

XRC Co-simulation Library v2.0

 XRC Co-simulation Library for use with
System Generator v6.3

XRC Co-simulation Library 2

Copyright © 2005 Alpha Data Parallel Systems Ltd. All rights reserved.

This publication is protected by Copyright Law, with all rights reserved. No part of
this publication may be reproduced, in any shape or form, without prior written
consent from Alpha Data Parallel Systems Limited.

Alpha Data Parallel Systems Ltd.
4 West Silvermills Lane
Edinburgh EH3 5BD
Scotland
UK

Phone: +44 (0) 131 558 2600
Fax: +44 (0) 131 558 2700
Email: support@alpha-data.com

 XRC Co-simulation Library for use with
System Generator v6.3

XRC Co-simulation Library 3

1 Introduction

The Alpha Data XRC Co-simulation Library is a Simulink Blockset designed for use
in conjunction with Xilinx System Generator 6.3 and Matlab Release 14.1. This
blockset enables System Generator Models to be Co-simulated using Alpha Data
ADM-XRC-II-L, ADM-XRC-II, ADM-XRC-II-Pro-Lite (ADM-XPL), ADM-XRC-
II-Pro (ADM-XP), ADP-DRC-II and ADP-WRC-II FPGA reconfigurable computing
cards. The System Generator design methodology incorporating Co-simulation
allows a very rapid move from Simulation in Simulink to Verification on Hardware.
This design methodology can be used incrementally, with Co-simulated Hardware in
the Loop modules used to accelerate the development and simulation of larger
designs. This new release includes a number of updates to support external shared
memory blocks and interfaces.

2 New features

The main new feature included in this release is support for external memory devices
on the ADM-XRC-II, ADM-XPL and ADM-XP. The co-simulation models of these
devices are simple to use and both SRAM and DRAM devices are supported with a
similar consistent interface. These modules interface with Xilinx Shared Memory
blocks within the co-simulation allowing high speed DMA transfers from the
Simulink model to the external memory.

External general purpose IO ports are also supported, providing bi-directional
connections to front and read panel pins on the ADM-XRC-II, ADM-XPL and ADM-
XP.

3 Installation Instructions

The XRC Co-simulation Library is provided as a zip file and a Matlab installation
script:

xrc_cosim_blockset.zip
setup_cosim.m

1) Open Matlab

2) Change Directory to where xrc_cosim_blockset.zip and setup_cosim.m have been
downloaded.

3) Type setup_cosim

4) Quit Matlab

 XRC Co-simulation Library for use with
System Generator v6.3

XRC Co-simulation Library 4

4 Basic use of the Library

Once installed, board options for the ADM-XRC-II, ADM-XRC-II-Lite, ADM-XRC-
II-Pro-Lite, ADP-DRC-II, ADP-WRC-II will appear in the Compilation->Hardware
In The Loop menu of the System Generator GUI (accessed by double clicking on the
System Generator token in your design). You can select the correct Alpha Data board
and the correct FPGA specification form this GUI.

Now when Generate is pressed in the System Generator GUI, the VHDL is still
created as normal, but afterwards, the Xilinx (and possibly 3rd party) synthesis tools
are run to create a bitstream for the device and board selected. After this is finished, a
new library containing a hardware cosimulation block will appear, as shown in figure
2.

Figure 1: Hardware Cosimulation Block

This block can be inserted into a System Generator Simulink design in place of the
model synthesized, for testing and verification or even as a simulation component, to
accelerate the simulation of a higher level design. The block has 3 parameters,
specifying the clock mode, free running frequency, the generated bitstream and which
Alpha Data board (if multiple boards are installed in the system) to use. The
maximum recommended frequencies for co-simulation designs for each board are
50MHz for ADM-XRC-II, 62 MHz for ADM-XPL and 58MHz for the ADM-XP.
The block also has some parameters specifying the External Memory access modes.

5 A Simple Example
A simple example for demonstrating how to use the cosim blockset is provided in:
%MATLAB%\toolbox\alphadata\xrc_cosim_blockset\examples\cosim_demo\cos
im_demo_src.mdl.

This example adds two sine waves together, and displays the outputs on a scope.

 XRC Co-simulation Library for use with
System Generator v6.3

XRC Co-simulation Library 5

Sine Wave1

Sine Wave

Scope

xlregisterz-1d q

Register2xlregisterz-1d q

Register1

xlregisterz-1d q

Register
fpt dbl

Gateway Out
dbl fpt

Gateway In1

dbl fpt

Gateway In

xladdsuba+b
a

b

a

AddSub

Sy stem
Generator

A second model cosim_demo.mdl is provided to show how to insert the Hardware in
the Loop block into a simulation, and compare the results:

xlcosimADM-XRC-II-Pro(XP)
Cosimulation

Gateway In

Gateway In1
Gateway Out

cosim_demo_src
hwcosim

Sine Wave1

Sine Wave

Scope2

Scope1

Scope

xlregisterz-1d q

Register2xlregisterz-1d q

Register1

xlregisterz-1d q

Register

fpt dbl

Gateway Out1

fpt dbl

Gateway Out
dbl fpt

Gateway In1

dbl fpt

Gateway In

xladdsuba+b
a

b

a

AddSub

Sy stem
Generator

Note that the conversion between doubles and Fixed Point data types is handled using
the Gateway blocks. The cosimulation block can accept doubles as inputs, but this
may cause slight mismatches between Simulation and hardware in the loop results.

 XRC Co-simulation Library for use with
System Generator v6.3

XRC Co-simulation Library 6

6 ADCOSIM Library

A new ADCOSIM library is provided containing external memory and IO blocks.
Note that due to the single stepped nature of Cosimulation, it is not possible to use the
Alpha Data Applications Blockset. The ADCOSIM library can be accessed through
the Simulink library browser.

6.1 ADM-XRC-II Blocks

fpt dbl
samtec_tri

fpt dbl
samtec_out

dbl fpt
samtec_in

fpt dbl

reario_tri

fpt dbl

reario_out

dbl fpt

reario_in

data_in
addr
read
write
request

data_out

data_valid

grant

XRC2_SRAM5

data_in
addr
read
write
request

data_out

data_valid

grant

XRC2_SRAM4

data_in
addr
read
write
request

data_out

data_valid

grant

XRC2_SRAM3

data_in
addr
read
write
request

data_out
data_valid

grant
XRC2_SRAM2

data_in
addr
read
write
request

data_out
data_valid

grant
XRC2_SRAM1

data_in
addr
read
write
request

data_out
data_valid

grant
XRC2_SRAM0

For the ADM-XRC-II, 6 SRAM memory blocks are provided. These have the usual
read, write, address (20 bit for 4Mb) and data lines (32 bit wide). They also have a
data valid line to indicate when a read output is valid. Generally data will be valid 4
clock cycles after a read, however to maintain compatability with other RAM blocks
the data_valid line should always be used to qualify data as the 4 clock cycle response
is not guaranteed.

In addition to the usual signals, the memory blocks also have request and grant lines,
to allow interaction with the shared memory. The FPGA process must assert a
request to gain control of the memory and will not be able to access it until grant goes

 XRC Co-simulation Library for use with
System Generator v6.3

XRC Co-simulation Library 7

high. By default if no other process tries to access the shared memory, the grant
signal will always go high after request is asserted.

IO blocks are provided for the front and rear IO connectors. 64 pins are available on
the Pn4 reario connector. These can be configured as inputs or outputs through the
reario_tri port. N.B. you need to include reario_tri and drive it with a 64 bit wide
signal to use the reario_in and/or reario_out ports. Drive bits with a constant ‘1’ to set
the pin as an input or to tri-state it. Drive with a constant ‘0’ to enable the pin as an
output. Note that reario_out also needs to be driven with a 64 bit wide signal, even if
some of the pins are inputs. These signals will be optimised away in the
implementation phase.

The samtec_in, samtec_out and samtic_tri pins provide a similar 156 bit wide port
connection to the XRM connector. You will need to consult with the XRM module
manual to determine which XRM pin connects to the SAMTEC pin used. Note that
on the XRC-II Samtec Pins 88-94 are not connected.

6.2 ADM-XPL Blocks

fpt dbl

samtec_tri

fpt dbl

samtec_out

dbl fpt

samtec_in

data_in
addr
read
write
request

data_out

data_v alid

grant

XPL_SRAM0

data_in
addr
read
write
request

data_out

data_v alid

grant

XPL_DRAM0

For the ADM-XPL, there are 2 memory blocks, one for the SRAM and one for the
DRAM. The interface is the same for both blocks. The only significant differences is
that the time between the read and data_valid signal is no longer 4 clock cycles on
the DRAM controller. The actual delay time can vary depending on memory
refreshes. To implement a model similar to the SRAM, the DRAM only uses data on
one clock edge of its DDR cycle. Therefore the capacity of RAM available for cosim
is half that of which is available i.e. only 32MB on a 64MB XPL (23 address pins are
provided). The capacity of the SRAM is also half as it is physically 64 bits wide
device, however only 32 bits are implemented.

 XRC Co-simulation Library for use with
System Generator v6.3

XRC Co-simulation Library 8

The XPL does not have the Pn4 connector wired to the VIIPro FPGA. The samtec IO
connections should be connected in the same way as the XRC-II reario and samtec
interfaces: the samtec_tri port must be instantiated and driven by a signal specifying
all port directions. (Specify as input for unused ports). There are 147 pins available
on the XPL Samtec connector.

6.3 ADM-XP Blocks

fpt dbl

samtec_tri

fpt dbl

samtec_out

dbl fpt

samtec_in

fpt dbl

reario_tri

fpt dbl

reario_out

dbl fpt

reario_in

data_in
addr
read
write
request

data_out

data_v alid

grant

XP_SRAM3

data_in
addr
read
write
request

data_out

data_v alid

grant

XP_SRAM2

data_in
addr
read
write
request

data_out

data_v alid

grant

XP_SRAM1

data_in
addr
read
write
request

data_out

data_v alid

grant

XP_SRAM0

data_in
addr
read
write
request

data_out

data_v alid

grant

XP_DRAM1

data_in
addr
read
write
request

data_out

data_v alid

grant

XP_DRAM0

The ADM-XP has 6 banks of memory, 4 banks of SRAM and 2 banks of DRAM.
The DRAM are configured as 32MBx32bit (23 address pins), and have unpredictable
latency. The SRAM are configured as 16MBx32bit (22 address pins), although
smaller devices may be fitted to the card.

The samtec and reario connections are similar to those of the ADM-XRC-II. The
samtec bus is 160 pins wide, however pins 88 to 99 are not connected.

 XRC Co-simulation Library for use with
System Generator v6.3

XRC Co-simulation Library 9

6.4 SRAM and DRAM simulation
The SRAM and DRAM modules use a matlab S-function to simulate the memory.
This is provided in the blockset directory as modelram_cosim.m. This does not fully
model all the RAM modules in the system. The main restriction in the model is that it
is restricted to modelling 4MB of data. The main memory model is in a Matlab
Global variable SRAM, which is a 6x1048576 matrix. This can be written to before
the Simulation and results read after Simulation, using Matlab. The model also
assumes a read to valid delay of 4 clock cycles. Timing of data output from the RAM
should be based on the data valid signal, and not relative to the read input.

Data Enable Data

Write SRAM

Data

Data Enable

Read SRAM

Two Shared Memory access blocks are also provided. One for writing to data in an
SRAM and one for reading data from an SRAM. The detailed operation of these
blocks can be viewed in their Matlab S functions (readram_cosim.m and
writeram_cosim.m). The write block sequentially writes a frame of data into the
SRAM and waits for the FPGA to process it before writing the next frame. The read
block waits for the FPGA to process a block of data and then reads back the data a
sample at a time. Each frame is written to data starting at address 0.

Each block has 2 parameters ‘SRAM No’ and ‘frame_size’. Frame size indicates how
many samples are written to data before the ‘FPGA’ is granted control over the
memory. In the case of the read SRAM block, ‘frame_size’ indicates how many
samples of data are read from the RAM after the FPGA has released the block.

The basic write RAM loop is:
do
 for i=0:frame_size-1
 write ‘Data’ to SRAM address i
 end
 wait for FPGA ‘req’ = 1
 assert FPGA ‘gnt’
 wait for FPAG ‘req’ = 0
 deassert FPGA ‘gnt’
loop

The enable data signal is valid when the frame of data is being written to the SRAM.

The basic read RAM loop is:
do
 wait for FPGA ‘req’ = 1
 assert FPGA ‘gnt’
 wait for FPAG ‘req’ = 0

 XRC Co-simulation Library for use with
System Generator v6.3

XRC Co-simulation Library 10

 deassert FPGA ‘gnt’
 for i=0:frame_size-1
 read ‘Data’ from SRAM address i
 end
loop

The data valid signal indicates when the data is being read out of the SRAM.

6.5 SRAM and DRAM Cosimulation

xlcosimADM-XRC-II-Pro(XP)
Cosimulation

Request

Wen

Addr Out Sig
Data In Sig

Data Out SIg
Data Out SIg1

Grant
Grant1

Valid Out Sig
Valid Out Sig1

shared_memory
hwcosim

<< XP_SRAM0: depth: 262144 width: 32 >>
<< XP_SRAM1: depth: 262144 width: 32 >>

When a co-simulation bitstream is created with the memory modules in the design,
the external shared memories will appear as Shared Memories on the block in the
same way as internal shared block RAMs appear. These memories can be accessed
using the standard Xilinx shared memory blocks. The memory names are specified in
the format “<board>_<S/D>RAM<i>” , e.g. XRC2_SRAM3. This name should be
entered into any shared memory block to connect to the FPGA Board Memory.

Some additional parameters have been added to the cosimulation block:
An access mode parameter for each memory is available, with 4 options:
FPGA always granted access (default),
Shared Memory only performs DMA Read,
Shared Memory only performs Write,
Shared memory performs write and read back.
The first option is for FPGA applications not sharing the memory. The second and
third options can speed up performance in systems that do not need to both read and
write the same memory. The last option lets the shared memory operate in the same
way as the internal shared memories.

 XRC Co-simulation Library for use with
System Generator v6.3

XRC Co-simulation Library 11

There are a few hidden options that can be used to speed up the operation further.
These are not displayed by default, and to display them requires editing of the cosim
block mask. Right click on the blcok and select edit Mask. Click on the Parameters
Tab. Scroll down and click on the smNames parameter, click the Show Parameter
tick box to make the property visible. Also make smWidths and smDepths visible.

This now allows you to edit the 3 fields. The most useful field to edit is smDepths.
This can be increased or reduced to change the size of memory transferred from the
host to and from the FPGA. This can obviously speed up the algorithm if only a small
part of the memory is being used.

The smWidths field can also be modified if only part of the 32 bit data width is being
used.

The smNames parameters should not be changed unless multiple cards are being used.
In that case you can extend the names to allow shared memories on different cards to
be distinguished, e.g XRC2_SRAM0_card1 and XRC2_SRAM0_card2. It is
important that the first part of the name (e.g. XRC2_SRAM0) is not changed.

 XRC Co-simulation Library for use with
System Generator v6.3

XRC Co-simulation Library 12

In this example smDepths has been modified to reduce the DMA transfer size to
match that of a 320x240 image.

6.6 Burst Limitations of DRAM
DRAM devices have a more complicated control interface than SRAM devices,
requiring separate clock cycles for setting up the row and column addresses. They
also require periodic refresh cycles. This can make the read latency of the interface
vary. The device is only capable of bursting within a single row (512 words).

The interface module has 16-word command, read data and write data FIFOs. The
interface also runs at twice the clock frequency of the system. This should allow the

 XRC Co-simulation Library for use with
System Generator v6.3

XRC Co-simulation Library 13

memory to burst continuously over long address ranges, as although the FIFO will fill
up during refreshes and row changes, it should be emptied faster than it is filled. The
large latency associated with reads can in some cases still cause an overflow and
therefore it is advisable to restrict the length of continuous bursts to less than 512
words.

Random accesses to memory across multiple rows will increase the turn around time
for the operation. Continuous switching between reads and writes is also not
advisable. Both these operations may fill up the FIFO and therefore should not be
started continuously on consecutive clock cycles. Therefore random accesses and
read and write changes should be restricted to bursts of less than 16 words.

7 Advanced Examples

7.1 External Memory

data_in
addr
read
write
request

data_out

data_v alid

grant

XP_SRAM1

data_in
addr
read
write
request

data_out

data_v alid

grant

XP_SRAM0dbl fpt

Wen

fpt dbl

Valid Out Sig1

fpt dbl

Valid Out Sig

Scope

dbl fpt

Request

k =0

Req1

xlslice[a:b]

RW1

xlslice[a:b]

RW

xllogical and

Logical
xlinv not

Inverter

fpt dbl

Grant1

fpt dbl

Grant

z-1

Delay5

z-1

Delay4

z-1

Delay3

z-1

Delay2

z-1

Delay1

z-1

Delay

fpt dbl

Data Out SIg1

fpt dbl

Data Out SIg

fpt dbl

Data In Sig

out

Data

1

Constant1

1

Constant

xlconcat
hi

lo
cat

Concat1

fpt dbl

Addr Out Sig

out

Addr

Sy stem
Generator

This example very simply demonstrates how to wire up the external memories in the
FPGA and run them in single stepped mode. Counters generate address, data signals
and read and write strobes. External inputs can mask the write strobe and the mutual
exclusion request.

 XRC Co-simulation Library for use with
System Generator v6.3

XRC Co-simulation Library 14

7.2 Data Capture

Set Rear IO Pins 17:8 to be inputs

fpt dbl

reario_tri

dbl fpt

reario_in

dbl fpt

enable

Terminator

xlregistedq

Register1

din

din_v alid

Output Buffer

xlinv not

Inverter2

xlinv not

Inverter1

xlinv not

Inverter

xlslice[a:b]

EXT CLK IN

xlslice[a:b]

DATA [7:0] xlconvercast
Convert

1

1

Constant1

xlconcat

hi

lo

cat

Concat

xlblackbox2

q

valid

overflow

ext_clk

d

capture

read_enable

rst_fifo

Async Data Capture

k =0

8 bits Tri-State

k =0

46 Bits Tri-State

k =0

10 bits input

Sy stem
Generator

This example demonstrates how to set up I/O pins in an application. In this case an 8
bit wide data signal is captured from the Rear IO (Pn4) pins. The data signal has its
own clock, so a VHDL black box is included to sample the data on the negative edge
of the external clock and transfer it to the Simulink clock domain using an
asynchronous FIFO. The data is then stored in a shared external memory, which can
be read into Simulink by the host.

Set Rear IO Pins 17:8 to be outputs

fpt dbl

reario_tri

fpt dbl

reario_out

dbl fpt

enable

Terminator1

Terminator

xlcastforce

Reinterpret
addr

ROM

xlinv not

Inverter2

xlinv not

Inverter

outen

Counter

xlconvertcast

Convert

1

xlconcat

hi

lo

cat

Concat1

xlconcat

hi

lo

cat

Concat

xlblackbox2clk_out

CLK Output Block

k =0

8 bits shift

k =0

8 bits Tri-State

k =0

46 Bits Tri-State

k =0

10 bits output

Sy stem
Generator

A companion signal generator application generates a sine wave on the 8 Rear IO
(Pn4) pins. This example also includes a simple VHDL black box to output the

 XRC Co-simulation Library for use with
System Generator v6.3

XRC Co-simulation Library 15

System Generator on a clock pin using a DDR register to implement clock
forwarding.

xlcosimADM-XRC-II-Pro(XP)
Cosimulation

enable

signal_generator
hwcosim

xlcosimADM-XRC-II
Cosimulation

enable

data_capture
hwcosim

<< XRC2_SRAM0: depth: 1024 width: 8 >>

ddepth: 1024
width: 8

Shared Memory Read

User

Display

double

Data Type Conversion

1

The testbench model runs the signal generator on one ADM-XRC series PMC and the
data capture application on another ADM-XRC series PMC. Both are installed on
the same ADC-PMC carrier, so that the Pn4 Rear IO pins are connected, and the data
generated in the first FPGA is captured by the second FPGA and stored in the external
shared memory which is then read by Simulink and the sine wave displayed.

7.3 DDR IO

Set Rear IO Pins 16:8 to be outputs

DDR VHDL Black Box
Convets 16 bit d to 8 bit DDR q
q is then output on pins 15:8

Clock is output on Pin 16

fpt dbl

reario_tri

fpt dbl

reario_out Terminator1

Terminator

xlinv not

Inverter2

xlinv not

Inverter

dbl fpt

Enable

xlblackbox2qd

DDR OUT

xlconvertcast

Convert to 64 bit1

Constant

xlconcat
hi

lo
cat

Concat1

xlconcat
hi

lo
cat

Concat

xlblackbox2clk_out

CLK Output Block

k =0

9 bits output

k =0

8 bits shift

k =0

8 bits Tri-State

k =0

47 Bits Tri-State

outen

16 bit Counter

Sy stem
Generator

The DDR IO example consists of a DDR transmitter and a DDR receiver. A VHDL
black box is used to convert a 16 bit wide data bus to 8 bits running at DDR which are

 XRC Co-simulation Library for use with
System Generator v6.3

XRC Co-simulation Library 16

connected directly to the pins. The CLK output block is also used to forward the
System Generator clock to the pins.

Set Rear IO Pins 16:8 to be inputs

fpt dbl

valid

fpt dbl

reario_tri

dbl fpt

reario_in

fpt dbl

q

Terminator2

Terminator1

Terminator

xlinv not

Inverter2

xlinv not

Inverter1

xlinv not

Inverter

xlslice[a:b]

EXT CLK IN

xlslice[a:b]

DDR DATA [7:0]

xlblackbox2

q

valid

overflow

ext_clk
d
capture
read_enable
rst_fifo

DDR Async Input

k =1

Constant3

k =0

Constant2

1

Constant1

xlconcat
hi

lo
cat

Concat
k =0

9 bits input

k =0

8 bits Tri-State

k =0

55 Bits Tri-State
Sy stem

Generator

The receiver block has an asynchronous data capture VHDL black box similar to the
single data rate module. In this case however the ideal clock sample time is 90
degrees after the positive and negative edges. To support operation in both single
stepped clock mode and free running clock mode, the phase shift is generated by
delaying the external clock through 3 LUTs on the FPGA. This delay may not be
appropriate for all free running clock frequencies and may need modification. If the
input clock is free running then a DCM can be used to accurately generate an
appropriate phase shift.

7.4 Shared Memory

dbl fpt

disable

fpt dbl

count

registe
d
enq

registe
d
en q

registe
d
enq

din

din_v alid

Output Buffer

xlinv not

dout

dout_v alid

Input Buffer

[obuf_grant_pulse]

out
rst

en

Counter

1

Sy stem
Generator

 XRC Co-simulation Library for use with
System Generator v6.3

XRC Co-simulation Library 17

This shared memory example shows how to set up an application which processes
data in one SRAM and stored it in another. No application is included, instead a
register is instantiated and the example simply copies data from one bank of memory
to another. A count is kept of all the data words received.

1
frame_out

xlcosimADM-XRC-II
Cosimulation

disable count

test_shmem
hwcosim

<< XRC2_SRAM0: depth: 1024 width: 32 >>
<< XRC2_SRAM1: depth: 1024 width: 32 >>

simout1

To Workspace

xltoshmemd depth: 1024
width: 32

Shared Memory Write

ddepth: 1024
width: 32

Shared Memory Read

0

Display
2

disable

1
frame_in

The testbench example copies data from Matlab into one shared memory and reads it
out from the other shared memory back into Matlab for checking. The simin variable
is provided in the simin.mat file.

This example shows how to use the cosimulation blockset to stream data through an
algorithm. To build a user application, simply replace the registers in the data and
valid pipelines with the processing algorithm.

If the speed provided by the cosimulation blockset is insufficient it is also possible to
port the algorithm to use the Alpha Data Applications blockset. This blockset allows
higher clock rates (as it does not support single stepping mode) and is targeted at the
development of the final embedded application.

 XRC Co-simulation Library for use with
System Generator v6.3

XRC Co-simulation Library 18

s

r

q

sr_fl ip_flop

dindout

one_shot1

din dout

one_shot

registe
d
en q

registe
d
en q

Finished

Count

Disable

Start

PCI Interface

din

din_v alid

Last Word

Output Buffer

xlinv not

Start

dout

dout_v alid

Input Buffer

out
rst

en

Counter

Sy stem
Generator

The Matlab script file apps_shmem_test.m can be used to configure and control the
FPGA using the bitstream generated.

