
Common Host Utilities for
VxWorks

Release: 1.13.0
Document Revision: 1.2

12 Jun 2017

Common Host Utilities for VxWorks Release: 1.13.0
V1.2 - 12 Jun 2017

© 2017 Copyright Alpha Data Parallel Systems Ltd.
All rights reserved.

This publication is protected by Copyright Law, with all rights reserved. No part of this
publication may be reproduced, in any shape or form, without prior written consent from Alpha

Data Parallel Systems Ltd.

Head Office

Address: Suite L4A, 160 Dundee Street,
Edinburgh, EH11 1DQ, UK

Telephone: +44 131 558 2600
Fax: +44 131 558 2700
email: sales@alpha-data.com
website: http://www.alpha-data.com

US Office

10822 West Toller Drive, Suite 250
Littleton, CO 80127
(303) 954 8768
(866) 820 9956 - toll free
sales@alpha-data.com
http://www.alpha-data.com

All trademarks are the property of their respective owners.

Common Host Utilities for VxWorks Release: 1.13.0
V1.2 - 12 Jun 2017

Table Of Contents

1 Introduction .. 1
 1.1 Directory structure .. 1
2 Building the Common Host Utilities ... 3
 2.1 Building the VxWorks utilities on a Windows host ... 3
 2.2 Building the VxWorks utilities on a Linux host ... 3
 2.3 MAKE options for the example VxWorks applications ... 3
 2.3.1 MAKE targets ... 3
 2.3.2 MAKE variables ... 3
3 Common Host Utilties ... 5
 3.1 AVR2UTIL utility ... 5
 3.1.1 Available entry points ... 10
 3.1.1.1 avr2utilHelp entry point .. 10
 3.1.1.2 avr2utilBuildInfo entry point .. 10
 3.1.1.3 avr2utilVersion entry point ... 10
 3.1.1.4 avr2utilProductID entry point .. 11
 3.1.1.5 avr2utilEnterServiceMode entry point .. 11
 3.1.1.6 avr2utilExitServiceMode entry point ... 11
 3.1.1.7 avr2utilGetClk entry point ... 12
 3.1.1.8 avr2utilSetClk entry point ... 12
 3.1.1.9 avr2utilGetClkNV entry point .. 12
 3.1.1.10 avr2utilSetClkNV entry point .. 13
 3.1.1.11 avr2utilI2cReadToFile entry point .. 13
 3.1.1.12 avr2utilI2cVerifyWithFile entry point ... 14
 3.1.1.13 avr2utilI2cWriteFromFile entry point .. 14
 3.1.1.14 avr2utilI2cRead entry point .. 14
 3.1.1.15 avr2utilI2cWrite entry point .. 15
 3.1.1.16 avr2utilUpdateBrdCfg entry point ... 15
 3.1.1.17 avr2utilVerifyBrdCfg entry point ... 16
 3.1.1.18 avr2utilSaveBrdCfg entry point .. 16
 3.1.1.19 avr2utilUpdateFirmware entry point ... 16
 3.1.1.20 avr2utilVerifyFirmware entry point .. 17
 3.1.1.21 avr2utilSaveFirmware entry point .. 17
 3.1.1.22 avr2utilUpdateVPD entry point ... 17
 3.1.1.23 avr2utilVerifyVPD entry point ... 18
 3.1.1.24 avr2utilSaveVPD entry point .. 18
 3.1.1.25 avr2utilDisplayVPD entry point .. 18
 3.1.1.26 avr2utilDisplayVPDRaw entry point ... 19
 3.1.1.27 avr2utilDisplaySensors entry point ... 19
 3.1.1.28 avr2utilDisplaySensorsRaw entry point ... 19
 3.1.1.29 avr2utilOverrideSensor entry point .. 20
 3.1.1.30 avr2utilReleaseSensor entry point ... 20
 3.1.1.31 avr2utilSPIInfo entry point .. 21
 3.1.1.32 avr2utilSPIRaw entry point ... 21
 3.1.2 Entry points requiring non-Service Mode ... 21
 3.1.3 Entry points requiring Service Mode .. 22
 3.2 BITSTRIP utility .. 23
 3.3 DMADUMP utility ... 24
 3.4 DUMP utility ... 30
 3.5 FLASH utility .. 36
 3.5.1 Region to address range mapping ... 43
 3.6 INFO utility ... 44
 3.7 LOADER utility ... 47
 3.8 MONITOR utility ... 49

Common Host Utilities for VxWorks Release: 1.13.0
V1.2 - 12 Jun 2017

 3.9 VPD utility .. 51
 3.9.1 VPD write-protection mechanisms ... 56

Appendix A AVR2UTIL clock generator indices .. 58
 A.1 ADM-XRC-KU1 .. 58
 A.2 ADM-PCIE-8V3 .. 58
 A.3 ADM-PCIE-8K5 .. 59

List of Tables

Table 1 Utilities for VxWorks ... 1
Table 2 Return values for AVR2UTIL utility ... 7
Table 3 Return values for BITSTRIP utility ... 23
Table 4 Return values for DMADUMP utility ... 29
Table 5 Return values for DUMP utility ... 35
Table 6 Summary of admxrc3FlashChkblank entry point behavior .. 38
Table 7 Summary of admxrc3FlashErase entry point behavior .. 39
Table 8 Summary of admxrc3FlashProgram entry point behavior .. 40
Table 9 Summary of admxrc3FlashVerify entry point behavior .. 41
Table 10 Return values for FLASH utility .. 42
Table 11 Return values for INFO utility ... 46
Table 12 Return values for LOADER utility ... 48
Table 13 Return values for MONITOR utility .. 50
Table 14 Return values for VPD utility .. 55
Table 15 AVR2UTIL clock generator indices (ADM-XRC-KU1) .. 58
Table 16 AVR2UTIL clock generator indices (ADM-PCIE-8V3) .. 58
Table 17 AVR2UTIL clock generator indices (ADM-PCIE-8K5) .. 59

List of Figures

Figure 1 Directory structure .. 1

Common Host Utilities for VxWorks Release: 1.13.0
V1.2 - 12 Jun 2017

1 Introduction
This document describes the Common Host Utilities for VxWorks, for Alpha Data Gen 3 Reconfigurable
Computing Hardware. In this context, "common" refers to the fact that these utilities, with some exceptions, can
be used with all models in Alpha Data's range of Gen 3 Reconfigurable Computing Hardware:
• Embedded system products:

• ADM-XRC-6TL

• ADM-XRC-6T1

• ADM-XRC-6T-DA1

• ADM-XRC-6TGE and ADM-XRC-6TGEL

• ADM-XRC-6T-ADV8

• ADPE-XRC-6T and ADPE-XRC-6T-L

• ADM-XRC-7K1

• ADM-XRC-7V1

• ADM-VPX3-7V2

• ADM-XRC-KU1

• Datacenter products:
• ADM-PCIE-7V3

• ADM-PCIE-KU3

• ADM-PCIE-8V3

• ADM-PCIE-8K5

Table 1 lists the available utilities for VxWorks.

AVR2UTIL Utility for manipulating microcontroller firmware and related data (for certain models
only).

BITSTRIP Utility for removing the header from a .bit file, leaving only the SelectMap data

DMADUMP Utility for reading and writing using DMA engines

DUMP Utility for reading and writing memory windows

FLASH Utility for programming FPGA bitstream (.BIT) files in user-programmable Flash
memory

INFO Utility for displaying information about a reconfigurable computing device

LOADER Utility for configuring a target FPGA with a bitstream file

MONITOR Utility that displays sensor readings

VPD Utility that allows the Vital Product Data of a reconfigurable computing device to be
read or written

Table 1 : Utilities for VxWorks

1.1 Directory structure
The files and folders making up the Common Host Utilities are organized as in Figure 1 below:

(root) The root of this package

host

api-v1_4_21

Page 1Introduction
ad-ug-0086_v1_2.pdf

Common Host Utilities for VxWorks Release: 1.13.0
V1.2 - 12 Jun 2017

include API header files used by utilities

lib Library files used by utilities (Windows)

util-v1_13_0 Common Host Utilities (subject of this document)

bin

win32 Windows binaries

doc Documentation for utilities, including this document

proj

linux Makefiles etc. for Linux

vxworks Build directory for VxWorks utilities

win32vs2012 Microsoft Visual Studio 2012 projects (Windows)

win32vs2013 Microsoft Visual Studio 2013 projects (Windows)

src Source code for utilities

avr2util Source code for avr2util utility

bitstrip Source code for bitstrip utility

...

Figure 1 : Directory structure

The root of this package, i.e. the directory which forms the root of tree of directories and files making up this
package, is referred to in the remainder of this document as (root).

The base directory of the Common Host Utilties, i.e. (root)/host/util-v1_13_0/ is referred to in the remainder of
this document as (util).

Page 2Introduction
ad-ug-0086_v1_2.pdf

Common Host Utilities for VxWorks Release: 1.13.0
V1.2 - 12 Jun 2017

2 Building the Common Host Utilities
2.1 Building the VxWorks utilities on a Windows host

The build system for the host utilities uses the Makefile infrastructure provided by VxWorks.The CPU
architecture, tool chain etc. are specified directly on the make command line.

In this section, it will be assumed that the target machine is a 64-bit symmetric multiprocessing (SMP) Intel
NEHALEM machine, and the tool chain to be used is GNU. In general, the CPU architecture and toolchain that is
specified on the make command line should match that of the VxWorks kernel of the target machine.

If using a Windows machine for VxWorks hosting and development, follow this procedure:
1 If you do not have write permissions for the host directory, (root)/host/, first make a copy of it and use the

copy for the remainder of this procedure.

2 Start a VxWorks Development Shell via the shortcut on the Windows Start Menu. If you have more than
one version of VxWorks installed, use the same VxWorks version as used when building the VxWorks
kernel for the target machine. It is important to use this shortcut in order to obtain the correct environment
for performing command-line builds using the VxWorks toolchains.

3 Change directory to the (root)/host/ directory.

4 Issue the following make command:
make CPU=NEHALEM VXBUILD="LP64 SMP" QUIET=true clean default

Assuming that the above command was executed successfully, the binary downloadable module hostUtils.out,
containing all of the example VxWorks applications, is located in the current directory.

2.2 Building the VxWorks utilities on a Linux host
TBA

2.3 MAKE options for the example VxWorks applications

2.3.1 MAKE targets

The Makefile for the VxWorks examples defines the following top-level targets for the make command line:
• default or all

This is a .PHONY target used to build the host utilities binary.

• clean
This is a .PHONY target used to delete the host utilities binary and intermediate build files (.o, .a etc.).

2.3.2 MAKE variables

The Makefile for the VxWorks examples accepts a number of variables which are passed on the make command
line. These are:
• CPU=<architecture>

Specifies the target CPU, e.g. PENTIUM4, PPC604, NEHALEM etc. The default is PPC604.

• QUIET=<false|true>
Specifies whether or not to suppress the display of build commands. A value of true can be helpful in order
to avoid missing warnings during build, whereas a value of false is useful for verifying that the expected
compiler and linker options are used.

• TOOL=<diab|gnu|icc>
Selects the toolchain for building. The default is gnu.

• VXBUILD=<variant>

Page 3Building the Common Host Utilities
ad-ug-0086_v1_2.pdf

Common Host Utilities for VxWorks Release: 1.13.0
V1.2 - 12 Jun 2017

Specifies the VxWorks library variant to use, e.g. VXBUILD="LP64 SMP" if building to run under a 64-bit
SMP VxWorks kernel. The default is to use the regular libraries, which are 32-bit and uniprocessor for
most embedded CPU architectures.
This variable can be specified only for VxWorks 6.6 or later. In the case of VxWorks 6.6, the only valid
possibilities are VXBUILD="SMP" or to leave VXBUILD unspecified.

Page 4Building the Common Host Utilities
ad-ug-0086_v1_2.pdf

Common Host Utilities for VxWorks Release: 1.13.0
V1.2 - 12 Jun 2017

3 Common Host Utilties
3.1 AVR2UTIL utility

VxWorks kernel shell entry points
int avr2utilHelp ()
int avr2utilBuildInfo ()
int avr2utilProductID (indexOrSerial, flags)
int avr2utilVersion (indexOrSerial, flags)
int avr2utilEnterServiceMode (indexOrSerial, flags)
int avr2utilExitServiceMode (indexOrSerial, flags)
int avr2utilGetClk (indexOrSerial, flags, clockIndex)
int avr2utilSetClk (indexOrSerial, flags, clockIndex, frequencyHz)
int avr2utilGetClkNV (indexOrSerial, flags, clockIndex)
int avr2utilSetClkNV (indexOrSerial, flags, clockIndex, frequencyHz)
int avr2utilI2cReadToFile (indexOrSerial, flags, bus, device, address, count,
 pOutFilename)
int avr2utilI2cVerifyFromFile(indexOrSerial, flags, bus, device, address,
 pInFilename)
int avr2utilI2cWriteFromFile (indexOrSerial, flags, bus, device, address,
 pInFilename)
int avr2utilI2cRead (indexOrSerial, flags, bus, device, address, count)
int avr2utilI2cWrite (indexOrSerial, flags, bus, device, address, count,
 ... /* write bytes */)
int avr2utilUpdateBrdCfg (indexOrSerial, flags, pBrdCfgFilename)
int avr2utilVerifyBrdCfg (indexOrSerial, flags, pBrdCfgFilename)
int avr2utilSaveBrdCfg (indexOrSerial, flags, pBrdCfgSaveFilename)
int avr2utilUpdateFirmware (indexOrSerial, flags, pFirmwareFilename)
int avr2utilVerifyFirmware (indexOrSerial, flags, pFirmwareFilename)
int avr2utilSaveFirmware (indexOrSerial, flags, pFirmwareSaveFilename)
int avr2utilUpdateVPD (indexOrSerial, flags, pVPDFilename)
int avr2utilVerifyVPD (indexOrSerial, flags, pVPDFilename)
int avr2utilSaveVPD (indexOrSerial, flags, pVPDSaveFilename)
int avr2utilDisplayVPD (indexOrSerial, flags)
int avr2utilDisplayVPDRaw (indexOrSerial, flags)
int avr2utilDisplaySensors (indexOrSerial, flags)
int avr2utilDisplaySensorsRaw(indexOrSerial, flags)
int avr2utilOverrideSensor (indexOrSerial, flags, sensorIndex, overrideValue)
int avr2utilReleaseSensor (indexOrSerial, flags, sensorIndex)
int avr2utilSpiInfo (indexOrSerial, flags, chipIndex)
int avr2utilSpiRaw (indexOrSerial, flags, chipIndex, readCount,
 writeCount, ... /* write bytes */)

where the parameters are:

unsigned int indexOrSerial Specifies the index (or serial number) of the device to open.

unsigned int flags Specifies the bitwise OR of zero or more flags that modify the
behavior of the utility; see below for details.

unsigned int clockIndex Index of a clock generator output whose override frequency is
to be programmed or queried.

Page 5Common Host Utilties
ad-ug-0086_v1_2.pdf

Common Host Utilities for VxWorks Release: 1.13.0
V1.2 - 12 Jun 2017

unsigned int frequencyHz The override frequency to be programmed for a given clock
generator output; the values 0 or 0xFFFFFFFF have special
meaning (see descriptions of avr2utilGetClkNV and
avr2utilSetClkNV below).

unsigned int bus The index of the I2C bus on which the I2C device of interest
resides.

unsigned int device The device number within a given I2C bus, which identifies the
I2C device of interest.

unsigned int address An address within the I2C device of interest.

unsigned int count A byte count, used in certain I2C-related entry points.

unsigned int sensorIndex Specifies the index of a sensor.

unsigned int overrideValue The unscaled value that is to be injected into a sensor,
overriding its natural value.

unsigned int chipIndex Specifies the index of a SPI Flash chip.

unsigned int readCount A count of bytes to read, used in certain entry points related to
SPI Flash access.

unsigned int writeCount A count of bytes to write, used in certain entry points related to
SPI Flash access.

const char* pInFilename The name of a binary file (.bin extension) containing data to
be written to an I2C device or used to verify the contents of an
I2C device.

const char* pOutFilename The name of a binary file (.bin extension) into which data is
written after being read from an I2C device.

const char* pBrdCfgFilename The name of a binary file (.bin extension) containing board
configuration information.

const char* pBrdCfgSaveFilename The name of a binary file (.bin extension) into which board
configuration information read from a card is to be saved.

const char* pFirmwareFilename The name of a binary file (.bin extension) containing
microcontroller firmware.

const char* pFirmwareSaveFilename The name of a binary file (.bin extension) into which
microcontroller firmware read from a card is to be saved.

const char* pVPDFilename The name of a binary file (.bin extension) containing Vital
Product Data (VPD).

const char* pVPDSaveFilename The name of a binary file (.bin extension) into which Vital
Product Data (VPD) read from a card is to be saved.

The flags parameter is the bitwise-OR of zero or more of the following values:

Value Symbolic name Meaning

0x1 FLAG_BYSERIAL indexOrSerial is treated as a serial number rather than a
device index.

0x2 FLAG_VERBOSE Displays commands sent to the microcontroller and its
responses, for debug purposes.

Return value

Page 6Common Host Utilties
ad-ug-0086_v1_2.pdf

Common Host Utilities for VxWorks Release: 1.13.0
V1.2 - 12 Jun 2017

When AVR2UTIL successfully performs the requested operation, the return value is 0. When an error occurs,
one of the following values is returned:

Symbolic name Value Meaning

EXIT_OK 0 Success.

EXIT_INVALID_INDEX 3 Index value out of range or not a valid number.

EXIT_INVALID_FREQUENCY 4 Frequency value out of range or not a valid number.

EXIT_READ_FIRMWARE_FAILED 5 Failed to read firmware file.

EXIT_FIRMWARE_TOO_LARGE 6 Firmware file is too large for uC.

EXIT_ALLOCATION_FAILED 7 Failed to allocate buffer for firmware or board config.
data.

EXIT_VERIFY_FAILED 8 Errors found when verifying updated firmware or
board config. data.

EXIT_UNSUPPORTED_MODEL 9 Attempting to use this utility on an unsupported
model.

EXIT_USB_NOT_SUPPORTED 11 Access to AVR2 uC via USB is currently not
supported for this OS.

EXIT_MODE_CHANGE_FAILED 12 AVR2 uC did not enter or exit Service Mode as
requested.

EXIT_WRONG_MODE 13 Device is in the wrong mode (Service Mode vs. non-
Service Mode) for the requested command.

EXIT_UNRECOGNIZED_PRODUCTID 14 Product ID not recognized; aborting as a precaution
against firmware corruption.

EXIT_INVALID_I2C_BUS 15 I2C bus number is not valid.

EXIT_INVALID_I2C_DEVICE 16 I2C device number is not valid.

EXIT_INVALID_I2C_ADDRESS 17 I2C address is not valid.

EXIT_I2C_READ_FILE_FAILED 18 Failed to read data for I2C write from file.

EXIT_I2C_WRITE_FILE_FAILED 19 Failed to write data from I2C read to file.

EXIT_INVALID_I2C_COUNT 20 I2C data byte count is not valid.

EXIT_INVALID_I2C_BYTEVAL 21 I2C data byte value is not valid.

EXIT_WRITE_FIRMWARE_FAILED 22 Failed to write firmware/VPD/board config to a file.

EXIT_INVALID_OVERRIDE 23 Sensor override value out of range or not a valid
number.

EXIT_INVALID_SPI_INDEX 24 SPI chip index is not valid.

EXIT_INVALID_SPI_READ_COUNT 25 SPI read byte count is not valid.

EXIT_INVALID_SPI_WRITE_COUNT 26 SPI write byte count is not valid.

EXIT_INVALID_SPI_BYTEVAL 27 SPI data byte value is not valid.

EXIT_DEVICE_OPEN_ERROR 100 Failed to open device.

EXIT_AVR2_STATUS_ERROR 101 Failed to get AVR2 uC status.

EXIT_AVR2_COMMAND_ERROR 102 Failed to send command to AVR2 uC.

EXIT_AVR2_BAD_STATUS 103 AVR2 uC returned nonzero status for operation.
Table 2 : Return values for AVR2UTIL utility (continued on next page)

Page 7Common Host Utilties
ad-ug-0086_v1_2.pdf

Common Host Utilities for VxWorks Release: 1.13.0
V1.2 - 12 Jun 2017

Symbolic name Value Meaning

EXIT_AVR2_SHORT_RESPONSE 104 AVR2 uC's response was too short (< 2 bytes) to be
valid.

EXIT_LIBRARY_NOT_FOUND 105 Could not find AVR2 or ADB3 shared library/DLL.

Table 2 : Return values for AVR2UTIL utility

Summary

This utility performs maintenance functions on the firmware of the microcontroller and associated data on the
following models in Alpha Data's range of reconfigurable computing hardware:
• ADM-XRC-KU1

• ADM-PCIE-8V3

• ADM-PCIE-8K5

AVR2UTIL supports the following use-cases:
• Checking the version of the microcontroller firmware.

• Programming the clock generator on a board in a nonvolatile manner, so that it powers up providing a
user-specified frequency at a given clock input on the FPGA.

• Upgrading the microcontroller firmware and its associated data.

Description

In VxWorks, AVR2UTIL communicates with the microcontroller on supported models in Alpha Data's range of
reconfigurable computing hardware using the ADB3 Driver. This requires the ADB3 Driver to be installed and
running.

In the current version of AVR2UTIL for VxWorks, USB communication is not currently supported.

The entry points making up the AVR2UTIL utility can be invoked in the VxWorks shell in a number of ways:
• avr2utilHelp

Displays brief help, including the list of entry points.

• avr2utilBuildInfo
Displays the version of AVR2UTIL itself and information about how it was built.

• avr2utilVersion indexOrSerial, flags

Displays the version of the microcontroller firmware in a given device.

• avr2utilProductID indexOrSerial, flags

Displays the Product ID of the microcontroller firmware in a given device.

• avr2utilEnterServiceMode indexOrSerial, flags

Commands the microcontroller in a given device to enter Service Mode.

• avr2utilExitServiceMode indexOrSerial, flags

Commands the microcontroller in a given device to exit Service Mode.

• avr2utilGetClk indexOrSerial, flags, clockIndex

Gets the (volatile) current frequency of the particular clock generator selected by clockIndex.

• avr2utilSetClk indexOrSerial, flags, clockIndex, frequencyHz

Sets the (volatile) current frequency of the particular clock generator selected by clockIndex to
frequencyHz Hz.

• avr2utilGetClkNV indexOrSerial, flags, clockIndex

Gets the nonvolatile override frequency for the particular clock generator selected by clockIndex.

Page 8Common Host Utilties
ad-ug-0086_v1_2.pdf

Common Host Utilities for VxWorks Release: 1.13.0
V1.2 - 12 Jun 2017

• avr2utilSetClkNV indexOrSerial, flags, clockIndex, frequencyHz

Sets the nonvolatile override frequency for the particular clock generator selected by clockIndex to
frequencyHz Hz.

• avr2utilI2cReadToFile indexOrSerial, flags, bus, device, address, count, pOutFilename

Performs multiple single-byte reads of an I2C device and saves the data into a file.

• avr2utilI2cVerifyWithFile indexOrSerial, flags, bus, device, address, pInFilename

Performs multiple single-byte reads of an I2C device and compares the data with the contents of a file.

• avr2utilI2cWriteFromFile indexOrSerial, flags, bus, device, address, pInFilename

Writes the contents of a file to an I2C device using multiple single-byte writes.
NOTE: This entry point should be used only under guidance from Alpha Data, because incorrect usage
can corrupt board control devices.

• avr2utilI2cRead indexOrSerial, flags, bus, device, address, count

Performs an individual I2C read of one or more bytes from an I2C device, displaying the data read.

• avr2utilI2cWrite indexOrSerial, flags, bus, device, address, count, ...
Performs an individual I2C write of one or more bytes to an I2C device, obtaining the bytes to write from
additional values following the count argument.
NOTE: This entry point should be used only under guidance from Alpha Data, because incorrect usage
can corrupt board control devices.

• avr2utilUpdateBrdCfg indexOrSerial, flags, pBrdCfgFilename

Writes the board-specific configuration area used by the microcontroller firmware with the contents of the
file pBrdCfgFilename.
NOTE: This entry point should be used only under guidance from Alpha Data, because incorrect usage
can corrupt data required by the microcontroller's firmware.

• avr2utilVerifyBrdCfg indexOrSerial, flags, pBrdCfgFilename

Verifies the board-specific configuration area used by the microcontroller firmware against the contents of
the file pBrdCfgFilename.

• avr2utilSaveBrdCfg indexOrSerial, flags, pBrdCfgSaveFilename

Reads the board-specific configuration area used by the microcontroller firmware, from the nonvolatile
memory device in which it resides on a board, and saves it into the file pBrdCfgSaveFilename.

• avr2utilUpdateFirmware indexOrSerial, flags, pFirmwareFilename

Writes the firmware of the microcontroller with the contents of the file pFirmwareFilename.
NOTE: This entry point should be used only under guidance from Alpha Data, because incorrect usage
can corrupt the microcontroller's firmware.

• avr2utilVerifyFirmware indexOrSerial, flags, pFirmwareFilename

Verifies the firmware of the microcontroller against the contents of the file pFirmwareFilename.

• avr2utilSaveFirmware indexOrSerial, flags, pFirmwareSaveFilename

Reads the the firmware of the microcontroller, from the nonvolatile memory device in which it resides on a
board, and saves it into the file pFirmwareSaveFilename.

• avr2utilUpdateVPD indexOrSerial, flags, pVPDFilename

Writes the Vital Product Data (VPD) for the board with the contents of the file pVPDFilename.
NOTE: This entry point should be used only under guidance from Alpha Data, because incorrect usage
can corrupt the board's VPD.

• avr2utilVerifyVPD indexOrSerial, flags, pVPDFilename

Verifies the Vital Product Data (VPD) for the board against the contents of the file pVPDFilename.

• avr2utilSaveVPD indexOrSerial, flags, pVPDSaveFilename

Page 9Common Host Utilties
ad-ug-0086_v1_2.pdf

Common Host Utilities for VxWorks Release: 1.13.0
V1.2 - 12 Jun 2017

Reads the Vital Product Data (VPD), from the nonvolatile memory device in which it resides on a board,
and saves it into the file pVPDSaveFilename.

• avr2utilDisplayVPD indexOrSerial, flags

Reads the Vital Product Data (VPD) from the board and displays it in human-readable form.

• avr2utilDisplayVPDRaw indexOrSerial, flags

Reads the Vital Product Data (VPD) from the board and displays it as raw bytes.

• avr2utilDisplaySensors indexOrSerial, flags

Reads the Sensor Page from the board and displays it in human-readable form.

• avr2utilDisplaySensorsRaw indexOrSerial, flags

Reads the Sensor Page from the board and displays it as raw bytes.

• avr2utilOverrideSensor indexOrSerial, flags, <sensorIndex>, <overrideValue>

Used by Alpha Data for firmware testing; permits a particular reading to be injected into a sensor,
overriding its natural value.

• avr2utilReleaseSensor indexOrSerial, flags, <sensorIndex>

Used by Alpha Data for firmware testing; undoes the avr2utilReleaseSensor function, returning a sensor
to normal operation.

3.1.1 Available entry points

3.1.1.1 avr2utilHelp entry point

The avr2utilHelp entry point displays a brief help message, listing the available entry points and their
parameters.

Usage example:

 avr2utilHelp

3.1.1.2 avr2utilBuildInfo entry point

The avr2utilBuildInfo entry point returns the version number of AVR2UTIL itself along with some information
about how it was built:
• Whether dynamically or statically linked to the ADB3 API library (used when communicating with the uC via

the PCIe host interface of a reconfigurable computing card), and the version of the ADB3 API header files.

The general form of this entry point has no arguments and is:

 avr2utilBuildInfo

3.1.1.3 avr2utilVersion entry point

The avr2utilVersion entry point displays the version of the microcontroller firmware in the form a.b.c.d. This can
be used as a further check in order to verify that a previous operation to update firmware was successful.

If the microcontroller is in Service Mode, this gives the version of the Boot Manager II (BootMan2) firmware;
otherwise, it gives the version of the Board Manager II (BoardMan2) firmware.

The general form of this entry point is:

 avr2utilVersion indexOrSerial,flags

where indexOrSerial and flags are parameters as described above.

Usage example 1 - The following three invocations are all equivalent and display the microcontroller firmware
version for the first device in the system:

 avr2utilVersion
 avr2utilVersion 0

Page 10Common Host Utilties
ad-ug-0086_v1_2.pdf

Common Host Utilities for VxWorks Release: 1.13.0
V1.2 - 12 Jun 2017

 avr2utilVersion 0,0

Usage example 2 - Display the the microcontroller firmware version for the device with serial number 100:

 avr2utilVersion 100,1

3.1.1.4 avr2utilProductID entry point

Displays the Product ID of the firmware. The following known Product IDs exist:
• 1320 (0x528), 720 (0x2D0) or 184320 (0x2D000) => Boot Manager II (BootMan2)

• 1321 (0x529), 721 (0x2D1) or 184321 (0x2D001) => Board Manager II (BoardMan2)

This provides a way to determine whether or not the microcontroller is in Service Mode; if the Product ID
corresponds to BootMan2, the microcontroller is in Service Mode.

The general form of this entry point is:

 avr2utilProductID indexOrSerial,flags

where indexOrSerial and flags are parameters as described above.

Usage example 1 - The following three invocations are all equivalent and display microcontroller firmware's
Product ID for the first device in the system:

 avr2utilProductID
 avr2utilProductID 0
 avr2utilProductID 0,0

Usage example 2 - Display the the microcontroller firmware's Product ID for the device with serial number 100:

 avr2utilProductID 100,1

3.1.1.5 avr2utilEnterServiceMode entry point

Commands the microcontroller to enter service mode; if already in Service Mode, this entry point does nothing.
The microcontroller remains in Service Mode until commanded to exit Service Mode or until a power cycle
occurs.

The general form of this entry point is:

 avr2utilEnterServiceMode indexOrSerial,flags

where indexOrSerial and flags are parameters as described above.

Usage example 1 - Command the first device in the system to enter Service Mode:

 avr2utilEnterServiceMode

Usage example 2 - Command the the device with serial number 100 to enter Service Mode:

 avr2utilEnterServiceMode 100,1

3.1.1.6 avr2utilExitServiceMode entry point

Commands the microcontroller to exit service mode; if not in Service Mode, this entry point does nothing.

The general form of this entry point is:

 avr2utilExitServiceMode indexOrSerial,flags

where indexOrSerial and flags are parameters as described above.

Usage example 1 - Command the first device in the system to exit Service Mode:

 avr2utilExitServiceMode

Usage example 2 - Command the the device with serial number 100 to exit Service Mode:

Page 11Common Host Utilties
ad-ug-0086_v1_2.pdf

Common Host Utilities for VxWorks Release: 1.13.0
V1.2 - 12 Jun 2017

 avr2utilExitServiceMode 100,1

3.1.1.7 avr2utilGetClk entry point

The avr2utilGetClk entry point returns the current frequency, in Hz, of a particular clock generator.

This entry point requires the microcontroller not to be in Service Mode in order to succeed. See 3.1.2 below.

The general form of this entry point is:

 avr2utilGetClk indexOrSerial,flags,clockIndex

where indexOrSerial and flags are parameters as described above.

clockIndex is the index of an output in the device's clock generator. For the correspondence of clockIndex to
physical clock nets, refer to Appendix A.

Usage example 1 - Display the current frequency of clock output 1, for the first device in the system:

 avr2utilGetClk 0,0,1

Usage example 2 - Display the current frequency of clock output 1, for the device with serial number 100:

 avr2utilGetClk 100,1,1

3.1.1.8 avr2utilSetClk entry point

The avr2utilSetClk entry point sets the current frequency, in Hz, for a particular clock generator, effective
immediately. The operation performed is volatile, and a power cycle returns all clock generators to their default
frequencies.

This entry point requires the microcontroller not to be in Service Mode in order to succeed. See 3.1.2 below.

The general form of this entry point is:

 avr2utilSetClk indexOrSerial,flags,clockIndex,frequencyHz

where indexOrSerial and flags are parameters as described above. Unlike the avr2utilSetClkNV entry point, the
avr2utilSetClk entry point can reprogram all clock outputs (albeit in a volatile way), even those whose
nonvolatile frequency cannot be overridden.

clockIndex is the index of an output in the device's clock generator. For the correspondence of clockIndex to
physical clock nets, refer to Appendix A.

frequencyHz is the new frequency, in Hz.

Usage example 1 - Set the current frequency of clock output 1, for the first device in the system, to 250 MHz:

 avr2utilSetClk 0,0,1,250000000

Usage example 2 - Set the current frequency of clock output 1, for the device with serial number 100, to 250
MHz:

 avr2utilSetClk 100,1,1,250000000

3.1.1.9 avr2utilGetClkNV entry point

The avr2utilGetClkNV entry point returns the current nonvolatile override frequency, in Hz, for a particular clock
generator.

At power-on, the microcontroller inspects each clock generator's nonvolatile override frequency in turn. If set to a
value other than 0 or 4294967295 (0xFFFFFFFF), it programs the clock generator to output a clock of that
frequency. Otherwise, the clock generator remains at its factory default frequency.

This entry point requires the microcontroller not to be in Service Mode in order to succeed. See 3.1.2 below.

The general form of this entry point is:

Page 12Common Host Utilties
ad-ug-0086_v1_2.pdf

Common Host Utilities for VxWorks Release: 1.13.0
V1.2 - 12 Jun 2017

 avr2utilGetClkNV indexOrSerial,flags,clockIndex

where indexOrSerial and flags are parameters as described above.

clockIndex is the index of an output in the device's clock generator. For the correspondence of clockIndex to
physical clock nets, refer to Appendix A.

Usage example 1 - Display the override frequency of clock output 1 for the first device in the system:

 avr2utilGetClkNV 0,0,1

Usage example 2 - Display the override frequency of clock output 1 for the device with serial number 100:

 avr2utilGetClkNV 100,1,1

3.1.1.10 avr2utilSetClkNV entry point

The avr2utilSetClkNV entry point sets the nonvolatile override frequency, in Hz, for a particular clock generator.
This entry point does not cause the specified clock generator's actual output frequency to change immediately.

At power-on, the microcontroller inspects each clock generator's nonvolatile override frequency in turn. If set to a
value other than 0 or 4294967295 (0xFFFFFFFF), it programs the clock generator to output a clock of that
frequency. Otherwise, the clock generator remains at its factory default frequency.

This entry point requires the microcontroller not to be in Service Mode in order to succeed. See 3.1.2 below.

The general form of this entry point is:

 avr2utilSetClkNV indexOrSerial,flags,clockIndex,frequencyHz

where indexOrSerial and flags are parameters as described above.

clockIndex is the index of an output in the device's clock generator. For the correspondence of clockIndex to
physical clock nets, refer to Appendix A.

frequencyHz is the override frequency, in Hz. To unset the nonvolatile override frequency for a particular clock
generator, use a value of 0 or 0xFFFFFFFF.

Usage example 1 - Set the override frequency of clock output 1, for the first device in the system, to 250 MHz:

 avr2utilSetClkNV 0,0,1,250000000

Usage example 2 - Set the override frequency of clock output 1 for the device with serial number 100, to 250
MHz:

 avr2utilSetClkNV 100,1,1,250000000

Usage example 3 - Unset (remove) the override frequency of clock output 2, for the first device in the system:

 avr2utilSetClkNV 0,0,2,0xFFFFFFFF

3.1.1.11 avr2utilI2cReadToFile entry point

The avr2utilI2cReadToFile entry point is primarily for in-house use by Alpha Data, but may also be used by end
users under guidance from Alpha Data support personnel. This entry point performs multiple single-byte reads of
an I2C device (usually a PROM), saving the data read into a file (usually with a .bin extension).

This entry point requires the microcontroller not to be in Service Mode in order to succeed. See 3.1.2 below.

The general form of this entry point is:

 avr2utilI2cReadToFile indexOrSerial,flags,bus,device,address,count,pSaveFilename

where indexOrSerial and flags are parameters as described above.

bus and device identify the I2C bus number and I2C device (on that bus), respectively. address is the address
within the I2C device at which to begin reading. count is the number of consecutively-addressed bytes to read,

Page 13Common Host Utilties
ad-ug-0086_v1_2.pdf

Common Host Utilities for VxWorks Release: 1.13.0
V1.2 - 12 Jun 2017

and pSaveFilename is the filename into which to save the data.

Usage example 1 - For the first device in the system, read 256 bytes from I2C bus 0, device 0x57 starting at
address 0 within the device and save the data into the file save_file.bin:

 avr2utilI2cReadToFile 0,0,0,0x57,0,256,"host:/path/to/save_file.bin"

3.1.1.12 avr2utilI2cVerifyWithFile entry point

The avr2utilI2cVerifyWithFile entry point is primarily for in-house use by Alpha Data, but may also be used by
end users under guidance from Alpha Data support personnel. This entry point performs multiple single-byte
reads of an I2C device (usually a PROM), and verifies that the data read matches the contents of a file (usually
with a .bin extension).

This entry point requires the microcontroller not to be in Service Mode in order to succeed. See 3.1.2 below.

The general form of this entry point is:

 avr2utilI2cVerifyWithFile indexOrSerial,flags,bus,device,address,pVerifyFilename

where indexOrSerial and flags are parameters as described above.

bus and device identify the I2C bus number and I2C device (on that bus), respectively. address is the address
within the I2C device at which to begin reading, and pVerifyFilename is the name of the file against which the
data read is compared.

Usage example 1 - For the first device in the system, verify that the data in I2C bus 0, device 0x57 starting at
address 0 within the device matches the contents of the file verify_file.bin:

 avr2utilI2cVerifyWithFile 0,0,0,0x57,0,"host:/path/to/verify_file.bin"

3.1.1.13 avr2utilI2cWriteFromFile entry point

The avr2utilI2cWriteFromFile entry point is primarily for in-house use by Alpha Data, but may also be used by
end users under guidance from Alpha Data support personnel. This entry point performs multiple single-byte
writes to an I2C device (usually a PROM), obtaining the data to be written from a file (usually with a .bin
extension).

This entry point requires the microcontroller not to be in Service Mode in order to succeed. See 3.1.2 below.

The general form of this entry point is:

 avr2utilI2cWriteFromFile indexOrSerial,flags,bus,device,address,pDataFilename

where indexOrSerial and flags are parameters as described above.

bus and device identify the I2C bus number and I2C device (on that bus), respectively. address is the address
within the I2C device at which to begin writing, and pDataFilename is the name of the file containing the data to
be written.

Usage example 1 - For the first device in the system (according to system-defined PCIe enumeration order),
write I2C device 0x57 on bus 0, starting at address 0 within the device, with the contents of the file data_file.bin:

 avr2utilI2cWriteFromFile 0,0,0,0x57,0,"host:/path/to/data_file.bin"

3.1.1.14 avr2utilI2cRead entry point

The avr2utilI2cRead entry point is primarily for in-house use by Alpha Data, but may also be used by end users
under guidance from Alpha Data support personnel. This entry point performs an individual I2C read of one or
more bytes from an I2C device, displaying the bytes read.

This entry point requires the microcontroller not to be in Service Mode in order to succeed. See 3.1.2 below.

The general form of this entry point is:

Page 14Common Host Utilties
ad-ug-0086_v1_2.pdf

Common Host Utilities for VxWorks Release: 1.13.0
V1.2 - 12 Jun 2017

 avr2utilI2cRead indexOrSerial,flags,bus,device,address,count

where indexOrSerial and flags are parameters as described above.

bus and device identify the I2C bus number and I2C device (on that bus), respectively. address is the address
within the I2C device at which to begin reading and count is the length of the I2C read, in bytes.

Usage example 1 - For the first device in the system, perform a 4-byte read from I2C bus 1, device 0x30 at
address 0x10 within the device and display the data:

 avr2utilI2cRead 0,0,1,0x30,0x10,4

3.1.1.15 avr2utilI2cWrite entry point

The avr2utilI2cWrite entry point is primarily for in-house use by Alpha Data, but may also be used by end users
under guidance from Alpha Data support personnel. This entry point performs an individual I2C write of one or
more bytes from an I2C device, displaying the bytes read.

This entry point requires the microcontroller not to be in Service Mode in order to succeed. See 3.1.2 below.

The general form of this entry point is:

 avr2utilI2cWrite indexOrSerial,flags,bus,device,address,count,...

where indexOrSerial and flags are parameters as described above.

bus and device identify the I2C bus number and I2C device (on that bus), respectively. address is the address
within the I2C device at which to begin reading and count is the length of the I2C write, in bytes.

... represents one or more comma-separated bytes of data to be written; the number of such additional
arguments must be equal to the value passed for count.

Usage example 1 - For the first device in the system, perform a 4-byte write to I2C bus 1, device 0x30 at address
0x10 within the device, where the individual bytes written are 0x12, 0x34, 0x56 and 0x78:

 avr2utilI2cWrite 0,0,1,0x30,0x10,4,0x12,0x34,0x56,0x78

3.1.1.16 avr2utilUpdateBrdCfg entry point

NOTE: This entry point should be used only under guidance from Alpha Data, because incorrect usage can
corrupt data required by the microcontroller's firmware.

The avr2utilUpdateBrdCfg entry point writes the block of data in the selected device, which contains
configuration information used by the BoardMan2 firmware, with the contents of the specified file (usually with a
.bin extension).

This entry point requires the microcontroller to be in Service Mode, at least temporarily. See 3.1.3 below.

The general form of this entry point is:

 avr2utilUpdateBrdCfg indexOrSerial,flags,pBrdCfgFilename

where indexOrSerial and flags are parameters as described above.

pBrdCfgFilename is a nul-terminated string which specifies the file on the VxWorks host containing the board
configuration information.

Usage example 1 - Update the board configuration area for the first device in the system:

 avr2utilUpdateBrdCfg 0,0,"host:/path/to/boardman2_cfg_admxrcku1.bin"

Usage example 2 - Update the board configuration area for the device with serial number 100:

 avr2utilUpdateBrdCfg 100,1,"host:/path/to/boardman2_cfg_admxrcku1.bin"

Page 15Common Host Utilties
ad-ug-0086_v1_2.pdf

Common Host Utilities for VxWorks Release: 1.13.0
V1.2 - 12 Jun 2017

3.1.1.17 avr2utilVerifyBrdCfg entry point
The avr2utilVerifyBrdCfg entry point verifies that the block of data in the selected device, which contains
configuration information used by the BoardMan2 firmware, matches the contents of the specified file (usually
with a .bin extension).

This entry point requires the microcontroller to be in Service Mode, at least temporarily. See 3.1.3 below.

The general form of this entry point is:

 avr2utilVerifyBrdCfg indexOrSerial,flags,pBrdCfgFilename

where indexOrSerial and flags are parameters as described above.

pBrdCfgFilename is a nul-terminated string which specifies the file on the VxWorks host containing the board
configuration information to be used for verification.

Usage example 1 - Verify the board configuration area for the first device in the system:

 avr2utilVerifyBrdCfg 0,0,"host:/path/to/boardman2_cfg_admxrcku1.bin"

Usage example 2 - Verify the board configuration area for the device with serial number 100:

 avr2utilVerifyBrdCfg 100,1,"host:/path/to/boardman2_cfg_admxrcku1.bin"

3.1.1.18 avr2utilSaveBrdCfg entry point

The avr2utilSaveBrdCfg entry point reads the block of data in the selected device, which contains configuration
information used by the BoardMan2 firmware, and saves it into the specified file (usually with a .bin extension).

This entry point requires the microcontroller to be in Service Mode, at least temporarily. See 3.1.3 below.

The general form of this entry point is:

 avr2utilSaveBrdCfg indexOrSerial,flags,pBrdCfgSaveFilename

where indexOrSerial and flags are parameters as described above.

pBrdCfgSaveFilename is a nul-terminated string which specifies the name of a file on the VxWorks host to be
created and written with the board configuration information.

Usage example 1 - Save the board configuration area for the first device in the system:

 avr2utilSaveBrdCfg 0,0,"host:/path/to/boardman2_cfg_admxrcku1_saved.bin"

Usage example 2 - Save the board configuration area for the device with serial number 100:

 avr2utilSaveBrdCfg 100,1,"host:/path/to/boardman2_cfg_admxrcku1_saved.bin"

3.1.1.19 avr2utilUpdateFirmware entry point

NOTE: This entry point should be used only under guidance from Alpha Data, because incorrect usage can
corrupt the microcontroller's firmware.

The avr2utilUpdateFirmware entry point writes the BoardMan2 firmware of the microcontroller with the contents
of the specified file (usually with a .bin extension).

This entry point requires the microcontroller to be in Service Mode, at least temporarily. See 3.1.3 below.

The general form of this entry point is:

 avr2utilUpdateFirmware indexOrSerial,flags,pFirmwareFilename

where indexOrSerial and flags are parameters as described above.

pFirmwareFilename is a nul-terminated string which specifies the file on the VxWorks host containing the
BoardMan2 firmware to be programmed into the device.

Usage example 1 - Program the BoardMan2 firmware for the first device in the system:

Page 16Common Host Utilties
ad-ug-0086_v1_2.pdf

Common Host Utilities for VxWorks Release: 1.13.0
V1.2 - 12 Jun 2017

 avr2utilUpdateFirmware 0,0,"host:/path/to/boardman2_a.b.c.d.bin"

Usage example 2 - Program the BoardMan2 firmware for the device with serial number 100:

 avr2utilUpdateFirmware 100,1,"host:/path/to/boardman2_a.b.c.d.bin"

3.1.1.20 avr2utilVerifyFirmware entry point

The avr2utilVerifyFirmware entry point verifes the BoardMan2 firmware of the microcontroller against the
contents of the specified file (usually with a .bin extension).

This entry point requires the microcontroller to be in Service Mode, at least temporarily. See 3.1.3 below.

The general form of this entry point is:

 avr2utilVerifyFirmware indexOrSerial,flags,pFirmwareFilename

where indexOrSerial and flags are parameters as described above.

pFirmwareFilename is a nul-terminated string which specifies the file on the VxWorks host which is to be used to
verify the BoardMan2 firmware in the selected device.

Usage example 1 - Verify the BoardMan2 firmware for the first device in the system:

 avr2utilVerifyFirmware 0,0,"host:/path/to/boardman2_a.b.c.d.bin"

Usage example 2 - Verify the BoardMan2 firmware for the device with serial number 100:

 avr2utilVerifyFirmware 100,1,"host:/path/to/boardman2_a.b.c.d.bin"

3.1.1.21 avr2utilSaveFirmware entry point

The avr2utilSaveFirmware entry point reads the BoardMan2 firmware of the microcontroller and saves it into
the specified file (usually with a .bin extension).

This entry point requires the microcontroller to be in Service Mode, at least temporarily. See 3.1.3 below.

The general form of this entry point is:

 avr2utilSaveFirmware indexOrSerial,flags,pFirmwareSaveFilename

where indexOrSerial and flags are parameters as described above.

pFirmwareSaveFilename is a nul-terminated string which specifies the name of a file on the VxWorks host to be
created and written with the BoardMan2 firmware in the selected device.

NOTE: The entire region of nonvolatile memory allocated for firmware is saved, regardless of the actual code
size of the firmware. This means that files containing saved firmware (i.e. read out of a board using this entry
point) are in general larger than files used to update firmware.

Usage example 1 - Save the BoardMan2 firmware for the first device in the system:

 avr2utilSaveFirmware 0,0,"host:/path/to/boardman2_a.b.c.d_saved.bin"

Usage example 2 - Save the BoardMan2 firmware for the device with serial number 100:

 avr2utilSaveFirmware 100,1,"host:/path/to/boardman2_a.b.c.d_saved.bin"

3.1.1.22 avr2utilUpdateVPD entry point

NOTE: This entry point should be used only under guidance from Alpha Data, because incorrect usage can
corrupt the board's VPD.

The avr2utilUpdateVPD entry point writes the Vital Product Data (VPD) with the contents of the specified file
(usually with a .bin or .seg extension).

This entry point requires the microcontroller to be in Service Mode, at least temporarily. See 3.1.3 below.

Page 17Common Host Utilties
ad-ug-0086_v1_2.pdf

Common Host Utilities for VxWorks Release: 1.13.0
V1.2 - 12 Jun 2017

The general form of this entry point is:

 avr2utilUpdateVPD indexOrSerial,flags,pVPDFilename

where indexOrSerial and flags are parameters as described above.

pVPDFilename is a nul-terminated string which specifies the file on the VxWorks host containing the VPD to be
programmed into the device.

Usage example 1 - Update the VPD for the first device in the system:

 avr2utilUpdateVPD 0,0,"host:/path/to/vpd.seg"

Usage example 2 - Update the VPD for the device with serial number 100:

 avr2utilUpdateVPD 100,1,"host:/path/to/vpd.seg"

3.1.1.23 avr2utilVerifyVPD entry point

The avr2utilVerifyVPD entry point verifies the Vital Product Data (VPD) in the selected device against the
contents of the specified file (usually with a .bin or .seg extension).

This entry point requires the microcontroller to be in Service Mode, at least temporarily. See 3.1.3 below.

The general form of this entry point is:

 avr2utilVerifyVPD indexOrSerial,flags,pVPDFilename

where indexOrSerial and flags are parameters as described above.

pVPDFilename is a nul-terminated string which specifies the file on the VxWorks host which is to be used to
verify the VPD in the selected device.

Usage example 1 - Verify the VPD for the first device in the system:

 avr2utilVerifyVPD 0,0,"host:/path/to/vpd.seg"

Usage example 2 - Verify the VPD for the device with serial number 100:

 avr2utilVerifyVPD 100,1,"host:/path/to/vpd.seg"

3.1.1.24 avr2utilSaveVPD entry point

The avr2utilSaveVPD entry point reads the Vital Product Data (VPD) in the selected device and saves it into the
specified file (usually with a .bin or .seg extension).

This entry point requires the microcontroller to be in Service Mode, at least temporarily. See 3.1.3 below.

The general form of this entry point is:

 avr2utilSaveVPD indexOrSerial,flags,pVPDSaveFilename

where indexOrSerial and flags are parameters as described above.

pVPDSaveFilename is a nul-terminated string which specifies the name of a file on the VxWorks host to be
created and written with the VPD in the selected device.

Usage example 1 - Save the VPD for the first device in the system:

 avr2utilSaveVPD 0,0,"host:/path/to/vpd_saved.seg"

Usage example 2 - Save the VPD for the device with serial number 100:

 avr2utilSaveVPD 100,1,"host:/path/to/vpd_saved.seg"

3.1.1.25 avr2utilDisplayVPD entry point

The avr2utilDisplayVPD entry point reads the Vital Product Data (VPD) in the selected device, from the
nonvolatile memory in a board in which it resides, and displays it in human-readable form.

Page 18Common Host Utilties
ad-ug-0086_v1_2.pdf

Common Host Utilities for VxWorks Release: 1.13.0
V1.2 - 12 Jun 2017

This entry point works whether or not the microcontroller is in Service Mode.

The general form of this entry point is:

 avr2utilDisplayVPD indexOrSerial,flags

where indexOrSerial and flags are parameters as described above.

Usage example 1 - Display the VPD in human-readable form for the first device in the system:

 avr2utilDisplayVPD

Usage example 2 - Display the VPD in human-readable form for the device with serial number 100:

 avr2utilDisplayVPD 100,1

3.1.1.26 avr2utilDisplayVPDRaw entry point

The avr2utilDisplayVPDRaw entry point reads the Vital Product Data (VPD) in the selected device, from the
nonvolatile memory in a board in which it resides, and displays it as raw bytes.

This entry point works whether or not the microcontroller is in Service Mode.

The general form of this entry point is:

 avr2utilDisplayVPDRaw indexOrSerial,flags

where indexOrSerial and flags are parameters as described above.

Usage example 1 - Display the VPD in raw form for the first device in the system:

 avr2utilDisplayVPDRaw

Usage example 2 - Display the VPD in raw form for the device with serial number 100:

 avr2utilDisplayVPDRaw 100,1

3.1.1.27 avr2utilDisplaySensors entry point

The avr2utilDisplaySensors entry point reads the Sensor Page in the selected device and displays it in
human-readable form.

This entry point requires the microcontroller not to be in Service Mode, at least temporarily, in order to succeed.
See 3.1.2 below.

The general form of this entry point is:

 avr2utilDisplaySensors indexOrSerial,flags

where indexOrSerial and flags are parameters as described above.

Usage example 1 - Display the Sensor Page in human-readable form for the first device in the system:

 avr2utilDisplaySensors

Usage example 2 - Display the Sensor Page in human-readable form for the device with serial number 100:

 avr2utilDisplaySensors 100,1

3.1.1.28 avr2utilDisplaySensorsRaw entry point

The avr2utilDisplaySensorsRaw entry point reads the Sensor Page in the selected device and displays it in
human-readable form.

This entry point requires the microcontroller not to be in Service Mode, at least temporarily, in order to succeed.
See 3.1.2 below.

The general form of this entry point is:

Page 19Common Host Utilties
ad-ug-0086_v1_2.pdf

Common Host Utilities for VxWorks Release: 1.13.0
V1.2 - 12 Jun 2017

 avr2utilDisplaySensorsRaw indexOrSerial,flags

where indexOrSerial and flags are parameters as described above.

Usage example 1 - Display the Sensor Page in raw form for the first device in the system:

 avr2utilDisplaySensorsRaw

Usage example 2 - Display the Sensor Page in raw form for the device with serial number 100:

 avr2utilDisplaySensorsRaw 100,1

3.1.1.29 avr2utilOverrideSensor entry point

The avr2utilOverrideSensor entry point facilitates firmware testing by Alpha Data. It injects a value into a
particular sensor, overriding its natural value. The sensor remains overridden until at least one of the following
occurs:
• A power cycle, including removal and reapplication of standby power.

• The microcontroller enters and exits Service Mode, either using the enter-service-mode and
exit-service-mode entry points or by toggling the physical Service Mode switch.

• The avr2utilReleaseSensor entry point is used to explicitly release the sensor.

This entry point requires the microcontroller not to be in Service Mode, at least temporarily, in order to succeed.
See 3.1.2 below.

The general form of this entry point is:

 avr2utilOverrideSensor indexOrSerial,flags,sensorIndex,overrideValue

where indexOrSerial and flags are parameters as described above. The sensorIndex parameter identifies the
sensor to be overridden, and overrideValue is the sensor-specific value injected into the sensor.

Usage example 1 - Override sensor 11 of the first device in the system with the value 1000:

 avr2utilOverrideSensor 0,0,11,1000

Usage example 2 - Override sensor 3 of the device with serial number 100 with the value 0:

 avr2utilOverrideSensor 100,1,3,0

3.1.1.30 avr2utilReleaseSensor entry point

The avr2utilOverrideSensor entry point facilitates firmware testing by Alpha Data. It undoes the effect of a call
to avr2utilOverrideSensor, returning the sensor to normal operation.

This entry point requires the microcontroller not to be in Service Mode, at least temporarily, in order to succeed.
See 3.1.2 below.

The general form of this entry point is:

 avr2utilReleaseSensor indexOrSerial,flags,sensorIndex

where indexOrSerial and flags are parameters as described above. The sensorIndex parameter identifies the
sensor to be returned to nornmal operation.

Usage example 1 - Return sensor 11 of the first device in the system to normal operation:

 avr2utilReleaseSensor 0,0,11

Usage example 2 - Return sensor 3 of the device with serial number 100 to normal operation:

 avr2utilReleaseSensor 100,1,3

Page 20Common Host Utilties
ad-ug-0086_v1_2.pdf

Common Host Utilities for VxWorks Release: 1.13.0
V1.2 - 12 Jun 2017

3.1.1.31 avr2utilSPIInfo entry point
The avr2utilSPIInfo entry point reads the Serial Flash Discoverable Parameters (SFPD) information from a SPI
Flash chip that is accessible from the microcontroller, and displays it in human-readable form.

This entry point requires the microcontroller not to be in Service Mode, at least temporarily, in order to succeed.
See 3.1.2 below.

The general form of this entry point is:

 avr2utilSPIInfo indexOrSerial,flags,chipIndex

where indexOrSerial and flags are parameters as described above. The chipIndex parameter identifies particular
SPI Flash chip whose SFDP information is to be displayed.

Usage example 1 - Display the SFDP information for the 2nd SPI Flash chip (index 1) of the first device in the
system:

 avr2utilSPIInfo 0,0,1

3.1.1.32 avr2utilSPIRaw entry point

The avr2utilSPIRaw entry point is primarily for in-house use by Alpha Data for test purposes. This entry point
performs a transaction consisting of zero or more bytes written to an SPI Flash chip followed by zero or more
bytes read from the same SPI Flash chip, with the bytes to be written obtained from variable argument list
(denoted by ...). The bytes read are displayed in raw form, i.e. as individual byte values.

The first argument is the zero-based index of the SPI Flash chip. The second argument is the number of bytes
read, and the third and later arguments are the bytes written to the SPI Flash chip.

This entry point requires the microcontroller not to be in Service Mode in order to succeed. See 3.1.2 below.

The general form of this entry point is:

 avr2utilSPIRaw indexOrSerial,flags,chipIndex,readCount,writeCount,...

where indexOrSerial and flags are parameters as described above. The chipIndex parameter identifies particular
SPI Flash chip whose SFDP information is to be displayed.

readCount and writeCount respectively are the number of bytes to read & display and the number of bytes to
write.

Following writeCount, the variable number of bytes to write (passed in VxWorks shell as normal int-sized values)
must be passed. The number of byte values passed must be exactly equal to writeCount.

Usage example 1 - For the first device in the system, read and display (in the form of raw bytes) the 8-byte SFDP
header from the first SPI Flash chip (index 0). JEDEC document JESD216B describes the SFDP mechanism in
SPI Flash chips.

 avr2utilSPIRaw 0,0,0,8,5,0x5A,0,0,0,0

3.1.2 Entry points requiring non-Service Mode

The following entry points can only perform their main operation while not in Service Mode:
• avr2utilGetClk, avr2utilGetClkNV, avr2utilSetClk, avr2utilSetClkNV
• avr2utilI2cReadToFile, avr2utilI2cVerifyWithFile, avr2utilI2cWriteFromFile
• avr2utilI2cRead, avr2utilI2cWrite
• avr2utilDisplayVPD, avr2utilDisplayVPDRaw
• avr2utilDisplaySensors, avr2utilDisplaySensorsRaw
• avr2utilOverrideSensor, avr2utilReleaseSensor
• avr2utilSPIInfo, avr2utilSPIRaw

If the microcontroller is in Service Mode, these entry points temporarily switch the microcontroller out of Service

Page 21Common Host Utilties
ad-ug-0086_v1_2.pdf

Common Host Utilities for VxWorks Release: 1.13.0
V1.2 - 12 Jun 2017

Mode, perform the necessary operations, and then switch the microcontroller back into Service Mode.

3.1.3 Entry points requiring Service Mode

The following entry points can only perform their main operation while in Service Mode:
• avr2utilUpdateBrdCfg, avr2utilSaveBrdCfg, avr2utilVerifyBrdCfg
• avr2utilUpdateFirmware, avr2utilSaveFirmware, avr2utilVerifyFirmware
• avr2utilUpdateVPD, avr2utilSaveVPD, avr2utilVerifyVPD

If the microcontroller in PCIe mode is not in Service Mode, these entry points temporarily switch the
microcontroller into Service Mode, perform the necessary operations and then switch the microcontroller out of
Service Mode.

Page 22Common Host Utilties
ad-ug-0086_v1_2.pdf

Common Host Utilities for VxWorks Release: 1.13.0
V1.2 - 12 Jun 2017

3.2 BITSTRIP utility

VxWorks kernel shell entry points
int admxrc3BitstripHelp()
int admxrc3Bitstrip(pInputFilename[, pOutputFilename])

where the parameters are:

const char* pInputFilename Specifies the input bitstream (.bit) filename.

const char* pOutputFilename Optionally specifies out filename (e.g. .bin extension).

Summary

Reads an FPGA bitstream (.bit) file, displays certain information from the header, and optionally writes the
SelectMap data (without the header) to another file.

Description

To simply display information from a .bit file's header, use

admxrc3Bitstrip pInputFilename

To display information from a .bit file's header and write the SelectMap data to another file, use

admxrc3Bitstrip pInputFilename,pOutputFilename

The data written to pOutputFilename is suitable for sending to a target FPGA using
ADMXRC3_ConfigureFromBuffer .

Return values

When BITSTRIP runs successfully, the return value is 0. When an error occurs, one of the following values is
returned:

Symbolic name Value Meaning

EXIT_OK 0 Success.

EXIT_INSUFFICIENT_ARGS 2 Not enough positional arguments.

EXIT_LOAD_BIT_ERROR 3 Failed to read the input .bit file.

EXIT_SAVE_BIN_ERROR 4 Failed to write the output file.

Table 3 : Return values for BITSTRIP utility

Page 23Common Host Utilties
ad-ug-0086_v1_2.pdf



Common Host Utilities for VxWorks Release: 1.13.0
V1.2 - 12 Jun 2017

3.3 DMADUMP utility

VxWorks kernel shell entry points
int admxrc3DmaDumpHelp()
int admxrc3DmaFB (indexOrSerial, flags, channel, address, count, val8)
int admxrc3DmaXFB(indexOrSerial, flags, channel, address(ULL), count, val8)
int admxrc3DmaFW (indexOrSerial, flags, channel, address, count, val16)
int admxrc3DmaXFW(indexOrSerial, flags, channel, address(ULL), count, val16)
int admxrc3DmaFD (indexOrSerial, flags, channel, address, count, val32)
int admxrc3DmaXFD(indexOrSerial, flags, channel, address(ULL), count, val32)
int admxrc3DmaFQ (indexOrSerial, flags, channel, address, count, val64(ULL))
int admxrc3DmaXFQ(indexOrSerial, flags, channel, address(ULL), count, val64(ULL))
int admxrc3DmaRB (indexOrSerial, flags, channel, address, count)
int admxrc3DmaXRB(indexOrSerial, flags, channel, address(ULL), count)
int admxrc3DmaRW (indexOrSerial, flags, channel, address, count)
int admxrc3DmaXRW(indexOrSerial, flags, channel, address(ULL), count)
int admxrc3DmaRD (indexOrSerial, flags, channel, address, count)
int admxrc3DmaXRD(indexOrSerial, flags, channel, address(ULL), count)
int admxrc3DmaRQ (indexOrSerial, flags, channel, address, count)
int admxrc3DmaXRQ(indexOrSerial, flags, channel, address(ULL), count)
int admxrc3DmaWB (indexOrSerial, flags, channel, address, count, ...)
int admxrc3DmaXWB(indexOrSerial, flags, channel, address(ULL), count, ...)
int admxrc3DmaWW (indexOrSerial, flags, channel, address, count, ...)
int admxrc3DmaXWW(indexOrSerial, flags, channel, address(ULL), count, ...)
int admxrc3DmaWD (indexOrSerial, flags, channel, address, count, ...)
int admxrc3DmaXWD(indexOrSerial, flags, channel, address(ULL), count, ...)
int admxrc3DmaWQ (indexOrSerial, flags, channel, address, count, ...(ULL))
int admxrc3DmaXWQ(indexOrSerial, flags, channel, address(ULL), count, ...(ULL))

where the parameters are:

unsigned int indexOrSerial Specifies the index (or serial number) of the device to open.

unsigned int flags Specifies the bitwise OR of zero or more flags that modify the
behavior of the utility; see below for details.

unsigned int channel Index of the DMA channel / engine to be used for the DMA
transfer.

unsigned int address The starting OCP/AXI address within the FPGA to be used for
the DMA transfer.

unsigned long long address(ULL) The starting OCP/AXI address within the FPGA to be used for
the DMA transfer. This is unsigned long long in order to allow
for 64-bit addresses.

unsigned int count The number of bytes of data to transfer.

unsigned int val8 Fill value which is interpreted as being 8 bits wide.

unsigned int val16 Fill value which is interpreted as being 16 bits wide.

unsigned int val32 Fill value which is interpreted as being 32 bits wide.

unsigned long long val64 Fill value which is interpreted as being 64 bits wide.

Page 24Common Host Utilties
ad-ug-0086_v1_2.pdf

Common Host Utilities for VxWorks Release: 1.13.0
V1.2 - 12 Jun 2017

... A variable number of unsigned int values, which are
interpreted as 8-bit / 16-bit / 32-bit write values depending on
which admxrc3DmaW* entry point is used.

...(ULL) A variable number of unsigned long long write values, which
are interpreted as 64-bit write values.

The flags parameter is the bitwise-OR of zero or more of the following values:

Value Symbolic name Meaning

0x1 FLAG_BYSERIAL indexOrSerial is treated as a serial number rather than a
device index.

0x20 FLAG_BIGENDIAN Big-endian byte order is used, as opposed to little-endian.

Summary

Displays data read from a target FPGA using a DMA engine, or writes data to a target FPGA using a DMA
engine.

Description

The DMADUMP utility operates in one of three modes:
• Reading data from a target FPGA using a DMA engine and displaying it; for this mode, use the

admxrc3DmaR* or admxrc3DmaXR* entry points.

• Writing data to a target FPGA using a DMA engine; for this mode, use the admxrc3DmaW* or
admxrc3DmaXW* entry points.

• Filling an address region in a target FPGA using a DMA engine with a particular value; for this mode, use
the admxrc3DmaF* or admxrc3DmaXF* commands.

The entry point admxrc3DmaDumpHelp displays a brief help message, listing the available entry points and
arguments.

If flags contains FLAG_BIGENDIAN, the DMADUMP utility reads or writes numeric values in big-endian byte
ordering convention as opposed to little-endian (the default).

Read entry points

The particular read entry point used implies the word width for displaying data:
• admxrc3DmaRB indexOrSerial, flags, channel, address, count

admxrc3DmaXRB indexOrSerial, flags, channel, address(ULL), count

Read a block of data and display it as bytes.

• admxrc3DmaRW indexOrSerial, flags, channel, address, count

admxrc3DmaXRW indexOrSerial, flags, channel, address(ULL), count

Read a block of data and display it as words (16-bit).

• admxrc3DmaRD indexOrSerial, flags, channel, address, count

admxrc3DmaXRD indexOrSerial, flags, channel, address(ULL), count

Read a block of data and display it as doublewords (32-bit).

• admxrc3DmaRQ indexOrSerial, flags, channel, address, count

admxrc3DmaXRQ indexOrSerial, flags, channel, address(ULL), count

Read a block of data and display it as quadwords (64-bit).

Page 25Common Host Utilties
ad-ug-0086_v1_2.pdf

Common Host Utilities for VxWorks Release: 1.13.0
V1.2 - 12 Jun 2017

The first two parameters, indexOrSerial and flags are common to most entry points and are as described above.

The channel parameter is the index of the DMA channel/engine to be used for the DMA transfer.

The address parameter is the OCP/AXI address, in the selected DMA channel/engine's address space, at which
to begin reading data. If one of the X entry points such as admxrc3DmaXRB is used, an unsigned long long
value is required for the address, which permits a 64-bit OCP/AXI address to be specified. Note that passing an
unsigned long long parameter in the VxWorks shell requires a cast; see usage example 2 below.

The count parameter is the number of bytes to read.

Example 1 - Using the first device in the system (index 0), read and display 256 bytes from address 0x1000 via
DMA channel 1:

admxrc3DmaRB 0,0,1,0x1000,0x100

Example 2 - Using the device with serial number 100, read 768 bytes displayed as quadwords from address
0xF_00000000 via DMA channel 2:

admxrc3DmaXRQ 100,1,2,(long long)0xF00000000,768

Example 3 - Using the second device in the system (index 1), read 96 bytes displayed as big-endian
doublewords from address 0x1000 via DMA channel 1:

admxrc3DmaRD 1,2,1,0x1000,96

Write entry points

The particular write entry point used implies the word width for writing data:
• admxrc3DmaWB indexOrSerial, flags, channel, address, count, ...

admxrc3DmaXWB indexOrSerial, flags, channel, address(ULL), count, ...
Write values are supplied as unsigned int values, and written as bytes (8-bit).

• admxrc3DmaWW indexOrSerial, flags, channel, address, count, ...
admxrc3DmaXWW indexOrSerial, flags, channel, address(ULL), count, ...
Write values are supplied as unsigned int values, and written as words (16-bit).

• admxrc3DmaWD indexOrSerial, flags, channel, address, count, ...
admxrc3DmaXWD indexOrSerial, flags, channel, address(ULL), count, ...
Write values are supplied as unsigned int values, and written as doublewords (32-bit).

• admxrc3DmaWQ indexOrSerial, flags, channel, address, count, ...
admxrc3DmaXWQ indexOrSerial, flags, channel, address(ULL), count, ...
Write values are supplied as unsigned long long values, and written as quadwords (64-bit).

The first two parameters, indexOrSerial and flags are common to most entry points and are as described above.

The channel parameter is the index of the DMA channel/engine to be used for the DMA transfer.

The address parameter is the OCP/AXI address, in the selected DMA channel/engine's address space, at which
to begin writing data. If one of the X entry points such as admxrc3DmaXWB is used, an unsigned long long
value is required for the address, which permits a 64-bit OCP/AXI address to be specified. Note that passing an
unsigned long long parameter in the VxWorks shell requires a cast; see usage example 2 below.

The count parameter is the number of bytes to write.

The values to be written must then be provided as additional parameters, and must be sufficient additional
parameters to satisfy the byte count specified by the count parameter. In the case of the admxrc3DmaWQ and
admxrc3DmaXWQ entry points, the 64-bit write values must be passed using a cast; see usage example 2
below.

Page 26Common Host Utilties
ad-ug-0086_v1_2.pdf

Common Host Utilities for VxWorks Release: 1.13.0
V1.2 - 12 Jun 2017

Note that if too few values are provided to satisfy the byte count, some VxWorks platforms may generate an
exception due to the stack bounds being breached, and this may cause the VxWorks shell task to be killed and
restarted.

Example 1 - Using the first device in the system (index 0), write the sequence of seven bytes { 1, 2, 3, 4, 5, 6, 7 }
at address 0x1000 via DMA channel 1:

admxrc3DmaWB 0,0,1,0x1000,7,1,2,3,4,5,6,7

Example 2 - Using the device with serial number 100, write two quadwords { 0x01234567_89ABCDEF,
0x5A5A5A5A_5A5A5A5A } at address 0xF_00000000 via DMA channel 2:

admxrc3DmaXWQ 100,1,2,(long long)0xF00000000,16,(long long)0x0123456789ABCDEF,(long
long)0x5A5A5A5A5A5A5A5A

Example 3 - Using the second device in the system (index 1), write four big-endian doublewords at address
0x1000 via DMA channel 1:

admxrc3DmaWD 1,2,1,0x1000,16,0x12345678,0x23456789,0x3456789a,0x456789ab

Fill entry points

The particular write entry point used implies the word width of the fill value:
• admxrc3DmaFB indexOrSerial, flags, channel, address, count, val8

admxrc3DmaXFB indexOrSerial, flags, channel, address(ULL), count, val8
Fills a block of memory (in the FPGA) with a particular byte value.

• admxrc3DmaFW indexOrSerial, flags, channel, address, count, val16
admxrc3DmaXFW indexOrSerial, flags, channel, address(ULL), count, val16
Fills a block of memory (in the FPGA) with a particular word (16-bit) value.

• admxrc3DmaFD indexOrSerial, flags, channel, address, count, val32
admxrc3DmaXFD indexOrSerial, flags, channel, address(ULL), count, val32
Fills a block of memory (in the FPGA) with a particular doubleword (32-bit) value.

• admxrc3DmaFQ indexOrSerial, flags, channel, address, count, val64(ULL)
admxrc3DmaXFQ indexOrSerial, flags, channel, address(ULL), count, val64(ULL)
Fills a block of memory (in the FPGA) with a particular quadword (64-bit) value.

The first two parameters, indexOrSerial and flags are common to most entry points and are as described above.

The channel parameter is the index of the DMA channel/engine to be used for the DMA transfer.

The address parameter is the OCP/AXI address, in the selected DMA channel/engine's address space, at which
to begin filling. If one of the X entry points such as admxrc3DmaXFB is used, an unsigned long long value is
required for the address, which permits a 64-bit OCP/AXI address to be specified. Note that passing an
unsigned long long parameter in the VxWorks shell requires a cast; see usage example 2 below.

The count parameter is the number of bytes to fill.

The final parameter is the fill value. This is interpreted as a byte, word, doubleword or quadword depending on
which entry point is used. In the case of the admxrc3DmaFQ and admxrc3DmaXFQ entry points, the 64-bit fill
value must be passed using a cast; see usage example 2 below.

Example 1 - Using the first device in the system (index 0), fill 17 bytes with the value 0xCD starting at address
0x100D via DMA channel 1:

admxrc3DmaFB 0,0,1,0x100D,17,0xCD

Example 2 - Using the device with serial number 100, fill a megabyte starting at address 0xF_00000000 with the
quadword value 0xDEADBEEFCAFEFACE via DMA channel 2:

Page 27Common Host Utilties
ad-ug-0086_v1_2.pdf

Common Host Utilities for VxWorks Release: 1.13.0
V1.2 - 12 Jun 2017

admxrc3DmaXFQ 100,1,2,(long long)0xF00000000,0x100000,(long long)0xDEADBEEFCAFEFACE

Example 3 - Using the second device in the system (index 1), fill 16 bytes using a big-endian fill value of
0x12345678 starting at address 0x1000 via DMA channel 1:

admxrc3DmaFD 1,2,1,0x1000,16,0x12345678

Example session

Assuming that the target FPGA is currently configured with an FPGA bitstream which has a RAM-like region in
the OCP/AXI address space of DMA channel 0 at address 0x80000, an example session looks like this:

-> admxrc3DmaFB 0,0,0,0x80000,0x20,0xee
value = 0 = 0x0
-> admxrc3DmaRD 0,0,0,0x80000,0x40
Dump of memory at 0x00000000_00080000 + 64(0x40) bytes:
 00 04 08 0C
0x00000000_00080000: EEEEEEEE EEEEEEEE EEEEEEEE EEEEEEEE
0x00000000_00080010: EEEEEEEE EEEEEEEE EEEEEEEE EEEEEEEE
0x00000000_00080020: 00000000 00000000 00000000 00000000
0x00000000_00080030: 00000000 00000000 00000000 00000000
value = 0 = 0x0
-> admxrc3DmaWD 0,0,0,0x80004,0x4,0x12345678
value = 0 = 0x0
-> admxrc3DmaRD 0,0,0,0x80000,0x40
Dump of memory at 0x00000000_00080000 + 64(0x40) bytes:
 00 04 08 0C
0x00000000_00080000: EEEEEEEE 12345678 EEEEEEEE EEEEEEEExV4.........
0x00000000_00080010: EEEEEEEE EEEEEEEE EEEEEEEE EEEEEEEE
0x00000000_00080020: 00000000 00000000 00000000 00000000
0x00000000_00080030: 00000000 00000000 00000000 00000000
value = 0 = 0x0

Remarks

Each DMA engine has its own address space. This means that in general, unless an FPGA design explicitly
makes a shared resource available to multiple DMA engines, writing data using one DMA engine and then
attempting to read it back using a different DMA engine will not return the data just written.

Memory access windows have a separate address space from that of each DMA engine. This means that in
general, writing data using the DMADUMP utility and attempting to read it back via the DUMP utility will not return
the same data. However, it is possible to create an FPGA design which explicitly makes a shared resource
available via both a memory access window and a DMA channel. In that case, data written by one window/DMA
channel can be read back via another window/DMA channel.

Return value

When DMADUMP successfully executes the requested function, the return value is 0. When an error occurs, one
of the following values is returned:

Page 28Common Host Utilties
ad-ug-0086_v1_2.pdf

Common Host Utilities for VxWorks Release: 1.13.0
V1.2 - 12 Jun 2017

Symbolic name Value Meaning

EXIT_OK 0 Success.

EXIT_ALLOCATION_FAILURE 3 A memory allocation failed.

EXIT_DEVICE_OPEN_ERROR 4 Failed to open ADMXRC3 device.

EXIT_WRITEDMA_ERROR 5 A DMA write call failed.

EXIT_READDMA_ERROR 6 A DMA read call failed.

ERROR_COUNT_TOO_LARGE 7 Requested byte count is too large.

Table 4 : Return values for DMADUMP utility

Page 29Common Host Utilties
ad-ug-0086_v1_2.pdf

Common Host Utilities for VxWorks Release: 1.13.0
V1.2 - 12 Jun 2017

3.4 DUMP utility

VxWorks kernel shell entry points
int admxrc3DumpHelp()
int admxrc3FB (indexOrSerial, flags, window, address, count, val8)
int admxrc3XFB(indexOrSerial, flags, window, address(ULL), count, val8)
int admxrc3FW (indexOrSerial, flags, window, address, count, val16)
int admxrc3XFW(indexOrSerial, flags, window, address(ULL), count, val16)
int admxrc3FD (indexOrSerial, flags, window, address, count, val32)
int admxrc3XFD(indexOrSerial, flags, window, address(ULL), count, val32)
int admxrc3FQ (indexOrSerial, flags, window, address, count, val64(ULL))
int admxrc3XFQ(indexOrSerial, flags, window, address(ULL), count, val64(ULL))
int admxrc3RB (indexOrSerial, flags, window, address, count)
int admxrc3XRB(indexOrSerial, flags, window, address(ULL), count)
int admxrc3RW (indexOrSerial, flags, window, address, count)
int admxrc3XRW(indexOrSerial, flags, window, address(ULL), count)
int admxrc3RD (indexOrSerial, flags, window, address, count)
int admxrc3XRD(indexOrSerial, flags, window, address(ULL), count)
int admxrc3RQ (indexOrSerial, flags, window, address, count)
int admxrc3XRQ(indexOrSerial, flags, window, address(ULL), count)
int admxrc3WB (indexOrSerial, flags, window, address, count, ...)
int admxrc3XWB(indexOrSerial, flags, window, address(ULL), count, ...)
int admxrc3WW (indexOrSerial, flags, window, address, count, ...)
int admxrc3XWW(indexOrSerial, flags, window, address(ULL), count, ...)
int admxrc3WD (indexOrSerial, flags, window, address, count, ...)
int admxrc3XWD(indexOrSerial, flags, window, address(ULL), count, ...)
int admxrc3WQ (indexOrSerial, flags, window, address, count, ...(ULL))
int admxrc3XWQ(indexOrSerial, flags, window, address(ULL), count, ...(ULL))

where the parameters are:

unsigned int indexOrSerial Specifies the index (or serial number) of the device to open.

unsigned int flags Specifies the bitwise OR of zero or more flags that modify the
behavior of the utility; see below for details.

unsigned int window Index of the memory access window to be used for the data
transfer.

unsigned int address The starting OCP/AXI address within the FPGA to be used for
the data transfer.

unsigned long long address(ULL) The starting OCP/AXI address within the FPGA to be used for
the data transfer. This is unsigned long long in order to allow
for 64-bit addresses.

unsigned int count The number of bytes of data to transfer.

unsigned int val8 Fill value which is interpreted as being 8 bits wide.

unsigned int val16 Fill value which is interpreted as being 16 bits wide.

unsigned int val32 Fill value which is interpreted as being 32 bits wide.

unsigned long long val64 Fill value which is interpreted as being 64 bits wide.

Page 30Common Host Utilties
ad-ug-0086_v1_2.pdf

Common Host Utilities for VxWorks Release: 1.13.0
V1.2 - 12 Jun 2017

... A variable number of unsigned int values, which are
interpreted as 8-bit / 16-bit / 32-bit write values depending on
which admxrc3W* entry point is used.

...(ULL) A variable number of unsigned long long write values, which
are interpreted as 64-bit write values.

The flags parameter is the bitwise-OR of zero or more of the following values:

Value Symbolic name Meaning

0x1 FLAG_BYSERIAL indexOrSerial is treated as a serial number rather than a
device index.

0x20 FLAG_BIGENDIAN Big-endian byte order is used, as opposed to little-endian.

Summary

Displays data read from a target FPGA using a memory access window (CPU-initiated reads and writes), or
writes data to a target FPGA using a memory access window.

Description

The DUMP utility operates in one of three modes:
• Reading data from a target FPGA and displaying it; for this mode, use the admxrc3R* or admxrc3XR*

entry points.

• Writing data to a target FPGA; for this mode, use the admxrc3W* or admxrc3XW* entry points.

• Filling an address region in a target FPGA with a particular value; for this mode, use the admxrc3F* or
admxrc3XF* commands.

The entry point admxrc3DumpHelp displays a brief help message, listing the available entry points and
arguments.

If flags contains FLAG_BIGENDIAN, the DUMP utility reads or writes numeric values in big-endian byte ordering
convention as opposed to little-endian (the default).

Read entry points

The particular read entry point used implies the word width for displaying data:
• admxrc3RB indexOrSerial, flags, window, address, count

admxrc3XRB indexOrSerial, flags, window, address(ULL), count

Read a block of data and display it as bytes.

• admxrc3RW indexOrSerial, flags, window, address, count

admxrc3XRW indexOrSerial, flags, window, address(ULL), count

Read a block of data and display it as words (16-bit).

• admxrc3RD indexOrSerial, flags, window, address, count

admxrc3XRD indexOrSerial, flags, window, address(ULL), count

Read a block of data and display it as doublewords (32-bit).

• admxrc3RQ indexOrSerial, flags, window, address, count

admxrc3XRQ indexOrSerial, flags, window, address(ULL), count

Read a block of data and display it as quadwords (64-bit).

The first two parameters, indexOrSerial and flags are common to most entry points and are as described above.

Page 31Common Host Utilties
ad-ug-0086_v1_2.pdf

Common Host Utilities for VxWorks Release: 1.13.0
V1.2 - 12 Jun 2017

The window parameter is the index of memory access window to be used for reading data.

The address parameter is the OCP/AXI address, in the selected window's address space, at which to begin
reading data. If one of the X entry points such as admxrc3XRB is used, an unsigned long long value is
required for the address, which permits a 64-bit OCP/AXI address to be specified. Note that passing an
unsigned long long parameter in the VxWorks shell requires a cast; see usage example 2 below.

The count parameter is the number of bytes to read.

Example 1 - Using the first device in the system (index 0), read and display 256 bytes from address 0x1000 via
window 1:

admxrc3RB 0,0,1,0x1000,0x100

Example 2 - Using the device with serial number 100, read 768 bytes displayed as quadwords from address
0xF_00000000 via window 2:

admxrc3XRQ 100,1,2,(long long)0xF00000000,768

Example 3 - Using the second device in the system (index 1), read 96 bytes displayed as big-endian
doublewords from address 0x1000 via window 0:

admxrc3RD 1,2,0,0x1000,96

Write entry points

The particular write entry point used implies the word width for writing data:
• admxrc3WB indexOrSerial, flags, window, address, count, ...

admxrc3XWB indexOrSerial, flags, window, address(ULL), count, ...
Write values are supplied as unsigned int values, and written as bytes (8-bit).

• admxrc3WW indexOrSerial, flags, window, address, count, ...
admxrc3XWW indexOrSerial, flags, window, address(ULL), count, ...
Write values are supplied as unsigned int values, and written as words (16-bit).

• admxrc3WD indexOrSerial, flags, window, address, count, ...
admxrc3XWD indexOrSerial, flags, window, address(ULL), count, ...
Write values are supplied as unsigned int values, and written as doublewords (32-bit).

• admxrc3WQ indexOrSerial, flags, window, address, count, ...
admxrc3XWQ indexOrSerial, flags, window, address(ULL), count, ...
Write values are supplied as unsigned long long values, and written as quadwords (64-bit).

The first two parameters, indexOrSerial and flags are common to most entry points and are as described above.

The window parameter is the index of the memory access window to be used for writing data.

The address parameter is the OCP/AXI address, in the selected windows's address space, at which to begin
writing data. If one of the X entry points such as admxrc3XWB is used, an unsigned long long value is required
for the address, which permits a 64-bit OCP/AXI address to be specified. Note that passing an unsigned long
long parameter in the VxWorks shell requires a cast; see usage example 2 below.

The count parameter is the number of bytes to write.

The values to be written must then be provided as additional parameters, and must be sufficient additional
parameters to satisfy the byte count specified by the count parameter. In the case of the admxrc3WQ and
admxrc3XWQ entry points, the 64-bit write values must be passed using a cast; see usage example 2 below.

Note that if too few values are provided to satisfy the byte count, some VxWorks platforms may generate an
exception due to the stack bounds being breached, and this may cause the VxWorks shell task to be killed and
restarted.

Page 32Common Host Utilties
ad-ug-0086_v1_2.pdf

Common Host Utilities for VxWorks Release: 1.13.0
V1.2 - 12 Jun 2017

Example 1 - Using the first device in the system (index 0), write the sequence of seven bytes { 1, 2, 3, 4, 5, 6, 7 }
at address 0x1000 via window 1:

admxrc3WB 0,0,1,0x1000,7,1,2,3,4,5,6,7

Example 2 - Using the device with serial number 100, write two quadwords { 0x01234567_89ABCDEF,
0x5A5A5A5A_5A5A5A5A } at address 0xF_00000000 via window 0:

admxrc3XWQ 100,1,0,(long long)0xF00000000,16,(long long)0x0123456789ABCDEF,(long l
ong)0x5A5A5A5A5A5A5A5A

Example 3 - Using the second device in the system (index 1), write four big-endian doublewords at address
0x1000 via window 0:

admxrc3WD 1,2,0,0x1000,16,0x12345678,0x23456789,0x3456789a,0x456789ab

Fill entry points

The particular write entry point used implies the word width of the fill value:
• admxrc3FB indexOrSerial, flags, window, address, count, val8

admxrc3XFB indexOrSerial, flags, window, address(ULL), count, val8
Fills a block of memory (in the FPGA) with a particular byte value.

• admxrc3FW indexOrSerial, flags, window, address, count, val16
admxrc3XFW indexOrSerial, flags, window, address(ULL), count, val16
Fills a block of memory (in the FPGA) with a particular word (16-bit) value.

• admxrc3FD indexOrSerial, flags, window, address, count, val32
admxrc3XFD indexOrSerial, flags, window, address(ULL), count, val32
Fills a block of memory (in the FPGA) with a particular doubleword (32-bit) value.

• admxrc3FQ indexOrSerial, flags, window, address, count, val64(ULL)
admxrc3XFQ indexOrSerial, flags, window, address(ULL), count, val64(ULL)
Fills a block of memory (in the FPGA) with a particular quadword (64-bit) value.

The first two parameters, indexOrSerial and flags are common to most entry points and are as described above.

The window parameter is the index of the window to be used for writing data.

The address parameter is the OCP/AXI address, in the selected window's address space, at which to begin
filling. If one of the X entry points such as admxrc3XFB is used, an unsigned long long value is required for the
address, which permits a 64-bit OCP/AXI address to be specified. Note that passing an unsigned long long
parameter in the VxWorks shell requires a cast; see usage example 2 below.

The count parameter is the number of bytes to fill.

The final parameter is the fill value. This is interpreted as a byte, word, doubleword or quadword depending on
which entry point is used. In the case of the admxrc3FQ and admxrc3XFQ entry points, the 64-bit fill value must
be passed using a cast; see usage example 2 below.

Example 1 - Using the first device in the system (index 0), fill 17 bytes with the value 0xCD starting at address
0x100D via window 1:

admxrc3FB 0,0,1,0x100D,17,0xCD

Example 2 - Using the device with serial number 100, fill a megabyte starting at address 0xF_00000000 with the
quadword value 0xDEADBEEFCAFEFACE via window 0:

admxrc3XFQ 100,1,0,(long long)0xF00000000,0x100000,(long long)0xDEADBEEFCAFEFACE

Example 3 - Using the second device in the system (index 1), fill 16 bytes using a big-endian fill value of

Page 33Common Host Utilties
ad-ug-0086_v1_2.pdf

Common Host Utilities for VxWorks Release: 1.13.0
V1.2 - 12 Jun 2017

0x12345678 starting at address 0x1000 via window 0:

admxrc3FD 1,2,0,0x1000,16,0x12345678

Example session

Assuming that the target FPGA is currently configured with an FPGA bitstream which has a RAM-like region in
the OCP/AXI address space of window 0 at address 0x80000, an example session looks like this:

-> admxrc3RD 0,0,0,0x80000,0x40
Dump of memory at 0x00000000_00080000 + 64(0x40) bytes:
 00 04 08 0C
0x00000000_00080000: 00000000 00000000 00000000 00000000
0x00000000_00080010: 00000000 00000000 00000000 00000000
0x00000000_00080020: 00000000 00000000 00000000 00000000
0x00000000_00080030: 00000000 00000000 00000000 00000000
value = 0 = 0x0
-> admxrc3FW 0,0,0,0x80000,0x20,0x1234
value = 0 = 0x0
-> admxrc3RD 0,0,0,0x80000,0x40
Dump of memory at 0x00000000_00080000 + 64(0x40) bytes:
 00 04 08 0C
0x00000000_00080000: 12341234 12341234 12341234 12341234 4.4.4.4.4.4.4.4.
0x00000000_00080010: 12341234 12341234 12341234 12341234 4.4.4.4.4.4.4.4.
0x00000000_00080020: 00000000 00000000 00000000 00000000
0x00000000_00080030: 00000000 00000000 00000000 00000000
value = 0 = 0x0
-> admxrc3WD 0,0,0,0x80004,0x8,0xdeadbeef,0xcafeface
value = 0 = 0x0
-> admxrc3RD 0,0,0,0x80000,0x40
Dump of memory at 0x00000000_00080000 + 64(0x40) bytes:
 00 04 08 0C
0x00000000_00080000: 12341234 DEADBEEF CAFEFACE 12341234 4.4.........4.4.
0x00000000_00080010: 12341234 12341234 12341234 12341234 4.4.4.4.4.4.4.4.
0x00000000_00080020: 00000000 00000000 00000000 00000000
0x00000000_00080030: 00000000 00000000 00000000 00000000
value = 0 = 0x0

Remarks

One most models, memory access window 0 permits the CPU to generate AXI/OCP reads and writes in the
target FPGA. The addres space for a memory access window is separate from the address space of a DMA
engine. This means that in general, writing data using the DUMP utility and attempting to read it back via the
DMADUMP utility will not return the same data. However, it is possible to create an FPGA design which explicitly
makes a shared resource available in both the address space of a memory access window and the address
space of a DMA engine. In that case, data written by one window/DMA channel can be read back via another
window/DMA channel.

Return values

When DUMP successfully executes the requested function, the return value is 0. When an error occurs, one of
the following values is returned:

Page 34Common Host Utilties
ad-ug-0086_v1_2.pdf

Common Host Utilities for VxWorks Release: 1.13.0
V1.2 - 12 Jun 2017

Symbolic name Value Meaning

EXIT_OK 0 Success.

EXIT_ALLOCATION_FAILURE 3 A memory allocation failed.

EXIT_DEVICE_OPEN_ERROR 4 Failed to open ADMXRC3 device.

EXIT_MAPWINDOW_ERROR 5 Failed to map window into process' virtual address
space.

Table 5 : Return values for DUMP utility

Page 35Common Host Utilties
ad-ug-0086_v1_2.pdf

Common Host Utilities for VxWorks Release: 1.13.0
V1.2 - 12 Jun 2017

3.5 FLASH utility

VxWorks kernel shell entry points
int admxrc3FlashHelp ()
int admxrc3FlashInfo (indexOrSerial, flags, targetIndex)
int admxrc3FlashChkblankRegion(indexOrSerial, flags, targetIndex, regionIndex)
int admxrc3FlashChkblank (indexOrSerial, flags, targetIndex[, regionStart,
 regionLength])
int admxrc3FlashEraseRegion (indexOrSerial, flags, targetIndex, regionIndex)
int admxrc3FlashErase (indexOrSerial, flags, targetIndex[, regionStart,
 regionLength])
int admxrc3FlashProgramRegion (indexOrSerial, flags, targetIndex, pBitFilename,
 regionIndex)
int admxrc3FlashProgram (indexOrSerial, flags, targetIndex, pBitFilename[,
 regionStart, regionLength])
int admxrc3FlashVerifyRegion (indexOrSerial, flags, targetIndex, pBitFilename,
 regionIndex)
int admxrc3FlashVerify (indexOrSerial, flags, targetIndex, pBitFilename[,
 regionStart, regionLength])

where the parameters are:

unsigned int indexOrSerial Specifies the index (or serial number) of the device to open.

unsigned int flags Specifies the bitwise OR of zero or more flags that modify the
behavior of the utility; see below for details.

unsigned int targetIndex Index of the target FPGA whose configuration Flash memory
is to be operated upon.

unsigned int regionStart The starting byte address of a user-specified region within the
Flash memory.

unsigned int regionLength The length

unsigned int regionIndex The index of a predefined region within the Flash memory.

const char* pBitFilename The filename of a bitstream (.bit) file to be used for a program
or verify operation.

The flags parameter is the bitwise-OR of zero or more of the following values:

Value Symbolic name Meaning

0x1 FLAG_BYSERIAL indexOrSerial is treated as a serial number rather than a
device index.

0x10 FLAG_FORCE Causes the FLASH utility to ignore a mismatch between the
FPGA identification string embedded in the .bit file specified
by pBitFilename and the actual FPGA fitted to the
reconfigurable computing card

0x100 FLAG_FAILSAFE Causes the FLASH utility to target the "failsafe" region of
Flash when using the admxrc3FlashChkblank

Summary

Manipulates the Flash memory which holds configuration bitstreams for a particular target FPGA in a
reconfigurable computing device.

Page 36Common Host Utilties
ad-ug-0086_v1_2.pdf

Common Host Utilities for VxWorks Release: 1.13.0
V1.2 - 12 Jun 2017

Description

The FLASH utility has five operations:
• Blank check using the admxrc3FlashChkblank or admxrc3FlashChkblankRegion entry point.

Verifies that a region is blank, i.e. all bytes are 0xFF.

• Erase using the admxrc3FlashErase or admxrc3FlashEraseRegion entry point.
Erases a region so that it becomes blank, i.e. all bytes are 0xFF.

• Information using the admxrc3FlashInfo entry point.
Displays information about the Flash memory that holds a region.

• Program using the admxrc3FlashProgram or admxrc3FlashProgramRegion entry point.
Programs the specified bitstream (.bit) file into a region so that the target FPGA is configured from a
particular region at power-on or reset.

• Verify using the admxrc3FlashVerify or admxrc3FlashVerifyRegion entry point.
Verifies that a region contains the specified bitstream (.bit) file.

Informational entry points

The admxrc3FlashInfo entry point displays information about the bank of configuration Flash memory for a
given target FPGA:
• admxrc3FlashInfo indexOrSerial, flags, targetIndex

The first two parameters are as described above, and the third parameter, targetIndex, specifies which target
FPGA's Flash memory is the subject of the blank check. This parameter is required because each target FPGA,
if there are more than one, may have a separate bank of Flash memory.

Output is of the following form:

Target FPGA is device 7vx690tffg1761
Flash type is Numonyx Axcell P30 (Symm bl), 65536(0x10000) kiB
Useable region is 0x1200000-0x3FFFFFF

Blank check entry points

There are two entry points which perform a blank check:
• admxrc3FlashChkblank indexOrSerial, flags, targetIndex, regionStart, regionLength

• admxrc3FlashChkblankRegion indexOrSerial, flags, targetIndex, regionIndex

For both entry points, the first two parameters are as described above, and the third parameter, targetIndex,
specifies which target FPGA's Flash memory is the subject of the blank check. This parameter is required
because each target FPGA, if there are more than one, may have a separate bank of Flash memory.

In most use cases, admxrc3FlashChkblank is recommended and regionStart & regionLength are omitted (so
that they are given values of 0). When regionLength is zero, the FLASH utility determines the correct region of
Flash to blank-check using model-specific information. If flags omits FLAG_FAILSAFE (0x100), then the
"default" region of Flash is blank-checked. This is the region from which the target FPGA is normally configured.
If flags includes FLAG_FAILSAFE (0x100), then the "failsafe" region of Flash is blank-checked. Not all models
have a "failsafe" region; please refer to the User Manual for your reconfigurable computing hardware in order to
determine if it has a failsafe region.

Specifiying regionStart and regionLength allows the user to explicitly specify an address range to blank-check,
which overrides the normal behaviour of FLASH in which it determines range of addresses to blank-check based
on model-specific information. This is useful when storing multiple compressed bitstreams within a single region,
to be used in conjunction with IPROG reconfiguration.

Page 37Common Host Utilties
ad-ug-0086_v1_2.pdf

Common Host Utilities for VxWorks Release: 1.13.0
V1.2 - 12 Jun 2017

FLAG_FAILSAFE regionLength Behavior

omitted from flags omitted or zero Blank checks default region

included in flags omitted or zero Blank checks failsafe region

N/A nonzero Blank checks user-specified address range

Table 6 : Summary of admxrc3FlashChkblank entry point behavior
The second entry point, admxrc3FlashChkblankRegion requires the index of a predefined region (whose
meaning model-specific) to be passed as the fourth parameter, regionIndex. Here, the Flash utility converts
regionIndex into an address range using model-specific information. This is useful for certain models which have
4 or more predefined regions, of which the "failsafe" and "default" regions are only two. The FLAG_FAILSAFE
(0x100) flag has no effect.

Example 1 - Using the first device in the system (index 0), the following calls all blank check the default region of
the configuration Flash memory for target FPGA 0:

admxrc3FlashChkblank
admxrc3FlashChkblank 0,0,0
admxrc3FlashChkblank 0,0,0,0,0

Example 2 - Using the device with serial number 100, blank check the failsafe region of the configuration Flash
memory for target FPGA 1:

admxrc3FlashChkblank 100,0x101,1

Example 3 - Using the second device in the system (index 1), blank check byte address range 0x300000 -
0x39FFFFF inclusive of the configuration Flash memory for target FPGA 0:

admxrc3FlashChkblank 1,0,0,0x3000000,0xA00000

Example 4 - Using the device with serial number 100, blank-check region 3 of the configuration Flash memory for
target FPGA 0:

admxrc3FlashChkblankRegion 100,1,0,3

Erase entry points

There are two entry points which perform an erase operation:
• admxrc3FlashErase indexOrSerial, flags, targetIndex, regionStart, regionLength

• admxrc3FlashEraseRegion indexOrSerial, flags, targetIndex, regionIndex

For both entry points, the first two parameters are as described above, and the third parameter, targetIndex,
specifies which target FPGA's Flash memory is the subject of the erase operation. This parameter is required
because each target FPGA, if there are more than one, may have a separate bank of Flash memory.

In most use cases, admxrc3FlashErase is recommended and regionStart & regionLength are omitted (so that
they are given values of 0). When regionLength is zero, the FLASH utility determines the correct region of Flash
to erase using model-specific information. If flags omits FLAG_FAILSAFE (0x100), then the "default" region of
Flash is erased. This is the region from which the target FPGA is normally configured. If flags includes
FLAG_FAILSAFE (0x100), then the "failsafe" region of Flash is erased. Not all models have a "failsafe" region;
please refer to the User Manual for your reconfigurable computing hardware in order to determine if it has a
failsafe region.

Specifiying regionStart and regionLength allows the user to explicitly specify an address range to erase, which
overrides the normal behaviour of FLASH in which it determines range of addresses to erased based on
model-specific information. This is useful when storing multiple compressed bitstreams within a single region, to
be used in conjunction with IPROG reconfiguration.

Page 38Common Host Utilties
ad-ug-0086_v1_2.pdf

Common Host Utilities for VxWorks Release: 1.13.0
V1.2 - 12 Jun 2017

FLAG_FAILSAFE regionLength Behavior

omitted from flags omitted or zero Erases default region

included in flags omitted or zero Erases failsafe region

N/A nonzero Erases user-specified address range

Table 7 : Summary of admxrc3FlashErase entry point behavior
The second entry point, admxrc3FlashEraseRegion requires the index of a predefined region (whose meaning
model-specific) to be passed as the fourth parameter, regionIndex. Here, the Flash utility converts regionIndex
into an address range using model-specific information. This is useful for certain models which have 4 or more
predefined regions, of which the "failsafe" and "default" regions are only two. The FLAG_FAILSAFE (0x100) flag
has no effect.

Regardless of which entry point is used, the erase operation is performed as two distinct phases:
1. The address range in the selected bank of Flash memory, that has either been explicitly specified as

parameters or have been automatically computed by the FLASH utility, is erased.

2. A blank check is performed on the address range that has just been erased, in order to confirm that the
erase operation was successful.

Example 1 - Using the first device in the system (index 0), the following calls all erase the default region of the
configuration Flash memory for target FPGA 0:

admxrc3FlashErase
admxrc3FlashErase 0,0,0
admxrc3FlashErase 0,0,0,0,0

Example 2 - Using the device with serial number 100, erase the failsafe region of the configuration Flash memory
for target FPGA 1:

admxrc3FlashErase 100,0x101,1

Example 3 - Using the second device in the system (index 1), erase byte address range 0x300000 - 0x39FFFFF
inclusive of the configuration Flash memory for target FPGA 0:

admxrc3FlashErase 1,0,0,0x3000000,0xA00000

Example 4 - Using the device with serial number 100, erase region 3 of the configuration Flash memory for target
FPGA 0:

admxrc3FlashEraseRegion 100,1,0,3

Program entry points

There are two entry points which perform a program operation:
• admxrc3FlashProgram indexOrSerial, flags, targetIndex, pBitFilename, regionStart, regionLength

• admxrc3FlashProgramRegion indexOrSerial, flags, targetIndex, pBitFilename, regionIndex

For both entry points, the first two parameters are as described above, and the third parameter, targetIndex,
specifies which target FPGA's Flash memory is the subject of the programming operation. This parameter is
required because each target FPGA, if there are more than one, may have a separate bank of Flash memory.

The fourth parameter is the bitstream filename or path (.bit extension), which may be on a filesystem local to the
VxWorks machine or on the VxWorks host. The FLASH utility reads this file into memory and writes the
SelectMap data in it into the Flash.

In most use cases, admxrc3FlashProgram is recommended and regionStart & regionLength are omitted (so
that they are given values of 0). When regionLength is zero, the FLASH utility determines the correct region of
Flash to program using model-specific information. If flags omits FLAG_FAILSAFE (0x100), then the "default"
region of Flash is programmed. This is the region from which the target FPGA is normally configured. If flags

Page 39Common Host Utilties
ad-ug-0086_v1_2.pdf

Common Host Utilities for VxWorks Release: 1.13.0
V1.2 - 12 Jun 2017

includes FLAG_FAILSAFE (0x100), then the "failsafe" region of Flash is programmed. Not all models have a
"failsafe" region; please refer to the User Manual for your reconfigurable computing hardware in order to
determine if it has a failsafe region.

Specifiying regionStart and regionLength allows the user to explicitly specify an address range to program, which
overrides the normal behaviour of FLASH in which it determines range of addresses to programmed based on
model-specific information. This is useful when storing multiple compressed bitstreams within a single region, to
be used in conjunction with IPROG reconfiguration.

FLAG_FAILSAFE regionLength Behavior

omitted from flags omitted or zero Program default region

included in flags omitted or zero Program failsafe region

N/A nonzero Programs user-specified address range

Table 8 : Summary of admxrc3FlashProgram entry point behavior
The second entry point, admxrc3FlashProgramRegion requires the index of a predefined region (whose
meaning model-specific) to be passed as the fourth parameter, regionIndex. Here, the Flash utility converts
regionIndex into an address range using model-specific information. This is useful for certain models which have
4 or more predefined regions, of which the "failsafe" and "default" regions are only two. The FLAG_FAILSAFE
(0x100) flag has no effect.

Regardless of which entry point is used, the programming operation is performed as three distinct phases:
1. The address range in the selected bank of Flash memory, that has either been explicitly specified as

parameters or have been automatically computed by the FLASH utility, is first erased.

2. The SelectMap data from the .bit file, specified by pBitFilename, is written into the Flash memory. This
typically does not cover the entire address range that was erased in phase 1.

3. The data in the Flash memory that was written in phase 2 file is verified against the specified .bit file, to
confirm that the programming operation was successful.

Example 1 - Using the first device in the system (index 0), the following calls both program the default region of
the configuration Flash memory for target FPGA 0:

admxrc3FlashProgram 0,0,0,"host:/path/to/my.bit"
admxrc3FlashProgram 0,0,0,"host:/path/to/my.bit",0,0

Example 2 - Using the device with serial number 100, program the failsafe region of the configuration Flash
memory for target FPGA 1:

admxrc3FlashProgram 100,0x101,1,"host:/path/to/my.bit"

Example 3 - Using the second device in the system (index 1), program byte address range 0x300000 -
0x39FFFFF inclusive of the configuration Flash memory for target FPGA 0:

admxrc3FlashProgram 1,0,0,"host:/path/to/my.bit",0x3000000,0xA00000

Example 4 - Using the device with serial number 100, program region 3 of the configuration Flash memory for
target FPGA 0:

admxrc3FlashProgramRegion 100,1,0,"host:/path/to/my.bit",3

Verify entry points

There are two entry points which perform a verify operation:
• admxrc3FlashVerify indexOrSerial, flags, targetIndex, pBitFilename, regionStart, regionLength

• admxrc3FlashVerifyRegion indexOrSerial, flags, targetIndex, pBitFilename, regionIndex

For both entry points, the first two parameters are as described above, and the third parameter, targetIndex,
specifies which target FPGA's Flash memory is the subject of the verify operation. This parameter is required

Page 40Common Host Utilties
ad-ug-0086_v1_2.pdf

Common Host Utilities for VxWorks Release: 1.13.0
V1.2 - 12 Jun 2017

because each target FPGA, if there are more than one, may have a separate bank of Flash memory.

The fourth parameter is the bitstream filename or path (.bit extension), which may be on a filesystem local to the
VxWorks machine or on the VxWorks host. The FLASH utility reads this file into memory and uses it to verify the
SelectMap data in the Flash.

In most use cases, admxrc3FlashVerify is recommended and regionStart & regionLength are omitted (so that
they are given values of 0). When regionLength is zero, the FLASH utility determines the correct region of Flash
to verify using model-specific information. If flags omits FLAG_FAILSAFE (0x100), then the "default" region of
Flash is verified. This is the region from which the target FPGA is normally configured. If flags includes
FLAG_FAILSAFE (0x100), then the "failsafe" region of Flash is verified. Not all models have a "failsafe" region;
please refer to the User Manual for your reconfigurable computing hardware in order to determine if it has a
failsafe region.

Specifiying regionStart and regionLength allows the user to explicitly specify an address range to verify, which
overrides the normal behaviour of FLASH in which it determines range of addresses to verified based on
model-specific information. This is useful when storing multiple compressed bitstreams within a single region, to
be used in conjunction with IPROG reconfiguration.

FLAG_FAILSAFE regionLength Behavior

omitted from flags omitted or zero Verify default region

included in flags omitted or zero Verify failsafe region

N/A nonzero Verify user-specified address range

Table 9 : Summary of admxrc3FlashVerify entry point behavior
The second entry point, admxrc3FlashVerifyRegion requires the index of a predefined region (whose meaning
model-specific) to be passed as the fourth parameter, regionIndex. Here, the Flash utility converts regionIndex
into an address range using model-specific information. This is useful for certain models which have 4 or more
predefined regions, of which the "failsafe" and "default" regions are only two. The FLAG_FAILSAFE (0x100) flag
has no effect.

Example 1 - Using the first device in the system (index 0), the following calls both verify the default region of the
configuration Flash memory for target FPGA 0:

admxrc3FlashVerify 0,0,0,"host:/path/to/my.bit"
admxrc3FlashVerify 0,0,0,"host:/path/to/my.bit",0,0

Example 2 - Using the device with serial number 100, verify the failsafe region of the configuration Flash memory
for target FPGA 1:

admxrc3FlashVerify 100,0x101,1,"host:/path/to/my.bit"

Example 3 - Using the second device in the system (index 1), verify byte address range 0x300000 - 0x39FFFFF
inclusive of the configuration Flash memory for target FPGA 0:

admxrc3FlashVerify 1,0,0,"host:/path/to/my.bit",0x3000000,0xA00000

Example 4 - Using the device with serial number 100, verify region 3 of the configuration Flash memory for target
FPGA 0:

admxrc3FlashVerifyRegion 100,1,0,"host:/path/to/my.bit",3

Return values

When FLASH successfully executes the requested function, the return value is 0. When an error occurs, one of
the following values is returned:

Page 41Common Host Utilties
ad-ug-0086_v1_2.pdf

Common Host Utilities for VxWorks Release: 1.13.0
V1.2 - 12 Jun 2017

Symbolic name Value Meaning

EXIT_OK 0 Success.

EXIT_BAD_RANGE 2 Explicitly-specified address range is not valid.

EXIT_INSUFFICIENT_ARGS 4 Too few positional arguments following command.

EXIT_ILLEGAL_FLAGS 5 An illegal combination of flags was passed.

EXIT_INVALID_RANGE 6 A Flash address range was invalid.

EXIT_ALLOCATION_FAILURE 7 A memory allocation failed.

EXIT_BLOCK_QUERY_FAILURE 8 Failed to query a Flash block
(ADMXRC3_GetFlashBlockInfo failed).

EXIT_CREATE_FILE_ERROR 9 Failed to open file for writing readback data.

EXIT_WRITE_FILE_ERROR 10 Failed to write to readback data file.

EXIT_READ_FLASH_ERROR 11 Failed to read from Flash (ADMXRC3_ReadFlash
failed).

EXIT_WRITE_FLASH_ERROR 12 Failed to write to Flash (ADMXRC3_WriteFlash
failed).

EXIT_ERASE_FLASH_ERROR 13 Failed to erase Flash (ADMXRC3_EraseFlash
failed).

EXIT_READ_BIT_ERROR 14 Failed to read .bit file.

EXIT_SANITY_ERROR 15 A sanity check failed.

EXIT_FPGA_MISMATCH 16 The FPGA identifier in the .bit file does not match the
FPGA in the device.

EXIT_BOOT_FLAG_VERIFY_ERROR 17 Boot flag read back has incorrect value.

EXIT_DEVICE_OPEN_ERROR 18 Failed to open ADMXRC3 device.

EXIT_CARDINFO_ERROR 19 Failed to get information about ADMXRC3 device.

EXIT_FAILSAFE_NOT_SUPPORTED 20 Writing to failsafe region not supported for this
ADMXRC3 device.

EXIT_ILLEGAL_TARGET_INDEX 21 Target FPGA index illegal for this ADMXRC3 device.

EXIT_UNSUPPORTED_MODEL 22 The ADMXRC3 device is an unsupported model.

EXIT_FPGAINFO_ERROR 23 Failed to get information about target FPGA.

EXIT_FLASHINFO_ERROR 24 Failed to get information about Flash memory.

EXIT_ILLEGAL_REGION 25 Region index passed is illegal for this ADMXRC3
device.

EXIT_SET_CLOCK_FAILED 26 Failed to set LCLK clock generator to nominal
frequency.

EXIT_NOT_BLANK 27 Blank check failed; region is not blank.

EXIT_VERIFY_FAILED 28 Verification failed; data read back did not match data
written.

EXIT_NULL_FILENAME 29 Illegal NULL string passed for a filename.

Table 10 : Return values for FLASH utility

Page 42Common Host Utilties
ad-ug-0086_v1_2.pdf

Common Host Utilities for VxWorks Release: 1.13.0
V1.2 - 12 Jun 2017

3.5.1 Region to address range mapping
WARNING
The FLAG_FAILSAFE flag, and the regionIndex, regionStart & regionLength parameters must be used with
care on models that feature a Virtex-6 target FPGA, because they can be used to overwrite the failsafe
region of the Flash memory. The failsafe region is factory-programmed with a bitstream that protects again
sub-micron effects that might otherwise degrade the performance of the target FPGA over time.

Xilinx answer record 35055 elaborates on protecting Virtex-6 GTX transceivers from performance
degradation over time.

Alpha Data recommends that the failsafe region should not be erased or overwritten. If overwritten on a model
that features a Virtex-6 target FPGA, the user must ensure that it is written with a valid, known-good bitstream
that satisfies the requirements for protecting the target FPGA from sub-micron effects.

Most of Alpha Data's reconfigurable computing cards have Flash memory capable of storing multiple .bit files,
and are divided into two or more regions. The address map for each Flash memory bank, including information
about regions, is presented in the ADMXRC3 API Hardware Addendum .

The following guidelines are recommended when using the FLASH utility:
• For models that have a failsafe region, such as the ADM-XRC-6T1, use the admxrc3FlashErase and

admxrc3FlashProgram entry points where possible. Do not pass FLAG_FAILSAFE in flags unless the
intention is definitely to erase or program the failsafe region with a known-good .bit file. Omit or use values
of 0 for the regionStart and regionLength parameters, unless the intention is to program an address range
that is not one of the predefined regions (i.e. it corresponds to neither the default nor failsafe region).

• For models that have a failsafe region, such as the ADM-XRC-6T1, when using the
admxrc3FlashEraseRegion and admxrc3FlashProgramRegion entry points, take care to verify that the
regionIndex parameter is correct. regionIndex must not correspond to the failsafe region unless the
intention is definitely to overwrite the failsafe bitstream.

• For models that do not have a failsafe region, such as the ADM-XRC-KU1, use any of the available entry
points for the FLASH utility. For such models, the FLASH utility rejects the FLAG_FAILSAFE flag with an
error.

Some examples of safe usage of the FLASH utility follows:
• The following are all equivalent on the ADM-XRC-6T1, and perform a blank-check on the failsafe region

(1), which should fail assuming that the factory-programmed failsafe bitstream is still present:
admxrc3FlashChkblank 0,0x100,0
admxrc3FlashChkblank 0,0x100,0,0x2900000,0x1700000
admxrc3FlashChkblankRegion 0,0x100,0,1

The following are all equivalent on the ADM-XRC-6T1, and write a .bit file into the default region (0), which
is safe to overwrite:
admxrc3FlashProgram 0,0x100,0,"/path/to_my_design.bit",
admxrc3FlashProgram 0,0x100,0,0x1200000,0x1700000
admxrc3FlashProgramRegion 0,0x100,0,"/path/to_my_design.bit",0

• The following are all equivalent on the ADM-PCIE-7V3, and write a bitstream into the default region (1):
admxrc3FlashProgram 0,0,0,"/path/to/my_design.bit"
admxrc3FlashProgramRegion 0,0,0,"/path/to/my_design.bit",1
admxrc3FlashProgram 0,0,0,"/path/to/my_design.bit",0x2000000,0x2000000

• On the ADM-PCIE-7V3, the following programs a small compressed bitstream (must be less than or equal
to 10 MiB) in the uppermost 10 MiB of region 3:
admxrc3FlashProgram 0,0,0,"/path/to/small.bit",0x7600000,0xA00000

Page 43Common Host Utilties
ad-ug-0086_v1_2.pdf





http://www.xilinx.com/support/answers/35055.htm

Common Host Utilities for VxWorks Release: 1.13.0
V1.2 - 12 Jun 2017

3.6 INFO utility

VxWorks kernel shell entry points
int admxrc3InfoHelp()
int admxrc3Info(indexOrSerial[, flags])

where the parameters are:

unsigned int indexOrSerial Specifies the index (or serial number) of the device to open.

unsigned int flags Specifies the bitwise OR of zero or more flags that modify the
behavior of the utility; see below for details.

The flags parameter is the bitwise-OR of zero or more of the following values:

Value Symbolic name Meaning

0x1 FLAG_BYSERIAL indexOrSerial is treated as a serial number rather than a
device index.

0x10 FLAG_SHOWFLASHINFO The INFO utility displays Flash memory bank information.

0x20 FLAG_SHOWMODULEINFO The INFO utility displays I/O module information.

0x40 FLAG_SHOWSENSORINFO The INFO utility displays sensor information.

Summary

Displays information about a reconfigurable computing device.

Description

The admxrc3Info entry point demonstrates the use of most of the informational functions in the ADMXRC3 API.
The output consists of several sections, the first of which is obtained using ADMXRC3_GetVersionInfo :

API information
API library version 1.4.17
Driver version 1.4.17

The second section shows information obtained using ADMXRC3_GetCardInfoEx , and shows the information
in the ADMXRC3_CARD_INFOEX structure:

Card information
Model ADM-VPX3-7V2
Serial number 200(0xC8)
Number of programmable clocks 2
Number of DMA channels 4
Number of target FPGAs 1
Number of local bus windows 4
Number of sensors 23
Number of I/O module sites 1
Number of memory banks 4
Bank presence bitmap 0xF

The third section uses the NumTargetFpga member of the ADMXRC3_CARD_INFOEX structure and
ADMXRC3_GetFpgaInfo to enumerate the target FPGAs in the device:

Target FPGA information
FPGA 0 7VX690TFFG1761-2I

The fourth section uses the NumMemoryBank member of the ADMXRC3_CARD_INFOEX structure and

Page 44Common Host Utilties
ad-ug-0086_v1_2.pdf











Common Host Utilities for VxWorks Release: 1.13.0
V1.2 - 12 Jun 2017

ADMXRC3_GetBankInfo to enumerate the memory banks (non-Flash) in the device:

Memory bank information
Bank 0 SDRAM, DDR3, 262144(0x40000) kiW x 32 + 0 bits
 303.0 MHz - 800.0 MHz
 Connectivity mask 0x1
Bank 1 SDRAM, DDR3, 262144(0x40000) kiW x 32 + 0 bits
 303.0 MHz - 800.0 MHz
 Connectivity mask 0x1
... (other memory banks) ...

The fourth section uses the NumWindow member of the ADMXRC3_CARD_INFOEX structure and
ADMXRC3_GetWindowInfo to enumerate the memory access windows in the device:

Local bus window information
Window 0 (Target FPGA 0 pre Bus base 0xC0400000 size 0x400000
 Local base 0x0 size 0x400000
 Virtual size 0x400000
Window 1 (Target FPGA 0 non Bus base 0x64EC00000 size 0x400000
 Local base 0x0 size 0x400000
 Virtual size 0x400000
... (other windows) ...

The next section appears if flags contains FLAG_SHOWFLASHINFO. It uses the NumFlashBank member of
the ADMXRC3_CARD_INFOEX structure and ADMXRC3_GetFlashInfo to enumerate the Flash memory
banks in the device:

Flash bank information
Bank 0 Numonyx Axcell P30 (Symm bl), 65536(0x10000) kiB
 Useable area 0x1200000-0x3FFFFFF

The next section appears if flags contains FLAG_SHOWMODULEINFO. It uses the NumModuleSite member of
the ADMXRC3_CARD_INFOEX structure and ADMXRC3_GetModuleInfo to enumerate the I/O module
sites in the device and show what is fitted, if anything:

I/O module information
Module 0 Product FMC-CLINK-MINI
 Part number FMC-CLINK-MINI
 Manufacturer Alpha Data
 Serial number 112
 Manufacture time 8995680 minutes since 00:00 1/1/1996
 I/O voltage 1.80
 Flags 0x0

The next section appears if flags contains FLAG_SHOWSENSORINFO. It uses the NumSensor member of the
ADMXRC3_CARD_INFOEX structure and ADMXRC3_GetSensorInfo to enumerate the sensors in the
device:

Sensor information
Sensor 0 12V VPX power rail
 V, double, exponent 0, error 0.000
Sensor 1 5V VPX power rail
 V, double, exponent 0, error 0.000
... (other sensors) ...

Return values

When INFO runs successfully, the return value is 0. When an error occurs, one of the following values is
returned:

Page 45Common Host Utilties
ad-ug-0086_v1_2.pdf






 

 

 

Common Host Utilities for VxWorks Release: 1.13.0
V1.2 - 12 Jun 2017

Symbolic name Value Meaning

EXIT_OK 0 Success.

EXIT_DEVICE_OPEN_ERROR 2 Failed to open ADMXRC3 device.

Table 11 : Return values for INFO utility

Page 46Common Host Utilties
ad-ug-0086_v1_2.pdf

Common Host Utilities for VxWorks Release: 1.13.0
V1.2 - 12 Jun 2017

3.7 LOADER utility

VxWorks kernel shell entry points
int admxrc3LoaderHelp()
int admxrc3Loader(indexOrSerial, flags, targetIndex, pBitFilename)

where the parameters are:

unsigned int indexOrSerial Specifies the index (or serial number) of the device to open.

unsigned int flags Specifies the bitwise OR of zero or more flags that modify the
behavior of the utility; see below for details.

unsigned int targetIndex Index of the target FPGA to be configured.

const char* pBitFilename Filename or path of bitstream (.bit) file to be used to configure
the selected target FPGA.

The flags parameter is the bitwise-OR of zero or more of the following values:

Value Symbolic name Meaning

0x1 FLAG_BYSERIAL indexOrSerial is treated as a serial number rather than a
device index.

0x10 FLAG_BINARY Treats pBitFilename as binary SelectMap data, not a .bit file.

0x20 FLAG_NOLINKCHECK Does not check the status of the host link after configuring the
FPGA.

0x40 FLAG_IGNOREMISMATCH Ignores any mismatch between the FPGA device string
embedded in the .bit file and the FPGA in the reconfigurable
computing device.

Summary

Configures a target FPGA with a .bit file, and then exits.

Description

The LOADER utility configures the target FPGA, identified by targetIndex, within a reconfigurable computing
device with the bitstream file identified by pBitFilename, and then exits.

By default, LOADER expects pBitFilename to name a .bit file, i.e. a file generated by the Xilinx ISE or Vivado
design tools, and attempts to parse the file accordingly. However, if flags includes FLAG_BINARY, LOADER
treats pBitFilename as a file containing raw SelectMap data. Such a file can be obtained in a number of ways,
including a user-created program or by using the BITSTRIP utility.

Because the LOADER utility uses ADMXRC3_ConfigureFromFile or ADMXRC3_ConfigureFromBuffer , it
normally checks that communications with the target FPGA have been established before exiting. If flags
includes FLAG_NOLINKCHECK, LOADER omits this check. FLAG_NOLINKCHECK is appropriate for an
FPGA design that has no MPTL host interface, for example stand-alone Ethernet design.

Return values

When LOADER runs successfully, the return value is 0. When an error occurs, one of the following values is
returned:

Page 47Common Host Utilties
ad-ug-0086_v1_2.pdf

 

Common Host Utilities for VxWorks Release: 1.13.0
V1.2 - 12 Jun 2017

Symbolic name Value Meaning

EXIT_OK 0 Success.

EXIT_DEVICE_OPEN_ERROR 2 Failed to open ADMXRC3 device.

EXIT_STAT_FILE_ERROR 3 Failed to stat() .bit file.

EXIT_FILE_TOO_LARGE 4 .bit file too large to load into memory.

EXIT_ALLOCATION_FAILED 5 Failed to allocate buffer for firmware or board config
data.

EXIT_FILE_OPEN_ERROR 6 Failed to open .bit file for reading.

EXIT_FILE_READ_ERROR 7 Failed to read .bit file.

EXIT_CONFIGURATION_FAILED 8 ADMXRC3_Configure{FromBuffer,FromFile} failed.

Table 12 : Return values for LOADER utility

Page 48Common Host Utilties
ad-ug-0086_v1_2.pdf

Common Host Utilities for VxWorks Release: 1.13.0
V1.2 - 12 Jun 2017

3.8 MONITOR utility

VxWorks kernel shell entry points
int admxrc3MonitorHelp()
int admxrc3Monitor(indexOrSerial[, flags[, numRepetition[, periodSec]]])

where the parameters are:

unsigned int indexOrSerial Specifies the index (or serial number) of the device to open.

unsigned int flags Specifies the bitwise OR of zero or more flags that modify the
behavior of the utility; see below for details.

unsigned int numRepetition Number of times to repeat reading the sensors (0 means
repeat for ever).

unsigned int periodSec Interval between each set of sensor readings

The flags parameter is the bitwise-OR of zero or more of the following values:

Value Symbolic name Meaning

0x1 FLAG_BYSERIAL indexOrSerial is treated as a serial number rather than a
device index.

Summary

Displays readings from all sensors.

Description

The MONITOR utility repeatedly displays sensor readings in the command shell at the interval specified by the
periodSec parameter. The number of repetitions to perform before terminating can be specified on the command
line using the numRepetition parameter, and if zero or omitted, the program runs for ever.

MONITOR makes use of the ADMXRC3_GetSensorInfo and ADMXRC3_ReadSensor functions from the
ADMXRC3 API, and can run alongside other reconfigurable computing applications without disturbing them.

The output looks like this:

Model: 257 (0x101) => ADM-XRC-6TL
Serial number: 101 (0x65)
Number of sensors: 10
 Sensor 0 1V supply rail: 0.987000 V
 Sensor 1 1.5V supply rail: 1.509186 V
 Sensor 2 1.8V supply rail: 1.803192 V
 Sensor 3 2.5V supply rail: 2.508896 V
 Sensor 4 3.3V supply rail: 3.268082 V
 Sensor 5 5V supply rail: 5.017990 V
 Sensor 6 XMC variable power rail: 12.000000 V
 Sensor 7 XRM I/O voltage: 2.495712 V
 Sensor 8 LM87 internal temperature: 49.000000 deg C
 Sensor 9 Target FPGA temperature: 57.000000 deg C

Return values

When MONITOR runs successfully, the return value is 0. When an error occurs, one of the following values is

Page 49Common Host Utilties
ad-ug-0086_v1_2.pdf

 

Common Host Utilities for VxWorks Release: 1.13.0
V1.2 - 12 Jun 2017

returned:

Symbolic name Value Meaning

EXIT_OK 0 Success.

EXIT_DEVICE_OPEN_ERROR 2 Failed to open ADMXRC3 device.

EXIT_CARDINFO_ERROR 3 Failed to get information about ADMXRC3 device.

EXIT_NO_SENSORS_FOUND 4 No sensors in the selected device.

Table 13 : Return values for MONITOR utility

Page 50Common Host Utilties
ad-ug-0086_v1_2.pdf

Common Host Utilities for VxWorks Release: 1.13.0
V1.2 - 12 Jun 2017

3.9 VPD utility

VxWorks kernel shell entry points
int admxrc3VpdHelp()
int admxrc3VpdFB(indexOrSerial, flags, offset, count, val8)
int admxrc3VpdFW(indexOrSerial, flags, offset, count, val16)
int admxrc3VpdFD(indexOrSerial, flags, offset, count, val32)
int admxrc3VpdFQ(indexOrSerial, flags, offset, count, val64(ULL))
int admxrc3VpdFS(indexOrSerial, flags, offset, count, pString)
int admxrc3VpdRB(indexOrSerial, flags, offset, count)
int admxrc3VpdRW(indexOrSerial, flags, offset, count)
int admxrc3VpdRD(indexOrSerial, flags, offset, count)
int admxrc3VpdRQ(indexOrSerial, flags, offset, count)
int admxrc3VpdWB(indexOrSerial, flags, offset, count, ...)
int admxrc3VpdWW(indexOrSerial, flags, offset, count, ...)
int admxrc3VpdWD(indexOrSerial, flags, offset, count, ...)
int admxrc3VpdWQ(indexOrSerial, flags, offset, count, ...(ULL))
int admxrc3VpdWS(indexOrSerial, flags, offset, count, pString)

where the parameters are:

unsigned int indexOrSerial Specifies the index (or serial number) of the device to open.

unsigned int flags Specifies the bitwise OR of zero or more flags that modify the
behavior of the utility; see below for details.

unsigned int address The starting address within VPD Space to be used for the data
transfer.

unsigned int count The number of bytes of data to transfer.

unsigned int val8 Fill value which is interpreted as being 8 bits wide.

unsigned int val16 Fill value which is interpreted as being 16 bits wide.

unsigned int val32 Fill value which is interpreted as being 32 bits wide.

unsigned long long val64 Fill value which is interpreted as being 64 bits wide.

... A variable number of unsigned int values, which are
interpreted as 8-bit / 16-bit / 32-bit write values depending on
which admxrc3VpdW* entry point is used.

...(ULL) A variable number of unsigned long long write values, which
are interpreted as 64-bit write values.

const char* pString A NUL-terminated ASCII string (8-bit characters) to be used as
a write value or fill value.

The flags parameter is the bitwise-OR of zero or more of the following values:

Value Symbolic name Meaning

0x1 FLAG_BYSERIAL indexOrSerial is treated as a serial number rather than a
device index.

0x20 FLAG_BIGENDIAN Big-endian byte order is used, as opposed to little-endian.

Summary

Page 51Common Host Utilties
ad-ug-0086_v1_2.pdf

Common Host Utilities for VxWorks Release: 1.13.0
V1.2 - 12 Jun 2017

Displays data read from Vital Product Data (VPD) memory, or writes data to VPD memory. VPD memory contains
information about a reconfigurable computing card, such as the type of FPGA fitted, memory bank sizes etc.

Description

Avoiding VPD corruption
The VPD utility must be used with care, particularly when using its capability to write or fill VPD memory.
Corrupting the VPD of a reconfigurable computing card can impair its functionality until the VPD is restored to
its correct values.

To avoid corrupting VPD, please ensure that you are aware of the address map of VPD Space for the
particular reconfigurable computing card in use. This information is provided by ADMXRC3 API Hardware
Addendum .

Writing to VPD writes requires a software enable to be activated in the ADB3 Driver. Additionally, on certain
models in Alpha Data's range of reconfigurable computing hardware, a card must be put into Service Mode
before VPD memory can be accessed. For further details, refer to Section 3.9.1 below.

The VPD utility operates in one of three modes:
• Filling a region of VPD memory with a value or string; for this mode, use the admxrc3VpdFB,

admxrc3VpdFW, admxrc3VpdFD, admxrc3VpdFQ or admxrc3VpdFS entry points.

• Reading data from VPD memory and displaying it; for this mode, use the admxrc3VpdRB,
admxrc3VpdRW, admxrc3VpdRD or admxrc3VpdRQ entry points.

• Writing numeric or string data to a region of VPD memory; for this mode, use the admxrc3VpdWB,
admxrc3VpdWW, admxrc3VpdWD, admxrc3VpdWQ or admxrc3VpdWS entry points.

The address space accessed by the VPD utility is called VPD Space, and the address map of VPD Space is
model-specific. Details of address maps of VPD Space for supported models are given in ADMXRC3 API
Hardware Addendum .

The entry point admxrc3VpdHelp displays a brief help message, listing the available entry points and
arguments.

If flags contains FLAG_BIGENDIAN, the VPD utility reads or writes numeric values in big-endian byte ordering
convention as opposed to little-endian (the default).

Read commands

The read command implies the word width used for displaying the data:
• admxrc3VpdRB indexOrSerial, flags, address, count

Byte (8-bit) reads; data is displayed as bytes.

• admxrc3VpdRW indexOrSerial, flags, address, count

Word (16-bit) reads; data is displayed as words.

• admxrc3VpdRD indexOrSerial, flags, address, count

Doubleword (32-bit) reads; data is displayed as doublewords.

• admxrc3VpdRQ indexOrSerial, flags, address, count

Quadword (64-bit) reads; data is displayed as quadwords.

In all cases, the first four arguments passed must be:
(a) indexOrSerial - identifies the reconfigurable computing device to be used. The first reconfigurable

computing device in the system, in the kernel's enumeration order, has index 0.

(b) flags - the bitwise-OR of zero or more flags that modify the behavior of the VPD utility. See flag definitions
above.

Page 52Common Host Utilties
ad-ug-0086_v1_2.pdf





Common Host Utilities for VxWorks Release: 1.13.0
V1.2 - 12 Jun 2017

(c) address - the byte address within VPD memory at which to begin reading.

(d) count - byte count; the number of bytes of VPD memory to read and display.

Some usage examples follow.

Example 1 - Using the first card in the system (index 0), dump 256 bytes of VPD memory at address 0x1FF00:

admxrc3VpdRB 0,0,0x1ff00,0x100

Example 2 - Using the card with serial number 100, dump 32 doublewords of VPD memory at address 0x0:

admxrc3VpdRD 100,1,0x0,0x80

Write commands

The write command specifies whether the data is numeric or string data. In the case of numeric data, the
command also implies the word width of the data. The available write commands are:
• admxrc3VpdWB indexOrSerial, flags, address, count, values...

Write values are supplied as unsigned int values, and written as bytes (8-bit).

• admxrc3VpdWW indexOrSerial, flags, address, count, values...

Write values are supplied as unsigned int values, and written as words (16-bit).

• admxrc3VpdWD indexOrSerial, flags, address, count, values...

Write values are supplied as unsigned int values, and written as doublewords (32-bit).

• admxrc3VpdWQ indexOrSerial, flags, address, count, values...

Write values are supplied as unsigned long long values, and written as quadwords (64-bit).

• admxrc3VpdWS indexOrSerial, flags, address, count, pString

Data is supplied as an ASCII string (8-bit characters).

In all cases, the first four arguments passed must be:
(a) indexOrSerial - identifies the reconfigurable computing device to be used. The first reconfigurable

computing device in the system, in the kernel's enumeration order, has index 0.

(b) flags - the bitwise-OR of zero or more flags that modify the behavior of the VPD utility. See flag definitions
above.

(c) address - the byte address within VPD memory at which to begin writing.

(d) count - byte count; the number of bytes to write to VPD memory.

In the case of admxrc3VpdWB, admxrc3VpdWW & admxrc3VpdWD, the fifth and subsequent arguments are
values to write to VPD memory. These are expressed as unsigned int values, but are cast to the appropriate
word size (uint8_t, uint16_t or uint32_t) when written to VPD memory. Sufficient write values must be passed in
order to satisfy the byte count, count. For example, if the admxrc3VpdWW entry point is used and count is 8,
four write values values must be passed (as the 5th to 8th parameters).

In the case of admxrc3VpdWQ, the fifth and subsequent arguments are values to write to VPD memory. These
are expressed as unsigned long long values, and therefore require a cast in the VxWorks shell (see usage
example 2 below). The values are cast to uint64_t when written to VPD memory. Sufficient write values must be
passed in order to satisfy the byte count, count. For example, if count is 24, three write values values must be
passed as the 5th to 7th parameters.

In the case of admxrc3VpdWS, the fifth argument is a NUL-terminated string to copy to VPD memory. If this
string (including the NUL-terminator) is not long enough to satisfy the byte count specified by count, the
remaining portion of the region of VPD memory determined byaddress and count is not modified. NOTE: The
copy of the string written to VPD memory is NUL-terminated if shorter than count bytes, but if longer, it is
truncated and not NUL-terminated.

Some usage examples follow.

Page 53Common Host Utilties
ad-ug-0086_v1_2.pdf

Common Host Utilities for VxWorks Release: 1.13.0
V1.2 - 12 Jun 2017

Example 1 - Using the first card in the system (index 0), write 4 words 0x0123, 0x4567, 0x89AB & 0xCDEF at
VPD address 0x1FF80:

admxrc3VpdWW 0,0,0x1ff80,8,0x0123,0x4567,0x89ab,0xcdef

Example 2 - Using the card with serial number 100, write 2 quadwords 0xDEADBEEFCAFEFACE &
0x0123456789ABCDEF at VPD address 0x100000:

admxrc3VpdWQ 100,1,0x100000,16,(long long)0xdeadbeefcafeface,(long long)0x01234567
89abcdef

Example 3 - Using second card in the system (index 1), write the NUL-terminated string "Hello World!" at VPD
address 0x100011:

admxrc3VpdWS 1,0,0x100011,13,"Hello World!"

Fill entry points

When filling a region of VPD memory with data, the entry point used determines whether the fill value is numeric
or a string. In the case of numeric data, the entry point used also implies the word width of the data. The
available fill entry points are:
• admxrc3VpdFB indexOrSerial, flags, address, count, val8

Fill value is supplied as an unsigned int value, and written as a byte (8-bit).

• admxrc3VpdFW indexOrSerial, flags, address, count, val16

Fill value is supplied as an unsigned int value, and written as a word (16-bit).

• admxrc3VpdFD indexOrSerial, flags, address, count, val32

Fill value is supplied as an unsigned int value, and written as a doubleword (32-bit).

• admxrc3VpdFQ indexOrSerial, flags, address, count, val64(ULL)

Fill value is supplied as an unsigned long long value, and written as a quadword (64-bit).

• admxrc3VpdFS indexOrSerial, flags, address, count, pString

Fill value is a NUL-terminated ASCII string (8-bit characters).

In all cases, the first four arguments passed must be:
(a) indexOrSerial - identifies the reconfigurable computing device to be used. The first reconfigurable

computing device in the system, in the kernel's enumeration order, has index 0.

(b) flags - the bitwise-OR of zero or more flags that modify the behavior of the VPD utility. See flag definitions
above.

(c) address - the byte address within VPD memory at which to begin filling.

(d) count - byte count; the number of bytes of VPD memory to fill.

The fifth parameter is the fill value, which is either numeric or a string, depending on which entry point is used.

If the entry point is admxrc3VpdFS and pString is a string shorter than count characters, the string is repeated
until the byte count is satisfied. If the string is longer than count, only the first count characters are used. If a
string contains spaces, it must be quoted on the command line so that it is not interpreted by the shell as two or
more separate arguments.

For the numeric fill commands admxrc3VpdFB, admxrc3VpdFW, admxrc3VpdFD and admxrc3VpdFQ, the
numeric value is repeated until the byte count is satisfied. Note that passing an unsigned long long parameter
in the VxWorks shell for the admxrc3VpdFQ entry point requires a cast; see usage example 2 below.

Some usage examples follow.

Example 1 - Using the first card in the system (index 0), fill VPD addresss 0x1FF80 to 0x1FFFF (0x80 bytes) with
the byte value 0xFF (for many types of nonvolatile memory, 0xFF is the value which is returned after erasing the
memory):

Page 54Common Host Utilties
ad-ug-0086_v1_2.pdf

Common Host Utilities for VxWorks Release: 1.13.0
V1.2 - 12 Jun 2017

admxrc3VpdFB 0,0,0x1ff80,0x80,0xFF

Example 2 - Using the card with serial number 100, fill VPD addresses 0x100080 to 0x1000BF (64 bytes) with
the quadword value 0x0123456789ABCDEF:

admxrc3VpdFQ 100,1,0x100080,64,(long long)0x0123456789abcdef

Example 3 - Using second card in the system (index 1), fill VPD addresses 0x1FF80 to 0x1FFFF with copies of
the NUL-terminated string "Hello World!". The final copy of the string will not be NUL-terminated because 0x80 is
not an integer multiple of the string length, including NUL (13).

admxrc3VpdFS 1,0,0x1FF80,0x80,"Hello World!"

Example session

The following session was captured in VxWorks using an ADM-XRC-6T1. The base address 0x100000 is used
because that is the VPD-space address of the user-definable area of VPD memory in the ADM-XRC-6T1.

-> admxrc3VpdRB 0,0,0x100000,0x60
Dump of VPD at 0x00100000 + 96(0x60) bytes:
 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
0x00100000: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0x00100010: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0x00100020: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0x00100030: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0x00100040: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0x00100050: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
value = 0 = 0x0
-> admxrc3VpdFS 0,0,0x100008,20,"hello world!"
value = 0 = 0x0
-> admxrc3VpdWD 0,0,0x100020,12,0xdeadbeef,0xcafeface,0x12345678
value = 0 = 0x0
-> admxrc3VpdFW 0,0,0x100031,10,0xa55a
value = 0 = 0x0
-> admxrc3VpdRB 0,0,0x100000,0x60
Dump of VPD at 0x00100000 + 96(0x60) bytes:
 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
0x00100000: FF FF FF FF FF FF FF FF 68 65 6C 6C 6F 20 77 6Fhello wo
0x00100010: 72 6C 64 21 00 68 65 6C 6C 6F 20 77 FF FF FF FF rld!.hello w....
0x00100020: EF BE AD DE CE FA FE CA 78 56 34 12 FF FF FF FFxV4.....
0x00100030: FF 5A A5 5A A5 5A A5 5A A5 5A A5 FF FF FF FF FF .Z.Z.Z.Z.Z......
0x00100040: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0x00100050: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
value = 0 = 0x0

Return values

When VPD successfully executes the requested function, the return value is 0. When an error occurs, one of the
following values is returned:

Symbolic name Value Meaning

EXIT_OK 0 Success.

EXIT_ALLOCATION_FAILURE 3 A memory allocation failed.

EXIT_DEVICE_OPEN_ERROR 4 Failed to open ADMXRC3 device.

EXIT_READVPD_ERROR 5 A call to ADMXRC3_ReadVPD failed.
Table 14 : Return values for VPD utility (continued on next page)

Page 55Common Host Utilties
ad-ug-0086_v1_2.pdf

Common Host Utilities for VxWorks Release: 1.13.0
V1.2 - 12 Jun 2017

Symbolic name Value Meaning

EXIT_WRITEVPD_ERROR 6 A call to ADMXRC3_WriteVPD failed.

Table 14 : Return values for VPD utility

3.9.1 VPD write-protection mechanisms

In order to be able to write to VPD memory, a software protection mechanism must be disabled:
• In VxWorks, an integer value adb3DrvEnableVpdWrite must be set to 1, which can be done using the

VxWorks kernel shell. For example:
-> adb3DrvEnableVpdWrite=1

A change to this value takes immediate effect, and it is not necessary to reboot the machine after
changing it.
The adb3DrvEnableVpdWrite value is embedded within the ABD3 Driver binary. If the ADB3 Driver is
built as a VxWorks downloadable kernel module, it is therefore set to 0 when the ADB3 Driver is
downloaded to the VxWorks target. If the ADB3 Driver is built into the VxWorks kernel image, its initial
value on boot is 0.

As well as the software protection mechanism, some models in Alpha Data's range of reconfigurable computing
hardware must be in Service Mode in order for any access to VPD memory (whether reading or writing) to
succeed. This applies to all models that have a switch setting for Service Mode. Please contact the User Manual
for your reconfigurable computing hardware in order to determine whether or not this applies.

Page 56Common Host Utilties
ad-ug-0086_v1_2.pdf

Common Host Utilities for VxWorks Release: 1.13.0
V1.2 - 12 Jun 2017

Page 57Common Host Utilties
ad-ug-0086_v1_2.pdf

Common Host Utilities for VxWorks Release: 1.13.0
V1.2 - 12 Jun 2017

Appendix A: AVR2UTIL clock generator indices

A.1 ADM-XRC-KU1
In the ADM-XRC-KU1, the frequencies of clock generators with indices 1 and 3 may be overridden using the
setclknv command, whereas the clock generators with indices 0 and 2 may not (because their frequencies must
be fixed in order for the board to function correctly).

clockgen-
index Net(s) [1] Purpose Factory

default (MHz)
ADMXRC3
API index [2] Note

0 REFCLK250M_N0
REFCLK250M_N1 MPTL reference clock 250 N/A [3]

1
PROGCLK_N0
PROGCLK_N1
PROGCLK_N2

Reference clock for user-
definable MGTs 156.25 1 .

2

REFCLK300M_N0
REFCLK300M_N1
REFCLK300M_N2
REFCLK300M_N3

Reference clock for DDR4
SDRAM and other logic 300 N/A [3]

3 FABRIC_CLK_N General purpose clock 300 2 .

Table 15 : AVR2UTIL clock generator indices (ADM-XRC-KU1)
Note:
[1] For differential clocks, only the negative side of a differential pair is listed.

[2] This is the clock generator index used in calls such as ADMXRC3_SetClockFrequency.

[3] Not user-programmable. Attempting to set an override frequency using AVR2UTIL will fail with exit code
103. Not exposed by ADMXRC3 API.

A.2 ADM-PCIE-8V3
In the ADM-PCIE-8V3, the frequencies of clock generators with indices 0, 1 and 2 may be overridden using the
setclknv command, whereas the clock generator with index 3 may not (because its frequency must be fixed in
order for the board to function correctly).

clockgen-
index Net(s) [1] Purpose Factory

default (MHz)
ADMXRC3
API index [2] Note

0 GTY_CLK_0B_N
GTY_CLK_0C_N

QSFP+ 0 reference clock
QSFP+ 1 reference clock 161.1328125 0 .

1 GTY_CLK_1B_N
GTY_CLK_1C_N

FireFly 0 reference clock
FireFly 1 reference clock 161.1328125 1 .

2 MEM_CLK_0_N
MEM_CLK_1_N

Reference clock for DDR4
SDRAM 300 2 .

3 FABRIC_CLK_N General purpose clock 300 N/A [3]

Table 16 : AVR2UTIL clock generator indices (ADM-PCIE-8V3)
Note:
[1] For differential clocks, only the negative side of a differential pair is listed.

[2] This is the clock generator index used in calls such as ADMXRC3_SetClockFrequency.

[3] Not user-programmable. Attempting to set an override frequency using AVR2UTIL will fail with exit code
103. Not exposed by ADMXRC3 API.

Page 58AVR2UTIL clock generator indices
ad-ug-0086_v1_2.pdf

Common Host Utilities for VxWorks Release: 1.13.0
V1.2 - 12 Jun 2017

A.3 ADM-PCIE-8K5
In the ADM-PCIE-8K5, the frequencies of all four clock generators, with indices 0 to 3, may be overridden using
the setclknv command.

clockgen-
index Net(s) [1] Purpose Factory

default (MHz)
ADMXRC3
API index [2] Note

0 GTY_CLK_0_N SFP+ 0 reference clock 156.25 0 .

1 GTY_CLK_1_N SFP+ 1 reference clock 156.25 1 .

2 MEM_CLK_0_N
MEM_CLK_1_N

Reference clock for DDR4
SDRAM 300 2 .

3 GTH_CLK_2_N FireFly 1 reference clock 156.25 3 .

Table 17 : AVR2UTIL clock generator indices (ADM-PCIE-8K5)
Note:
[1] For differential clocks, only the negative side of a differential pair is listed.

[2] This is the clock generator index used in calls such as ADMXRC3_SetClockFrequency.

Page 59AVR2UTIL clock generator indices
ad-ug-0086_v1_2.pdf

Common Host Utilities for VxWorks Release: 1.13.0
V1.2 - 12 Jun 2017

Revision History

Date Revision Nature of change

30 Aug 2016 1.0 Initial version.

3 Mar 2017 1.1

Documented new commands in AVR2UTIL 2.5.0: i2c-read-to-file, i2c-verify-
from-file, i2c-write-from-file, i2c-read, i2c-write, save-brdcfg, save-firmware,
save-vpd, display-vpd, display-vpd-raw, display-sensors, display-sensors-raw,
override-sensor, release-sensor

12 Jun 2017 1.2 Documented new commands in AVR2UTIL 2.7.1: getclk, setclk, spi-info, spi-raw

Address: Suite L4A, 160 Dundee Street,
Edinburgh, EH11 1DQ, UK

Telephone: +44 131 558 2600
Fax: +44 131 558 2700
email: sales@alpha-data.com
website: http://www.alpha-data.com

Address: 10822 West Toller Drive, Suite 250
Littleton, CO 80127

Telephone: (303) 954 8768
Fax: (866) 820 9956 - toll free
email: sales@alpha-data.com
website: http://www.alpha-data.com

5.0

	1 Introduction
	1.1 Directory structure

	2 Building the Common Host Utilities
	2.1 Building the VxWorks utilities on a Windows host
	2.2 Building the VxWorks utilities on a Linux host
	2.3 MAKE options for the example VxWorks applications
	2.3.1 MAKE targets
	2.3.2 MAKE variables

	3 Common Host Utilties
	3.1 AVR2UTIL utility
	3.1.1 Available entry points
	3.1.1.1 avr2utilHelp entry point
	3.1.1.2 avr2utilBuildInfo entry point
	3.1.1.3 avr2utilVersion entry point
	3.1.1.4 avr2utilProductID entry point
	3.1.1.5 avr2utilEnterServiceMode entry point
	3.1.1.6 avr2utilExitServiceMode entry point
	3.1.1.7 avr2utilGetClk entry point
	3.1.1.8 avr2utilSetClk entry point
	3.1.1.9 avr2utilGetClkNV entry point
	3.1.1.10 avr2utilSetClkNV entry point
	3.1.1.11 avr2utilI2cReadToFile entry point
	3.1.1.12 avr2utilI2cVerifyWithFile entry point
	3.1.1.13 avr2utilI2cWriteFromFile entry point
	3.1.1.14 avr2utilI2cRead entry point
	3.1.1.15 avr2utilI2cWrite entry point
	3.1.1.16 avr2utilUpdateBrdCfg entry point
	3.1.1.17 avr2utilVerifyBrdCfg entry point
	3.1.1.18 avr2utilSaveBrdCfg entry point
	3.1.1.19 avr2utilUpdateFirmware entry point
	3.1.1.20 avr2utilVerifyFirmware entry point
	3.1.1.21 avr2utilSaveFirmware entry point
	3.1.1.22 avr2utilUpdateVPD entry point
	3.1.1.23 avr2utilVerifyVPD entry point
	3.1.1.24 avr2utilSaveVPD entry point
	3.1.1.25 avr2utilDisplayVPD entry point
	3.1.1.26 avr2utilDisplayVPDRaw entry point
	3.1.1.27 avr2utilDisplaySensors entry point
	3.1.1.28 avr2utilDisplaySensorsRaw entry point
	3.1.1.29 avr2utilOverrideSensor entry point
	3.1.1.30 avr2utilReleaseSensor entry point
	3.1.1.31 avr2utilSPIInfo entry point
	3.1.1.32 avr2utilSPIRaw entry point

	3.1.2 Entry points requiring non-Service Mode
	3.1.3 Entry points requiring Service Mode

	3.2 BITSTRIP utility
	3.3 DMADUMP utility
	3.4 DUMP utility
	3.5 FLASH utility
	3.5.1 Region to address range mapping

	3.6 INFO utility
	3.7 LOADER utility
	3.8 MONITOR utility
	3.9 VPD utility
	3.9.1 VPD write-protection mechanisms

	Appendix A: AVR2UTIL clock generator indices
	A.1 ADM-XRC-KU1
	A.2 ADM-PCIE-8V3
	A.3 ADM-PCIE-8K5

	Tables
	Table 1: Utilities for VxWorks
	Table 2: Return values for AVR2UTIL utility
	Table 3: Return values for BITSTRIP utility
	Table 4: Return values for DMADUMP utility
	Table 5: Return values for DUMP utility
	Table 6: Summary of admxrc3FlashChkblank entry point behavior
	Table 7: Summary of admxrc3FlashErase entry point behavior
	Table 8: Summary of admxrc3FlashProgram entry point behavior
	Table 9: Summary of admxrc3FlashVerify entry point behavior
	Table 10: Return values for FLASH utility
	Table 11: Return values for INFO utility
	Table 12: Return values for LOADER utility
	Table 13: Return values for MONITOR utility
	Table 14: Return values for VPD utility
	Table 15: AVR2UTIL clock generator indices (ADM-XRC-KU1)
	Table 16: AVR2UTIL clock generator indices (ADM-PCIE-8V3)
	Table 17: AVR2UTIL clock generator indices (ADM-PCIE-8K5)

	Figures
	Figure 1: Directory structure

