
ADM-XRC Application Note - FPGA Interrupt Handling V1.4
By Tomas Whitlock, Alpha Data Parallel Systems AN-XRC06

ADM-XRC Application Note – FPGA Interrupt Handling

This application note describes an implementation of a simple FPGA interrupt generation and
handling mechanism for the ADM -XRC series of cards, with example application-level C code for the
host. This mechanism permits an application running in the FPGA to generate interrupts which may
be captured by an application running on the host.

The ADM-XRC series of FPGA PMC cards provide a reconfigurable computing resource coupled to
the host by a fast PCI interface. In this document, “ADM -XRC” is used to refer to any ADM-XRC
series card, such as the ADM-XRC, ADM-XRC-P, ADM-XRCII-L and ADM-XRCII.

FPGA Interrupt Logic on the ADM-XRC

The diagram below shows in simplified form, the interrupt logic in the ADM-XRC, plus the interrupt
registers in a typical FPGA application that has two interrupt sources in the FPGA:

PCI9080
or

PCI9656

PLX Local Bus

FPGA

CPLD

D

Q

C

ISTAT ICON

IMSTAT

1

FIMASK

FISTAT

&

&

FINTI_L

LINTI_L
FINTM

FINT

[0]

[0]
&

[1]

[1]

+

The FPGA contains the user-programmable logic, and has two registers, each 2 bits wide: FISTAT
(FPGA interrupt status) and FIMASK (FPGA interrupt mask). If a bit in FIMASK is 1, the
corresponding bit of FISTAT is masked and prevented from generating an interrupt on the FPGA’s
FINTI_L pin. When a bit in FISTAT reads as 1, it can be cleared to 0 by writing 1 to the same bit of
FISTAT.

The CPLD contains the IMSTAT register (interrupt mask), ISTAT register (interrupt status) and the
ICON (interrupt control register). When a bit in ISTAT is 1, LINTI_L is asserted if the corresponding
bit in IMSTAT is 0 (unmasked). Writing 1 to a bit in the ICON register clears the corresponding bit in
ISTAT to 0.

Note the presence of the negative edge triggered flip-flop in the CPLD, meaning that only a high-to-
low transition on FINTI_L can cause the FINT signal in the CPLD to be set to 1. In other words, the

ADM-XRC Application Note - FPGA Interrupt Handling V1.4
 AN-XRC06

Page 2

interrupt signal from the FPGA to the CPLD is negative edge sensitive. The reason for this flip-flop
will become apparent later. The LINTI_L pin on the PCI9080/PCI9656 is active low and level
sensitive, whereas the FINTI_L pin on the CPLD is negative edge sensitive.

The ADM-XRC Device Driver Interrupt Handler

Normally, a device driver will be responsible for handling interrupts from the ADM-XRC. The following
code shows the algorithm used by the ADM -XRC device drivers provided by Alpha Data:

void admxrc_handle_interrupt(...)
{
 DWORD intcsr;
 BOOLEAN fpga_interrupt = FALSE;

 /* Sample the PCI9080/PCI9656’s INTCSR register */

intcsr = read_plx(PLX_INTCSR);

 /* Check other interrupts, eg. PCI9080/PCI9656 DMA engines */
 ...

 /* Check for local bus interrupt */
 if (intcsr & (1 << 15))

{
 /* local bus interrupt is active (LINTI_L is asserted) */
 BYTE istat;

 /* read the CPLD interrupt status */
 istat = read_cpld(CPLD_ISTAT);
 if (istat & (1 << 0))

{
 /*

** CPLD FPGA interrupt is active
 ** Clear the CPLD FPGA interrupt

*/
 write_cpld(CPLD_ICON, 1 << 0);
 fpga_interrupt = TRUE;
}
else
{
 /* We do not expect ever to get here! */
}

}

 /* Other interrupt processing? */
 ...

/* See text below */
if (fpga_interrupt)
 admxrc_handle_fpga_interrupt();

}

ADM-XRC Application Note - FPGA Interrupt Handling V1.4
 AN-XRC06

Page 3

When the handler reaches the point where it calls admxrc_handle_fpga_interrupt(), the
CPLD is no longer asserting LINTI_L, unless the FPGA has caused another high-to-low transition on
FINTI_L.

The device driver’s interrupt handler does not attempt to cause FINTI_L to be deasserted, as the
driver cannot in general know how to deassert FINTI_L. However, this is will not immediately result
in another host interrupt (unless FINTI_L transitions high to low again), as FINTI_L is an edge
sensitive signal rather than a level sensitive signal.

In order for the user’s application running on the host to be informed that an FPGA interrupt has
occurred, the driver’s admxrc_handle_fpga_interrupt() routine must perform some
appropriate action to notify the application. Depending on the operating system, this could be:

• In VxWorks, signalling a user-created semaphore that the application has registered with
the driver

• In Windows, signalling an user-created event that the application has registered with the
driver by calling ADMXRC2_RegisterInterruptEvent()

Thus, the reason for making the FINTI_L signal level sensitive is to allow the application-specific
handling of an FPGA interrupt to be deferred to application level.

The Application Level FPGA Interrupt Handler

In a Win32 application, the application level FPGA interrupt handler may simply be a thread that
repeatedly waits on an event it has registered with the driver via
ADMXRC2_RegisterInterruptEvent() . The following code fragment illustrates this (error
checking omitted for clarity):

HANDLE fpga_event;

/* Other code/declarations */
...

void handle_fpga_interrupt(ADMXRC2_HANDLE handle)
{
 DWORD fistat;
 DWORD fimask;

 fistat = fpga_read(handle, FPGA_FISTAT); /* ---(1) */

fimask = fpga_read(handle, FPGA_FIMASK);

 /*

** Don’t bother processing interrupts that are masked –
 ** this is optional and depends on the needs of the application
 */
 fistat &= ~fimask;

 /*

** Dismiss only the interrupts that we are going to process
** this time around
*/

 fpga_write(handle, FPGA_FISTAT, fistat);

ADM-XRC Application Note - FPGA Interrupt Handling V1.4
 AN-XRC06

Page 4

 if (fistat & (1 << 0))

{
 /* Code to process FPGA interrupt 0 */
 ...

}

 if (fistat & (1 << 1))

{
 /* Code to process FPGA interrupt 1 */
 ...

}

/* Rearm the FINTI_L signal ---(2) */
fpga_write(handle, FPGA_FIMASK, 0xffffffffU);
fpga_write(handle, FPGA_FIMASK, fimask);

}

DWORD WINAPI interrupt_thread(PVOID arg)
{
 ADMXRC2_STATUS status;
 ADMXRC2_HANDLE handle = (ADMXRC2_HANDLE) arg;
 DWORD result;

fpga_event = CreateEvent(NULL, FALSE, FALSE, NULL);

status = ADMXRC2_RegisterInterruptEvent(handle, fpga_event);

while (1)
{

result = WaitForSingleObject(fpga_event, INFINITE);
handle_fpga_interrupt(handle);

}
}

Why is it necessary to ‘rearm’ the FPGA interrupt as in (2), by first setting all bits of the FPGA’s
FIMASK register to 1, and then restoring them to their previous state?

The reason is that in the time between executing the statement at (1) and the statement at (2), an
interrupt may have occurred that was not seen when sampling the FPGA’s FISTAT register. Thus,
merely dismissing the interrupts in the FPGA that were pending at the time FISTAT was
sampled is not guaranteed to cause FINTI_L to be deasserted. By rearming FINTI_L, any
FPGA interrupts that are still pending will cause a new local bus interrupt on LINTI_L and thus
prevent a situation arising where the application waits for an interrupt that has actually occurred but
is never seen.

Refinements To The Method

It may not be desirable to write to the FIMASK register in order to rearm FINTI_L, for a number of
reasons. For example, in a multiprocessor system, another section of code running on a different
CPU might alter the FIMASK register, and this would require the interrupt handler to coordinate its
activity with other sections of code that potentially modify FIMASK.

ADM-XRC Application Note - FPGA Interrupt Handling V1.4
 AN-XRC06

Page 5

Adding a FREARM register (FINTI_L rearm) to the FPGA removes the need for this coordination,
simplifying driver design and increasing performance slightly. The FREARM register simply outputs
a pulse of a single clock cycle when it is written to. The following diagram shows this refinement:

PLX9080

PLX Local Bus

FPGA

CPLD

D

Q

C

ISTAT ICON

IMSTAT

1

FIMASK

FISTAT

&

&

FINTI_L

LINTI_L
FINTM

FINT

[0]

[0]
&

[1]

[1]

+

&FREARM

The application-level FPGA interrupt handler can now be modified as follows:

• Use a shadow for the FIMASK register. In other words, the application maintains a copy of
the most recent value programmed into the FIMASK register so that a read from the FPGA
FIMASK register can be avoided.

• The two writes to the FIMASK register in order to rearm FINTI_L become a single write to
the FREARM register.

The handle_fpga_interrupt() function becomes:

DWORD fimask_shadow; /* Shadows the FIMASK register */

void handle_fpga_interrupt(ADMXRC2_HANDLE handle)
{
 DWORD fistat;

 fistat = fpga_read(handle, FPGA_FISTAT);

 /*

** Don’t bother processing interrupts that are masked –
 ** this is optional and depends on the needs of the application

*/
 fistat &= ~fimask_shadow;

ADM-XRC Application Note - FPGA Interrupt Handling V1.4
 AN-XRC06

Page 6

 /*
** Dismiss only the interrupts that we are going to process
** this time around
*/

 fpga_write(handle, FPGA_FISTAT, fistat);

 if (fistat & (1 << 0))

{
 /* Code to process FPGA interrupt 0 */
 ...

}

 if (fistat & (1 << 1))

{
 /* Code to process FPGA interrupt 1 */
 ...

}

/* Rearm the FINTI_L signal */
fpga_write(handle, FPGA_FREARM, 0U); /* Value is irrelevant */

}

Conclusion

This application note has described, with reference to Alpha Data’s ADM-XRC SDK, a mechanism
for delivering interrupts from the FPGA to the application. The actual processing for the FPGA
interrupts is deferred to application level instead of driver level, and the device driver need not know
how to process interrupts from the FPGA. As long as the driver allows user-created events or
semaphores to be registered and signaled when FPGA interrupts occur, this mechanism is
applicable to any platform.

ADM-XRC Application Note - FPGA Interrupt Handling V1.4
 AN-XRC06

Page 7

For further information, contact:

Alpha Data Parallel Systems Ltd.
58 Timber Bush
Edinburgh, EH6 6QH
UK

Te1 +44 (0) 131 555 0303
Fax +44 (0) 131 555 0728

Email : support@alphadata.co.uk
Web : www.alphadata.co.uk

