1 Clock Generation
	4.5.4.1.1 Uber Example Design Clocks
	4.5.4.1.2 Testbench Clocks

	4.5.4.2 Test Direct Slave Interface
	4.5.4.2.1 Simple Test
	4.5.4.2.2 Clock Read Test
	4.5.4.2.3 Front IO (XRM GPIO) Test
	4.5.4.2.4 Rear IO (PN4/PN6 GPIO) Test
	4.5.4.2.5 Interrupt Test
	4.5.4.2.6 Info Test
	4.5.4.2.7 BRAM Test

	4.5.4.3 Test DMA Interface
	4.5.4.3.1 DMA Write Channel Process
	4.5.4.3.2 DMA Read Channel Process

	4.5.4.4 Bridge MPTL interface
	4.5.4.5 OCP test probes

	4.5.5 Design Simulation
	4.5.5.1 Date/Time Package Generation Results
	4.5.5.2 Initialisation Results
	4.5.5.3 Test Direct Slave Block Test Results
	4.5.5.3.1 Simple Test Results
	4.5.5.3.2 Clock Read Test Results
	4.5.5.3.3 Front IO (XRM GPIO) Test Results
	4.5.5.3.4 Rear IO (PN4/PN6 GPIO) Test Results
	4.5.5.3.5 Interrupt Test Results
	4.5.5.3.6 Info Test Results
	4.5.5.3.7 BRAM Test Results

	4.5.5.4 Test DMA Block Test Results
	4.5.5.5 Completion Results

	4.5.6 Bitstream Build
	4.5.6.1 Date/Time Package Generation Results

	4.5.7 ISE Constraint Files

	5 Common HDL components
	5.1 ADB3 OCP Library
	5.1.1 adb3_ocp_pkg Package
	5.1.2 adb3_ocp_cross_clk_dom Component
	5.1.3 adb3_ocp_mux Component
	5.1.4 adb3_ocp_reg_split Component
	5.1.5 adb3_ocp_simple_bus_if Component

	5.2 MPTL Library
	5.2.1 mptl_pkg Package
	5.2.2 mptl_if_bridge_wrap Component
	5.2.2.1 OCP-OCP Simulation
	5.2.2.2 OCP-MPTL-OCP Simulation
	5.2.2.3 Synthesis

	5.2.3 mptl_if_target_wrap Component
	5.2.3.1 OCP-OCP Simulation
	5.2.3.2 OCP-MPTL-OCP Simulation
	5.2.3.3 Synthesis

	5.3 ADB3 Target Library
	5.3.1 adb3_target_types_pkg Package
	5.3.2 adb3_target_pkg Package
	5.3.3 adb3_target_tb_pkg Package

	5.4 ADB3 Probe Library
	5.4.1 adb3_probe_pkg Package
	5.4.2 adb3_ocp_transaction_probe_sim Component

	5.5 ADCOMMON Library
	5.5.1 cdc_pkg Package
	5.5.2 clock_speed_pkg Package
	5.5.2.1 clock_speed Component

	5.5.3 rst_pkg Package
	5.5.3.1 rst_sync Component

	6 FPGA design guide
	6.1 ADB3 OCP Protocol Reference
	6.1.1 Introduction
	6.1.2 Timing Diagrams

	7 The ADMXRC3 API
	Tables
	Table 1: FPGA Designs/Host applications
	Table 2: Simple Design Simple Test Block Address Map
	Table 3: Simple Design Simple Test Block DATA Register
	Table 4: Uber design Direct Slave Address Map
	Table 5: Uber Design Simple Test Block Address Map
	Table 6: Uber Design Simple Test Block DATA Register
	Table 7: Uber Design Clock Read Block Address Map
	Table 8: Uber Design Clock Read Block SEL Register
	Table 9: Uber Design Clock Read Block CTRL/STAT Register
	Table 10: Uber Design Clock Read Block FREQ Register
	Table 11: Uber Design GPIO Test Block Address Map
	Table 12: Uber Design GPIO Test Block XRM_GPIO_DA_TRI Register
	Table 13: Uber Design GPIO Test Block XRM_GPIO_DA_DATA Register
	Table 14: Uber Design GPIO Test Block XRM_GPIO_DB_TRI Register
	Table 15: Uber Design GPIO Test Block XRM_GPIO_DB_DATA Register
	Table 16: Uber Design GPIO Test Block XRM_GPIO_DC_TRI Register
	Table 17: Uber Design GPIO Test Block XRM_GPIO_DC_DATA Register
	Table 18: Uber Design GPIO Test Block XRM_GPIO_DD_TRI Register
	Table 19: Uber Design GPIO Test Block XRM_GPIO_DD_DATA Register
	Table 20: Uber Design GPIO Test Block XRM_GPIO_CS_TRI Register
	Table 21: Uber Design GPIO Test Block XRM_GPIO_CS_DATA Register
	Table 22: Uber Design GPIO Test Block PN4_GPIO_P_TRI Register
	Table 23: Uber Design GPIO Test Block PN4_GPIO_P_DATA Register
	Table 24: Uber Design GPIO Test Block PN4_GPIO_N_TRI Register
	Table 25: Uber Design GPIO Test Block PN4_GPIO_N_DATA Register
	Table 26: Uber Design GPIO Test Block PN6_GPIO_MS_TRI Register
	Table 27: Uber Design GPIO Test Block PN6_GPIO_MS_DATA Register
	Table 28: Uber Design GPIO Test Block PN6_GPIO_LS_TRI Register
	Table 29: Uber Design GPIO Test Block PN6_GPIO_LS_DATA Register
	Table 30: Uber Design Interrupt Test Block Address Map
	Table 31: Uber Design Interrupt Test Block SET Register
	Table 32: Uber Design Interrupt Test Block CLEAR/STAT Register
	Table 33: Uber Design Interrupt Test Block MASK Register
	Table 34: Uber Design Interrupt Test Block ARM Register
	Table 35: Uber Design Interrupt Test Block COUNT Register
	Table 36: Uber Design Info Block Address Map
	Table 37: Uber Design Info Block DATE Register
	Table 38: Uber Design Info Block TIME Register
	Table 39: Uber Design Info Block SPLIT Register
	Table 40: Uber Design Info Block BASE Register
	Table 41: Uber Design Info Block MASK Register
	Table 42: ADB3 OCP Master Signals
	Table 43: ADB3 OCP Slave Signals

	Figures
	Figure 1: Structure of the ADM-XRC Gen 3 SDK
	Figure 2: SYSMON user interface - device information
	Figure 3: SYSMON user interface - sensor readings
	Figure 4: SYSMON user interface - sensor display
	Figure 5: Simple Design Testbench And Top Level Block Diagram
	Figure 6: Uber Design Top Level Hierarchy
	Figure 7: Uber Design Package Dependencies
	Figure 8: Uber Design Testbench And Top Level Block Diagram
	Figure 9: Uber Design Internal Clock Generation (MMCM)
	Figure 10: Uber Design Clock Buffering/Extraction
	Figure 11: Uber Direct Slave Block Diagram
	Figure 12: Uber DMA Block Diagram
	Figure 13: Uber Design Testbench Hierarchy
	Figure 14: Single Beat Write
	Figure 15: Single Beat Read
	Figure 16: Burst Write
	Figure 17: Burst Read

	Alpha Data Website

