
ADM-XRC LTS Driver 4.3.0b3 for Wind River VxWorks Release Note
V1.0 - 30 May 2017

ADM-XRC LTS Driver 4.3.0b3 for
Wind River VxWorks

Release Note

Introduction
This release note accompanies the ADM-XRC LTS (Long-term Support) Driver for Wind River VxWorks. The
latest version of this driver can be found at:

ftp://ftp.alpha-data.com/pub/admxrc/vxworks

For support, send e-mail to support@alpha-data.com

The ADM-XRC LTS Driver for Wind River VxWorks is built as a downloadable kernel module, to be downloaded
to a CPU board after it has booted. There is an alternative package, ADM-XRC LTS Driver Component, which
can be compiled into a VxWorks kernel image.

Operating systems supported
This release of the ADM-XRC LTS Driver for VxWorks supports the following operating systems:

• Wind River VxWorks 5.5 and 6.x

Hardware supported
This release of the ADM-XRC LTS Driver for VxWorks supports the following Alpha Data hardware:

• ADM-XRC / ADM-XRC-P

• ADM-XRC-II-L

• ADM-XRC-II

• ADM-XPL

• ADM-XP

• ADP-WRC-II

• ADP-DRC-II

• ADM-XRC-4LX / ADM-XRC-4SX

• ADCP-XRC-4LX

• ADPE-XRC-4FX

• ADM-XRC-4FX / ADM-XMC-4FX

• ADM-XRC-5LX

• ADM-XRC-5T1

• ADM-XRC-5T2 / ADM-XRC-5T2-ADV / ADM-XRC-5T2-ADV6 / ADM-XRC-5T2-ADV-CC1

• ADM-XRC-5LXA

• ADM-AMC-5A2

• ADM-XRC-5TZ

• ADC-BBP

Page 1ad-rn-0131_v1_0.pdf

ftp://ftp.alpha-data.com/pub/admxrc/vxworks
mailto:support@alpha-data.com?subject=ADM-XRC%20LTS%20Driver%204.3.0b3%20for%20VxWorks

ADM-XRC LTS Driver 4.3.0b3 for Wind River VxWorks Release Note
V1.0 - 30 May 2017

• ADM-PCIE-6S1

License agreement
Please refer to the files license.rtf or license.txt within this software package for the licensing terms that apply
to this software. Please contact Alpha Data if alternative licensing terms are required.

Alpha Data reserves the right to use different licensing terms for future releases of this software.

Building the driver
Prerequisites for building the driver are a Linux or Windows host machine with either Tornado 2.2 & Vxworks 5.5
or Workbench & VxWorks 6.x installed on it.

The driver is supplied in source code form so that it can be cross-built for a variety of CPU architectures and
hardware platforms. To build the driver, follow the instructions in the appropriate subsection.

Cross-building the driver on a Windows host
To build the driver on a Windows host, follow these steps:

1 Unpack this package somewhere, for example
C:\MyTesting\admxrc_drv-4.3.0b3

For convenience, the remainder of this document refers to this directory as %ROOT% (although it should
be noted that no such environment variable is created nor referenced by the driver's build system).

2 Start a Windows command prompt that is capable of performing command-line VxWorks builds. For
VxWorks 6.x, use the "VxWorks Development Shell" shortcut. For VxWorks 5.5, start a normal Windows
command prompt, and then execute the torVars.bat batch file that can normally be found in
C:\Tornado2.2\host\x86-win32\bin

3 In the command prompt, change directory to %ROOT% from step 1.

4 Execute MAKE with the appropriate options, as described in "MAKE options". For example, to build a
debug VxBus driver for a SMP Pentium 4 system, use
make CPU=PENTIUM4 VSB=smp clean all

In the above command, the options DEBUG, TOOLCHAIN and TYPE (VxBus driver vs. legacy driver) are
not specified, so they default to true, gnu and vxbus respectively. Assuming the build is successful, the
binaries are:

%ROOT%\driver\monolithic\vxworks\bin\vxbus_PENTIUM4gnu_debug_smp\admxrcDriver
.out
%ROOT%\api\modules\admxrc2\vxworks\bin\vxbus_PENTIUM4gnu_debug_smp\admxrc2Api
.out

At this point, you are ready to proceed to starting the driver as described in "Starting the driver".

Cross-building the driver on a Linux or UNIX host
To build the driver on a Linux or UNIX host, follow these steps:

TBA

MAKE options
The top-level Makefile for the ADM-XRC LTS Driver accepts a number of options which are passed on the MAKE
command line. These are:

Page 2 ad-rn-0131_v1_0.pdf

ADM-XRC LTS Driver 4.3.0b3 for Wind River VxWorks Release Note
V1.0 - 30 May 2017

• CPU=<architecture>
Specifies the architecture (default PPC604) for which the driver is to be built. In general, legal values for
this can be seen by inspecting the folder $(WIND_BASE)/target/h/tool/<TOOLCHAIN>, where
TOOLCHAIN is one of the supported toolchains (diab, gnu or icc). The files named make.<CPU><
TOOLCHAIN> represent the allowed values for CPU and TOOLCHAIN. For example, for the file
make.ARMARCH7sfdiab, CPU=ARMARCH7 and TOOLCHAIN=sfdiab. See also the TOOLCHAIN
option described below.

• CTAG=<configuration tag>
This option, when specified, overrides the default output directory naming convention. When not specified,
CTAG takes the value <TYPE>_<CPU><TOOLCHAIN>_<debug|release>[_<VSB>].

• CTAG_EXTRA=<extra configuration tag>
This option, when specified, is appended to CTAG in order to further distinguish configurations, if
necessary. An underscore or other separator character is not automatically added, so the value of this
option should normally begin with an underscore or hyphen.

• DEBUG=<false|true>
When true (default), specifies a debug build in which optimizations are disabled. When false, specifies a
release build in which normal optimizations are enabled.

• QUIET=<false|true>
When true, the verbose display of build commands is suppressed, enabling warnings to be more easily
seen during build. The default is false

• SPECIAL=<board>
Specified to enable code paths for a single-board computer that requires special-case (non-generic) code
in order for the driver to work correctly. Currently-supported boards are:

• Mercury HCD5220
Use SPECIAL=HCD5220

• Motorola MVME5500
Use SPECIAL=MV5500

• TOOLCHAIN=<gnu|sfgnu|diab|sfdiab|icc>
Specifies the toolchain to be used to build the driver. This option is also used to specify whether or not the
driver is built for soft-floating point (sfgnu or sfdiab).

• TYPE=<legacy|vxbus>
Specifies whether the driver should be built as a legacy driver or a VxBus driver (default). If the build
system detects a VxWorks 5.5 environment, TYPE is automatically set to legacy.

• VSB=<variant>
Specifies VxWorks variant libraries, if required. If omitted, the normal libraries are used. This option must
be specified when building the driver for a SMP system, or for a 64-bit system where the architecture also
supports a 32-bit mode. Commonly-used values are smp, lp64_smp and lp64.
Although VxWorks Source Builds (VSB) was a feature introduced in VxWorks 6.7, the driver makes a
special case exception for VxWorks 6.6, which lacks VSB but permits SMP. In the case of VxWorks 6.6,
the VSB=smp is permitted. This causes the driver's build system to pass -D_WRS_VX_SMP to the
compiler.

Starting the driver
To start the driver in the target system, follow these steps:

1 Download the modules admxrcDriver.out and admxrc2Api.out to the target system. This can be done
using the ld command in the VxWorks shell or the target system's console. For example:

-> ld <hostname:C:/MyTesting/admxrc_drv-4.3.0b3/driver/admxrc_monolithic/vxwo
rks/bin/
legacy_PPC604gnu_debug/admxrcDriver.out
-> ld <hostname:C:/MyTesting/admxrc_drv-4.3.0b3/api/modules/admxrc2/vxworks/b
in/

Page 3ad-rn-0131_v1_0.pdf

ADM-XRC LTS Driver 4.3.0b3 for Wind River VxWorks Release Note
V1.0 - 30 May 2017

legacy_PPC604gnu_debug/admxrc2Api.out

2 To start the driver, use the entry point admxrcDrvStart:
-> admxrcDrvStart

This entry point accepts one parameter:
• debugLevel (int), default 0

Verboseness of debug output sent to console using logMsg. The release version of a driver
produces no output. In the debug version of the driver, a value of 0 results in minimal output and
increasing values (up to 10) result in more output.

For example, to start the driver with some extra debug output and support for legacy hardware, use:
-> admxrcDrvStart(2)

A debugLevel value greater than zero may greatly slow down execution of the driver, so 0 is
recommended during normal usage.

Starting the driver with a debugLevel of 0 should result in output of the following form on the console:

-> admxrcDrvStart
0xdd7a390 (tShellRem232161468): admxrc(0): dfDriverEntry: ADM-XRC Monolithic Drive
r, version=4.3.0.8
0xdd7a390 (tShellRem232161468): admxrc(0): identifyDevice: PCI, vid=0x10b5 did=0x9
656 svid=0x4144 sdid=0x004d rev=0x02
0xdd7a390 (tShellRem232161468): admxrc(0): identifyAlphaData: identified ADM-XRC-4SX
value = 0 = 0x0

VPD write-protection mechanism
To enable writes to VPD memory (calls to ADMXRC2_WriteConfig), the configuration option
VXBADMXRC_ENABLE_VPD_WRITE must be TRUE.

VXBADMXRC_ENABLE_VPD_WRITE is the initial value of the global integer variable
admxrcDrvEnableVpdWrite. If necessary, this variable can be manipulated at runtime in order to enable or
disable writes to VPD memory. This variable is checked every time an application attempts to write to the VPD
memory, so changes to this variable take effect immediately rather than being sampled when the driver is
started.

To set this value to 1 (thus enabling VPD writes) using the VxWorks shell, use:

-> admxrcDrvEnableVpdWrite=(int)1

To set this value to 0 (thus disabling VPD writes) using the VxWorks shell, use:

-> admxrcDrvEnableVpdWrite=(int)0

Known issues
Modifications to certain BSPs needed for interrupt delivery

Certain BSPs for single-board computers require a modification to an interrupt vector table in order for interrupts
to be delivered to the ADM-XRC LTS Driver. If the driver behaves as if interrupts are not being delivered to it - for
example, if DMA transfers hang, or the "ITest" example from the ADM-XRC SDK fails to work correctly - it may
necessary to modify the file hwConf.c in your VxWorks kernel image project.

Although Alpha Data cannot in general provide precise instructions for doing this, for many BSPs the necessary
steps are as follows:

1 Open hwConf.c in your VxWorks kernel image project in your favorite editor, and locate a table of this

Page 4 ad-rn-0131_v1_0.pdf

ADM-XRC LTS Driver 4.3.0b3 for Wind River VxWorks Release Note
V1.0 - 30 May 2017

form:
LOCAL const struct intrCtlrInputs loApicInputs[] = {
 { VXB_INTR_DYNAMIC, "yn", 0, 0 },
 { VXB_INTR_DYNAMIC, "gei", 0, 0 },
 ... other entries ...
#if defined (INCLUDE_HPET_MSI)
 { INT_NUM_IA_HPET_TIMER0, "iaHpetTimerDev", 0, 0 },
 ... other entries ...
#endif /* INCLUDE_HPET_MSI */
 ... other entries ...
};

2 If you have a single Alpha Data FPGA card in the target system, add the following entry to the end of the
table:
 { VXB_INTR_DYNAMIC, "admxrc", 0, 0 }

If you have more than one device, add as many entries as you have devices, incrementing the number in
the 3rd position of each entry for each entry. For example, if there are 4 devices, add the following entries
to the end of the table:
 { VXB_INTR_DYNAMIC, "admxrc", 0, 0 },
 { VXB_INTR_DYNAMIC, "admxrc", 1, 0 },
 { VXB_INTR_DYNAMIC, "admxrc", 2, 0 },
 { VXB_INTR_DYNAMIC, "admxrc", 3, 0 }

3 Rebuild your VxWorks kernel image. It should now be capable of delivering interrupts to the ADM-XRC
LTS Driver.

vxbDmaBufLib symbols missing when downloading the ADM-XRC
LTS Driver

If, when you download admxrcDriver.out to the target processor, you see messages of the form

Warning: module 0xffff80000023b1a0 holds reference to undefined symbol vxbDmaBufMe
mAlloc.
Warning: module 0xffff80000023b1a0 holds reference to undefined symbol vxbDmaBufMa
pCreate.
Warning: module 0xffff80000023b1a0 holds reference to undefined symbol vxbDmaBufTa
gCreate.
... other warnings ...

it indicates one of two things:

• The INCLUDE_DMA_SYS component is excluded from the kernel image. In that case, add it to the kernel
image and rebuild. The ADM-XRC LTS Driver requires this component in order to be able to perform DMA
transfers.

• The INCLUDE_DMA_SYS component is included in the kernel image but is being optimized out due to no
kernel component using it. In that case, the workaround is to include a kernel component that is known to
rely on INCLUDE_DMA_SYS, such as INCLUDE_EHCI. Then, rebuild the kernel image.

Compiler warnings during builds
The following compiler warnings may be generated when building the driver for certain configurations:

• ../../framework/vxworks/vxbus_pci.c: In function 'getRawBusResources':
../../framework/vxworks/vxbus_pci.c:137: warning: unused variable 'f'
This warning arises from variables that are required in some VxWorks configurations and not in others,
and can safely be ignored.

• icc: command line warning #10006: ignoring unknown option '-Wbad-function-cast'
icc: command line warning #10006: ignoring unknown option '-Wno-sign-conversion'

Page 5ad-rn-0131_v1_0.pdf

ADM-XRC LTS Driver 4.3.0b3 for Wind River VxWorks Release Note
V1.0 - 30 May 2017

This warning arises because the 64-bit build specs for the Intel Compiler for VxWorks set a couple of
compiler options that are not supported for that particular version of the compiler. These warnings can
safely be ignored.

• "../../framework/vxworks/legacy_methods.c", line 154: warning (dcc:1500): function pciIntDisconnect2 has
no prototype
This warning can be ignored, and occurs because the pciIntDisconnect2 function appears to be missing
from the VxWorks 5.5 header files, although it exists and can be used in some VxWorks kernel images.

Release history
Release 4.3.0b3

This is the first release of the ADM-XRC LTS Driver for VxWorks.

Address: 4 West Silvermills Lane,
Edinburgh, EH3 5BD, UK

Telephone: +44 131 558 2600
Fax: +44 131 558 2700
email: sales@alpha-data.com
website: http://www.alpha-data.com

Address: 611 Corporate Circle Suite H
Golden, CO 80401

Telephone: (303) 954 8768
Fax: (866) 820 9956 - toll free
email: sales@alpha-data.com
website: http://www.alpha-data.com

4.8

	Introduction
	Operating systems supported
	Hardware supported
	License agreement
	Building the driver
	Cross-building the driver on a Windows host
	Cross-building the driver on a Linux or UNIX host
	MAKE options

	Starting the driver
	VPD write-protection mechanism
	Known issues
	Modifications to certain BSPs needed for interrupt delivery
	vxbDmaBufLib symbols missing when downloading the ADM-XRC LTS Driver
	Compiler warnings during builds

	Release history
	Release 4.3.0b3

