

XRC Board Level Application Library v2.3b

(For Simulink and System Generator)

 XRC Board Level Application Library
For Simulink and System Generator

XRC Board Level Application Library v2.3a 2

Copyright © 2006 Alpha Data Parallel Systems Ltd. All rights reserved.

This publication is protected by Copyright Law, with all rights reserved. No part of
this publication may be reproduced, in any shape or form, without prior written
consent from Alpha Data Parallel Systems Limited.

Alpha Data Parallel Systems Ltd.
4 West Silvermills Lane
Edinburgh EH3 5BD
Scotland, UK

Phone: +44 (0) 131 558 2600
Fax: +44 (0) 131 558 2700
Email: support@alpha-data.com

 XRC Board Level Application Library
For Simulink and System Generator

XRC Board Level Application Library v2.3a 3

1 Introduction..4

1.1 Whats New...4
2 Installation Instructions..5
3 XRC Simulink Blockset...6

3.1 Local Bus Interface Modules ...6
3.1.1 LBIF_PLX32 ...6
3.1.2 LBIF_XPL32 ...9
3.1.3 LBIF_XPL64 ...9

3.2 Memory Modules...10
3.2.1 ZBT SRAM (32 bit)...11
3.2.2 ZBT SRAM (64 bit)...11
3.2.3 XRM-DDR SDRAM (64 bit)...12
3.2.4 DDR SDRAM (32 bit) ...13
3.2.5 DDR-II SSRAM...13

3.3 ADLOCB ...15
3.4 Special Clock Ports ..16
3.5 Tri-State Ports ..16

4 Wrapper File Generation..17
5 Auto-Build Script...19
6 Example Applications..20

6.1 NibRev ...20
6.2 Memory..21

7 Co-Simulation ..22
7.1 Cosim Interface Wizard ...22
7.2 Cosim Interface Library...23
7.3 Cosim Interface Example...25
7.4 Run Time Cosimulation...26

 XRC Board Level Application Library
For Simulink and System Generator

XRC Board Level Application Library v2.3a 4

1 Introduction
The Alpha Data XRC Board Level Application Library 2.3 is a collection of
embedded IP, VHDL, Simulation Models, and a top level Wrapper Builder
application, all designed to ease the design of FPGA applications on Alpha Data
Embedded PMC and PCI cards. These modules are designed to work with Xilinx
System Generator 8.1, and Matlab/Simulink 7.1(sp3) (R14sp3) from the Mathworks.

1.1 Whats New
Updates from 2.3a to 2.3b.

Memory blocks now fully supported with co-simulation.
Tri-state port instantiation.

Updates from 2.2 to 2.3.

The wrapper builder now automatically adds user defined pin locations specified in
Gateway blocks to the UCF file.

2 UCF files are generated: one with XST style bus bit delimiters : <> and one with
Synplify style bus bit delimiters ().

An additional DEBUG port has been added to the PCI interface blocks to allow
debugging modules to be added such as the user generated co-simulation block.

The wrapper now supports single step clocking from within the PCI interface,
primarily to support Co-simulation.

Co-simulation support has been added. This allows user definition of a set of
“Gateways” to define an interface to the Simulink environment. A GUI Wizard is
used to specify the ports which are for cosimulation. These connections appear as
gateways in Simulation, but are remapped to PCI transfers when building the
bitstream. A Simulink block for running the cosimulation in hardware is also
generated, and this can control the hardware.

An auto-build Matlab script has been added to allow bitstream generation from the
VHDL without using the ISE GUI. This is however optional, and advanced users can
Synthesize and Implement the design using their own choice of design tools such as
Synplify, PlanAhead and/or ISE.

This blockset now has limited support for the ADP-XPI board. PCI Interface is
supported. 32bits of DDR-II SSRAM is supported with ADLOCB dual port. Co-
simulation is supported. DDR SDRAM DIMMs are supported with 64-bit wide
models, but no ADLOCB dual port.

 XRC Board Level Application Library
For Simulink and System Generator

XRC Board Level Application Library v2.3a 5

2 Installation Instructions

The XRC Board Level Application Library is provided as a zip file and a Matlab
installation script:

xrc_application_blockset.zip
xrc_application_blockset_plugins.zip
setup_xrc_application.m

1) Open Matlab

2) Change Directory to where xrc_application_blockset.zip and
setup_xrc_application.m have been downloaded.

3) Type setup_xrc_application

4) Quit Matlab

 XRC Board Level Application Library
For Simulink and System Generator

XRC Board Level Application Library v2.3a 6

3 XRC Simulink Blockset

The XRC Blockset provides simulation and synthesis models to handle the most
common I/O tasks in the ADM-XRC Series of cards. Communication with the host is
through a Local Bus bridge and PCI. The modules provided have control and status
registers (for simple control; tasks), a slow, asynchronous, memory mapped, slave
interface (for more sophisticated control and small data transfers), and input and
output demand mode DMA FIFO’s for large high speed data transfers to and from the
host. The other modules provided interface to the off-chip memory on each card
(ZBT, DDR-SDRAM, DDR-II SSRAM). Other I/O is generally unidirectional and
synchronous to the System Generator clock domain, and this can be implemented
using the standard System Generator I/O ports. All the modules contain ADLOCB
ports. This allows the components to be chained together on a single bus controlled
by the host, and allow fast background access to the off-chip memory.

3.1 Local Bus Interface Modules

3.1.1 LBIF_PLX32

Data_Read

Ack

Status

Read IFIFO

Write OFIFO

OFIFO_Data

ADLOCB_IN

DEBUG_IN

Data_Write

Addr
BE

Write
Read

Control

IFIFO_Data
IFIFO_Empty

OFIFO_Full
ADLOCB_OUT
DEBUG_OUT

Data Out

Ack

Status

Read IFIFO

Write OFIFO

OFIFO Data

ADLOCB

DEBUG

Data In
Addr

BE
Write
Read

Control
IFIFO Data

IFIFO Empty
OFIFO Full

ADLOCB
DEBUG

PLX 32 Bit Interface

This interface connects to the PLX9656 PCI bridge chip used on the ADM-XRC-II.
It provides the following ports:

Control : (UFix_32_0) -- control register value – set by host at address 0x40000
Status : (Ufix_32_0) -- status register – read by host at address 0x40040

The slave memory mapped interface uses the following ports:
Data_In: (Ufix_32_0) -- data written by host
Addr: (UFix_16_0) -- 32 bit address for read or write
BE: (Ufix_4_0) -- byte enables

 XRC Board Level Application Library
For Simulink and System Generator

XRC Board Level Application Library v2.3a 7

Write: (Boolean) -- host wants to write data (Data_Write) to Address (Addr)
Read: (Boolean) -- host wants to read data from Address(Addr)
Data_Out: (UFix_32_0) -- data to be returned to host
Ack: (Boolean) -- indicates that Data_Read is valid – must be asserted in response to
Read.

The slave memory is mapped to local bus addresses 0x000000-0x03FFFC

The Demand Mode DMA FIFOs are connected to the PLX9656 DMA channels, with
writes from the host on DMA channel 0 resulting in Data Being pushed into IFIFO,
and reads from the host on DMA channel 1, pops data out of OFIFO. Since Demand
Mode DMA is used the host process will block if IFIFO is full or OFIFO is empty.

IFIFO Ports are:
IFIFO_Data: (UFix_32_0)
IFIFO_Empty: (Boolean)
Read_IFIFO: (Boolean)

OFIFO Ports are:
OFIFO_Data: (UFix_32_0)
OFIFO_Full: (Boolean)
Write_OFIFO: (Boolean)

The following C-Code for accessing these can be used. The Demand Mode DMA
application in the ADM-XRC SDK should also be consulted to see how to set up
Demand Mode DMA transfers. With this module the DMA counters at Local Bus
locations 0x040080 and 0x0400C0, and these should be set before starting the DMA
transfer.

void sendData(int offset, int size)
{
 ADMXRC2_STATUS status;
 HANDLE event;

 event = CreateEvent(NULL, TRUE, FALSE, NULL);
 /*
 ** Program the PCI-to-local transfer counter.
 */
 fpgaSpace[65568] = size;
 fpgaSpace[65568];

 /*
 ** Perform the DMA transfer.
 */
 status = ADMXRC2_DoDMA(card,sendbufHandle,offset,size,0x40,
 ADMXRC2_PCITOLOCAL,0,mode,0,NULL,event);
 CloseHandle(event);
}

void recvData(int offset, int size)
{
 ADMXRC2_STATUS status;
 HANDLE event;

 XRC Board Level Application Library
For Simulink and System Generator

XRC Board Level Application Library v2.3a 8

 event = CreateEvent(NULL, TRUE, FALSE, NULL);

 /*
 ** Program the local-to-PCI transfer counter.
 */
 fpgaSpace[65584] = size;
 fpgaSpace[65584];

 /*
 ** Perform the DMA transfer.
 */
 status = ADMXRC2_DoDMA(card,recvbufHandle,offset,size,0x80,
 ADMXRC2_LOCALTOPCI,1,mode,0,NULL,event);
 CloseHandle(event);
}

Two parameters are provided for the Local Bus Interface Block, the first “Local Bus
script Program” is used to simulate Local Bus transactions. The second parameter
“Clock Ratio” sets the ratio used in simulation between Local Bus Clock Cycles and
the System Generator System Clock e.g. if this is set to 1.5 then the Local Bus
program will update its outputs every 1.5 System Clock cycles.

The Local Bus Script Program can be specified as a string or as a Matlab variable.
If either of these is specified as load <filename.txt> then the file <filename.txt> will
be loaded and parsed in place of the string.

The following commands are parsed:
slave_read <address>

reads the contents of a local bus address and displays the result
slave_write <address> <data> [be]
 write 32 bit integer <data> to address with optional byte enable signal
dma_read <length> [matlab variable]
 reads <length> words from OFIFO and either displays them or stores

them in a a [matlab variable]
dma_write <length> [matlab variable]
 writes <length> words into IFIFO. If a [matlab variable] is specifed then
 this is used as data otherwise integers 1..<length> are sent
sleep <count>
 this pauses the simulation program for <count> LCLK cycles

Example Program:
slave_write 0x40000 0xabcd1234
slave_read 0x40000
slave_read 0x40040
slave_write 0x0 0x1234abcd
dma_write 8 myfifo_in
dma_read 8 myfifo
slave_read 0x0

N.B. There is a 32K limit on the size of the program.

The ADLOCB ports provide a ring bus for connecting up external memory
components and accessing the over PCI.
The DEBUG ports are used for co-simulation.

 XRC Board Level Application Library
For Simulink and System Generator

XRC Board Level Application Library v2.3a 9

3.1.2 LBIF_XPL32

Data_Read

Ack

Status

Read IFIFO

Write OFIFO

OFIFO_Data

ADLOCB_IN

DEBUG_IN

Data_Write
Addr

BE
Write

Read
Control

IFIFO_Data

IFIFO_Empty
OFIFO_Full

ADLOCB_OUT
DEBUG_OUT

Data Out

Ack

Status

Read IFIFO

Write OFIFO

OFIFO Data

ADLOCB

DEBUG

Data In
Addr

BE
Write
Read

Control
IFIFO Data

IFIFO Empty
OFIFO Full

ADLOCB
DEBUG

XPL 32 Bit Interface

This interface connects to the XPL PCI-Local Bus Bridge used on the ADM-XPL and
ADM-XP. Functionally this module performs identically to the LBIF_PLX32
module. In implementation there are minor differences in the VHDL top level ports
produced, as the data and address pins are multiplexed with the XPL bridge, unlike
the PLX9656.

N.B. Due to the default clock frequency ratio between the sysgen clock domain and
the Local Bus clock domain, special consideration has to be taken when generating
Data Out. The asynchronous transfer register used to sample Data Out, will sample
Data Out between ½ and 1 Local Bus clock cycles after Ack is asserted. Since the
Sysgen clock frequency is by default twice the Local Bus clock frequency, Data Out
should be held for 1 clock cycle after Ack is asserted to ensure correct transfer.

3.1.3 LBIF_XPL64

Data_Read

Ack

Status

Read IFIFO

Write OFIFO

OFIFO_Data

ADLOCB_IN

DEBUG_IN

Data_Write

Addr

BE

Write

Read

Control

IFIFO_Data

IFIFO_Empty

OFIFO_Full

ADLOCB_OUT

DEBUG_OUT

Data Out

Ack

Status

Read IFIFO

Write OFIFO

OFIFO Data

ADLOCB

DEBUG

Data In
Addr

BE
Write
Read

Control
IFIFO Data

IFIFO Empty
OFIFO Full

ADLOCB
DEBUG

XPL 64 Bit Interface

 XRC Board Level Application Library
For Simulink and System Generator

XRC Board Level Application Library v2.3a 10

This module is similar to LBIF_PLX32 and LBIF_XPL32, however the data widths
are 64 bits wide. The ports therefore are

Control : (UFix_64_0)
Status : (Ufix_64_0)
Data_In: (Ufix_64_0)
Addr: (UFix_16_0)
BE: (Ufix_8_0)
Write: (Boolean)
Read: (Boolean)
Data_Out: (UFix_64_0)
Ack: (Boolean)
IFIFO_Data: (UFix_64_0)
IFIFO_Empty: (Boolean)
Read_IFIFO: (Boolean)
OFIFO_Data: (UFix_64_0)
OFIFO_Full: (Boolean)
Write_OFIFO: (Boolean)

The host application should set the Local Bus Space up to allow 64 bit access. The
DMA Mode bit for 64 bit access should also be set.

A similar format is used for the Local Bus Script Program but with one minor changes
to deal with 64 bit values:
slave_write <address> <data0> [data1] [be]
 will write data0 to the lower 32 bits and data1 to the upper 32 bits if specified

N.B. the address input does not change and is still refers to a 32 bit word address. So
bit 0 may be ignored if 64 bits transfers are being used.

3.2 Memory Modules

Each card has a number of memory interface modules to allow access to the off-chip
memory. With the SRAM modules, the memory is accessed directly. With the
DRAM modules, assess is via a cache. For simulation, it is possible to initialise the
memory from Matlab by specifying the contents of the variables: sram0, sram1,
sram2 etc. for the SRAM banks, and dram0, dram1 for the DRAM banks. Each
element is converted into a 32 bit integer. For 64 bit memories, 2 elements are written
to each location with the lower 32 bits written first. When the simulation finishes, the
memory contents are written back into the Matlab variables, however the size of the
variable is used to determine how much data is transferred back to Matlab.

 XRC Board Level Application Library
For Simulink and System Generator

XRC Board Level Application Library v2.3a 11

3.2.1 ZBT SRAM (32 bit)

These modules implement the 32bit ZBT SRAM on the ADM-XRC-II.
Ports are:
d : UFix_32_0
a : UFix_20_0
w : Boolean
r : Boolean
be : UFix_4_0
q : UFix_32_0
qv : Boolean

If “w” is asserted then data of “d” is stored in the SRAM at address “a”.
If “r” is asserted then SRAM address “a” is read and the output appear on “q” 4 clock
cycles later, with “qv” going high to indicate that it is valid.

The modules for the 32 bit ZBT SRAM on the ADM-XRC-4LX and ADM-XRC-4SX
are almost identical. The only minor difference is that the address input ‘a’ is 21 bits
wide rather than 20.

3.2.2 ZBT SRAM (64 bit)

This module implement the 64bit ZBT SRAM on the ADM-XPL.
Ports are:
d : UFix_64_0
a : UFix_20_0
w : Boolean
r : Boolean
be : UFix_8_0
q : UFix_64_0
qv : Boolean

If “w” is asserted then data of “d” is stored in the SRAM at address “a”.
If “r” is asserted then SRAM address “a” is read and the output appear on “q” 4 clock
cycles later, with “qv” going high to indicate that it is valid.

 XRC Board Level Application Library
For Simulink and System Generator

XRC Board Level Application Library v2.3a 12

3.2.3 XRM-DDR SDRAM (64 bit)

This module implements and interface to the XRM-DDR SDRAM on the XRM-DDR
module. The data interface to the System Generator module is via an 8K cache
memory block RAM, with a 1 clock cycle latency.

Ports are:
cache_data_in : UFix_32_0
cache_data_out : UFix_32_0
cache_addr: UFix_11_0
cache_write: Boolean

Control signals are used to burst the data from the 8K cache to the DDR
ddr_page : UFix_14_0 is used to select an 8K page in the DDR
ddr_addr : UFix_4_0 Selects a 512 byte block within the cache
ddr_read : Boolean – when asserted the 512 byte block is copied from DDR to Cache
ddr_write : Boolean – when asserted the 512 byte block is copied from Cache to DDR
ddr_busy : Boolean -- Indicates whether a burst is in operation or not. While
ddr_busy is high, ddr_read and ddr_write will be ignored.

The time for a burst will vary as it may have to wait for a refresh to finish, however
each burst should take between 36 (usual) and 43 (worst case) clock cycles.

N.B. The XRM DDR SDRAM module does not currently support ADLOCB
connection.

 XRC Board Level Application Library
For Simulink and System Generator

XRC Board Level Application Library v2.3a 13

3.2.4 DDR SDRAM (32 bit)

These modules implement the interface to the DDR SDRAM on the ADM-XPL and
ADM-XP. The data interface to the System Generator module is via a 4K cache
memory block RAM, with a 1 clock cycle latency.

Ports are:
cache_data_in : UFix_32_0
cache_data_out : UFix_32_0
cache_addr: UFix_10_0
cache_write: Boolean

Control signals are used to burst the data from the 4K cache to the DDR
ddr_page : UFix_15_0 is used to select an 4K page in the DDR
ddr_addr : UFix_4_0 Selects a 256 byte block within the cache
ddr_read : Boolean – when asserted the 256 byte block is copied from DDR to Cache
ddr_write : Boolean – when asserted the 256 byte block is copied from Cache to DDR
ddr_busy : Boolean -- Indicates whether a burst is in operation or not. While
ddr_busy is high, ddr_read and ddr_write will be ignored.

The time for a burst will vary as it may have to wait for a refresh to finish, however
each burst should take between 36 (usual) and 43 (worst case) clock cycles.

3.2.5 DDR-II SSRAM

These modules implement the interface to the DDR-II SSRAM on the ADM-XP. The
32 bit DDR ports on the devices are mapped to single clock 64 bit wide ports. The
SSRAM devices have a burst length of 4, and therefore the minimum transfer to the

 XRC Board Level Application Library
For Simulink and System Generator

XRC Board Level Application Library v2.3a 14

RAM will take 2 clock cycles. This creates some operational limitations of the use of
these devices.

Ports are:
d : UFix_64_0
a : UFix_21_0
w : Boolean
r : Boolean
be : UFix_8_0
q : UFix_64_0
qv : Boolean

For writes, the DDR-II controller waits for a second write “w” before bursting both
data elements to the SRAM, in successive locations. The addresses used will be “a”
when the first write is asserted and “a”+1. The byte enables can be specified
separately for each write. Write bursts can be continuous, but should contain an even
number of writes. “a” should be incremented every write.

Read “r” should not be asserted after an odd number of writes. It should also not be
asserted one clock cycle after the last write.

Reads to an even address “a(0)”= 0 will generate two reads 3 and 4 clock cycles after
“r” is asserted. “qv” will indicate that the data in “q” is valid. For reads to an odd
address “a(0)” =1, one read will be generated and the data will be valid after 4 clock
cycles.

Read bursts can be continuous, for as long as “r” is asserted, and “a” is incremented
every clock cycle.

For correct operation the DDR-II-SSRAM must be clocked at over 75MHz and less
than 133MHz.

 XRC Board Level Application Library
For Simulink and System Generator

XRC Board Level Application Library v2.3a 15

3.3 ADLOCB
The Alpha Data Local to On Chip Bus interface provides a fast, simple to use
mechanism for high speed data transfers between the host and off-chip memory with
minimal impact on the System Generator design logic.

d
a
w
r
be
adlocb_in

q

qv

adlocb_out

d
a
w
r
be
ADLOCB

q

qv

ADLOCB

ZBT SRAM 4

d
a
w
r
be
adlocb_in

q

qv

adlocb_out

d
a
w
r
be
ADLOCB

q

qv

ADLOCB

ZBT SRAM 1

d
a
w
r
be
adlocb_in

q

qv

adlocb_out

d
a
w
r
be
ADLOCB

q

qv

ADLOCB

ZBT SRAM 0

Data_Read

Ack

Status

Read IFIFO

Write OFIFO

OFIFO_Data

ADLOCB_IN

Data_Write
Addr

BE
Write
Read

Control
IFIFO_Data

IFIFO_Empty

OFIFO_Full
ADLOCB_OUT

Data Out

Ack

Status

Read IFIFO

Write OFIFO

OFIFO Data

ADLOCB

Data In
Addr

BE
Write
Read

Control
IFIFO Data

IFIFO Empty
OFIFO Full

ADLOCB

PLX 32 Bit Interface

The ADLOCB requires a Local Bus Interface module to act as the master. RAM
modules are then connected in a ring as slaves. Finally the last RAM output should
be connected back to the Local Bus Interface to provide a data path for reading data.

From the host, the ADLOCB is mapped into the FPGA into a 2MB window at
addresses 0x200000 to 0x3FFFFF. A page/device register is provided at address
0x040100. The lower 16 bits are used to identify the off chip memory device. The
SRAM devices are indexed first with the DRAM device numbers depending on the
number of SRAM devices on the board. On the XRC-II, ZBT SRAM banks 0 to 5
have device numbers 0 to 5. On the XPL, the ZBT SRAM is device 0 and the DDR
SDRAM is device 1. On the XP, the DDR SRAM banks have device numbers 0 to 3
and the DDR DRAM banks have device numbers 4 and 5.

The upper 16 bits (0x040102) of the register are used to select the upper address bits
of the memory if the RAM bank is larger than 2MB.

The ADLOCB system does not include any mutual exclusion logic. Host accesses
will have higher priority than System Generator Logic accesses, however
simultaneous access to any memory may produce unexpected results. The application
should implement the appropriate mutual exclusion logic, using the status and control
registers to indicate when it is safe for the host and System Generator to access
memories.

The Cache in the SDRAM also introduces a twist in the data on a 16 bit boundary. 32
bit elements D0 and D1 at addresses A0, A0+1, appear on the Local bus in the order:
LA(0) : LD(31:0) = [D1(15:0) D0(15:0)]
LA(1) : LD(31:0) = [D1(31:16) D0(31:16)]

 XRC Board Level Application Library
For Simulink and System Generator

XRC Board Level Application Library v2.3a 16

3.4 Special Clock Ports

It is possible to bring LCLK and MCLK directly into design for connecting to black
box logic, possibly running asynchronously from the rest of the design. Naming a
single bit Boolean Gateway in as “usr_lclk” or “usr_mclk” will connect to the LCLK
or MCLK global clock signal.

3.5 Tri-State Ports

It is now possible to instantiate user tri-state ports in the top level VHDL. The
wrapper generation program reads the user input and output gateways and if it finds 3
ports with the names <name>_t, <name>_o, <name>_i (where <name> is a user
specified name), and <name>_t and <name>_o are output ports and <name>_i is an
input port, and all 3 ports have the same size and type specification, then the wrapper
will instantiate IOBUFs for these ports, and generate an external inout port <name> at
the top level. The pin constraints for the port should be put in the <name>_t output
gateway block.

 XRC Board Level Application Library
For Simulink and System Generator

XRC Board Level Application Library v2.3a 17

4 Wrapper File Generation

The VHDL produced by System Generator cannot handle all the interfacing
requirements for the ADM-XRC series cards. Therefore the VHDL module produced
must be wrapped before synthesizing and generating a bitstream.

A new compilation option has therefore been added to the System Generator Token.
When Generate is run with this option selected this will run through the System
Generation process to produce VHDL. The wrapper builder will the run and create a
vhdl file, a ucf. (<design>_top.vhd, <design>_top.ucf).

This wrapper builder will identify all the external ports associated with the embedded
IP modules. It will then connect up the appropriate clocking circuits and tri-state
buffers. It will however not identify any user defined ports (in Gateway blocks). The
pin constraints for these will appear in the System Generator output constraint file
(the .xcf file with version 8.1). The top level .ucf constraints and the user defined

 XRC Board Level Application Library
For Simulink and System Generator

XRC Board Level Application Library v2.3a 18

LOC constraints should be combined into a single UCF file using a text editor before
running ISE Project Navigator.

If the wrapper builder detects that the wrapper files have already been generated it
will provide the option to not rebuild them. It is only necessary to rebuild them if the
ports in the System Generator design have changed. (i.e. after the addition or deletion
of any PCI, RAM or Gateway blocks.) Selecting Yes will rebuild the wrapper files,
and will also back up the old files; selecting No, will leave the wrapper files
unchanged.

The wrapper building stage can be avoided completely by changing the Compilation
Option back to HDL netlist, which will limit the changes to the System Generator
VHDL.

In many cases the default generated wrapper VHDL and UCF might not quite match
the users requirements. However these can be modified, (e.g. to change the system
clock pin, or add in timing or area group constraints) with any text editor or within the
Project Navigator environment. In these cases after each generation the user should
select not to rebuild the wrapper files, or change the Compilation Option back to HDL
netlist.

Two UCF files are generated: <design>_top.ucf and <design>_top_curly.ucf.
These files are identical except for the the bus delimiter symbol used.

<design>_top.ucf used the XST default style <>

<design>_top_curly.ucf used the Synplify default stye ()

N.B. if you open the auto-generated System Generator ISE project (<design>.ise), you
should add the file <design>_top.vhd and set it as the top level. You should then add
the file <design>_top_curly.ucf as that ISE project has XST configured to use the
Synplify style bus delimiters.

 XRC Board Level Application Library
For Simulink and System Generator

XRC Board Level Application Library v2.3a 19

5 Auto-Build Script
After building the wrapper VHDL and UCF files, the design can be loaded into ISE to
build the bitstream.

Another option, for simpler designs, is to use the auto-build Matlab script
ad_build_bitstream.m. This only requires the netlist directory to be provided as a
parameter and it will create <design>_top.bit in that directory. i.e.

>> ad_build_bitstream('netlist')
will run XST etc. and build a bitstream in the directory ‘netlist’, assuming that netlist
was the System Generator target directory.

 XRC Board Level Application Library
For Simulink and System Generator

XRC Board Level Application Library v2.3a 20

6 Example Applications

Three simple applications are provided for each board. These applications
demonstrate basic connections to the Local Bus Interface, basic I/O and a simple
memory application. Separate applications for each board are provided in
examples/admxrc2, examples/admxpl, examples/admxp, , examples/admxrc4,
examples/adpxpi. Matlab scripts test_simple.m and test_memory.m are provided in
the examples directory to run these applications from within Matlab.

6.1 NibRev

Drive Unused Inputs
With Sampled Constants

PLX Bridge to Host PCI Bus

Slice Control Reg
Into Nibbles

Recombine in
reverse order

Feed back reversed data to Status Register

sysgen[a:b]

Slice [7:4]

sysgen[a:b]

Slice [3:0]

sysgen[a:b]

Slice [31:28]

sysgen[a:b]

Slice [27:24]

sysgen[a:b]

Slice [23:20]

sysgen[a:b]

Slice [19:16]

sysgen[a:b]

Slice [15:12]

sysgen[a:b]

Slice [11:8]

Data_Read

Ack

Status

Read IFIFO

Write OFIFO

OFIFO_Data

ADLOCB_IN

DEBUG_IN

Data_Write

Addr

BE

Write

Read

Control

IFIFO_Data

IFIFO_Empty

OFIFO_Full

ADLOCB_OUT

DEBUG_OUT

Data Out

Ack

Status

Read IFIFO

Write OFIFO

OFIFO Data

ADLOCB

DEBUG

Data In
Addr

BE
Write
Read

Control
IFIFO Data

IFIFO Empty
OFIFO Full

ADLOCB
DEBUG

PLX 32 Bit Interface

in0 out0

Delay

0

Constant4

0

Constant3

0

Constant2

1

Constant1

0

Constant
sysgen

hi

lo

Concat

System
Generator

This example here shows the simplest possible interface using the PLX/XPL Interface
Module. Data from the control register is nibble reversed and then output to the status
register. This example formerly named simple has been renamed nibrev.mdl to avoid
confusion with the functionally similar simple.vhd example in the ADM-XRC SDK.

 XRC Board Level Application Library
For Simulink and System Generator

XRC Board Level Application Library v2.3a 21

6.2 Memory

PLX Bridge to Host PCI Bus

Attach Memory Mapped
Interface to SRAM through registers

Join ADLOCB ports in a loop to allow high speed background host access to the Off Chip Ram

d
a
w
r
be
adlocb_in

q

qv

adlocb_out

d
a
w
r
be
ADLOCB

q

qv

ADLOCB

ZBT SRAM 0

in0out0

Register6in0out0

Register5

in0out0

Register4
in0out0

Register3
in0out0

Register2

in0out0

Register1

in0out0

Register

Data_Read

Ack

Status

Read IFIFO

Write OFIFO

OFIFO_Data

ADLOCB_IN

DEBUG_IN

Data_Write

Addr

BE

Write

Read

Control

IFIFO_Data

IFIFO_Empty

OFIFO_Full

ADLOCB_OUT

DEBUG_OUT

Data Out

Ack

Status

Read IFIFO

Write OFIFO

OFIFO Data

ADLOCB

DEBUG

Data In
Addr

BE
Write
Read

Control
IFIFO Data

IFIFO Empty
OFIFO Full

ADLOCB
DEBUG

PLX 32 Bit Interface

0

Constant3

0

Constant1

0

Constant

sysgen
hi
lo
Concat

System
Generator

This example demonstrates how to connect up a simple memory mapped interface. It
also shows how to connect up the ADLOCB ports in the modules.

 XRC Board Level Application Library
For Simulink and System Generator

XRC Board Level Application Library v2.3a 22

7 Co-Simulation

Co-simulation using the ADM-XRC Applications blockset operates slight differently
from that of previous ADM-XRC Cosim blocksets and that of other cosimulation
targets such as the Xilinx ML402.

The main reason for this is to allow easy user specification of Ports (Gateways) which
are actually external pins, and not connect everything to the co-simulation interface.

7.1 Cosim Interface Wizard
The first stage in using cosimulation is to build a user cosim library which specifies
all the ports. Typing cosim_interface in the Matlab command line brings up the GUI
Wizards:

This Wizard allows a list of ports to be specified. A user defined library name should
be set. Ports can be added and deleted. The Generate button can then be used to
create a library which contains the drop in cosimulation component.

 XRC Board Level Application Library
For Simulink and System Generator

XRC Board Level Application Library v2.3a 23

7.2 Cosim Interface Library

The library contains a Simulation and a Generation version of the port interface. The
Xilinx configurable Subsystem Manager will open a dialog, to specify that the
generation subsystem should be used: click OK to dismiss this window.

In the design, the “template” block should be dragged and dropped into the design.
This is a configurable sub-system, with one subsystem used for Simulation and one
subsystem used for the design.

The GUI saves information about the library in 2 Matlab workspace variables:
ad_cosim_libname and ad_cosim_ports
These can be saved and reloaded from the Matlab commaned line:
e.g. >> save ad_cosim_data.mat ad_cosim_libname ad_cosim_ports

 XRC Board Level Application Library
For Simulink and System Generator

XRC Board Level Application Library v2.3a 24

The simulation subsystem consists of an array of Gateways as specified in the Wizard
GUI.

4
sine_sl

3
count_sl

2
enable_sg

1
debug_outterminator

 Out
sine_gateway

 In
enable_gateway

 Out
count_gateway

1
constant

Conf igurable Subsystem
Manager

4
sine_sg

3
count_sg

2
enable_sl

1
debug_in

The debug ports are not used in Simulation. Ports ending sl should be connected to
the ordinary Simulink signal domain, and ports ending sg should be connected to the
System Generator domain.

The generation sub-system connects the debug ports (and therefore the PCI bus) to the
used defined signals. In generation the sl signals have no function since they are
outside of the System Generator scope.

4
sine_sl

3
count_sl

2
enable_sg

1
debug_out

terminator1

1
constant3

1
constant2

sysgen

debug_in

count

sine

debug_out

enable

blackbox
4

sine_sg

3
count_sg

2
enable_sl

1
debug_in

The black box contains an auto-generated VHDL module with the same name as the
library. A config.m Matlab function is also auto generated.
This connection of the PCI bus to System Generator signals is similar to the operation
of the Xilinx Co-simulation, however it appears internally in the design as a black
box, rather than being built externally into the wrapper.

 XRC Board Level Application Library
For Simulink and System Generator

XRC Board Level Application Library v2.3a 25

7.3 Cosim Interface Example

Dragging and dropping the “Template” model into the design will use the Simulation
model for simulations and use the co-simulation generation model when generating
the bitstream:

System Generator LogicSimulink Control
Signal

Simulink Monitoring
of Output

Generate a physical IO Port

Cosimulation Ports:
Connected to PCI Interface

 Out
real_io

debug_in

enable_sl

count_sg

sine_sg

debug_out

enable_sg

count_sl

sine_sl

adcosim_example_lib
adcosim_example_lib_sim

debug_outdebug_in

To PCI

Terminator

Scope

sysgenaddrz-1

ROM

sysgenen out

Counter

1

Constant

System
Generator

The example cosimulation design consists of the cosim example library interface
block built by the GUI. Which has an enable port coming into the System Generator
design and a count and sine ports coming out of the design. The “To PCI” module is
a wrapped up PLX or XPL interface module with all unused ports connected to
constant zeros. In this case, one advantage of the drop in cosim interface approach
can be seen: the “real_io” Gateway does not turn into a Cosim port, it actually
generates a real port in the hardware, and the pins (16 pins on XRM-IO146) can be
monitored to see the signal when running the cosimulation.

The design can be built using the normal Applications Blockset build option. This
will generate the VHDL and UCF files required. The bitstream can then be built
using the auto-generation script (ad_build_bitstream) or by using ISE.

 XRC Board Level Application Library
For Simulink and System Generator

XRC Board Level Application Library v2.3a 26

7.4 Run Time Cosimulation

Scope

enable
count

sine

RunTimeCosim

1

Constant

The RunTimeCosim block (which was built in the library) can be used to control the
hardware. This block has the 3 simulink ports.

The configuration mask for this block has the following parameters:

Card Index selects the FPGA board in the system.

Bitstream selects the generated bitstream

Clock Frequency sets MCLK, which is limited to 100MHz on the XRC2, 160MHz on
the XPL,XP and XPI and 200MHz on the XRC4.

The single step option is available, although the following should be noted:
1) The bitstream defaults to free running operation, so if the logic depends on its
initial configuration, an input enable or start signal should be used to keep the logic in
a know state until the free running clock is disabled.

 XRC Board Level Application Library
For Simulink and System Generator

XRC Board Level Application Library v2.3a 27

2) The single stepping is achieved through the use of the CLK enable infrastructure in
the SysGen VHDL. Any black box VHDL model included in the design needs to
respond appropriately to the ‘CE’ signal.

3) The memory interfaces operate differently in single stepped mode to free running
mode. They respond only to inputs when the CE signal is active, however since it is
impossible to single step the external hardware, the interfaces continue to free run,
and outputs are latched. Consequently in single step mode the qv signal is high and
the data valid the clock cycle immediately after a read: in free running mode there is a
3 or 4 clock cycle latency between read and qv. With the SDRAM interfaces, the data
transfers between the cache and the SDRAM always complete within a single stepped
clock cycle, rather than taking approx. 40 clock cycles.

Shared Access

The Share Access option allows other Simulink Blocks or even other processes to
access the FPGA while the simulation is running. In Matlab Share mode, a handle
variable ‘admxrc_handle<X>’ (where <X>=0,1,2… is the card index) is written into
the top level Matlab workspace, where it can be accessed by other Matlab functions
and Simulink S-functions. When the card is closed at the end of the Simulation, the
card handle is set to 0.

The following example has the Share option set to Matlab, and a Matlab function is
used to access the FPGA:

Scope1

Scope

enable
count

sine

RunTimeCosim

MATLAB
Function

MATLAB Fcn

1

Constant

The MATLAB function used is
function y=read_adregs(x)

if (evalin('base','exist(''admxrc_handle0'')'))
 admxrc_handle0 = evalin('base','admxrc_handle0');
 if (double(admxrc_handle0) >0)
 y=double(admxrc_read32(admxrc_handle0,hex2dec('40204'),1));
 else
 y=0;
 end
else
 y=0;
end

 XRC Board Level Application Library
For Simulink and System Generator

XRC Board Level Application Library v2.3a 28

The first clause checks whether the handle exists. The second clause checks that it is
valid (not 0). The code then calls the ADMXRC Matlab toolbox function to read
Local Bus locations 0x040204. This location is actually the sine co-simulation port,
as the cosimulation ports are mapped to addresses 0x040200 to 0x0402FF.
This Matlab script could however perform a much more useful function, such as
accessing the Control or Status register of the design. Or writing data over the
memory mapped port, emulating the operation of the final control application. Or
even using the toolbox DMA functions to write or read data over the ADLOCB into
or out of external memory. For more sophisticated interaction with the Local Bus
interface M-file or C S-functions can be used.

The third shared option (System) causes Simulink to Open and Close the FPGA board
every time it accesses it. This is slower than sharing the handle across the Matlab
process, however it is safer and allows any process running on the PC to access the
FPGA board between Simulink steps.

