
Common Host Utilities for
Windows & Linux

Release: 1.13.0
Document Revision: 1.4

12 Jun 2017

Common Host Utilities for Windows & Linux Release: 1.13.0
V1.4 - 12 Jun 2017

© 2017 Copyright Alpha Data Parallel Systems Ltd.
All rights reserved.

This publication is protected by Copyright Law, with all rights reserved. No part of this
publication may be reproduced, in any shape or form, without prior written consent from Alpha

Data Parallel Systems Ltd.

Head Office

Address: Suite L4A, 160 Dundee Street,
Edinburgh, EH11 1DQ, UK

Telephone: +44 131 558 2600
Fax: +44 131 558 2700
email: sales@alpha-data.com
website: http://www.alpha-data.com

US Office

10822 West Toller Drive, Suite 250
Littleton, CO 80127
(303) 954 8768
(866) 820 9956 - toll free
sales@alpha-data.com
http://www.alpha-data.com

All trademarks are the property of their respective owners.

Common Host Utilities for Windows & Linux Release: 1.13.0
V1.4 - 12 Jun 2017

Table Of Contents

1 Introduction .. 1
 1.1 Directory structure .. 1
2 Building the Common Host Utilities ... 3
 2.1 Building with Visual Studio 2012 .. 3
 2.2 Building with Visual Studio 2013 .. 3
 2.3 Building in Linux ... 3
 2.3.1 Building SYSMON in Linux .. 4
3 Common Host Utilties ... 5
 3.1 AVR2UTIL / AVR2UTIL-S utility ... 5
 3.1.1 Available commands .. 10
 3.1.1.1 build-info command .. 10
 3.1.1.2 version command ... 10
 3.1.1.3 product-id command .. 10
 3.1.1.4 enter-service-mode command ... 11
 3.1.1.5 exit-service-mode command .. 11
 3.1.1.6 getclk command ... 11
 3.1.1.7 setclk command ... 12
 3.1.1.8 getclknv command ... 12
 3.1.1.9 setclknv command ... 12
 3.1.1.10 i2c-read-to-file command ... 13
 3.1.1.11 i2c-verify-with-file command .. 13
 3.1.1.12 i2c-write-from-file command ... 14
 3.1.1.13 i2c-read command ... 14
 3.1.1.14 i2c-write command ... 14
 3.1.1.15 update-brdcfg command .. 15
 3.1.1.16 verify-brdcfg command .. 15
 3.1.1.17 save-brdcfg command ... 15
 3.1.1.18 update-firmware command .. 15
 3.1.1.19 verify-firmware command ... 16
 3.1.1.20 save-firmware command .. 16
 3.1.1.21 update-vpd command .. 16
 3.1.1.22 verify-vpd command ... 16
 3.1.1.23 save-vpd command .. 17
 3.1.1.24 display-vpd command .. 17
 3.1.1.25 display-vpd-raw command ... 17
 3.1.1.26 display-sensors command ... 17
 3.1.1.27 display-sensors-raw command .. 18
 3.1.1.28 override-sensor command ... 18
 3.1.1.29 release-sensor command .. 18
 3.1.1.30 spi-info command ... 19
 3.1.1.31 spi-raw command ... 19
 3.1.2 Commands requiring non-Service Mode ... 19
 3.1.3 Commands requiring Service Mode ... 19
 3.2 BITSTRIP utility .. 21
 3.3 DMADUMP utility ... 22
 3.4 DUMP utility ... 26
 3.5 FLASH utility .. 30
 3.5.1 Region to address range mapping ... 33
 3.6 INFO utility ... 35
 3.7 IPROG utility .. 38
 3.8 LOADER utility ... 41
 3.9 MONITOR utility ... 43
 3.10 SYSMON utility .. 45

Common Host Utilities for Windows & Linux Release: 1.13.0
V1.4 - 12 Jun 2017

 3.10.1 SYSMON device information tab ... 46
 3.10.2 SYSMON sensor information tab ... 46
 3.10.3 SYSMON sensor readout tab .. 47
 3.10.4 SYSMON device status tab ... 47
 3.10.5 SYSMON clock generator tab .. 48
 3.10.6 SYSMON sensor data logging ... 49
 3.11 VPD utility .. 52
 3.11.1 VPD write-protection mechanisms ... 55

Appendix A AVR2UTIL clock generator indices .. 58
 A.1 ADM-XRC-KU1 .. 58
 A.2 ADM-PCIE-8V3 .. 58
 A.3 ADM-PCIE-8K5 .. 59

List of Tables

Table 1 Utilities for Windows and Linux .. 1
Table 2 Exit codes for AVR2UTIL utility .. 6
Table 3 Exit codes for BITSTRIP utility ... 21
Table 4 Exit codes for DMADUMP utility .. 25
Table 5 Exit codes for DUMP utility .. 29
Table 6 Exit codes for FLASH utility ... 32
Table 7 Exit codes for INFO utility .. 37
Table 8 Exit codes for IPROG utility ... 40
Table 9 Exit codes for LOADER utility .. 42
Table 10 Exit codes for MONITOR utility .. 44
Table 11 Exit codes for VPD utility .. 55
Table 12 AVR2UTIL clock generator indices (ADM-XRC-KU1) .. 58
Table 13 AVR2UTIL clock generator indices (ADM-PCIE-8V3) .. 58
Table 14 AVR2UTIL clock generator indices (ADM-PCIE-8K5) .. 59

List of Figures

Figure 1 Directory structure .. 1
Figure 2 SYSMON user interface ... 45
Figure 3 SYSMON notification area icon ... 46
Figure 4 SYSMON sensor information tab ... 46
Figure 5 SYSMON sensor readout tab .. 47
Figure 6 SYSMON device status tab ... 48
Figure 7 SYSMON clock generator tab .. 49
Figure 8 SYSMON Action menu in Linux ... 49
Figure 9 SYSMON Action menu in Windows ... 50

Common Host Utilities for Windows & Linux Release: 1.13.0
V1.4 - 12 Jun 2017

1 Introduction
This document describes the Common Host Utilities for Windows & Linux, for Alpha Data Gen 3 Reconfigurable
Computing Hardware. In this context, "common" refers to the fact that these utilities, with some exceptions, can
be used with all models in Alpha Data's range of Gen 3 Reconfigurable Computing Hardware:
• Embedded system products:

• ADM-XRC-6TL

• ADM-XRC-6T1

• ADM-XRC-6T-DA1

• ADM-XRC-6TGE and ADM-XRC-6TGEL

• ADM-XRC-6T-ADV8

• ADPE-XRC-6T and ADPE-XRC-6T-L

• ADM-XRC-7K1

• ADM-XRC-7V1

• ADM-VPX3-7V2

• ADM-XRC-KU1

• Datacenter products:
• ADM-PCIE-7V3

• ADM-PCIE-KU3

• ADM-PCIE-8V3

• ADM-PCIE-8K5

Table 1 lists the available utilities for Windows and Linux.

AVR2UTIL Utility for manipulating microcontroller firmware and related data (for certain models
only).

BITSTRIP Utility for removing the header from a .bit file, leaving only the SelectMap data

DMADUMP Utility for reading and writing using DMA engines

DUMP Utility for reading and writing memory windows

FLASH Utility for programming FPGA bitstream (.BIT) files in user-programmable Flash
memory

INFO Utility for displaying information about a reconfigurable computing device

IPROG Utility for software-initiated reconfiguration of a target FPGA from Flash memory

LOADER Utility for configuring a target FPGA with a bitstream file

MONITOR Utility that displays sensor readings

SYSMON Utility that combines the functionality of the INFO and MONITOR utilities in a graphical
user interface

VPD Utility that allows the Vital Product Data of a reconfigurable computing device to be
read or written

Table 1 : Utilities for Windows and Linux

1.1 Directory structure
The files and folders making up the Common Host Utilities are organized as in Figure 1 below:

(root) The root of this package
Page 1Introduction

ad-ug-0055_v1_4.pdf

Common Host Utilities for Windows & Linux Release: 1.13.0
V1.4 - 12 Jun 2017

host

api-v1_4_21

include API header files used by utilities

lib Library files used by utilities (Windows)

util-v1_13_0 Common Host Utilities (subject of this document)

bin

win32

x86 32-bit Windows binaries

x64 64-bit Windows binaries

doc Documentation for utilities, including this document

proj

linux Makefiles etc. for Linux

avr2util Build directory for avr2util utility

...

win32vs2012 Microsoft Visual Studio 2012 projects (Windows)

avr2util Project directory for avr2util utility

...

win32vs2013 Microsoft Visual Studio 2013 projects (Windows)

avr2util Project directory for avr2util utility

...

src Source code for utilities

avr2util Source code for avr2util utility

...

Figure 1 : Directory structure

The root of this package, i.e. the directory which forms the root of tree of directories and files making up this
package, is referred to in the remainder of this document as (root).

The base directory of the Common Host Utilties, i.e. (root)/host/util-v1_13_0/ is referred to in the remainder of
this document as (util), or as $(util) in example shell commands.

Page 2Introduction
ad-ug-0055_v1_4.pdf

Common Host Utilities for Windows & Linux Release: 1.13.0
V1.4 - 12 Jun 2017

2 Building the Common Host Utilities
2.1 Building with Visual Studio 2012

A Microsoft Visual Studio 2012 solution (util)/proj/win32vs2012/util.sln is provided, containing projects for all of
the utilities. To build all of the utilities, use the "Batch Build" command in the Microsoft Visual Studio 2012 IDE.

Note
Building the utilities does not update the (util)/bin/x86/ or (util)/bin/x64/ folders.

2.2 Building with Visual Studio 2013
A Microsoft Visual Studio 2013 solution (util)/proj/win32vs2013/util.sln is provided, containing projects for all of
the utilities. To build all of the utilities, use the "Batch Build" command in the Microsoft Visual Studio 2013 IDE.

Note
Building the utilities does not update the (util)/bin/x86/ or (util)/bin/x64/ folders.

2.3 Building in Linux
To build all of the host utilities at once, excluding the SYSMON utility, enter the following shell commands in a
BASH shell:

$ cd $(util)/proj/linux
$ make clean all

Note
The SYSMON utility must be built separately, because it depends upon certain packages being installed in the
system. For further details, refer to Section 2.3.1.

A number of variables, passed on the make command line, and certain environmental variables can modify the
way the utilities are built:
• BIARCH

For most x86_64 Linux distributions, it is possible to build both a native (64-bit) executable and a 32-bit
executable. To do this, set BIARCH variable to yes on the make command-line. For example:
make BIARCH=yes clean all

Assuming that building is successful, the 32-bit executable has the suffix "32" whereas the native
executable has no suffix. For example, in the case of the INFO, the executes are named info (native
64-bit) and info32 (32-bit).

• CROSS_COMPILE
To build using a cross-compiler, set the CROSS_COMPILE environment variable to the prefix of the
toolchain binaries, ensuring that the toolchain is in the PATH. For example
export PATH=/path/to/toolchain:$PATH
export CROSS_COMPILE=arm-none-linux-gnueabi-
make clean all

• SYSROOT
Generally used only when cross-compiling, the value of SYSROOT points to the target system's root
filesystem. This may be required if the toolchain used for cross-compiling does not have the required
defaults for paths to system header files and libraries directories. For example:
export PATH=/path/to/toolchain:$PATH
export CROSS_COMPILE=arm-none-linux-gnueabi-

Page 3Building the Common Host Utilities
ad-ug-0055_v1_4.pdf

Common Host Utilities for Windows & Linux Release: 1.13.0
V1.4 - 12 Jun 2017

make SYSROOT=/path/to/arm-rootfs clean all

2.3.1 Building SYSMON in Linux

The Linux version of the SYSMON utility uses GTKMM-2.4 or GTKMM-3.0 for building its graphical user
interface. This package is present in recent Linux distributions, but may not be present in older Linux
distributions. For this reason, SYSMON is built separately from the other example applications. A non-exhaustive
list of the packages that are required to build SYSMON is as follows:

gtkmm24-devel or gtkmm30-devel cairomm-devel

libsigc++20-devel glibmm24-devel

pangomm-devel pkgconfig

To run SYSMON, the corresponding runtime packages are required:

gtkmm24 or gtkmm30 cairomm

libsigc++20 glibmm24

pangomm .

To build the "Release" configuration of SYSMON, enter the following commands in a BASH shell:

$ cd $(util)/proj/linux/sysmon
$ make CONFIG=Release clean all

The executable's path is then (util)/proj/linux/sysmon/bin/Release/sysmon.

Page 4Building the Common Host Utilities
ad-ug-0055_v1_4.pdf

Common Host Utilities for Windows & Linux Release: 1.13.0
V1.4 - 12 Jun 2017

3 Common Host Utilties
3.1 AVR2UTIL / AVR2UTIL-S utility

AVR2UTIL-S
This section also covers the AVR2UTIL-S utility. It is functionally identical to AVRUTIL except that the AVR2
API library, which provides USB communication functionality, is statically built into the program for simpler
deployment on Linux-based platforms.

Any example command line shown below that utilizes "avr2util" can be converted into a command line for
AVR2UTIL-S by replacing "avr2util" with "avr2util-s".

Command line
avr2util [option ...] build-info
avr2util [option ...] version
avr2util [option ...] product-id
avr2util [option ...] enter-service-mode
avr2util [option ...] exit-service-mode
avr2util [option ...] getclk clockgen-index
avr2util [option ...] setclk clockgen-index frequency
avr2util [option ...] getclknv clockgen-index
avr2util [option ...] setclknv clockgen-index frequency
avr2util [option ...] i2c-read-to-file bus device address count output-filename
avr2util [option ...] i2c-verify-from-file bus device address input-filename
avr2util [option ...] i2c-write-from-file bus device address input-filename
avr2util [option ...] i2c-read bus device address count
avr2util [option ...] i2c-write bus device address data-byte ...
avr2util [option ...] update-brdcfg config-filename
avr2util [option ...] verify-brdcfg config-filename
avr2util [option ...] save-brdcfg config-save-filename
avr2util [option ...] update-firmware firmware-filename
avr2util [option ...] verify-firmware firmware-filename
avr2util [option ...] save-firmware firmware-save-filename
avr2util [option ...] update-vpd vpd-filename
avr2util [option ...] verify-vpd vpd-filename
avr2util [option ...] save-vpd vpd-save-filename
avr2util [option ...] display-vpd
avr2util [option ...] display-vpd-raw
avr2util [option ...] display-sensors
avr2util [option ...] display-sensors-raw
avr2util [option ...] override-sensor sensor-index unscaled-value
avr2util [option ...] release-sensor sensor-index
avr2util [option ...] spi-info chip-index
avr2util [option ...] spi-raw chip-index read-count write-byte ...

The following options are accepted:

Page 5Common Host Utilties
ad-ug-0055_v1_4.pdf

Common Host Utilities for Windows & Linux Release: 1.13.0
V1.4 - 12 Jun 2017

-index <index> Specifies the index of the card to open (default 0).

-sn <#> Specifies the serial number of the card to open.

-usbcom <port> Specifies the USB serial port to open.

+verbose Displays commands sent to the microcontroller and its responses, for
debug purposes.

Exit codes

When AVR2UTIL successfully executes the requested command, the exit code is 0. When an error occurs, one
of the following exit codes is returned:

Symbolic name Value Meaning

EXIT_OK 0 Success.

EXIT_UNRECOGNIZED_COMMAND 1 Invalid command passed as 1st positional argument.

EXIT_INSUFFICIENT_ARGS 2 Not enough positional arguments following
command.

EXIT_INVALID_INDEX 3 Index value out of range or not a valid number.

EXIT_INVALID_FREQUENCY 4 Frequency value out of range or not a valid number.

EXIT_READ_FIRMWARE_FAILED 5 Failed to read firmware file.

EXIT_FIRMWARE_TOO_LARGE 6 Firmware file is too large for uC.

EXIT_ALLOCATION_FAILED 7 Failed to allocate buffer for firmware or board config.
data.

EXIT_VERIFY_FAILED 8 Errors found when verifying updated firmware or
board config. data.

EXIT_UNSUPPORTED_MODEL 9 Attempting to use this utility on an unsupported
model.

EXIT_BAD_COMMAND_LINE 10 Illegal basic command-line syntax.

EXIT_USB_NOT_SUPPORTED 11 Access to AVR2 uC via USB is currently not
supported for this OS.

EXIT_MODE_CHANGE_FAILED 12 AVR2 uC did not enter or exit Service Mode as
requested.

EXIT_WRONG_MODE 13 Device is in the wrong mode (Service Mode vs. non-
Service Mode) for the requested command.

EXIT_UNRECOGNIZED_PRODUCTID 14 Product ID not recognized; aborting as a precaution
against firmware corruption.

EXIT_INVALID_I2C_BUS 15 I2C bus number is not valid.

EXIT_INVALID_I2C_DEVICE 16 I2C device number is not valid.

EXIT_INVALID_I2C_ADDRESS 17 I2C address is not valid.

EXIT_I2C_READ_FILE_FAILED 18 Failed to read data for I2C write from file.

EXIT_I2C_WRITE_FILE_FAILED 19 Failed to write data from I2C read to file.

EXIT_INVALID_I2C_COUNT 20 I2C data byte count is not valid.
Table 2 : Exit codes for AVR2UTIL utility (continued on next page)

Page 6Common Host Utilties
ad-ug-0055_v1_4.pdf

Common Host Utilities for Windows & Linux Release: 1.13.0
V1.4 - 12 Jun 2017

Symbolic name Value Meaning

EXIT_INVALID_I2C_BYTEVAL 21 I2C data byte value is not valid.

EXIT_WRITE_FIRMWARE_FAILED 22 Failed to write firmware/VPD/board config to a file.

EXIT_INVALID_OVERRIDE 23 Sensor override value out of range or not a valid
number.

EXIT_INVALID_SPI_INDEX 24 SPI chip index is not valid.

EXIT_INVALID_SPI_READ_COUNT 25 SPI read byte count is not valid.

EXIT_INVALID_SPI_WRITE_COUNT 26 SPI write byte count is not valid.

EXIT_INVALID_SPI_BYTEVAL 27 SPI data byte value is not valid.

EXIT_DEVICE_OPEN_ERROR 100 Failed to open device.

EXIT_AVR2_STATUS_ERROR 101 Failed to get AVR2 uC status.

EXIT_AVR2_COMMAND_ERROR 102 Failed to send command to AVR2 uC.

EXIT_AVR2_BAD_STATUS 103 AVR2 uC returned nonzero status for operation.

EXIT_AVR2_SHORT_RESPONSE 104 AVR2 uC's response was too short (< 2 bytes) to be
valid.

EXIT_LIBRARY_NOT_FOUND 105 Could not find AVR2 or ADB3 shared library/DLL.

Table 2 : Exit codes for AVR2UTIL utility

Summary

This utility performs maintenance functions on the firmware of the microcontroller and associated data on the
following models in Alpha Data's range of reconfigurable computing hardware:
• ADM-XRC-KU1

• ADM-PCIE-8V3

• ADM-PCIE-8K5

AVR2UTIL supports the following use-cases:
• Checking the version of the microcontroller firmware.

• Programming the clock generator on a board in a nonvolatile manner, so that it powers up providing a
user-specified frequency at a given clock input on the FPGA.

• Upgrading the microcontroller firmware and its associated data.

Description

AVR2UTIL can communicate with the microcontroller in one of two ways:
(1) Via PCI Express, using the ADB3 Driver. This requires the ADB3 Driver to be installed and running. PCIe

communication mode is the default, and will be used unless the -usbcom option is passed on the
command line.
Examples:
avr2util version

avr2util -index 1 version

When communicating via PCI Express, AVR2UTIL must be run from an elevated command prompt (i.e.
one that has been launched as Administrator, in Windows) or root (in Linux).

(2) Via a USB serial connection. This requires the microcontroller to be connected to the host system via a
USB cable. USB communication mode is selected by passing the -usbcom option on the command line,
followed by the device name.

Page 7Common Host Utilties
ad-ug-0055_v1_4.pdf

Common Host Utilities for Windows & Linux Release: 1.13.0
V1.4 - 12 Jun 2017

• In Windows 10, the built-in USB serial communication class driver should automatically be used. For
Windows Vista, 7 and 8/8.1, a .inf file is available from Alpha Data in the event that Windows fails to
locate a suitable driver; this merely instructs Windows to use its built-in USB serial communication
class driver.
The device name that follows the -usbcom option is of the form COMn where n is a number such
as 1, 2, 3, ... etc.
Example:
avr2util -usbcom COM3 version

• In Linux, the built-in USB serial communication class driver is used, and the device name that
follows the -usbcom option is of the form /dev/ttyACMn where n is a number such as 0, 1, 2, ... etc.
Example:
avr2util -usbcom /dev/ttyACM0 version

When communicating with the microcontroller via USB, AVR2UTIL need not be run from an elevated
command prompt (Windows) or as root (Linux).
NOTE: Currently, the BootMan2 firmware, which executes when the microcontroller is in Service Mode,
does not support USB communication. This means that if the microcontroller is in Service Mode, no USB
serial communication device will be visible to the operating system on the host machine. In order to permit
USB communication with the microcontroller, please ensure that it is not in Service Mode when using
AVR2UTIL.

The AVR2UTIL utility currently has the following commands:
• build-info

Displays the version of AVR2UTIL itself and information about how it was built.

• version
Displays the version of the microcontroller firmware.

• product-id
Displays the Product ID of the firmware.

• enter-service-mode
Commands the microcontroller to enter service mode.

• exit-service-mode
Commands the microcontroller to exit service mode.

• getclk <clockgen-index>

Gets the (volatile) current output frequency for the particular clock generator selected by <clockgen-index>
.

• setclk <clockgen-index> <frequency>

Sets the (volatile) current output frequency for the particular clock generator selected by <clockgen-index>
to <frequency> Hz.

• getclknv <clockgen-index>

Gets the nonvolatile override frequency for the particular clock generator selected by <clockgen-index>.

• setclknv <clockgen-index> <frequency>

Sets the nonvolatile override frequency for the particular clock generator selected by <clockgen-index> to
<frequency> Hz.

• i2c-read-to-file <bus> <device> <address> <count> <output filename>

Reads data from a nonvolatile memory device on a particular I2C bus and saves it into a file.

• i2c-verify-with-file <bus> <device> <address> <input filename>

Verifies data in a nonvolatile memory device on a particular I2C bus against the contents of a file.

• i2c-write-to-file <bus> <device> <address> <input filename>

Page 8Common Host Utilties
ad-ug-0055_v1_4.pdf

Common Host Utilities for Windows & Linux Release: 1.13.0
V1.4 - 12 Jun 2017

Writes the contents of a file to a nonvolatile memory device on a particular I2C bus.
NOTE: This command should be used only under guidance from Alpha Data, because incorrect usage can
corrupt board control devices.

• i2c-read <bus> <device> <address> <count>

Performs an individual I2C read of a device on a particular I2C bus, displaying the byte(s) read.

• i2c-write <bus> <device> <address> <data byte> ...
Performs an individual I2C write of a one or more bytes to a device on a particular I2C bus.
NOTE: This command should be used only under guidance from Alpha Data, because incorrect usage can
corrupt board control devices.

• update-brdcfg <brdcfg-filename>

Writes the board-specific configuration area used by the microcontroller firmware with the contents of the
file <brdcfg-filename>.
NOTE: This command should be used only under guidance from Alpha Data, because incorrect usage can
corrupt data required by the microcontroller's firmware.

• verify-brdcfg <brdcfg-filename>

Verifies the board-specific configuration area used by the microcontroller firmware against the contents of
the file <brdcfg-filename>.

• save-brdcfg <brdcfg-save-filename>

Reads the board-specific configuration area used by the microcontroller firmware from the board and
saves it into the file <brdcfg-save-filename>.

• update-firmware <firmware-filename>

Writes the firmware of the microcontroller with the contents of the file <firmware-filename>.
NOTE: This command should be used only under guidance from Alpha Data, because incorrect usage can
corrupt the microcontroller's firmware.

• verify-firmware <firmware-filename>

Verifies the firmware of the microcontroller against the contents of the file <firmware-filename>.

• save-firmware <firmware-filename>

Reads the firmware of the microcontroller from the board and saves it into the file <
firmware-save-filename>.

• update-vpd <vpd-filename>

Writes the Vital Product Data (VPD) for the board with the contents of the file <vpd-filename>.
NOTE: This command should be used only under guidance from Alpha Data, because incorrect usage can
corrupt the board's VPD.

• verify-vpd <vpd-filename>

Verifies the Vital Product Data (VPD) for the board against the contents of the file <vpd-filename>.

• save-vpd <vpd-filename>

Reads the Vital Product Data (VPD) from the board and saves it into the file <vpd-save-filename>.

• display-vpd
Reads the Vital Product Data (VPD) from the board and displays it in human-readable form.

• display-vpd-raw
Reads the Vital Product Data (VPD) from the board and displays it as raw bytes.

• display-sensors
Reads the Sensor Page from the board and displays it in human-readable form.

• display-sensors-raw
Reads the Sensor Page from the board and displays it as raw bytes.

Page 9Common Host Utilties
ad-ug-0055_v1_4.pdf

Common Host Utilities for Windows & Linux Release: 1.13.0
V1.4 - 12 Jun 2017

• override-sensor <sensor-index> <unscaled-value>

Facilitates firmware testing by Alpha Data; permits a particular value to be injected into a sensor, overriding
its natural value.

• release-sensor <sensor-index>

Facilitates firmware testing by Alpha Data; undoes the override-sensor command, returning a sensor to
normal operation.

• spi-info <chip-index>

Displays the Serial Flash Discoverable Parameter (SFDP) information for a given SPI Flash chip attached
to the microcontroller.

• spi-raw <chip-index> <read-count> <write-byte> ...
Performs a sequence of writes to (using the specified bytes of write data) and/or reads from a given SPI
Flash chip attached to the microcontroller, and displays the bytes read.
NOTE: This command is intended for use by Alpha Data for test purposes.

3.1.1 Available commands

3.1.1.1 build-info command

The build-info command returns the version number of AVR2UTIL itself along with some information about how
it was built:
• Whether dynamically or statically linked to the AVR2 API library (used when communicating with the uC via

a USB serial connection), and the version of the AVR2 API header files.

• Whether dynamically or statically linked to the ADB3 API library (used when communicating with the uC via
the PCIe host interface of a reconfigurable computing card), and the version of the ADB3 API header files.

No communication with the microcontroller on any board is performed, so none of the options do anything when
used in conjunction with this command. The only useful form of this command is therefore:

 avr2util build-info

3.1.1.2 version command

The version command displays the version of the microcontroller firmware in the form a.b.c.d. This command
can be used as a further check in order to verify that a previous update-firmware command was successful.

If the microcontroller is in Service Mode, this gives the version of the Boot Manager II (BootMan2) firmware;
otherwise, it gives the version of the Board Manager II (BoardMan2) firmware.

The general form of this command is:

 avr2util [option ...] version

Usage example 1 - The following two commands are equivalent and display the microcontroller firmware version
of the first device in the system (according to system-defined PCIe enumeration order):

 avr2util version
 avr2util -index 0 version

Usage example 2 - Display the microcontroller firmware version of the device connected by a USB cable and
appearing as COM3:

 avr2util -usbcom COM3 version

3.1.1.3 product-id command

Displays the Product ID of the firmware. The following known Product IDs exist:
• 1320 (0x528), 720 (0x2D0) or 184320 (0x2D000) => Boot Manager II (BootMan2)

Page 10Common Host Utilties
ad-ug-0055_v1_4.pdf

Common Host Utilities for Windows & Linux Release: 1.13.0
V1.4 - 12 Jun 2017

• 1321 (0x529), 721 (0x2D1) or 184321 (0x2D001) => Board Manager II (BoardMan2)

This provides a way to determine whether or not the microcontroller is in Service Mode; if the Product ID
corresponds to BootMan2, the microcontroller is in Service Mode.

The general form of this command is:

 avr2util [option ...] product-id

Usage example 1 - Display the microcontroller's Product ID for the second device in the system (according to
system-defined PCIe enumeration order):

 avr2util -index 1 version

Usage example 2 - Display the microcontroller's Product ID for the device connected by a USB cable and
appearing as COM3:

 avr2util -usbcom COM3 version

3.1.1.4 enter-service-mode command

Commands the microcontroller to enter service mode; if already in Service Mode, this command does nothing.
The microcontroller remains in Service Mode until commanded to exit Service Mode or until a power cycle
occurs.

NOTE: As of writing, the BootMan2 firmware does not support USB communication. If a command to enter
Service Mode is sent via a USB serial connection and BootMan2 does not support USB communication, it will
immediately exit Service Mode in order to avoid becoming "stuck" in Service Mode.

The general form of this command is:

 avr2util [option ...] enter-service-mode

Usage example 1 - Command the microcontroller of the second device in the system (according to
system-defined PCIe enumeration order) to enter service mode:

 avr2util -index 1 enter-service-mode

3.1.1.5 exit-service-mode command

Commands the microcontroller to exit service mode; if not in Service Mode, this command does nothing.

The general form of this command is:

 avr2util [option ...] exit-service-mode

Usage example 1 - The following two commands are equivalent and command the microcontroller of the first
device in the system (according to system-defined PCIe enumeration order) to exit service mode:

 avr2util exit-service-mode
 avr2util -index 0 exit-service-mode

3.1.1.6 getclk command

The getclk command returns the current frequency, in Hz, for a particular clock generator.

This command requires the microcontroller not to be in Service Mode in order to succeed. See 3.1.2 below.

The general form of this command is:

 avr2util [option ...] getclk <clockgen-index>

For the correspondence of <clockgen-index> to physical clock nets, refer to Appendix A.

Usage example 1 - For the second device in the system (according to system-defined PCIe enumeration order),
display the current frequency of clock output 1:

Page 11Common Host Utilties
ad-ug-0055_v1_4.pdf

Common Host Utilities for Windows & Linux Release: 1.13.0
V1.4 - 12 Jun 2017

 avr2util -index 1 getclk 1

Usage example 2 - For the device connected by a USB cable and appearing as COM3, display the current
frequency of clock output 3:

 avr2util -usbcom COM3 getclk 3

3.1.1.7 setclk command

The setclk command sets the current frequency, in Hz, for a particular clock generator, effective immediately.
The operation performed is volatile, and a power cycle returns all clock generators to their default frequencies.

This command requires the microcontroller not to be in Service Mode in order to succeed. See 3.1.2 below.

The general form of this command is:

 avr2util [option ...] setclk <clockgen-index> <frequency>

For the correspondence of <clockgen-index> to physical clock nets, refer to Appendix A. Unlike the setclknv
command, the setclk command can reprogram all clock outputs (albeit in a volatile way), even those whose
nonvolatile frequency cannot be overridden.

Usage example 1 - For the first device in the system (according to system-defined PCIe enumeration order), set
the current frequency of clock output 1 to 250 MHz:

 avr2util setclk 1 250000000

3.1.1.8 getclknv command

The getclknv command returns the current nonvolatile override frequency, in Hz, for a particular clock generator.

At power-on, the microcontroller inspects each clock generator's nonvolatile override frequency in turn. If set to a
value other than 0 or 4294967295, it programs the clock generator to output a clock of that frequency. Otherwise,
the clock generator remains at its factory default frequency.

This command requires the microcontroller not to be in Service Mode in order to succeed. See 3.1.2 below.

The general form of this command is:

 avr2util [option ...] getclknv <clockgen-index>

For the correspondence of <clockgen-index> to physical clock nets, refer to Appendix A.

Usage example 1 - For the second device in the system (according to system-defined PCIe enumeration order),
display the override frequency for clock output 1:

 avr2util -index 1 getclknv 1

Usage example 2 - For the device connected by a USB cable and appearing as COM3, display the override
frequency for clock output 3:

 avr2util -usbcom COM3 getclknv 3

3.1.1.9 setclknv command

The setclknv command sets the nonvolatile override frequency, in Hz, for a particular clock generator. This
command does not cause the specified clock generator's actual output frequency to change immediately.

At power-on, the microcontroller inspects each clock generator's nonvolatile override frequency in turn. If set to a
value other than 0 or 4294967295, it programs the clock generator to output a clock of that frequency. Otherwise,
the clock generator remains at its factory default frequency.

To unset the nonvolatile override frequency for a particular clock generator, set it to 0 or 0xFFFFFFFF.

This command requires the microcontroller not to be in Service Mode in order to succeed. See 3.1.2 below.

Page 12Common Host Utilties
ad-ug-0055_v1_4.pdf

Common Host Utilities for Windows & Linux Release: 1.13.0
V1.4 - 12 Jun 2017

The general form of this command is:

 avr2util [option ...] setclknv <clockgen-index> <frequency>

For the correspondence of <clockgen-index> to physical clock nets, refer to Appendix A.

Usage example 1 - For the first device in the system (according to system-defined PCIe enumeration order), set
the override frequency for clock output 1 to 250 MHz:

 avr2util setclknv 1 250000000

Usage example 2 - For the device connected by a USB cable and appearing as COM3, unset (remove) the
override frequency for clock output 3:

 avr2util -usbcom COM3 setclknv 3 0xFFFFFFFF

3.1.1.10 i2c-read-to-file command

The i2c-read-to-file command is primarily for in-house use by Alpha Data, but may also be used by end users
under guidance from Alpha Data support personnel. This command performs multiple single-byte reads of an I2C
device (usually a PROM), saving the data read into a file (usually with a .bin extension).

The first two arguments after the command identify the I2C bus number and I2C device (on that bus),
respectively. The third argument is the address within the I2C device at which to begin reading. The fourth
argument is the number of consecutively-addressed bytes to read, whilst the fifth argument is the filename into
which to save the data.

This command requires the microcontroller not to be in Service Mode in order to succeed. See 3.1.2 below.

The general form of this command is:

avr2util [option ...] i2c-read-to-file <bus> <device> <address> <count> <save-filename>

Usage example 1 - For the first device in the system (according to system-defined PCIe enumeration order), read
256 bytes from I2C bus 0, device 0x57 starting at address 0 within the device and save the data into the file
save_file.bin:

 avr2util i2c-read-to-file 0 0x57 0 256 /path/to/save_file.bin

3.1.1.11 i2c-verify-with-file command

The i2c-verify-with-file command is primarily for in-house use by Alpha Data, but may also be used by end
users under guidance from Alpha Data support personnel. This command performs multiple single-byte reads of
an I2C device (usually a PROM), and verifies that the data read matches the contents of a file (usually with a .bin
extension).

The first two arguments after the command identify the I2C bus number and I2C device (on that bus),
respectively. The third argument is the address within the I2C device at which to begin verifying. The fourth
argument is the name of the file against which the data read is compared.

This command requires the microcontroller not to be in Service Mode in order to succeed. See 3.1.2 below.

The general form of this command is:

avr2util [option ...] i2c-verify-with-file <bus> <device> <address> <verify-filename>

Usage example 1 - For the first device in the system (according to system-defined PCIe enumeration order),
verify that the data in I2C bus 0, device 0x57 starting at address 0 within the device matches the contents of the
file verify_file.bin:

 avr2util i2c-verify-with-file 0 0x57 0 /path/to/verify_file.bin

Page 13Common Host Utilties
ad-ug-0055_v1_4.pdf

Common Host Utilities for Windows & Linux Release: 1.13.0
V1.4 - 12 Jun 2017

3.1.1.12 i2c-write-from-file command
The i2c-write-from-file command is primarily for in-house use by Alpha Data, but may also be used by end
users under guidance from Alpha Data support personnel. This command performs multiple single-byte writes to
an I2C device (usually a PROM), obtaining the data to be written from a file (usually with a .bin extension).

The first two arguments after the command identify the I2C bus number and I2C device (on that bus),
respectively. The third argument is the address within the I2C device at which to begin writing. The fourth
argument is the name of the file containing the data to be written.

This command requires the microcontroller not to be in Service Mode in order to succeed. See 3.1.2 below.

The general form of this command is:

avr2util [option ...] i2c-write-from-file <bus> <device> <address> <write-filename>

Usage example 1 - For the first device in the system (according to system-defined PCIe enumeration order),
write I2C device 0x57 on bus 0, starting at address 0 within the device, with the contents of the file data_file.bin:

 avr2util i2c-write-from-file 0 0x57 0 /path/to/data_file.bin

3.1.1.13 i2c-read command

The i2c-read command is primarily for in-house use by Alpha Data, but may also be used by end users under
guidance from Alpha Data support personnel. This command performs an individual read of one or more bytes
from an I2C device, displaying the bytes read.

The first two arguments after the command identify the I2C bus number and I2C device (on that bus),
respectively. The third argument is the address within the I2C device at which to perform a read. The fourth
argument is the length of the I2C read, in bytes.

This command requires the microcontroller not to be in Service Mode in order to succeed. See 3.1.2 below.

The general form of this command is:

 avr2util [option ...] i2c-read <bus> <device> <address> <count>

Usage example 1 - For the first device in the system (according to system-defined PCIe enumeration order),
perform a 4-byte read from I2C bus 1, device 0x30 at address 0x10 within the device:

 avr2util i2c-read 1 0x30 0x10 4

3.1.1.14 i2c-write command

The i2c-write command is primarily for in-house use by Alpha Data, but may also be used by end users under
guidance from Alpha Data support personnel. This command performs an individual write of one or more bytes to
an I2C device, with the bytes to be written obtained from the command-line.

The first two arguments after the command identify the I2C bus number and I2C device (on that bus),
respectively. The third argument is the address within the I2C device at which to perform a write. The fourth and
later arguments are the bytes written to the I2C device.

This command requires the microcontroller not to be in Service Mode in order to succeed. See 3.1.2 below.

The general form of this command is:

 avr2util [option ...] i2c-write <bus> <device> <address> <data byte> ...

Usage example 1 - For the first device in the system (according to system-defined PCIe enumeration order),
perform a 4-byte write to I2C bus 1, device 0x30 at address 0x10 within the device, where the individual bytes
written are 0x12, 0x34, 0x56 and 0x78:

 avr2util i2c-write 1 0x30 0x10 0x12 0x34 0x56 0x78

Page 14Common Host Utilties
ad-ug-0055_v1_4.pdf

Common Host Utilities for Windows & Linux Release: 1.13.0
V1.4 - 12 Jun 2017

3.1.1.15 update-brdcfg command
NOTE: This command should be used only under guidance from Alpha Data, because incorrect usage can
corrupt data required by the microcontroller's firmware.

The update-brdcfg command writes a block of data required by the microcontroller firmware with the contents of
the specified file (usually with a .bin extension).

This command requires the microcontroller to be in Service Mode, at least temporarily. See 3.1.3 below.

The general form of this command is:

 avr2util [option ...] update-brdcfg <brdcfg-filename>

Usage example 1 - For the first device in the system (according to system-defined PCIe enumeration order),
write the board configuration area with the contents of a file:

 avr2util update-brdcfg /path/to/brdcfg_file.bin

3.1.1.16 verify-brdcfg command

The verify-brdcfg command verifies that the block of data required by the microcontroller firmware matches the
contents of the specified file (usually with a .bin extension).

This command requires the microcontroller to be in Service Mode, at least temporarily. See 3.1.3 below.

The general form of this command is:

 avr2util [option ...] verify-brdcfg <brdcfg-filename>

Usage example 1 - For the first device in the system (according to system-defined PCIe enumeration order),
verify that the board configuration area matches the contents of a file:

 avr2util verify-brdcfg /path/to/brdcfg_file.bin

3.1.1.17 save-brdcfg command

The save-brdcfg command reads the block of data required by the microcontroller, from the nonvolatile memory
in a board in which it resides, and saves it into the specified file (usually with a .bin extension). Before updating
the board configuration of a board using the update-brdcfg command, save-brdcfg in a board can be used to
take a copy of the existing board configuration data, should it be necessary to revert the board coniguration data.

This command requires the microcontroller to be in Service Mode, at least temporarily. See 3.1.3 below.

The general form of this command is:

 avr2util [option ...] save-brdcfg <brdcfg-save-filename>

Usage example 1 - For the first device in the system (according to system-defined PCIe enumeration order),
save its board configuration data into a file:

 avr2util save-brdcfg /path/to/brdcfg_save_file.bin

3.1.1.18 update-firmware command

NOTE: This command should be used only under guidance from Alpha Data, because incorrect usage can
corrupt the microcontroller's firmware.

The update-brdcfg command writes the firmware of the microcontroller with the contents of the specified file
(usually with a .bin extension).

This command requires the microcontroller to be in Service Mode, at least temporarily. See 3.1.3 below.

The general form of this command is:

 avr2util [option ...] update-firmware <firmware-filename>

Usage example 1 - For the first device in the system (according to system-defined PCIe enumeration order),

Page 15Common Host Utilties
ad-ug-0055_v1_4.pdf

Common Host Utilities for Windows & Linux Release: 1.13.0
V1.4 - 12 Jun 2017

write the BoardMan2 firmware with the contents of a file:

 avr2util update-firmware /path/to/firmware_file.bin

3.1.1.19 verify-firmware command

The verify-firmware command verifes the firmware of the microcontroller against the contents of the specified
file (usually with a .bin extension).

This command requires the microcontroller to be in Service Mode, at least temporarily. See 3.1.3 below.

The general form of this command is:

 avr2util [option ...] verify-firmware <firmware-filename>

Usage example 1 - For the first device in the system (according to system-defined PCIe enumeration order),
verify that the BoardMan2 firmware matches the contents of a file:

 avr2util verify-firmware /path/to/firmware_file.bin

3.1.1.20 save-firmware command

The save-firmware command reads the firmware of the microcontroller, from the nonvolatile memory in a board
in which it resides, and saves it into the specified file (usually with a .bin extension). Before updating the
firmware of a board using the update-firmware command, save-firmware can be used to take a copy of the
existing firmware, should it be necessary to revert the firmware.

This command requires the microcontroller to be in Service Mode, at least temporarily. See 3.1.3 below.

The general form of this command is:

 avr2util [option ...] save-firmware <firmware-save-filename>

Usage example 1 - For the first device in the system (according to system-defined PCIe enumeration order),
save the BoardMan2 firmware into a file:

 avr2util save-firmware /path/to/firmware_save_file.bin

3.1.1.21 update-vpd command

NOTE: This command should be used only under guidance from Alpha Data, because incorrect usage can
corrupt the board's VPD.

Writes the Vital Product Data (VPD) with the contents of the specified file (usually with a .bin extension).

This command requires the microcontroller to be in Service Mode, at least temporarily. See 3.1.3 below.

The general form of this command is:

 avr2util [option ...] update-vpd <vpd-filename>

Usage example 1 - For the first device in the system (according to system-defined PCIe enumeration order),
write the VPD area with the contents of a file:

 avr2util update-vpd /path/to/vpd_file.bin

3.1.1.22 verify-vpd command

Verifies the Vital Product Data (VPD) against the contents of the specified file (usually with a .bin extension).

This command requires the microcontroller to be in Service Mode, at least temporarily. See 3.1.3 below.

The general form of this command is:

 avr2util [option ...] verify-vpd <vpd-filename>

Usage example 1 - For the first device in the system (according to system-defined PCIe enumeration order),

Page 16Common Host Utilties
ad-ug-0055_v1_4.pdf

Common Host Utilities for Windows & Linux Release: 1.13.0
V1.4 - 12 Jun 2017

verify that the VPD area matches the contents of a file:

 avr2util verify-vpd /path/to/vpd_file.bin

3.1.1.23 save-vpd command

The save-vpd command reads the Vital Product Data (VPD), from the nonvolatile memory in a board in which it
resides, and saves it into the specified file (usually with a .bin extension).

This command requires the microcontroller to be in Service Mode, at least temporarily. See 3.1.3 below. Before
updating the VPD of a board using the update-vpd command, save-vpd can be used to take a copy of the
existing VPD, should it be necessary to revert the VPD.

The general form of this command is:

 avr2util [option ...] save-vpd <vpd-save-filename>

Usage example 1 - For the first device in the system (according to system-defined PCIe enumeration order),
save the VPD area into a file:

 avr2util save-vpd /path/to/vpd_save_file.bin

3.1.1.24 display-vpd command

The display-vpd command reads the Vital Product Data (VPD) area, from the nonvolatile memory in a board in
which it resides, and displays it in human-readable form.

This command works whether or not the microcontroller is in Service Mode.

The general form of this command is:

 avr2util [option ...] display-vpd

Usage example 1 - For the first device in the system (according to system-defined PCIe enumeration order),
display the VPD in human-readable form:

 avr2util display-vpd

3.1.1.25 display-vpd-raw command

The display-vpd command reads the Vital Product Data (VPD) area, from the nonvolatile memory in a board in
which it resides, and displays it as raw bytes.

This command works whether or not the microcontroller is in Service Mode.

The general form of this command is:

 avr2util [option ...] display-vpd-raw

Usage example 1 - For the second device in the system (according to system-defined PCIe enumeration order),
display the VPD as raw bytes:

 avr2util -index 1 display-vpd-raw

3.1.1.26 display-sensors command

The display-sensors command requests the Sensor Page from the microcontroller and displays it in
human-readable form.

This command requires the microcontroller not to be in Service Mode, at least temporarily, in order to succeed.
See 3.1.2 below.

The general form of this command is:

 avr2util [option ...] display-sensors

Page 17Common Host Utilties
ad-ug-0055_v1_4.pdf

Common Host Utilities for Windows & Linux Release: 1.13.0
V1.4 - 12 Jun 2017

Usage example 1 - For board accessible via USB serial device /dev/ttyACM1 (a Linux device name), display the
Sensor Page in human-readable form:

 avr2util -usbcom /dev/ttyACM1 display-sensors

3.1.1.27 display-sensors-raw command

The display-sensors-raw command requests the Sensor Page from the microcontroller and displays it as raw
bytes.

This command requires the microcontroller not to be in Service Mode, at least temporarily, in order to succeed.
See 3.1.2 below.

The general form of this command is:

 avr2util [option ...] display-sensors-raw

Usage example 1 - For board accessible via USB serial device /dev/ttyACM1 (a Linux device name), display the
Sensor Page as raw bytes:

 avr2util -usbcom /dev/ttyACM1 display-sensors-raw

3.1.1.28 override-sensor command

The override-sensor command facilitates firmware testing by Alpha Data. It injects a value into a particular
sensor, overriding its natural value. The sensor remains overridden until at least one of the following occurs:
• A power cycle, including removal and reapplication of standby power.

• The microcontroller enters and exits Service Mode, either using the enter-service-mode and
exit-service-mode commands or by toggling the physical Service Mode switch.

• The release-sensor command is used to explicitly release the sensor.

This command requires the microcontroller not to be in Service Mode, at least temporarily, in order to succeed.
See 3.1.2 below.

The first argument after the command identifies the sensor to be overridden, and the second argument is the
sensor-specific value to be injected.

The general form of this command is:

 avr2util [option ...] override-sensor <sensor index> <unscaled value>

Usage example 1 - For the board accessible via USB serial device COM5 (a Windows device name), inject a
value of 0 into sensor 11:

 avr2util -usbcom COM5 override-sensor 11 0

3.1.1.29 release-sensor command

The release-sensor command facilitates firmware testing by Alpha Data. It undoes a previous override-sensor
command, returning a particular sensor to normal operation.

This command requires the microcontroller not to be in Service Mode, at least temporarily, in order to succeed.
See 3.1.2 below.

The single argument after the command identifies the sensor which is to return to normal operation (i.e. no longer
overridden).

The general form of this command is:

 avr2util [option ...] release-sensor <sensor index>

Usage example 1 - For the board accessible via USB serial device COM5 (a Windows device name), return
sensor 11 to normal operation.

Page 18Common Host Utilties
ad-ug-0055_v1_4.pdf

Common Host Utilities for Windows & Linux Release: 1.13.0
V1.4 - 12 Jun 2017

 avr2util -usbcom COM5 release-sensor 11

3.1.1.30 spi-info command

The spi-info reads the Serial Flash Discoverable Parameters (SFPD) information from a SPI Flash chip that is
accessible from the microcontroller, and displays it in human-readable form.

This command requires the microcontroller not to be in Service Mode, at least temporarily, in order to succeed.
See 3.1.2 below.

The single argument after the command is the zero-based index of the SPI Flash chip whose SFDP information
is to be displayed.

The general form of this command is:

 avr2util [option ...] spi-info <chip index>

Usage example 1 - For the board accessible via USB serial device COM5 (a Windows device name), display the
SFDP information for the 2nd SPI Flash chip (index 1).

 avr2util -usbcom COM5 spi-info 1

3.1.1.31 spi-raw command

The spi-raw command is primarily for in-house use by Alpha Data for test purposes. This command performs a
transaction consisting of zero or more bytes written to an SPI Flash chip followed by zero or more bytes read
from the same SPI Flash chip, with the bytes to be written obtained from the command-line. The bytes read are
displayed in raw form, i.e. as individual byte values.

The first argument after the command is the zero-based index of the SPI Flash chip. The second argument is the
number of bytes read, and the third and later arguments are the bytes written to the SPI Flash chip.

This command requires the microcontroller not to be in Service Mode in order to succeed. See 3.1.2 below.

The general form of this command is:

 avr2util [option ...] spi-raw <chip index> <read count> <write byte> ...

Usage example 1 - For the first device in the system (according to system-defined PCIe enumeration order), read
and display (in the form of raw bytes) the 8-byte SFDP header from the first SPI Flash chip (index 0). JEDEC
document JESD216B describes the SFDP mechanism in SPI Flash chips.

 avr2util spi-raw 0 8 0x5A 0 0 0 0

3.1.2 Commands requiring non-Service Mode

The following commands can only perform their main operation while not in Service Mode:
• getclk, getclknv, setclk, setclknv
• i2c-read-to-file, i2c-verify-with-file, i2c-write-from-file
• i2c-read, i2c-write
• display-sensors, display-sensors-raw
• override-sensor, release-sensor

If communicating with the microcontroller via PCIe and it is in Service Mode, these commands temporarily switch
the microcontroller out of Service Mode, perform the necessary operations and then switch the microcontroller
back into Service Mode.

3.1.3 Commands requiring Service Mode

The following commands can only perform their main operation while in Service Mode:
• update-brdcfg, save-brdcfg, verify-brdcfg

Page 19Common Host Utilties
ad-ug-0055_v1_4.pdf

Common Host Utilities for Windows & Linux Release: 1.13.0
V1.4 - 12 Jun 2017

• update-firmware, save-firmware, verify-firmware
• update-vpd, save-vpd, verify-vpd

If communicating with the microcontroller in PCIe mode and it is not in Service Mode, these commands
temporarily switch the microcontroller into Service Mode, perform the necessary operations, and then switch the
microcontroller out of Service Mode.

If communicating with the microcontroller in USB mode, these commands will not attempt to switch the
microcontroller into Service Mode. Instead, they abort with an error message, returning exit code
EXIT_WRONG_MODE (13). This is because a switch to Service Mode reboots the microcontroller and causes
the USB serial communication device to disappear (from the point of view of the host). As of writing, the
BootMan2 firmware, which executes when the microcontroller is in Service Mode, does not support USB
communication.

Page 20Common Host Utilties
ad-ug-0055_v1_4.pdf

Common Host Utilities for Windows & Linux Release: 1.13.0
V1.4 - 12 Jun 2017

3.2 BITSTRIP utility

Command line
bitstrip [option ...] <input .bit filename>

where the following options are accepted:

-o <output filename> Specifies the name of the file into which the SelectMap data is written.

Summary

Reads an FPGA bitstream (.bit) file, displays certain information from the header, and optionally writes the
SelectMap data (without the header) to another file.

Description

To simply display information from a .bit file's header, use

bitstrip <input .bit filename>

To display information from a .bit file's header and write the SelectMap data to another file, use

bitstrip -o <output filename> <input .bit filename>

The data written to <output filename> is suitable for sending to a target FPGA using
ADMXRC3_ConfigureFromBuffer .

Exit codes

When BITSTRIP runs successfully, the exit code is 0. When an error occurs, one of the following exit codes is
returned:

Symbolic name Value Meaning

EXIT_OK 0 Success.

EXIT_BAD_COMMAND_LINE 1 Illegal basic command-line syntax.

EXIT_INSUFFICIENT_ARGS 2 Not enough positional arguments.

EXIT_LOAD_BIT_ERROR 3 Failed to read the input .bit file.

EXIT_SAVE_BIN_ERROR 4 Failed to write the output file.

Table 3 : Exit codes for BITSTRIP utility

Page 21Common Host Utilties
ad-ug-0055_v1_4.pdf



Common Host Utilities for Windows & Linux Release: 1.13.0
V1.4 - 12 Jun 2017

3.3 DMADUMP utility

Command line
dmadump [option ...] fb channel address [n] [fill value]
dmadump [option ...] fw channel address [n] [fill value]
dmadump [option ...] fd channel address [n] [fill value]
dmadump [option ...] fq channel address [n] [fill value]
dmadump [option ...] rb channel address [n]
dmadump [option ...] rw channel address [n]
dmadump [option ...] rd channel address [n]
dmadump [option ...] rq channel address [n]
dmadump [option ...] wb channel address [n] [data ...]
dmadump [option ...] ww channel address [n] [data ...]
dmadump [option ...] wd channel address [n] [data ...]
dmadump [option ...] wq channel address [n] [data ...]

where

channel is the index of the DMA engine / DMA channel to use.

address is the local address (generally an OCP address) at which to begin reading
or writing.

n is the number of bytes to read or write (optional).

fill value is an optional fill value, valid for fill commands.

data is an optional data item, valid for write commands.

and the following options are accepted:

-index <index> Specifies the index of the card to open (default 0).

-sn <#> Specifies the serial number of the card to open.

-be Causes the data to be read or written to be treated as little-endian
(default).

+be Causes the data to be read or written to be treated as big-endian.

-hex Causes write values to be interpreted as decimal unless prefixed by '0x'
(default).

+hex Causes write values to be interpreted as hexadecimal always.

DMADUMP opens a reconfigurable computing device with intent to modify its state, and for this reason it must be
run in an elevated command prompt (i.e. as Administrator in Windows) or as root (in Linux).

Summary

Displays data read from a target FPGA using a DMA engine, or writes data to a target FPGA using a DMA
engine.

Description

The DMADUMP utility operates in one of three modes:
• Reading data from a target FPGA using a DMA engine and displaying it; for this mode, use the rb, rw, rd

or rq commands.

• Writing data to a target FPGA using a DMA engine; for this mode, use the wb, ww, wd or wq commands.

• Filling an address region in a target FPGA using a DMA engine with a particular value; for this mode, use
the fb, fw, fd or fq commands.

Page 22Common Host Utilties
ad-ug-0055_v1_4.pdf

Common Host Utilities for Windows & Linux Release: 1.13.0
V1.4 - 12 Jun 2017

The option +be may be specified, before the command. This causes the DMADUMP utility to use big-endian byte
ordering convention as opposed to little-endian (the default).

Read commands

The read command implies the word width for displaying data:
• rb

Byte (8-bit) reads; data is displayed as bytes.

• rw
Word (16-bit) reads; data is displayed as words.

• rd
Doubleword (32-bit) reads; data is displayed as doublewords.

• rq
Quadword (64-bit) reads; data is displayed as quadwords.

After the read command, a DMA channel/engine index and an address must be supplied, in that order. This
specifies the DMA engine to use, and where in that DMA engine's address space to begin reading data. An
optional length parameter, in bytes, can also be supplied. If omitted, the length is equal to the word width implied
by the read command. If present, the length parameter specifies how many bytes to read and display. The length
should be an integer multiple of the width; if not, the length is rounded down.

Write commands

The write command implies the word width to be used when performing writes:
• wb

Data is written as bytes (8-bit).

• ww
Data is written as words (16-bit).

• wd
Data is written as doublewords (32-bit).

• wq
Data is written as quadwords (64-bit).

After the write command, a DMA channel/engine index and an address must be supplied, in that order. This
specifies which DMA engine to use for writing the data, and where in that DMA engine's address space to begin
writing the data. An optional length parameter, in bytes, can also be supplied. If omitted, the length is equal to the
word width implied by the write command. If present, the length parameter specifies how many bytes to write.
The length should be an integer multiple of the width; if not, the length is rounded down.

The program obtains the values to be written in two ways: from any additional parameters on the command line
after the length parameter, and then from the standard input stream (stdin). This works as follows:
(1) Any remaining command line arguments, if present after the length parameter, are interpreted as data

values to be written. These values are assumed to be of the word width implied by the command, and are
written using the specified DMA engine, incrementing the address with each word written. If there are
enough values passed on the command line to satisfy the byte count, the program terminates.

(2) If there are insufficient data values passed on the command line, the program waits for values to be
entered on the standard input stream. Values entered this way are also assumed to be of the word width
implied by the command, and are written using the specified DMA engine, incrementing the address with
each word written. When the entire byte count that was specified in the length parameter has been
satisfied or end-of-file is encountered, the program terminates.

Page 23Common Host Utilties
ad-ug-0055_v1_4.pdf

Common Host Utilities for Windows & Linux Release: 1.13.0
V1.4 - 12 Jun 2017

Fill commands

The fill command implies the word width to be used when performing a fill:
• fb

The fill value is a byte value (8-bit).

• fw
The fill value is a word value (16-bit).

• fd
The fill value is a double word value (32-bit).

• fq
The fill value is a quadword value (64-bit).

After the fill command, a DMA channel/engine index and an address must be supplied, in that order. This
specifies the DMA engine to use, and where in that DMA engine's address space to begin writing data. An
optional length parameter, in bytes, can also be supplied. If omitted, the length is equal to the word width implied
by the write command. If present, the length parameter specifies how many bytes to write. The length should be
an integer multiple of the width; if not, the length is rounded down.

The fill value is obtained in one of two ways: from an additional parameter on the command line after the length
parameter, or from the standard input stream (stdin). There must be exactly one fill value.

Example session

Assuming that the target FPGA is currently configured with an FPGA bitstream which has a RAM-like region in
the OCP/AXI address space of DMA channel 0 at address 0x80000, an example session looks like this:

./dmadump fb 0 0x80000 0x20 0xee
./dmadump rd 0 0x80000 0x40
Dump of memory at 0x00000000_00080000 + 64(0x40) bytes:
 00 04 08 0C
0x00000000_00080000: EEEEEEEE EEEEEEEE EEEEEEEE EEEEEEEE
0x00000000_00080010: EEEEEEEE EEEEEEEE EEEEEEEE EEEEEEEE
0x00000000_00080020: 00000000 00000000 00000000 00000000
0x00000000_00080030: 00000000 00000000 00000000 00000000
./dmadump wd 0 0x80004 0x4 0x12345678
0x00000000_00080004: 0x12345678
./dmadump rd 0 0x80000 0x40
Dump of memory at 0x00000000_00080000 + 64(0x40) bytes:
 00 04 08 0C
0x00000000_00080000: EEEEEEEE 12345678 EEEEEEEE EEEEEEEE
0x00000000_00080010: EEEEEEEE EEEEEEEE EEEEEEEE EEEEEEEE
0x00000000_00080020: 00000000 00000000 00000000 00000000
0x00000000_00080030: 00000000 00000000 00000000 00000000

Remarks

When entering data for write commands, values are expressed in decimal by default. To express data as
hexadecimal, prefix it with '0x' or use the +hex option.

Each DMA engine has its own address space. This means that in general, unless an FPGA design explicitly
makes a shared resource available to multiple DMA engines, writing data using one DMA engine and then
attempting to read it back using a different DMA engine will not return the data just written.

The Direct Slave address space is separate from the address space of each DMA engine. This means that in
general, writing data using the DMADUMP utility and attempting to read it back via the DUMP utility will not return
the same data. However, it is possible to create an FPGA design which explicitly makes a shared resource
available in both the Direct Slave address space and the address space of a DMA engine. In that case, data
written by one channel can be read back via another channel.

Page 24Common Host Utilties
ad-ug-0055_v1_4.pdf

Common Host Utilities for Windows & Linux Release: 1.13.0
V1.4 - 12 Jun 2017

Exit codes

When DMADUMP successfully executes the requested command, the exit code is 0. When an error occurs, one
of the following exit codes is returned:

Symbolic name Value Meaning

EXIT_OK 0 Success.

EXIT_BAD_COMMAND_LINE 1 Illegal basic command-line syntax.

EXIT_UNRECOGNIZED_COMMAND 2 Invalid command passed as 1st positional argument.

EXIT_ALLOCATION_FAILURE 3 A memory allocation failed.

EXIT_DEVICE_OPEN_ERROR 4 Failed to open ADMXRC3 device.

EXIT_WRITEDMA_ERROR 5 A DMA write call failed.

EXIT_READDMA_ERROR 6 A DMA read call failed.

ERROR_COUNT_TOO_LARGE 7 Requested byte count is too large.

Table 4 : Exit codes for DMADUMP utility

Page 25Common Host Utilties
ad-ug-0055_v1_4.pdf

Common Host Utilities for Windows & Linux Release: 1.13.0
V1.4 - 12 Jun 2017

3.4 DUMP utility

Command line
dump [option ...] fb window offset [n] [fill value]
dump [option ...] fw window offset [n] [fill value]
dump [option ...] fd window offset [n] [fill value]
dump [option ...] fq window offset [n] [fill value]
dump [option ...] rb window offset [n]
dump [option ...] rw window offset [n]
dump [option ...] rd window offset [n]
dump [option ...] rq window offset [n]
dump [option ...] wb window offset [n] [data ...]
dump [option ...] ww window offset [n] [data ...]
dump [option ...] wd window offset [n] [data ...]
dump [option ...] wq window offset [n] [data ...]

where

window is the memory window to read or write.

offset is the offset into the window at which to begin reading or writing.

n is the number of bytes to read or write (optional).

fill value is an optional fill value, valid for fill commands.

data is an optional data item, valid for write commands.

and the following options are accepted:

-index <index> Specifies the index of the card to open (default 0).

-sn <#> Specifies the serial number of the card to open.

-be Causes the data to be read or written to be treated as little-endian
(default).

+be Causes the data to be read or written to be treated as big-endian.

-hex Causes write values to be interpreted as decimal unless prefixed by '0x'
(default).

+hex Causes write values to be interpreted as hexadecimal always.

DUMP opens a reconfigurable computing device with intent to modify its state, and for this reason it must be run
in an elevated command prompt (i.e. as Administrator in Windows) or as root (in Linux).

Summary

Displays data read from a memory access window, or writes data to a memory access window.

Description

The DUMP utility operates in one of three modes:
• Reading data from a memory access window and displaying it; for this mode, use the rb, rw, rd or rq

commands.

• Writing data to a memory access window; for this mode, use the wb, ww, wd or wq commands.

• Filling a region of a memory access window with a particular value; for this mode, use the fb, fw, fd or fq
commands.

The option +be may be specified, before the command. This causes the DUMP utility to use big-endian byte

Page 26Common Host Utilties
ad-ug-0055_v1_4.pdf

Common Host Utilities for Windows & Linux Release: 1.13.0
V1.4 - 12 Jun 2017

ordering convention as opposed to little-endian (the default).

Read commands

The read command implies the word width for displaying data:
• rb

Byte (8-bit) reads; data is displayed as bytes.

• rw
Word (16-bit) reads; data is displayed as words.

• rd
Doubleword (32-bit) reads; data is displayed as doublewords.

• rq
Quadword (64-bit) reads; data is displayed as quadwords.

After the read command, a window index and an offset must be supplied, in that order. This specifies the memory
access window to be read, and where in that window to begin reading data. An optional length parameter, in
bytes, can also be supplied. If omitted, the length is equal to the word width implied by the read command. If
present, the length parameter specifies how many bytes to read and display. The length should be an integer
multiple of the width; if not, the length is rounded down.

Write commands

The write command implies the word width to be used when performing writes:
• wb

Data is written as bytes (8-bit).

• ww
Data is written as words (16-bit).

• wd
Data is written as doublewords (32-bit).

• wq
Data is written as quadwords (64-bit).

After the write command, a window index and an offset must be supplied, in that order. This specifies the
memory access window to be written, and where in that window to begin writing data. An optional length
parameter, in bytes, can also be supplied. If omitted, the length is equal to the word width implied by the write
command. If present, the length parameter specifies how many bytes to write. The length should be an integer
multiple of the width; if not, the length is rounded down.

The program obtains the values to be written in two ways: from any additional parameters on the command line
after the length parameter, and then from the standard input stream (stdin). This works as follows:
(1) Any remaining command line arguments, if present after the length parameter, are interpreted as data

values to be written. These values are assumed to be of the word width implied by the command, and are
written to the memory window, incrementing the offset with each word written. If there are enough values
passed on the command line to satisfy the byte count, the program terminates.

(2) If there are insufficient data values passed on the command line, the program waits for values to be
entered on the standard input stream. Values entered this way are also assumed to be of the word width
implied by the command, and are written to the memory window, incrementing the offset with each word
written. When the entire byte count that was specified in the length parameter has been satisfied or
end-of-file is encountered, the program terminates.

Fill commands

Page 27Common Host Utilties
ad-ug-0055_v1_4.pdf

Common Host Utilities for Windows & Linux Release: 1.13.0
V1.4 - 12 Jun 2017

The fill command implies the word width to be used when performing a fill:
• fb

The fill value is a byte value (8-bit).

• fw
The fill value is a word value (16-bit).

• fd
The fill value is a double word value (32-bit).

• fq
The fill value is a quadword value (64-bit).

After the fill command, a window index and an offset must be supplied, in that order. This specifies the memory
access window to be written, and where in that window to begin writing data. An optional length parameter, in
bytes, can also be supplied. If omitted, the length is equal to the word width implied by the write command. If
present, the length parameter specifies how many bytes to write. The length should be an integer multiple of the
width; if not, the length is rounded down.

The fill value is obtained in one of two ways: from an additional parameter on the command line after the length
parameter, or from the standard input stream (stdin). There can be only one fill value.

Example session

Assuming that the target FPGA is currently configured with an FPGA bitstream which has a RAM-like region in
the OCP/AXI address space of the Direct Slave channel at address 0x80000, an example session looks like this:

./dump rd 0 0x80000 0x40
Dump of memory at 0x00000000_00080000 + 64(0x40) bytes:
 00 04 08 0C
0x00000000_00080000: 00000000 00000000 00000000 00000000
0x00000000_00080010: 00000000 00000000 00000000 00000000
0x00000000_00080020: 00000000 00000000 00000000 00000000
0x00000000_00080030: 00000000 00000000 00000000 00000000
./dump fw 0 0x80000 0x20 0x1234
./dump rd 0 0x80000 0x40
Dump of memory at 0x00000000_00080000 + 64(0x40) bytes:
 00 04 08 0C
0x00000000_00080000: 12341234 12341234 12341234 12341234 4.4.4.4.4.4.4.4.
0x00000000_00080010: 12341234 12341234 12341234 12341234 4.4.4.4.4.4.4.4.
0x00000000_00080020: 00000000 00000000 00000000 00000000
0x00000000_00080030: 00000000 00000000 00000000 00000000
./dump wd 0 0x80004 0x8 0xdeadbeef 0xcafeface
0x00000000_00080004: 0xDEADBEEF
0x00000000_00080008: 0xCAFEFACE
./dump rd 0 0x80000 0x40
Dump of memory at 0x00000000_00080000 + 64(0x40) bytes:
 00 04 08 0C
0x00000000_00080000: 12341234 DEADBEEF CAFEFACE 12341234 4.4.........4.4.
0x00000000_00080010: 12341234 12341234 12341234 12341234 4.4.4.4.4.4.4.4.
0x00000000_00080020: 00000000 00000000 00000000 00000000
0x00000000_00080030: 00000000 00000000 00000000 00000000

Remarks

When entering data for write commands, values are expressed in decimal by default. To express data as
hexadecimal, prefix it with '0x' or use the +hex option.

The DUMP utility uses store instructions for writes whose widths correspond to the word width specified on the
command line, if possible. This is not possible if the CPU architecture in use does not have store instructions of
the required width or if the offset specified on the command line would result in unaligned stores. In the case of
an unaligned offset, writes are performed as a sequence of byte stores, because unaligned stores are illegal on
some CPU architectures. FPGA designs that use byte enables to mask writes to byte lanes will work correctly

Page 28Common Host Utilties
ad-ug-0055_v1_4.pdf

Common Host Utilities for Windows & Linux Release: 1.13.0
V1.4 - 12 Jun 2017

regardless of the size of a store instruction generated by the compiler.

The Direct Slave address space is separate from the address space of each DMA engine. This means that in
general, writing data using the DUMP utility and attempting to read it back via the DMADUMP utility will not return
the same data. However, it is possible to create an FPGA design which explicitly makes a shared resource
available in both the Direct Slave address space and the address space of a DMA engine. In that case, data
written by one channel can be read back via another channel.

Exit codes

When DUMP successfully executes the requested command, the exit code is 0. When an error occurs, one of
the following exit codes is returned:

Symbolic name Value Meaning

EXIT_OK 0 Success.

EXIT_BAD_COMMAND_LINE 1 Illegal basic command-line syntax.

EXIT_UNRECOGNIZED_COMMAND 2 Invalid command passed as 1st positional argument.

EXIT_ALLOCATION_FAILURE 3 A memory allocation failed.

EXIT_DEVICE_OPEN_ERROR 4 Failed to open ADMXRC3 device.

EXIT_MAPWINDOW_ERROR 5 Failed to map window into process' virtual address
space.

Table 5 : Exit codes for DUMP utility

Page 29Common Host Utilties
ad-ug-0055_v1_4.pdf

Common Host Utilities for Windows & Linux Release: 1.13.0
V1.4 - 12 Jun 2017

3.5 FLASH utility

Command line
flash [option ...] info target-index
flash [option ...] chkblank target-index
flash [option ...] erase target-index
flash [option ...] program target-index filename
flash [option ...] verify target-index filename

where

target-index is the index of a target FPGA.

filename is the name of a .BIT file (program or verify commands only).

and the following options are accepted:

-index <index> Specifies the index of the card to open (default 0).

-sn <#> Specifies the serial number of the card to open.

-failsafe Causes the command to target the default region of the Flash.

+failsafe Causes the command to target the failsafe of the Flash; see Section 3.5.1
below.

+force Causes a mismatch between the target FPGA device and the .BIT file
device to be ignored.

-force Causes a mismatch between the target FPGA device and the .BIT file
device to result in an error (default).

-range <address>,<length> Overrides the program logic that determines how to map a region index to
a range of Flash addresses. See Section 3.5.1 below.

-region <n> Causes the command to target region n of the Flash; see Section 3.5.1
below.

The -failsafe, -range and -region options are all mutually exclusive to one another; at most, one of these options
can be passed on the command line.

The FLASH utility opens a reconfigurable computing device with intent to modify its state, and for this reason it
must be run in an elevated command prompt (i.e. as Administrator in Windows) or as root (in Linux).

Summary

Blank-checks, erases, programs or verifies a target FPGA bitstream region in the user-programmable Flash
memory of a device.

Description

The FLASH utility has five commands:
• chkblank <target-index>

Verifies that a region is blank, i.e. all bytes are 0xFF.

• erase <target-index>

Erases a region so that it becomes blank, i.e. all bytes are 0xFF.

• info <target-index>

Displays information about the Flash memory that holds a region.

Page 30Common Host Utilties
ad-ug-0055_v1_4.pdf

Common Host Utilities for Windows & Linux Release: 1.13.0
V1.4 - 12 Jun 2017

• program <target-index> <filename>

Programs the specified bitstream (.BIT) file into a region so that the target FPGA is configured from a
particular region at power-on or reset.

• verify <target-index> <filename>

Verifies that a region contains the specified bitstream (.BIT) file.

chkblank command

The chkblank command verifies that a target FPGA region is blank, i.e. all bytes are 0xFF, but does not modify
the Flash memory bank. Following the command, an index of a target FPGA in the device must be specified. The
index of the target FPGA is normally zero but may be nonzero in models with multiple target FPGAs.

For example, to blank-check the default region for target FPGA 0:

 flash chkblank 0

erase command

The erase command erases a target FPGA region so that it becomes blank, i.e. all bytes are 0xFF. It
automatically performs a blank-check after erasing. Following the command, an index of a target FPGA in the
device must be specified. The index of the target FPGA is normally zero but may be nonzero in models with
multiple target FPGAs.

For example, to erase the default region for target FPGA 0:

 flash erase 0

info command

The info command displays information about the Flash memory and then exits, without doing anything else.
Following the command, an index of a target FPGA in the device must be specified. The index of the target
FPGA is normally zero but may be nonzero in models with multiple target FPGAs. For example:

 flash info 0

program command

The program command programs a target FPGA region with the data in the specified bitstream (.BIT) file.
Following the command, an index of a target FPGA in the device and the name of a bitstream (.BIT) filename
must be specified. The index of the target FPGA is normally zero but may be nonzero in models with multiple
target FPGAs.

If the device in the .BIT file does not match the target FPGA, this command fails with an error and does not
program the target FPGA region, unless the +force option is passed. Verification is automatically performed after
programming.

For example, to program the default region for target FPGA 0 with a bitstream file called my_design.bit:
 flash program 0 /path/to/my_design.bit

verify command

The verify command verifies that a target FPGA region contains the data in the specified bitstream (.BIT) file, but
does not modify the Flash memory bank. Following the command, an index of a target FPGA in the device and
the name of a bitstream (.BIT) filename must be specified. The index of the target FPGA is normally zero but may
be nonzero in models with multiple target FPGAs.

If the device in the .BIT file does not match the target FPGA, this command fails with an error unless the +force

Page 31Common Host Utilties
ad-ug-0055_v1_4.pdf

Common Host Utilities for Windows & Linux Release: 1.13.0
V1.4 - 12 Jun 2017

option is passed. If discrepancies between the target FPGA region and the data in the .BIT file are found, they
are displayed (up to a certain number of erroneous bytes), followed by a failure message.

For example, to verify that the default region for target FPGA 0 contains the data in a bitstream file called
my_design.bit:
 flash verify 0 /path/to/my_design.bit

Exit codes

When FLASH successfully executes the requested command, the exit code is 0. When an error occurs, one of
the following exit codes is returned:

Symbolic name Value Meaning

EXIT_OK 0 Success.

EXIT_BAD_COMMAND_LINE 1 Illegal basic command-line syntax.

EXIT_BAD_RANGE 2 Value for -range option is not valid.

EXIT_UNRECOGNIZED_COMMAND 3 Command not recognized.

EXIT_INSUFFICIENT_ARGS 4 Too few positional arguments following command.

EXIT_ILLEGAL_FLAGS 5 An illegal combination of flags was passed.

EXIT_INVALID_RANGE 6 A Flash address range was invalid.

EXIT_ALLOCATION_FAILURE 7 A memory allocation failed.

EXIT_BLOCK_QUERY_FAILURE 8 Failed to query a Flash block
(ADMXRC3_GetFlashBlockInfo failed).

EXIT_CREATE_FILE_ERROR 9 Failed to open file for writing readback data.

EXIT_WRITE_FILE_ERROR 10 Failed to write to readback data file.

EXIT_READ_FLASH_ERROR 11 Failed to read from Flash (ADMXRC3_ReadFlash
failed).

EXIT_WRITE_FLASH_ERROR 12 Failed to write to Flash (ADMXRC3_WriteFlash
failed).

EXIT_ERASE_FLASH_ERROR 13 Failed to erase Flash (ADMXRC3_EraseFlash
failed).

EXIT_READ_BIT_ERROR 14 Failed to read .bit file.

EXIT_SANITY_ERROR 15 A sanity check failed.

EXIT_FPGA_MISMATCH 16 The FPGA identifier in the .bit file does not match the
FPGA in the device.

EXIT_BOOT_FLAG_VERIFY_ERROR 17 Boot flag read back has incorrect value.

EXIT_DEVICE_OPEN_ERROR 18 Failed to open ADMXRC3 device.

EXIT_CARDINFO_ERROR 19 Failed to get information about ADMXRC3 device.

EXIT_FAILSAFE_NOT_SUPPORTED 20 Writing to failsafe region not supported for this
ADMXRC3 device.

EXIT_ILLEGAL_TARGET_INDEX 21 Target FPGA index illegal for this ADMXRC3 device.

EXIT_UNSUPPORTED_MODEL 22 The ADMXRC3 device is an unsupported model.

EXIT_FPGAINFO_ERROR 23 Failed to get information about target FPGA.
Table 6 : Exit codes for FLASH utility (continued on next page)

Page 32Common Host Utilties
ad-ug-0055_v1_4.pdf

Common Host Utilities for Windows & Linux Release: 1.13.0
V1.4 - 12 Jun 2017

Symbolic name Value Meaning

EXIT_FLASHINFO_ERROR 24 Failed to get information about Flash memory.

EXIT_ILLEGAL_REGION 25 Region index passed is illegal for this ADMXRC3
device.

EXIT_SET_CLOCK_FAILED 26 Failed to set LCLK clock generator to nominal
frequency.

EXIT_NOT_BLANK 27 Blank check failed; region is not blank.

EXIT_VERIFY_FAILED 28 Verification failed; data read back did not match data
written.

EXIT_NULL_FILENAME 29 Illegal NULL string passed for a filename.

Table 6 : Exit codes for FLASH utility

3.5.1 Region to address range mapping

WARNING
The +failsafe, -region and -range options must be used with care on models that feature a Virtex-6 target
FPGA, because they can be used to overwrite the failsafe region of the Flash memory. The failsafe region is
factory-programmed with a bitstream that protects again sub-micron effects that might otherwise degrade the
performance of the target FPGA over time.

Xilinx answer record 35055 elaborates on protecting Virtex-6 GTX transceivers from performance
degradation over time.

Alpha Data recommends that the failsafe region should not be erased or overwritten. If overwritten on a model
that features a Virtex-6 target FPGA, the customer must ensure that it is written with a valid, known-good
bitstream that satisfies the requirements for protecting the target FPGA from sub-micron effects.

Most of Alpha Data's reconfigurable computing cards have Flash memory capable of storing multiple .bit files,
and are divided into two or more regions. The address map for each Flash memory bank, including information
about regions, is presented in the ADMXRC3 API Hardware Addendum .

The default behaviour of the chkblank, erase, program and verify commands is to use the default region of
the Flash memory bank, which varies between models. A region is identified by its zero-based index. For
example, for the ADM-XRC-6T1, the default region is 0.

The +failsafe option modifies the behaviour of the flash utility so that it targets the failsafe region. This is a
region of Flash, with a different index to that of the default region. For example, for the ADM-XRC-6T1, the
failsafe region is 1. The failsafe region normally contains a factory-programmed bitstream that serves one of two
purposes:
• In models which feature a dedicated, non-user-programmable PCIe interface chip, such as the

ADM-XRC-6T1, the failsafe region is used to configure the target FPGA at power-on if a valid bitstream is
not found in the default region. As noted in the warning above, this protects the target FPGA from
sub-micron effects that might otherwise degrade the performance of the target FPGA over time.

• In models which feature a single FPGA that serves as both PCIe interface and target FPGA, such as the
ADM-PCIE-7V3, the failsafe region can be selected by switches so that the FPGA is configured with the
failsafe bitstream at power-on. This enables recovery from programming a "bad" .bit file into the default
region. Here, a "bad" .bit file is defined to be one that does not include a working PCIe interface, thus
preventing further Flash programming via PCIe.

The -region option supports models that have more than two regions, such as the ADM-PCIE-7V3. It must be
followed by an argument that is the region index, e.g. -region 0. The -region option can be used to target the
failsafe region or the default region (or any other region in models with more than two regions) by passing the

Page 33Common Host Utilties
ad-ug-0055_v1_4.pdf





http://www.xilinx.com/support/answers/35055.htm

Common Host Utilities for Windows & Linux Release: 1.13.0
V1.4 - 12 Jun 2017

appropriate region index as the argument.

The final option that modifies the behaviour of flash utility is the -range option. This option overrides the program
logic that maps a region index to a range of Flash memory addresses, and must be followed by an argument of
the form <address>,<length>. This option can be used to achieve the same effect as +failsafe and -region
options, provided that the user knows the correct address range to use. Refer to the ADMXRC3 API Hardware
Addendum for Flash memory bank address maps, by model.

Some examples of using the above three options follow:
• The following commands are all equivalent on the ADM-XRC-6T1, and perform a blank-check on the

failsafe region (1), which should fail assuming that the factory-programmed bitstream is still present:
 flash +failsafe chkblank 0
 flash -region 1 chkblank 0
 flash -range 2900000,1700000 chkblank 0

• The following commands are all equivalent on the ADM-PCIE-7V3, and write a bitstream into the default
region (1):
 flash program 0 /path/to/my_design.bit
 flash -failsafe program 0 /path/to/my_design.bit
 flash -region 1 program 0 /path/to/my_design.bit
 flash -range 2000000,2000000 program 0 /path/to/my_design.bit

• On the ADM-PCIE-7V3, the following commands write and then verify a small compressed bitstream (must
be less than or equal to 10 MiB) in the uppermost 10 MiB of region 3:
 flash -range 7600000,A00000 program 0 /path/to/my_design.bit
 flash -range 7600000,A00000 verify 0 /path/to/my_design.bit

Page 34Common Host Utilties
ad-ug-0055_v1_4.pdf



Common Host Utilities for Windows & Linux Release: 1.13.0
V1.4 - 12 Jun 2017

3.6 INFO utility

Command line
info [option ...]

where the following options are accepted:

-flash Causes Flash bank information not to be shown (default).

+flash Causes Flash bank information to be shown.

-index <index> Specifies the index of the card to open (default 0).

-io Causes I/O module information not to be shown (default).

+io Causes I/O module information to be shown.

-sensor Causes sensor information not to be shown (default).

+sensor Causes sensor information to be shown.

-sn <#> Specifies the serial number of the card to open.

Because this utility does not attempt to change any state in the selected device, it need not be run with elevated
privileges (i.e. as Administrator in Windows) or as root (in Linux).

Summary

Displays information about a reconfigurable computing device.

Description

The INFO utility demonstrates the use of most of the informational functions in the ADMXRC3 API. It uses
ADMXRC3_OpenEx to open a device in passive mode, meaning that an unprivileged user can successfully
run it. The output consists of several sections, the first of which is obtained using ADMXRC3_GetVersionInfo :

API information
API library version 1.4.17
Driver version 1.4.17

The second section shows information obtained using ADMXRC3_GetCardInfoEx , and shows the information
in the ADMXRC3_CARD_INFOEX structure:

Card information
Model ADM-VPX3-7V2
Serial number 200(0xC8)
Number of programmable clocks 2
Number of DMA channels 4
Number of target FPGAs 1
Number of local bus windows 4
Number of sensors 23
Number of I/O module sites 1
Number of memory banks 4
Bank presence bitmap 0xF

The third section uses the NumTargetFpga member of the ADMXRC3_CARD_INFOEX structure and
ADMXRC3_GetFpgaInfo to enumerate the target FPGAs in the device:

Target FPGA information
FPGA 0 7VX690TFFG1761-2I

The fourth section uses the NumMemoryBank member of the ADMXRC3_CARD_INFOEX structure and
ADMXRC3_GetBankInfo to enumerate the memory banks (non-Flash) in the device:

Page 35Common Host Utilties
ad-ug-0055_v1_4.pdf













Common Host Utilities for Windows & Linux Release: 1.13.0
V1.4 - 12 Jun 2017

Memory bank information
Bank 0 SDRAM, DDR3, 262144(0x40000) kiW x 32 + 0 bits
 303.0 MHz - 800.0 MHz
 Connectivity mask 0x1
Bank 1 SDRAM, DDR3, 262144(0x40000) kiW x 32 + 0 bits
 303.0 MHz - 800.0 MHz
 Connectivity mask 0x1
... (other memory banks) ...

The fourth section uses the NumWindow member of the ADMXRC3_CARD_INFOEX structure and
ADMXRC3_GetWindowInfo to enumerate the memory access windows in the device:

Local bus window information
Window 0 (Target FPGA 0 pre Bus base 0xC0400000 size 0x400000
 Local base 0x0 size 0x400000
 Virtual size 0x400000
Window 1 (Target FPGA 0 non Bus base 0x64EC00000 size 0x400000
 Local base 0x0 size 0x400000
 Virtual size 0x400000
... (other windows) ...

The next section appears if the +flash option is passed on the command line. It uses the NumFlashBank
member of the ADMXRC3_CARD_INFOEX structure and ADMXRC3_GetFlashInfo to enumerate the
Flash memory banks in the device:

Flash bank information
Bank 0 Numonyx Axcell P30 (Symm bl), 65536(0x10000) kiB
 Useable area 0x1200000-0x3FFFFFF

The next section appears if the +io option is passed on the command line. It uses the NumModuleSite member
of the ADMXRC3_CARD_INFOEX structure and ADMXRC3_GetModuleInfo to enumerate the I/O module
sites in the device and show what is fitted, if anything:

I/O module information
Module 0 Product FMC-CLINK-MINI
 Part number FMC-CLINK-MINI
 Manufacturer Alpha Data
 Serial number 112
 Manufacture time 8995680 minutes since 00:00 1/1/1996
 I/O voltage 1.80
 Flags 0x0

The final section appears if the +sensor option is passed on the command line. It uses the NumSensor member
of the ADMXRC3_CARD_INFOEX structure and ADMXRC3_GetSensorInfo to enumerate the sensors in
the device:

Sensor information
Sensor 0 12V VPX power rail
 V, double, exponent 0, error 0.000
Sensor 1 5V VPX power rail
 V, double, exponent 0, error 0.000
... (other sensors) ...

Exit codes

When INFO runs successfully, the exit code is 0. When an error occurs, one of the following exit codes is
returned:

Page 36Common Host Utilties
ad-ug-0055_v1_4.pdf




 

 

 

Common Host Utilities for Windows & Linux Release: 1.13.0
V1.4 - 12 Jun 2017

Symbolic name Value Meaning

EXIT_OK 0 Success.

EXIT_BAD_COMMAND_LINE 1 Illegal basic command-line syntax.

EXIT_DEVICE_OPEN_ERROR 2 Failed to open ADMXRC3 device.

Table 7 : Exit codes for INFO utility

Page 37Common Host Utilties
ad-ug-0055_v1_4.pdf

Common Host Utilities for Windows & Linux Release: 1.13.0
V1.4 - 12 Jun 2017

3.7 IPROG utility

Command line
iprog [option ...] abort target-index
iprog [option ...] from-now target-index address [delay-ms]
iprog [option ...] on-stop target-index address [delay-ms]
iprog [option ...] status target-index

where

target-index is the index of a target FPGA.

address specifies where in Flash memory the SelectMap data begins, and can be
a region index, a Flash address (hex), or a WBSTAR register value. See
below for details.

delay-ms is the reconfiguration countdown time, in milliseconds (optional, default
30000).

and the following options are accepted:

-index <index> Specifies the index of the card to open (default 0).

-sn <#> Specifies the serial number of the card to open.

-verbose Suppresses most informational messages (default).

+verbose Displays informational messages.

The IPROG utility opens a reconfigurable computing device with intent to modify its state, and for this reason it
must be run in an elevated command prompt (i.e. as Administrator in Windows) or as root (in Linux).

Summary

Initiates or aborts software-initiated reconfiguration of the target FPGA on models that support it.

Description

The IPROG utility has four commands:
• abort <target-index>

Aborts software-initiated reconfiguration of the target FPGA.

• from-now <target-index> <address> [delay-ms]

Schedules software-initiated reconfiguration to occur delay-ms milliseconds from when the command is
issued.

• on-stop <target-index> <address> [delay-ms]

Schedules software-initiated reconfiguration to occur delay-ms milliseconds from when the device is
stopped (i.e. by unloading ADB3 Driver).

• status <target-index>

Displays whether or not software-initiated reconfiguration is currently scheduled, and the remaining
countdown time if scheduled.

abort command

The abort command aborts software-initiated reconfiguration of the target FPGA. The first argument is the index
of the target FPGA for which reconfiguration is to be aborted.

Page 38Common Host Utilties
ad-ug-0055_v1_4.pdf

Common Host Utilities for Windows & Linux Release: 1.13.0
V1.4 - 12 Jun 2017

For example, to abort software-initiated reconfiguration of target FPGA 0:

iprog abort 0

from-now & on-stop commands

The from-now command schedules software-initiated reconfiguration to occur at a particular time from when the
command is issued, whereas the on-stop command schedules software-initiated reconfiguration to occur at a
particular time from when the device is stopped (i.e. the ADB3 Driver is unloaded). The on-stop command is
generally preferable to from-now because the former more or less eliminates the risk that the target FPGA is
reconfigured while the ADB3 Driver is communicating with it.

For both commands, the first argument is the index of the target FPGA to be reconfigured. This must be followed
by a value that indicates from where in Flash memory the SelectMap data is obtained, which must be in one of
the following forms:
• address:<a>

where <a> is a hexadecimal number representing the byte address in Flash memory at which the
SelectMap data begins. Details of Flash memory maps, by model, are found in ADMXRC3 API Hardware
Addendum .

• region:<i>
where <i> is the decimal zero-based index of a region of Flash memory, as described in ADMXRC3 API
Hardware Addendum .

• wbstar:<value>
where <value> is a hexadecimal number which is the value for the WBSTAR register in the ICAP interface
of a 7 Series FPGA. Refer to Xilinx UG470, "IPROG Reconfiguration" for further details.

The last argument, which is optional, is the countdown delay in milliseconds (default 30000). For the from-now
command, it is the delay from issuing the command to when the FPGA is reconfigured. For the on-stop
command, it is the delay from stopping the device (i.e. unloading the ADB3 Driver) to when the FPGA is
reconfigured. The default of 30 seconds is intended to provide sufficient time to stop the device even in a system
which is heavily loaded. For the on-stop command, a delay of 2000 milliseconds is expected to be safe, and a
value of less than 500 milliseconds is not recommended except in a lightly-loaded system.

For example, to schedule software-initiated reconfiguration after 15 seconds, from the beginning of region 1 of
the Flash memory on an ADM-PCIE-7V3, the following commands are all equivalent:

iprog from-now 0 address:2000000 15000
iprog from-now 0 region:1 15000
iprog from-now 0 wbstar:60000000 15000

To schedule software-initiated reconfiguration after 2 seconds from device stop, from the middle of region 1 of the
Flash memory on an ADM-PCIE-7V3, the following two commands are equivalent:

iprog on-stop 0 address:3000000 2000
iprog on-stop 0 wbstar:60800000 2000

status command

The status command displays whether or not software-initiated reconfiguration is currently scheduled and how
much time remains for the countdown. The first argument is the index of the target FPGA for which status is to be
requested.

For example, to request the status of software-initiated reconfiguration of target FPGA 0:

iprog status 0

Exit codes

Page 39Common Host Utilties
ad-ug-0055_v1_4.pdf





Common Host Utilities for Windows & Linux Release: 1.13.0
V1.4 - 12 Jun 2017

When IPROG successfully executes the requested command, the exit code is 0. When an error occurs, one of
the following exit codes is returned:

Symbolic name Value Meaning

EXIT_OK 0 Success.

EXIT_BAD_COMMAND_LINE 1 Illegal basic command-line syntax.

EXIT_UNRECOGNIZED_COMMAND 2 Invalid command passed as 1st positional argument.

EXIT_INSUFFICIENT_ARGS 3 Not enough positional arguments after command.

EXIT_INVALID_WBSTAR 4 Invalid WBSTAR address.

EXIT_DEVICE_OPEN_ERROR 5 Failed to open ADMXRC3 device.

EXIT_ABORTIPROG_ERROR 6 Call to ADB3_AbortIPROG failed.

EXIT_SCHEDULEIPROG_ERROR 7 Call to ADB3_ScheduleIPROG failed.

EXIT_STATUSIPROG_ERROR 8 Call to ADB3_StatusIPROG failed.

EXIT_UNSUPPORTED_MODEL 9 IPROG operations not supported for this model.

EXIT_ILLEGAL_TARGET_INDEX 10 IPROG operations not supported for the specified
target FPGA index.

EXIT_ILLEGAL_REGION 11 Flash region index is not valid for this model & target
FPGA index.

EXIT_INVALID_FLASH_ADDRESS 12 Flash address is not valid for this model & target
FPGA index.

Table 8 : Exit codes for IPROG utility

Page 40Common Host Utilties
ad-ug-0055_v1_4.pdf

Common Host Utilities for Windows & Linux Release: 1.13.0
V1.4 - 12 Jun 2017

3.8 LOADER utility

Command line
loader [option ...] <target FPGA index> <bitstream filename>

where the following options are accepted:

-index <index> Specifies the index of the card to open (default 0).

-sn <#> Specifies the serial number of the card to open.

-binary Treat <bitstream filename> as a .bit file, and attempt to parse it
accordingly.

+binary Treat <bitstream filename> as a binary file containing only SelectMap
data.

-checklink Do not verify that communications with the target FPGA have been
established before exiting.

+checklink Verify that communications with the target FPGA have been established
before exiting (default).

The LOADER utility opens a reconfigurable computing device with intent to modify its state, and for this reason it
must be run in an elevated command prompt (i.e. as Administrator in Windows) or as root (in Linux).

Summary

Configures a target FPGA with a .bit file, and then exits.

Description

The LOADER utility configures the target FPGA, identified by <target FPGA index>, within a reconfigurable
computing device with the bitstream file identified by <bitstream filename>, and then exits.

By default, LOADER expects <bitstream filename> to name a .bit file, i.e. a file generated by the Xilinx ISE or
Vivado design tools, and attempts to parse the file accordingly. However, the +binary option causes LOADER to
treat <bitstream filename> as a file containing raw SelectMap data. Such a file can be obtained in a number of
ways, including a user-created program or by using the BITSTRIP utility.

Because the LOADER utility uses ADMXRC3_ConfigureFromFile or ADMXRC3_ConfigureFromBuffer , it
normally checks that communications with the target FPGA have been established before exiting. Passing the
-checklink option causes this check to be omitted, and is needed for an FPGA design that has no MPTL host
interface, such as a stand-alone Ethernet design.

Exit codes

When LOADER runs successfully, the exit code is 0. When an error occurs, one of the following exit codes is
returned:

Page 41Common Host Utilties
ad-ug-0055_v1_4.pdf

 

Common Host Utilities for Windows & Linux Release: 1.13.0
V1.4 - 12 Jun 2017

Symbolic name Value Meaning

EXIT_OK 0 Success.

EXIT_BAD_COMMAND_LINE 1 Illegal basic command-line syntax.

EXIT_DEVICE_OPEN_ERROR 2 Failed to open ADMXRC3 device.

EXIT_STAT_FILE_ERROR 3 Failed to stat() .bit file.

EXIT_FILE_TOO_LARGE 4 .bit file too large to load into memory.

EXIT_ALLOCATION_FAILED 5 Failed to allocate buffer for firmware or board config
data.

EXIT_FILE_OPEN_ERROR 6 Failed to open .bit file for reading.

EXIT_FILE_READ_ERROR 7 Failed to read .bit file.

EXIT_CONFIGURATION_FAILED 8 ADMXRC3_Configure{FromBuffer,FromFile} failed.

Table 9 : Exit codes for LOADER utility

Page 42Common Host Utilties
ad-ug-0055_v1_4.pdf

Common Host Utilities for Windows & Linux Release: 1.13.0
V1.4 - 12 Jun 2017

3.9 MONITOR utility

Command line
monitor [option ...]

where the following options are accepted:

-index <index> Specifies the index of the card to open (default 0).

-period <delay> Specifies the update period, in seconds.

-repeat <n> Specifies the number of updates to perform (default 0); a value of zero
means "repeat for ever".

-sn <#> Specifies the serial number of the card to open.

Summary

Displays readings from all sensors.

Description

The MONITOR utility repeatedly displays sensor readings in the command shell at the interval specified by the
-period option. The number of updates to perform before terminating can be specified on the command line
using the -repeat option, but by default, the program runs until interrupted with CTRL-C.

It makes use of the ADMXRC3_GetSensorInfo and ADMXRC3_ReadSensor functions from the ADMXRC3
API, and because it opens a device in passive mode using ADMXRC3_OpenEx , it can run alongside other
reconfigurable computing applications without disturbing them.

The output looks like this:

Model: 257 (0x101) => ADM-XRC-6TL
Serial number: 101 (0x65)
Number of sensors: 10
 Sensor 0 1V supply rail: 0.987000 V
 Sensor 1 1.5V supply rail: 1.509186 V
 Sensor 2 1.8V supply rail: 1.803192 V
 Sensor 3 2.5V supply rail: 2.508896 V
 Sensor 4 3.3V supply rail: 3.268082 V
 Sensor 5 5V supply rail: 5.017990 V
 Sensor 6 XMC variable power rail: 12.000000 V
 Sensor 7 XRM I/O voltage: 2.495712 V
 Sensor 8 LM87 internal temperature: 49.000000 deg C
 Sensor 9 Target FPGA temperature: 57.000000 deg C

Exit codes

When MONITOR runs successfully, the exit code is 0. When an error occurs, one of the following exit codes is
returned:

Page 43Common Host Utilties
ad-ug-0055_v1_4.pdf

 


Common Host Utilities for Windows & Linux Release: 1.13.0
V1.4 - 12 Jun 2017

Symbolic name Value Meaning

EXIT_OK 0 Success.

EXIT_BAD_COMMAND_LINE 1 Illegal basic command-line syntax.

EXIT_DEVICE_OPEN_ERROR 2 Failed to open ADMXRC3 device.

EXIT_CARDINFO_ERROR 3 Failed to get information about ADMXRC3 device.

EXIT_NO_SENSORS_FOUND 4 No sensors in the selected device.

Table 10 : Exit codes for MONITOR utility

Page 44Common Host Utilties
ad-ug-0055_v1_4.pdf

Common Host Utilities for Windows & Linux Release: 1.13.0
V1.4 - 12 Jun 2017

3.10 SYSMON utility

Command line
sysmon

Summary

Utility presenting device information and hardware sensors in a graphical user interface.

Description

The SYSMON utility combines the information shown by the INFO and MONITOR utilities with a graphical user
interface. Its main function is graphical display of hardware sensor data, and it can be minimized to the
notification area of the desktop (the "System Tray" in Windows) in order to run unobtrusively.

It makes use of the ADMXRC3_GetSensorInfo and ADMXRC3_ReadSensor functions from the ADMXRC3
API, and because it initially opens a device in passive mode using ADMXRC3_OpenEx , it can run alongside
other reconfigurable computing applications without disturbing them.

The user interface of the Linux version of SYSMON is as follows, upon starting the utility:

Figure 2 : SYSMON user interface

Referring to Figure 2, the user interface elements are as follows:
1 A combo box that specifies which reconfigurable computing device to use.

2 A combo box that selects the time interval between sensor readings.

3 A button that reveals the Action menu when clicked. The Action menu allows sensor data logging as
described in Section 3.10.6 below. The Windows version of SYSMON does not have this button, but
instead hosts equivalent functionality via the system menu.

4 A tab control whose tabs are as follows:
• The device information tab shows information about the currently selected device.

Page 45Common Host Utilties
ad-ug-0055_v1_4.pdf

 


Common Host Utilities for Windows & Linux Release: 1.13.0
V1.4 - 12 Jun 2017

• The sensor information tab shows information about the available sensors in the currently selected
device.

• The sensor readout tab displays sensor data graphically in up to four 'scopes.

• The device status tab displays any error conditions in the currently selected device, and permits
them to be cleared if the user that launched SYSMON has the necessary privileges.

• The clock generator tab displays clock generator frequencies for the currently selected device, and
permits them to be changed if the user that launched SYSMON has the necessary privileges.

When minimized (item 5), sysmon appears in the notification area of the desktop:

Figure 3 : SYSMON notification area icon

The icon shown in the notification area has a context menu activated by a right-click, and this can be used to
restore the application to the desktop, as well as offering the same logging functions as the Action menu. Refer
to Section 3.10.6 for a description of data logging.

To actually close the application as opposed to minimizing it, click the close button of the window.

3.10.1 SYSMON device information tab

The set of information shown in the device information tab is approximately the same as that shown by the
command-line INFO utility, but with a collapsible tree structure.

3.10.2 SYSMON sensor information tab

The sensor information tab is a tabular view of the available sensors, including the current reading for each
sensor:

Figure 4 : SYSMON sensor information tab

Page 46Common Host Utilties
ad-ug-0055_v1_4.pdf

Common Host Utilities for Windows & Linux Release: 1.13.0
V1.4 - 12 Jun 2017

3.10.3 SYSMON sensor readout tab
The sensor readout tab displays sensor readings in graphical form:

Figure 5 : SYSMON sensor readout tab

Initially, the 'scope is empty and displays no sensors. The above figure shows two scopes, one showing
temperatures and the other showing voltages. The user interface elements of the 'scope toolbar are as follows:
5 The temperature button sets the 'scope to display all temperature sensors in the device, and starts

updates.

6 The voltage button sets the 'scope to display all voltage sensors in the device, and starts updates.

7 The current button sets the 'scope to display all current sensors in the device, and starts updates.

8 Mouse over the key to see which sensor corresponds to which coloured trace.

9 The pause / resume button can be used to pause and resume update of the 'scope.

10 A button that adds another 'scope when clicked, to a maximum of 4, so that various types of sensor can be
viewed at the same time.

11 A button that destroys a 'scope when clicked. If there is only one 'scope, the button is disabled.

3.10.4 SYSMON device status tab

The device status tab shows any error conditions that are present for a device, and allows the user to clear error
conditions, provided that he or she has sufficient privileges:

Page 47Common Host Utilties
ad-ug-0055_v1_4.pdf

Common Host Utilities for Windows & Linux Release: 1.13.0
V1.4 - 12 Jun 2017

Figure 6 : SYSMON device status tab

The Clear Errors button, labeled 12 in Figure 6, allows device errors to be cleared, but in order for this button to
be functional, SYSMON must be launched by a user with sufficient privileges to reopen the device in active
mode. This works follows:
• In Linux, SYSMON must be launched by a user that has privileges to reopen the device in active mode.

The Clear Errors button will then be functional.
In most cases, this means that the user must be root, but if the system administrator has customized the
udev rules file for the ADB3 Driver, it is possible for non-root users to have privileges to reopen the device
in active mode.

• In versions of Windows without User Account Control (UAC), i.e. Windows XP and earlier, SYSMON must
be launched by a user in the Administrators group. The Clear Errors button will then be functional.

• In versions of Windows with User Account Control (UAC), i.e. Windows Vista and earlier, SYSMON must
be launched by a user in the Administrators group. If the Clear Errors button is clicked and SYSMON is
not running elevated, SYSMON re-launches itself elevated (this will incur a UAC prompt). The Clear
Errors button will then be functional.
Alternatively, launch SYSMON elevated by right-clicking on its shortcut or executable file and selecting
"Run as administrator". The Clear Errors button will then be functional.

3.10.5 SYSMON clock generator tab

The clock generator tab shows current frequencies of clock generators, and allows the user to change their
frequencies, provided that he or she has sufficient privileges:

Page 48Common Host Utilties
ad-ug-0055_v1_4.pdf

Common Host Utilities for Windows & Linux Release: 1.13.0
V1.4 - 12 Jun 2017

Figure 7 : SYSMON clock generator tab

In Linux, provided that SYSMON has been launched by a user with privileges to reopen the device in active
mode, frequencies can be changed by clicking on them and entering a new frequency. In most cases, this means
that the user must be root, but if the system administrator has customized the udev rules file for the ADB3
Driver, it is possible for non-root users to have privileges to reopen the device in active mode.

In Windows, provided that SYSMON is executing elevated so that it can reopen the device in active mode,
frequencies can be double-clicked and a new frequency entered in order to change them. This works as follows:
• In versions of Windows without User Account Control (UAC), i.e. Windows XP and earlier, SYSMON must

be launched by a user in the Administrators group, which means that it runs elevated. This is sufficient to
allow frequencies to be changed.

• In versions of Windows with User Account Control (UAC), i.e. Windows Vista and earlier, SYSMON must
be launched by a user in the Administrators group, which enables the Allow Changes button (labeled 13
in Figure 7). Clicking Allow Changes causes SYSMON to re-launch itself elevated. Once SYSMON is
running elevated, frequencies can be changed.
Alternatively, launch SYSMON elevated by right-clicking on its shortcut or executable file and selecting
"Run as administrator". This will permit frequencies to be changed.

3.10.6 SYSMON sensor data logging

In Linux, SYSMON can log sensor data over an arbitrary time period via the Action menu:

Figure 8 : SYSMON Action menu in Linux

In Windows, the Action button is not present, and the Action menu items are located in the system menu:

Page 49Common Host Utilties
ad-ug-0055_v1_4.pdf

Common Host Utilities for Windows & Linux Release: 1.13.0
V1.4 - 12 Jun 2017

Figure 9 : SYSMON Action menu in Windows

Data logging works as follows:
• The Start new log file option prompts for a filename into which sensor data is to be logged. If a file of that

name already exists, it will be overwritten.

• The Append to log file option prompts for a filename into which sensor data is to be logged, but unlike
Start new log file, if a file of that name already exists, new data will be appended to it.

• The Stop logging option is only enabled after logging has successfully been started using Start new log
file or Append to log file, and causes SYSMON to cease logging data.

The files created are in comma-separated value (CSV) format (some rows and columns deleted for brevity):

START,11:59:07 23 Aug 2011
COMMENT,MODEL,SERIAL#
DEVICE,ADM-XRC-6TL,102
COMMENT,SENSOR#,Description,Unit
SENSOR,0,1V supply rail,V
SENSOR,1,1.5V supply rail,V
SENSOR,2,1.8V supply rail,V
SENSOR,3,2.5V supply rail,V
...
SENSOR,12,Bridge VCCAUX,V
COMMENT,TIMESTAMP,1V supply rail,1.5V supply rail,1.8V supply rail,2.5V supply rail,...
COMMENT,ms,V,V,V,V,...
DATA,583,0.987000,1.509186,1.812988,2.508896,...
DATA,1584,0.987000,1.509186,1.812988,2.508896,...
DATA,2645,0.987000,1.509186,1.812988,2.508896,...
DATA,3646,0.987000,1.509186,1.812988,2.508896,...
...
DATA,13661,0.987000,1.509186,1.812988,2.508896,...
DATA,14663,0.987000,1.509186,1.812988,2.508896,...
STOP,11:59:22 23 Aug 2011

The string in column 1 of each row indicates what information a row contains:
• START signifies the start of a logging session, in case the file contains multiple sessions that were

obtained using the Append to log file option.

• STOP signifies the end of a logging session, in case the file contains multiple sessions that were obtained
using the Append to log file option.

• COMMENT signifies a comment, for the benefit of human readers, and can be filtered out by a program
that reads the file.

• DEVICE identifies the model and serial number, in the second and third cells respectively, of the physical
card from which the data was collected.

Page 50Common Host Utilties
ad-ug-0055_v1_4.pdf

Common Host Utilities for Windows & Linux Release: 1.13.0
V1.4 - 12 Jun 2017

• SENSOR signifies information about a sensor. The second cell is the sensor index, the third cell is the
sensor's description and the fourth cell is the unit for that sensor.

• DATA signifies a set of sensor readings at a given instant. The second cell is a timestamp, in milliseconds,
relative to the time and date in the START row. The third and subsequent cells are individual sensor
values, where the third cell corresponds to the SENSOR row whose sensor index is 0, the fourth cell
corresponds to the SENSOR row whose sensor index is 1 etc.

Page 51Common Host Utilties
ad-ug-0055_v1_4.pdf

Common Host Utilities for Windows & Linux Release: 1.13.0
V1.4 - 12 Jun 2017

3.11 VPD utility

Command line
vpd [option ...] fb address n [data]
vpd [option ...] fw address n [data]
vpd [option ...] fd address n [data]
vpd [option ...] fq address n [data]
vpd [option ...] fs address n [string]
vpd [option ...] rb address [n]
vpd [option ...] rw address [n]
vpd [option ...] rd address [n]
vpd [option ...] rq address [n]
vpd [option ...] wb address [n] [data ...]
vpd [option ...] ww address [n] [data ...]
vpd [option ...] wd address [n] [data ...]
vpd [option ...] wq address [n] [data ...]
vpd [option ...] ws address [n] [string ...]

where

address is the address in VPD memory at which to begin reading or writing.

n is the number of bytes to read or write.

data is a numeric data item, valid for fill and write commands.

string is a string data item, valid for fill and write commands.

and the following options are accepted:

-index <index> Specifies the index of the card to open (default 0).

-sn <#> Specifies the serial number of the card to open.

-be Causes the data to be read or written to be treated as little-endian
(default).

+be Causes the data to be read or written to be treated as big-endian.

-hex Causes numeric data values to be interpreted as decimal unless prefixed
by '0x' (default).

+hex Causes numeric data values to be interpreted as hexadecimal always.

The VPD utility opens a reconfigurable computing device with intent to modify its state, and for this reason it must
be run in an elevated command prompt (i.e. as Administrator in Windows) or as root (in Linux).

Summary

Displays data read from Vital Product Data (VPD) memory, or writes data to VPD memory. VPD memory contains
information about a reconfigurable computing card, such as the type of FPGA fitted, memory bank sizes etc.

Description

Page 52Common Host Utilties
ad-ug-0055_v1_4.pdf

Common Host Utilities for Windows & Linux Release: 1.13.0
V1.4 - 12 Jun 2017

VPD write-protection mechanisms
The VPD utility must be used with care, particularly when using its capability to write or fill VPD memory.
Corrupting the VPD of a reconfigurable computing card can impair its functionality until the VPD is restored to
its correct values.

To avoid corrupting VPD, please ensure that you are aware of the address map of VPD Space for the
particular reconfigurable computing card in use. This information is provided by ADMXRC3 API Hardware
Addendum .

Writing to VPD writes requires a software enable to be activated in the ADB3 Driver. Additionally, on certain
models in Alpha Data's range of reconfigurable computing hardware, a card must be put into Service Mode
before VPD memory can be accessed. For further details, refer to Section 3.11.1 below.

The VPD utility operates in one of three modes:
• Filling a region of VPD memory with a value or string; for this mode, use the fb, fw, fd, fq or fs commands.

• Reading data from VPD memory and displaying it; for this mode, use the rb, rw, rd or rq commands.

• Writing numeric or string data to a region of VPD memory; for this mode, use the wb, ww, wd, wq or ws
commands.

The address space accessed by the VPD utility is called VPD Space, and the address map of VPD Space is
model-specific. Details of address maps of VPD Space for supported models are given in ADMXRC3 API
Hardware Addendum .

The option +be may be specified, before the command. This causes the VPD utility to use big-endian byte
ordering convention as opposed to little-endian (the default).

Fill commands

When filling a region of VPD memory with data, the fill command specifies whether the data is numeric or string
data. In the case of numeric data, the command also implies the word width of the data. The available fill
commands are:
• fb

Fill value is a byte (8-bit).

• fw
Fill value is a word (16-bit).

• fd
Fill value is a doubleword (32-bit).

• fq
Fill value is a quadword (64-bit).

• fs
Fill value is an ASCII string (8-bit characters).

The next 3 arguments after the fill command must be:
(a) address - the byte address within VPD memory at which to begin filling.

(b) n - byte count; the number of bytes of VPD memory to fill.

(c) data or string - the numeric or string value to place in the specified region of VPD memory.

If the command is fs and the string value is shorter than the byte count n, the string is repeated until the byte
count is satisfied. If the string is longer than the byte count n, only the first n characters are used. If a string
contains spaces, it must be quoted on the command line so that it is not interpreted by the shell as two or more
separate arguments.

For the numeric fill commands fb, fw, fd and fq, the numeric value is repeated until the byte count is satisfied.

Page 53Common Host Utilties
ad-ug-0055_v1_4.pdf





Common Host Utilities for Windows & Linux Release: 1.13.0
V1.4 - 12 Jun 2017

Read commands

The read command implies the word width used for displaying the data:
• rb

Byte (8-bit) reads; data is displayed as bytes.

• rw
Word (16-bit) reads; data is displayed as words.

• rd
Doubleword (32-bit) reads; data is displayed as doublewords.

• rq
Quadword (64-bit) reads; data is displayed as quadwords.

After the read command, an address must be supplied, which specifies where in VPD memory to begin reading.
An optional length parameter, in bytes, can also be supplied. If omitted, the length is equal to the word width
implied by the read command. If present, the length parameter specifies how many bytes to read and display.
The length should be an integer multiple of the width; if not, the length is rounded down.

Write commands

The write command specifies whether the data is numeric or string data. In the case of numeric data, the
command also implies the word width of the data. The available write commands are:
• wb

Data is written as bytes (8-bit).

• ww
Data is written as words (16-bit).

• wd
Data is written as doublewords (32-bit).

• wq
Data is written as quadwords (64-bit).

• ws
Data is supplied as one or more ASCII strings (8-bit characters).

After the write command, an address must be supplied, which specifies where in VPD memory to begin writing
data. An optional length parameter, in bytes, can also be supplied. If omitted, the length is equal to the word
width implied by the write command. If present, the length parameter specifies how many bytes to write. The
length should be an integer multiple of the width; if not, the length is rounded down.

The program obtains the values to be written in two ways: from any additional parameters on the command line
after the length parameter, and then from the standard input stream (stdin). This works as follows:
(1) Any remaining command line arguments, if present after the length parameter, are interpreted as data

values to be written. Numeric values are assumed to be of the word width implied by the command
parameter. As each value it written to VPD memory, the address is incremented. If there are enough
values passed on the command line to satisfy the byte count, the program terminates.

(2) If there are insufficient data values passed on the command line, the program waits for values to be
entered on the standard input stream. Numeric values entered this way are also assumed to be of the
word width implied by the command. As each value it written to VPD memory, the address is incremented.
When the entire byte count that was specified in the length parameter has been satisfied or end-of-file is
encountered, the program terminates.

Example session

Page 54Common Host Utilties
ad-ug-0055_v1_4.pdf

Common Host Utilities for Windows & Linux Release: 1.13.0
V1.4 - 12 Jun 2017

The following session was captured under Linux using an ADM-XRC-6T1. The base address 0x100000 is used
because that is the VPD-space address of the user-definable area of VPD memory in the ADM-XRC-6T1.

./vpd rb 0x100000 0x60
Dump of VPD at 0x00100000 + 96(0x60) bytes:
0x00100000: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0x00100010: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0x00100020: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0x00100030: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0x00100040: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0x00100050: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
./vpd fs 0x100008 20 "hello world!"
./vpd wd 0x100020 12
0x00100020: 0xdeadbeef
0x00100024: 0xcafeface
0x00100028: 0x12345678
./vpd fw 0x100031 10 0xa55a
./vpd rb 0x100000 0x60
Dump of VPD at 0x00100000 + 96(0x60) bytes:
0x00100000: FF FF FF FF FF FF FF FF 68 65 6C 6C 6F 20 77 6Fhello wo
0x00100010: 72 6C 64 21 00 68 65 6C 6C 6F 20 77 FF FF FF FF rld!.hello w....
0x00100020: EF BE AD DE CE FA FE CA 78 56 34 12 FF FF FF FF .??.?..?xV4.....
0x00100030: FF 5A A5 5A A5 5A A5 5A A5 5A A5 FF FF FF FF FF .Z?Z?Z?Z?Z?.....
0x00100040: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0x00100050: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

Remarks

When entering data for fill or write commands, values are expressed in decimal by default. To express data as
hexadecimal, prefix it with '0x' or use the +hex option.

Exit codes

When VPD successfully executes the requested command, the exit code is 0. When an error occurs, one of the
following exit codes is returned:

Symbolic name Value Meaning

EXIT_OK 0 Success.

EXIT_BAD_COMMAND_LINE 1 Illegal basic command-line syntax.

EXIT_UNRECOGNIZED_COMMAND 2 Invalid command passed as 1st positional argument.

EXIT_ALLOCATION_FAILURE 3 A memory allocation failed.

EXIT_DEVICE_OPEN_ERROR 4 Failed to open ADMXRC3 device.

EXIT_READVPD_ERROR 5 A call to ADMXRC3_ReadVPD failed.

EXIT_WRITEVPD_ERROR 6 A call to ADMXRC3_WriteVPD failed.

Table 11 : Exit codes for VPD utility

3.11.1 VPD write-protection mechanisms

In order to be able to write to VPD memory, a software protection mechanism must be disabled:
• In Windows, the registry value EnableVpdWrite must be set to 1. The full path of the registry value is:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\adb3\Parameters\EnableVpdWrite
A change to this value takes immediate effect, and it is not necessary to reboot the machine or to disable
and re-enable devices using Windows Device Manager.
NOTE: Each time the ADB3 Driver is installed or reinstalled, this value is set to 0.

• In Linux, the ADB3 Driver must be started with the EnableVpdWrite parameter set to 1. For example:
modprobe adb3 EnableVpdWrite=1

Page 55Common Host Utilties
ad-ug-0055_v1_4.pdf

Common Host Utilities for Windows & Linux Release: 1.13.0
V1.4 - 12 Jun 2017

When omitted from the modprobe command line, EnableVpdWrite defaults to 0.

As well as the software protection mechanism, some models in Alpha Data's range of reconfigurable computing
hardware must be in Service Mode in order for any access to VPD memory (whether reading or writing) to
succeed. This applies to all models that have a switch setting for Service Mode. Please contact the User Manual
for your reconfigurable computing hardware in order to determine whether or not this applies.

Page 56Common Host Utilties
ad-ug-0055_v1_4.pdf

Common Host Utilities for Windows & Linux Release: 1.13.0
V1.4 - 12 Jun 2017

Page 57Common Host Utilties
ad-ug-0055_v1_4.pdf

Common Host Utilities for Windows & Linux Release: 1.13.0
V1.4 - 12 Jun 2017

Appendix A: AVR2UTIL clock generator indices

A.1 ADM-XRC-KU1
In the ADM-XRC-KU1, the frequencies of clock generators with indices 1 and 3 may be overridden using the
setclknv command, whereas the clock generators with indices 0 and 2 may not (because their frequencies must
be fixed in order for the board to function correctly).

clockgen-
index Net(s) [1] Purpose Factory

default (MHz)
ADMXRC3
API index [2] Note

0 REFCLK250M_N0
REFCLK250M_N1 MPTL reference clock 250 N/A [3]

1
PROGCLK_N0
PROGCLK_N1
PROGCLK_N2

Reference clock for user-
definable MGTs 156.25 1 .

2

REFCLK300M_N0
REFCLK300M_N1
REFCLK300M_N2
REFCLK300M_N3

Reference clock for DDR4
SDRAM and other logic 300 N/A [3]

3 FABRIC_CLK_N General purpose clock 300 2 .

Table 12 : AVR2UTIL clock generator indices (ADM-XRC-KU1)
Note:
[1] For differential clocks, only the negative side of a differential pair is listed.

[2] This is the clock generator index used in calls such as ADMXRC3_SetClockFrequency.

[3] Not user-programmable. Attempting to set an override frequency using AVR2UTIL will fail with exit code
103. Not exposed by ADMXRC3 API.

A.2 ADM-PCIE-8V3
In the ADM-PCIE-8V3, the frequencies of clock generators with indices 0, 1 and 2 may be overridden using the
setclknv command, whereas the clock generator with index 3 may not (because its frequency must be fixed in
order for the board to function correctly).

clockgen-
index Net(s) [1] Purpose Factory

default (MHz)
ADMXRC3
API index [2] Note

0 GTY_CLK_0B_N
GTY_CLK_0C_N

QSFP+ 0 reference clock
QSFP+ 1 reference clock 161.1328125 0 .

1 GTY_CLK_1B_N
GTY_CLK_1C_N

FireFly 0 reference clock
FireFly 1 reference clock 161.1328125 1 .

2 MEM_CLK_0_N
MEM_CLK_1_N

Reference clock for DDR4
SDRAM 300 2 .

3 FABRIC_CLK_N General purpose clock 300 N/A [3]

Table 13 : AVR2UTIL clock generator indices (ADM-PCIE-8V3)
Note:
[1] For differential clocks, only the negative side of a differential pair is listed.

[2] This is the clock generator index used in calls such as ADMXRC3_SetClockFrequency.

[3] Not user-programmable. Attempting to set an override frequency using AVR2UTIL will fail with exit code
103. Not exposed by ADMXRC3 API.

Page 58AVR2UTIL clock generator indices
ad-ug-0055_v1_4.pdf

Common Host Utilities for Windows & Linux Release: 1.13.0
V1.4 - 12 Jun 2017

A.3 ADM-PCIE-8K5
In the ADM-PCIE-8K5, the frequencies of all four clock generators, with indices 0 to 3, may be overridden using
the setclknv command.

clockgen-
index Net(s) [1] Purpose Factory

default (MHz)
ADMXRC3
API index [2] Note

0 GTY_CLK_0_N SFP+ 0 reference clock 156.25 0 .

1 GTY_CLK_1_N SFP+ 1 reference clock 156.25 1 .

2 MEM_CLK_0_N
MEM_CLK_1_N

Reference clock for DDR4
SDRAM 300 2 .

3 GTH_CLK_2_N FireFly 1 reference clock 156.25 3 .

Table 14 : AVR2UTIL clock generator indices (ADM-PCIE-8K5)
Note:
[1] For differential clocks, only the negative side of a differential pair is listed.

[2] This is the clock generator index used in calls such as ADMXRC3_SetClockFrequency.

Page 59AVR2UTIL clock generator indices
ad-ug-0055_v1_4.pdf

Common Host Utilities for Windows & Linux Release: 1.13.0
V1.4 - 12 Jun 2017

Revision History

Date Revision Nature of change

12 Aug 2015 1.0 Initial version.

16 May 2016 1.1
Documented new utility: avr2util.
Documented support for new models: ADM-XRC-KU1, ADM-PCIE-8V3, ADM-
PCIE-8K5.

30 Aug 2016 1.2
General overhaul to correct typographical errors
Documented USB communication support in AVR2UTIL.

3 Mar 2017 1.3

Documented new commands in AVR2UTIL 2.5.0: i2c-read-to-file, i2c-verify-
from-file, i2c-write-from-file, i2c-read, i2c-write, save-brdcfg, save-firmware,
save-vpd, display-vpd, display-vpd-raw, display-sensors, display-sensors-raw,
override-sensor, release-sensor

12 Jun 2017 1.4 Documented new commands in AVR2UTIL 2.7.1: getclk, setclk, spi-info, spi-raw

Address: Suite L4A, 160 Dundee Street,
Edinburgh, EH11 1DQ, UK

Telephone: +44 131 558 2600
Fax: +44 131 558 2700
email: sales@alpha-data.com
website: http://www.alpha-data.com

Address: 10822 West Toller Drive, Suite 250
Littleton, CO 80127

Telephone: (303) 954 8768
Fax: (866) 820 9956 - toll free
email: sales@alpha-data.com
website: http://www.alpha-data.com

5.0

	1 Introduction
	1.1 Directory structure

	2 Building the Common Host Utilities
	2.1 Building with Visual Studio 2012
	2.2 Building with Visual Studio 2013
	2.3 Building in Linux
	2.3.1 Building SYSMON in Linux

	3 Common Host Utilties
	3.1 AVR2UTIL / AVR2UTIL-S utility
	3.1.1 Available commands
	3.1.1.1 build-info command
	3.1.1.2 version command
	3.1.1.3 product-id command
	3.1.1.4 enter-service-mode command
	3.1.1.5 exit-service-mode command
	3.1.1.6 getclk command
	3.1.1.7 setclk command
	3.1.1.8 getclknv command
	3.1.1.9 setclknv command
	3.1.1.10 i2c-read-to-file command
	3.1.1.11 i2c-verify-with-file command
	3.1.1.12 i2c-write-from-file command
	3.1.1.13 i2c-read command
	3.1.1.14 i2c-write command
	3.1.1.15 update-brdcfg command
	3.1.1.16 verify-brdcfg command
	3.1.1.17 save-brdcfg command
	3.1.1.18 update-firmware command
	3.1.1.19 verify-firmware command
	3.1.1.20 save-firmware command
	3.1.1.21 update-vpd command
	3.1.1.22 verify-vpd command
	3.1.1.23 save-vpd command
	3.1.1.24 display-vpd command
	3.1.1.25 display-vpd-raw command
	3.1.1.26 display-sensors command
	3.1.1.27 display-sensors-raw command
	3.1.1.28 override-sensor command
	3.1.1.29 release-sensor command
	3.1.1.30 spi-info command
	3.1.1.31 spi-raw command

	3.1.2 Commands requiring non-Service Mode
	3.1.3 Commands requiring Service Mode

	3.2 BITSTRIP utility
	3.3 DMADUMP utility
	3.4 DUMP utility
	3.5 FLASH utility
	3.5.1 Region to address range mapping

	3.6 INFO utility
	3.7 IPROG utility
	3.8 LOADER utility
	3.9 MONITOR utility
	3.10 SYSMON utility
	3.10.1 SYSMON device information tab
	3.10.2 SYSMON sensor information tab
	3.10.3 SYSMON sensor readout tab
	3.10.4 SYSMON device status tab
	3.10.5 SYSMON clock generator tab
	3.10.6 SYSMON sensor data logging

	3.11 VPD utility
	3.11.1 VPD write-protection mechanisms

	Appendix A: AVR2UTIL clock generator indices
	A.1 ADM-XRC-KU1
	A.2 ADM-PCIE-8V3
	A.3 ADM-PCIE-8K5

	Tables
	Table 1: Utilities for Windows and Linux
	Table 2: Exit codes for AVR2UTIL utility
	Table 3: Exit codes for BITSTRIP utility
	Table 4: Exit codes for DMADUMP utility
	Table 5: Exit codes for DUMP utility
	Table 6: Exit codes for FLASH utility
	Table 7: Exit codes for INFO utility
	Table 8: Exit codes for IPROG utility
	Table 9: Exit codes for LOADER utility
	Table 10: Exit codes for MONITOR utility
	Table 11: Exit codes for VPD utility
	Table 12: AVR2UTIL clock generator indices (ADM-XRC-KU1)
	Table 13: AVR2UTIL clock generator indices (ADM-PCIE-8V3)
	Table 14: AVR2UTIL clock generator indices (ADM-PCIE-8K5)

	Figures
	Figure 1: Directory structure
	Figure 2: SYSMON user interface
	Figure 3: SYSMON notification area icon
	Figure 4: SYSMON sensor information tab
	Figure 5: SYSMON sensor readout tab
	Figure 6: SYSMON device status tab
	Figure 7: SYSMON clock generator tab
	Figure 8: SYSMON Action menu in Linux
	Figure 9: SYSMON Action menu in Windows

