
Alpha Data, System Generator
Board Support Package v3.1

 Alpha Data, System Generator
Board Support Package 3.1

Copyright © 2009 Alpha Data Parallel Systems Ltd. All rights reserved.

This publication is protected by Copyright Law, with all rights reserved. No part of
this publication may be reproduced, in any shape or form, without prior written
consent from Alpha Data Parallel Systems Limited.

Alpha Data Parallel Systems Ltd.
4 West Silvermills Lane
Edinburgh EH3 5BD
Scotland, UK

Phone: +44 (0) 131 558 2600
Fax: +44 (0) 131 558 2700
Email: support@alpha-data.com

Alpha Data System Generator BSP 3.1 2

 Alpha Data, System Generator
Board Support Package 3.1

1 Introduction ... 4
1.1 Design Flow ... 4
1.2 Version Support .. 5
1.3 Advanced Designs .. 5

2 Tutorial .. 7
2.1 Getting Started .. 7
2.2 Simulation .. 10
2.3 Generating The SysGen Module .. 12
2.4 Synthesis, Implementation and Bitstream Generation 12
2.5 Testing .. 13

3 User Designs ... 15
3.1 Creating a simple DSP Data Flow design .. 15
3.2 Changing the Clock Frequency .. 16
3.3 Changing the User Clock Input .. 16
3.4 Adding some simple IO .. 16
3.5 SRAM Support ... 16
3.6 Adding Complex IO and IP .. 17
3.7 Changing the data source and data sink widths .. 18

4 Application Register Map ... 19
4.1 User Application Registers (0x080000-0x08001C) ... 19
4.2 User Application DP-BRAM (0x100000-0x1007FF) .. 19
4.3 Data Sinks (0x180000-0x183FFF) ... 19
4.4 Data Sources (0x200000-0x203FFF) ... 20
4.5 LB2OCP Bridge Registers (0x000000-0x07FFF8) .. 20

5 Top Level Block Diagram ... 23
6 Single Step Testing .. 24

Alpha Data System Generator BSP 3.1 3

1 Introduction

The Alpha Data, System Generator, Board Support Package, version 3.1 is a
collection of design examples and VHDL code to simplify the development process of
using Xilinx System Generator and Xilinx ISE for DSP development. This board
support package is ISE based, using Xilinx's main FPGA design GUI for the top level
implementation, but the provided examples also contain a template “user module”
System Generator project which can be launched from within ISE, allowing the DSP
core design to be captured using the Matlab/Simulink environment tools.

1.1 Design Flow
The design flow using this board support package is different from previous Alpha
Data System Generator Blocksets, as the objective here is now to use ISE as the top
level FPGA GUI and Matlab/Simulink/System Generator as Module Design tool for
the DSP specific part of the design.

The top level ISE design contains wrapper VHDL and constraints for handling the
low level complex IO issues such as bi-directional buses to memory and to the host,
as well as the asynchronous clocking of the design modules.

A template design containing a useful set of IO connections is provided to embed the
DSP design. The principal dataflow expected is a stream of data from one bank of
memory through a DSP pipeline, and stored in another bank of memory.

Alpha Data System Generator BSP 3.1 4

This dataflow approach should keep the DSP design interfacing simple but with high
performance. The wrapper VHDL contains IP to allow the host to upload data to and
download data from the memory banks, and to control the data flow.

As well as this data flow interface there are also a few configuration registers for
control, a BRAM bank for configuration data (e.g. a table of filter coefficients), and
an interrupt register for scheduling host/FPGA interaction.

1.2 Version Support
When developing with System Generator, version compatibility issues are common.
With potentially 4 Operating Systems (Windows XP 32 bit, Windows XP 64 bit,
Windows Vista 32 bit and Windows Vista 64 bit), many Matlab Releases (currently
using 2008a) and many ISE/SysGen releases (currently 10.1) finding a fully working
combination can be difficult. This package aims to avoid further compatibility issues
by not implementing a library of Simulink blocks with S-function (like previous
Blocksets) or even using MEX functions – both of which can easily cause (OS or
Matlab version) compatibility problems. The template models will require a Matlab
version compatible with the version used to create them (R2008a), but otherwise
should prevent few other difficulties.

1.3 Advanced Designs
The provided templates will not cater for all users, but they should provide a
reasonable degree of flexibility for users wishing to avoid changing any VHDL.
To achieve many of the more difficulty design tasks, however some modification of
the wrapper may be necessary. The project has been structured to make this as simple
as possible. If all that is required is the use of a different external clock or the
addition of some IO synchronous to the user clock, then only very minor edits to the
wrapper VHDL and UCF (constraints file) are required. For more complex IO tasks,

Alpha Data System Generator BSP 3.1 5

e.g. adding an asynchronous interface to connect to an A2D device or dropping in a
high speed Serial IO CoreGen block (Aurora) then while the modifications may be
more significant, only the wrapper file need be changed. Adjusting the data widths of
the dataflow paths can also be achieved with minor modifications to the VHDL and
the template IO blocks. It is not possible to predict every requirement, so the source
code for all the wrapper interfacing logic is provided, and can be modified to achieve
the desired system performance.

Alpha Data System Generator BSP 3.1 6

2 Tutorial
This tutorial provides a step-by-step guide to building a simple DSP design using the
template designs.

2.1 Getting Started
First open the ISE template project for the card. The projects are located in the
boards->[board name]->ise_project directory. Double click on
wrapper_{board_name}.ise to launch the project.

This will open then ISE Project Navigator Project.

In the Sources window select “user_module – template_admxrc5t1_cw” to select the
System Generator sub-module

This will bring up a number of options in the Process Window.

Alpha Data System Generator BSP 3.1 7

Select “Manage System Generator DSP Design”

Right click on this and select Run to launch Matlab, Simulink and System Generator.

This will open the Simulink Model containing the template design. This contains 6
special blocks which are required to correctly generate the VHDL module.

The “System Generator” block contains the compilation options for generating the
VHDL module for the Simulink model. The “HDL Netlist” option should be used.
Note that the FPGA clock period is not propagated to the top of the design.

Alpha Data System Generator BSP 3.1 8

The other 5 special blocks are Simulink Sub-systems containing the IO blocks
necessary for the generated VHDL to match the component socket in the top level
VHDL wrapper in the ISE project.

These blocks are:

Data Sources

Data Sinks

Registers

Dual Port BRAM

Alpha Data System Generator BSP 3.1 9

Interrupts

These blocks contain the Gateway In, Gateway Out and assertion blocks required to
ensure that System Generator creates the correct module definition.

They also contain a simple Simulink model for simulation. These models (outside of
the SysGen signal domain) can be changed to model any signal behaviour required.

The other logic in the template is included to connect up all the signals, however this
should be replaced by the DSP design.

In the example, the data flow interfaces from data_source0 (data read from SDRAM
bank #0) to data_sink1 (data written into SDRAM bank #1) are connected by a simple
integrator (accumulator) circuit. For a real design obviously a much more
sophisticated digital filter could be placed in here to achieve the desired functionality.

Editing of System Generator designs is not covered here, as there are plenty of
examples supplied with System Generator.

2.2 Simulation
Pressing the “play” button (start_simulation) at the top of the template model, and this
will simulate the design for 1000 clock cycles. The templates assume a normalised
clock frequency of 1Hz as this simplifies the specification of digital filtering.

If you double click on the data sinks block, you will see that the simulation model
does not attempt to emulate memory, but simply displays the output data on a scope.

Alpha Data System Generator BSP 3.1 10

The output on scope 0 is a straight copy of the input from data_source1 (a sine wave).

The output on scope 1 is the integrated version of the input from data_source0 (also a
sine wave). The output is an offset cosine wave.

The second signal in both scopes is the data valid signal, which is held constant in this
example.

Alpha Data System Generator BSP 3.1 11

2.3 Generating The SysGen Module
Selecting the “Generate” option on the SysGen module will take the template model
file and output a VHDL project. This will update and modify the existing sub-project.

At the end of this, you will get the generation complete message.

2.4 Synthesis, Implementation and Bitstream
Generation

The final stage is the generation of the FPGA configuration file (bitstream).

The Xilinx ISE has to run a number of individual tools. This flow can be stepped
through or run to completion.

Alpha Data System Generator BSP 3.1 12

By selecting the wrapper_admxrc5t1 in the sources module, a range of options
appears.

The first stage is Synthesis, where the VHDL generated by SysGen is combined with
the template VHDL and synthesised into an netlist of FPGA primitives.

This is followed by the implementation stage where timing constraints are added and
other netlists may be included. The netlist is then mapped onto the FPGA hardware,
placed and routed to produce a mapped FPGA.

This mapped and placed FPGA design is then converted using “Generate Program
File” into a configuration bitstream which can be downloaded to the device.

Right click on “Generate Program File” and select run to run all these tasks.

2.5 Testing
In the software directory, is a test program written in C : test_template.c. This can be
compiled using Microsoft Visual C++ to generate an executable.

This program runs 4 different tests on the generated FPGA:
• Registers, a read/write test is performed on the 5 SysGen accessible registers

that are looped back
• The BRAM bank is written and read directly by the host. The access from the

SysGen Application side is also checked using the connections set up in
registers 6 and 7.

Alpha Data System Generator BSP 3.1 13

• The main dataflow DSP operations are tested for each pair of SDRAM banks,
with a simple sawtooth test pattern generated and the output checked against
the expected values.

• The interrupt logic is also tested.

A number of options are selectable from the command line, including the card ID or
index to allow the selection of an individual card in a system hosting several FPGA
boards. The bitstream to upload to the FPGA can be specified, if not the software will
use
“..\..\boards\{detected_board_type}\ise_project\wrapper_{detected_board_type}.bit”
as the bitstream file name. An error will be reported if the file cannot be found.
The user data clock can also be programmed using the /mclk switch.

Alpha Data System Generator BSP 3.1 14

3 User Designs
To create a user specific application, the best starting point is the template design.
This can be modified to meet the requirements. The 6 special blocks in the Simulink
template model should be kept, unless their removal is absolutely necessary.
Removing any of “Data Sources”, “Data Sinks”, “Registers”, “Host Accessible DP-
BRAM” or “Interrupts” will also require an equivalent modification in the top level
VHDL (note that it is the Gateway blocks that must stay here, Simulink Blocks
outside of the SysGen domain can be modified to generate the appropriate signal data
for simulation purposes.) The System Generator token also needs to be present in the
design and should not be modified significantly (note that the clock period specified
in here is not used by the top level synthesis.) The following section documents how
to modify the design to achieve many common design objectives.

3.1 Creating a simple DSP Data Flow design
To create a simple data flow design, the simplest way is to connect up the data source
ports from one SDRAM bank to the inputs of your DSP logic and the outputs to the
data sink ports of another SDRAM bank.

It is generally a good idea to connect a FIFO block to the data source ports to buffer
the data. The rfd port should be connected to the nfull flag as there is a 2 cycle
latency between rfd being de-asserted and data_valid going low.

A FIFO block is also useful for interfacing with IP (e.g. Xilinx FFT Core) which
requires a guaranteed continuous burst of data (e.g. 1024 words), but which can also
throttle inputs and outputs as required i.e. the start flag of the FFT has to be delayed
till the FIFO has the first burst.

The registers (and the BRAM if necessary) can be used to provide addition control
and configuration for the DSP algorithm. They can also provide some status
information back to the host as well. The interrupts can be used to notify the host of
events occurring in the FPGA, although the completion of a data transfer from one
bank to another does not require an explicit interrupt as the sources and sink generate
their own interrupts (using bits 24-31 of the interrupt register.)

Simulation and validation of your DSP module should be fairly straight forward using
the Simulink environment. The simple LUT data sources could be replaced with
more complex data, read from the Matlab environment.

The data_sources and sinks are fixed to 32 bits wide. This may be suitable for many
situations. Increasing/decreasing the bit width can be achieved fairly trivially within
the System Generator Simulink design. For advanced users, it is also possible to
modify the top level VHDL and the Gateway blocks to support 8, 16 or 64 bit wide
data.

The synthesis flow should be identical to the template tutorial example.

Alpha Data System Generator BSP 3.1 15

3.2 Changing the Clock Frequency
The user clock frequency can be changed fairly easily. Select the
wrapper_{board}.ucf file in the top level project. You should be presented with the
option Edit Constraints (text). Alternatively you can edit this file with any text editor.

The last line should be modified, to set the desired period for the user clock.
NET "mclka_ibufg" PERIOD = 5.0ns HIGH 50%;

3.3 Changing the User Clock Input
Changing the clock input is slightly more complex than simply changing the input
pin. The user clocks supplied on the Alpha Data boards are differential, so have 2
pins associated with the clock. With the 5LX card, these feed into an IBUFDS and
then into a BUFG for global clock routing. With the 5T1 and 5T2 cards, the user
clock is a dedicated GTP clock input, and has to be routed through an unused tile
(mclk_gtp_wrap module) as well, before going onto a BUFG for global clock routing.
If another clock input is desired (such as an external , then the top level input logic
must be changed in the wrapper VHDL file wrapper_{board}.vhd (this can be edited
in ISE or with a standard text editor), and the associated pins and clock period
changed in the ucf file.

3.4 Adding some simple IO
Simple IO can be added to the System Generator design with few changes. For
example, a simple data capture system can be easily designed by connecting the IO
pins into a data sink block, possibly with a register used to control the capture.
(although the internal registers in the data_sink module also provide some capture
control)

In the Simulink Model, a System Generator Gateway in block can be added.

When synthesizing, the wrapper_{board}.vhd now must also be modified, as there
will be an extra port on the top level of the output generated by System Generator.
This port should be added at the entity declaration for the wrapper (to create the port
at the FPGA top level) and onto the template_{board}_cw component declaration and
the instantiation, with signals connected from the instantiation to the top level ports.

Finally, the UCF file wrapper_{board}.ucf will need to have the pin location
constraints and any other IO standard information (voltage levels, drive currents,
speed (FAST/SLOW)) added for that port.

3.5 SRAM Support
Some boards also have DDR2_SRAM chips fitted. These devices are generally much
smaller capacity than DDR2_SDRAM. They are however better suited for non-burst
applications, and have much better random access, and read/write turnaround
performance than similar speed SDRAM. To support these devices from within
System Generator, additional templates have been provided with different wrapper

Alpha Data System Generator BSP 3.1 16

and infrastructure files. These memory banks are only connected to the System
Generator User Application and cannot be accessed directly by the host.

Each SRAM has ports for write data (d - 64 bits), address (a – 18 bits), write (w –
boolean), command enable (ce – boolean), byte enable (be – 8 bits), disable SRAM
dll (dll_off -boolean), read data (q – 64 bits), read data valid (valid – boolean),
command FIFO able to accept data (ready – boolean) and SRAM IO delays trained
(trained – boolean).

The actual SRAM is clocked at the fixed memory clock frequency. Therefore an
asynchronous buffer sits between the user clock domain signals and the actual SRAM
interface. This will increase the latency on any read commands. Note that since the
USER clock is programmable and runs completely asynchronously from the memory
clock, it is impossible to provide an accurate simulation model. The provided
Simulink memory model is deliberately not accurate (writes only output to a scope,
reads are from a lookup table) to emphasize this. This could be replaced with a more
complex model if limited accuracy modelling of data storage and recovery is required.

An additional software program test_sram_template.c is provided to test the SRAM
functionality.

3.6 Adding Complex IO and IP
More complex IO can also be handled in a similar manner. Typically this IO will
require some HDL interfacing between the simple data flow types of Simulink and the
IO pins which may be bi-directional or possibly high speed serial pins, which cannot
be supported by System Generator.

For example high speed serial interfacing using Xilinx Aurora Cores can be quite
tricky. Xilinx CoreGen can be used to provide some basic reference IP. This will
include some complex clocking modules as well as wrappers from the GTP devices.
This IP must be embedded in the design at the wrapper level, by modifying
wrapper_{board}.vhd and wrapper_{board}.ucf. Only the simple parallel data port
interfaces will connect to the System Generator sub-system, and the user clock may
have to be fixed by the Aurora logic.

Adding complex IP within the System Generator design presents a number of
problems. Only IP which has a specified interface is supported, ruling out most
verified IP without minor changes or wrapping. Bi-directional ports are not
supported. Simulation is either by, independently developed simulation S-functions
(which may not accurately model the HDL) or by ModelSim plug in co-simulation of
the model. Because of these limitations, when handling complex IP and IO, the best

Alpha Data System Generator BSP 3.1 17

place for this complexity is in the top level HDL FPGA wrapper, with System
Generator used only for the DSP sub-system.

3.7 Changing the data source and data sink widths
These widths can be changed fairly simply in the VHDL top level wrapper file, by
modifying the constants:

 constant sink_data_width : natural := 32;
 constant source_data_width : natural := 32;

Other acceptable values are 8,16,64 and 128.

The component declaration for template_{board}_cw also needs to be changed to
match the new widths.

In the Simulink Model, the Gateway blocks will also need to be changed to match the
new data width.

Alpha Data System Generator BSP 3.1 18

4 Application Register Map
The generated FPGA design has the following areas mapped into a 4MB window on
the PCI bus. Accessing this directly from the host using processor IO read and writes
is relatively slow. The SDRAM banks are not mapped into this window. They are
accessed indirectly using DMA functions which transfer large chunks of data between
the SDRAM and the host in a highly efficient manner. Detailed examples of how to
write software to interact with Alpha Data FPGA cards can be found in the ADM-
XRC-SDK.

4.1 User Application Registers (0x080000-0x08001C)
The 8 user application registers are mapped into the second 512k Window in the 4MB

Address Function
0x080000 User Register #0
0x080004 User Register #1
0x080008 User Register #2
0x08000C User Register #3
0x080010 User Register #4
0x080014 User Register #5
0x080018 User Register #6
0x08001C User Register #7

4.2 User Application DP-BRAM (0x100000-0x1007FF)
The User Application dual-port Block RAM occupies 512x32 bit words starting at
location 0x100000 (the 3rd 512k Window in the 4MB FPGA Space)

4.3 Data Sinks (0x180000-0x183FFF)
The Data Sinks are mapped into the 4th 512k window. The Data Sink for each
SDRAM has a register base address of 0x1000*(SDRAM bank number)

Address Function
0x180000 Data Sink SDRAM Bank 0 Registers
0x181000 Data Sink SDRAM Bank 1 Registers
0x182000 Data Sink SDRAM Bank 2 Registers
0x183000 Data Sink SDRAM Bank 3 Registers

Offset from these Base Addresses, each data sink has a number of control registers:

Offset Function
0x00 Start Address of Data
0x04 Word Limit – Number of (128 bit) Words to Record
0x08 Interrupt Limit – Interrupt generated after this number of (Data

Alpha Data System Generator BSP 3.1 19

Width = 32 bit) words have been received.
0x0C CONTROL/STATUS Register:

Bit 0: Write 1 to Start, Read indicates if Running
Bit1: Enable Continuous Operation, Once Word Limit is reached
the address pointer will reset to the start address
Bit 2: Clear FIFO, Word Count, and stop data capture.
Bit 4: Enable Single Step Operation

0x10 Current Address (Read Only)
0x14 Current Memory Write Word Count (Read Only)
0x18 Current Interrupt Data Word Count (Read Only)
0x20 Single Step Least Significant Word
0x24 Single Step Most Significant Word

4.4 Data Sources (0x200000-0x203FFF)
The Data Sources are mapped into the 4th 512k window. The Data Source for each
SDRAM has a register base address of 0x1000*(SDRAM bank number)

Address Function
0x200000 Data Source SDRAM Bank 0 Registers
0x201000 Data Source SDRAM Bank 1 Registers
0x202000 Data Source SDRAM Bank 2 Registers
0x203000 Data Source SDRAM Bank 3 Registers

Offset from these Base Addresses, each data source has a number of control registers:

Offset Function
0x00 Start Address of Data
0x04 Word Limit – Number of (128 bit) Words to Output
0x08 Interrupt Limit – Interrupt generated after this number of (Data

Width = 32 bit) words have been output.
0x0C CONTROL/STATUS Register:

Bit 0: Write 1 to Start, Read indicates if Running
Bit1: Enable Continuous Operation, Once Word Limit is reached
the address pointer will reset to the start address
Bit 4: Enable Single Step Mode

0x10 Rate : If set, Data will be output and Valid asserted every “x” clock
cycles.

0x20 Single Step Least Significant Word
0x24 Single Step Most Significant Word

4.5 LB2OCP Bridge Registers (0x000000-0x07FFF8)

The following registers are used in the Localbus2OCP bridge at the core of the
infrastructure module.

Alpha Data System Generator BSP 3.1 20

Address Function
0x000000 Demand Mode DMA channel 0 Xfer Size (Engine #0 - Write)
0x000004 Demand Mode DMA channel 1 Xfer Size (Engine #0 - Read)
0x000008 Demand Mode DMA channel 2 Xfer Size (Engine #1 - Write)
0x00000C Demand Mode DMA channel 3 Xfer Size (Engine #1 - Read)
0x000010 Not Used
0x000014 Register Space #1 Page
0x000018 Register Space #2 Page
0x00001C Register Space #3 Page
0x000020 Register Space #4 Page
0x000024 Register Space #5 Page
0x000028 Register Space #6 Page
0x00002C Register Space #7 Page
0x000030 DMA Engine #0 Write Target/Burst Length
0x000034 DMA Engine #0 Write Row Size
0x000038 DMA Engine #0 Write Number of Rows
0x00003C DMA Engine #0 Write Column Increment
0x000040 DMA Engine #0 Write Start Address
0x000044 DMA Engine #0 Read Target/Burst Length/FGSG
0x000048 DMA Engine #0 Read Row Size
0x00004C DMA Engine #0 Read Number of Rows
0x000050 DMA Engine #0 Read Column Increment
0x000054 DMA Engine #0 Read Start Address
0x000058 DMA Engine #1 Write Target/Burst Length
0x00005C DMA Engine #1 Write Row Size
0x000060 DMA Engine #1 Write Number of Rows
0x000064 DMA Engine #1 Write Column Increment
0x000068 DMA Engine #1 Write Start Address
0x00006C DMA Engine #1 Read Target/Burst Length/FGSG
0x000070 DMA Engine #1 Read Row Size
0x000074 DMA Engine #1 Read Number of Rows
0x000078 DMA Engine #1 Read Column Increment
0x00007C DMA Engine #1 Read Start Address
0x000080 IRQ Enable Register
0x000084 IRQ Clear Register
0x000088 System Status Register
0x00008C IRQ Status Register
0x000090 Demand Mode DMA channel 0 Xfer Left (Engine #0 - Write)
0x000094 Demand Mode DMA channel 1 Xfer Left (Engine #0 - Read)
0x000098 Demand Mode DMA channel 2 Xfer Left (Engine #1 - Write)
0x00009C Demand Mode DMA channel 3 Xfer Left (Engine #1 - Read)
0x0000A0 DMA Engine #0 Write Status LSW
0x0000A4 DMA Engine #0 Write Status MSW
0x0000A8 DMA Engine #0 Read Status LSW
0x0000AC DMA Engine #0 Read Status MSW
0x0000B0 DMA Engine #1 Write Status LSW

Alpha Data System Generator BSP 3.1 21

0x0000B4 DMA Engine #1 Write Status MSW
0x0000B8 DMA Engine #1 Read Status LSW
0x0000BC DMA Engine #1 Read Status MSW
0x07F800-07FFFC Information ROM
0x080000-0FFFFC Register Space #1
0x100000-17FFFC Register Space #2
0x180000-1FFFFC Register Space #3
0x200000-27FFFC Register Space #4
0x280000-2FFFFC Register Space #5
0x300000-37FFFC Register Space #6
0x380000-3FFFFC Register Space #7

These registers are best accessed using the LB2OCP.C and LB2OCP.H software
functions.

Alpha Data System Generator BSP 3.1 22

5 Top Level Block Diagram

The block diagram shows the location of the DSP module in the system design, along
with the main modules used to build the rest of the system (for handling host transfers
and multi-ported SDRAM control)

Alpha Data System Generator BSP 3.1 23

LB2OCP
Bridge

Local Bus IO

OCP2MemIF
Bridge
SDRAM

Controller

SDRAM

OCP2MemIF
Bridge
SDRAM

Controller

SDRAM

Data Source

Register
Interface

BRAM
Interface

DP-BRAM

System
Generator

DSP
Module

OCP3
Port
MUX

Data Sink

Data Source

Data Sink

OCP3
Port
MUX

Local Bus (connection to host via PCI)

6 Single Step Testing
It is sometimes desirable to simply test the DSP module operation from within the
Matlab or Simulink environment. To enable this, single-step operation is available for
the data source and data sink ports. In this mode, instead of bursting data from or to
and SDRAM bank, a single register is used to generate a single word of data on the
data_source and strobe the valid line for 1 clock cycle. The data_sinks will capture
the last valid word and this can be read from a register.

Note for this to work as a single step operation, the valid signals must be used to
enable the DSP operation. Note that the clock still runs freely.

In the directory single_step, the Matlab function run_single_step.m provides a Matlab
script for pushing a Matlab array of data into the data sources a word at a time and
reading the output a word at a time.

This function has the following inputs:
card_index : PCI enumeration index of the ADM-XRC-xxx board
bitstream : the bitstream generated by ISE
user_clk : the user clock frequency
no_sinks : number of data sinks to monitor
source_data : a [number_of_samples x number_of_sources] input signal array
registers : an array of up to 8 register initialisation values

The function outputs a [number_of_samples x no_sinks] array.

Two Simulink S-Functions and example Models are also provided to allow single step
processing of data using a Simulink data source and output.

The card_index, bitstream, user_clock frequency and register initial values must be
set in the Model Parameters.

These functions all use the ADMXRC Matlab Toolbox Functions to access the
hardware.

The S-Functions are provided in Matlab M-file format to allow user customisations
such as initialising the BRAM, or interactive register updates.

Alpha Data System Generator BSP 3.1 24

	1Introduction
	1.1Design Flow
	1.2Version Support
	1.3Advanced Designs

	2Tutorial
	2.1Getting Started
	2.2Simulation
	2.3Generating The SysGen Module
	2.4Synthesis, Implementation and Bitstream Generation
	2.5Testing

	3User Designs
	3.1Creating a simple DSP Data Flow design
	3.2Changing the Clock Frequency
	3.3Changing the User Clock Input
	3.4Adding some simple IO
	3.5SRAM Support
	3.6Adding Complex IO and IP
	3.7Changing the data source and data sink widths

	4Application Register Map
	4.1User Application Registers (0x080000-0x08001C)
	4.2User Application DP-BRAM (0x100000-0x1007FF)
	4.3Data Sinks (0x180000-0x183FFF)
	4.4Data Sources (0x200000-0x203FFF)
	4.5LB2OCP Bridge Registers (0x000000-0x07FFF8)

	5Top Level Block Diagram
	6Single Step Testing

